JP2004294175A - Connecting pipe blockage detector - Google Patents

Connecting pipe blockage detector Download PDF

Info

Publication number
JP2004294175A
JP2004294175A JP2003084970A JP2003084970A JP2004294175A JP 2004294175 A JP2004294175 A JP 2004294175A JP 2003084970 A JP2003084970 A JP 2003084970A JP 2003084970 A JP2003084970 A JP 2003084970A JP 2004294175 A JP2004294175 A JP 2004294175A
Authority
JP
Japan
Prior art keywords
pressure
variance
swing
pressure signal
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003084970A
Other languages
Japanese (ja)
Other versions
JP4379680B2 (en
Inventor
Nobuo Miyaji
宣夫 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2003084970A priority Critical patent/JP4379680B2/en
Publication of JP2004294175A publication Critical patent/JP2004294175A/en
Application granted granted Critical
Publication of JP4379680B2 publication Critical patent/JP4379680B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that the blockage of a connecting pipe cannot be detected accurately since rise or fall components appear while being rocked when pressure and differential pressure are rising or falling. <P>SOLUTION: Three pressure or differential pressure measurement values that are continuous in time are used to compute rocking by the following expression. Since the influence cannot appear in rocking contents even if the pressure or differential pressure varies, the blockage of the connecting pipe can be detected accurately. In rocking=P(i)-2×P(i-1)+P(i-2), P(i), P(i-1), and P(i-2) indicate pressure or differential pressure at time (i), i-1, and i-2, respectively. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【発明の属する技術分野】
この発明は、圧力伝送器や差圧伝送器等に使用される導圧管の詰まりを検出する装置に関し、特に過渡的な圧力変動の影響を受け難い導圧管閉塞装置に関するものである。
【0001】
【従来の技術】
圧力伝送器や差圧伝送器では、圧力を伝送器本体に導く導圧管が詰まっていると、正確な圧力や差圧を検出することができない。特許文献1および特許文献2にはこのような導圧管の閉塞を検出する装置の発明が記載されている。以下、特許文献2に記載された発明の概要を説明する。
【0002】
図5に管路閉塞装置の構成を示す。管路81にはオリフィス82が設置され、流体が矢印の方向に流れている。オリフィス82の上流側圧力PH、下流側圧力PLはそれぞれ導圧管83a、83bで取り出され、差圧伝送器84に入力され、差圧および静圧が検出される。
【0003】
差圧および静圧信号は管路閉塞検出装置9に入力され、導圧管83a、83bが詰まっているかどうかが診断される。そのために、差圧、静圧信号は分散演算部91内にある揺動演算部911に入力され、下記(3)、(4)式に基づいて揺動が演算される。
差圧揺動FiΔP=ΔP−ΔPi−1 ・・・・ (3)
静圧揺動FiP=P−Pi−1 ・・・・・・・ (4)
ここにおいて、ΔP、ΔPi−1はそれぞれ今回と前回の差圧、P、Pi−1は今回と前回の静圧である。
【0004】
この揺動は2乗和演算部912に入力され、下記(5)、(6)式に基づいて差圧揺動の2乗和σΔP、静圧揺動の2乗和σが演算される。これらの2乗和はデータのばらつきの程度を表す値であり、分散と同等のものである。
差圧揺動の2乗和σΔP=Σ(FiΔP*FiΔP)/n ・・・ (5)
静圧揺動の2乗和σ=Σ(FiP*FiP)/n ・・・・ (6)
なお、nは積算するデータの数である。
【0005】
これらの2乗和は判定部93に入力され、導圧管が詰まっているかどうかが判定される。そのため、差圧揺動の2乗和と静圧揺動の2乗和の比率を比率演算部92で演算し、この比率の大きさにより、詰まりを判定する。このようにすると、高圧側、低圧側の導圧管のうち、どの導圧管あるいは両方の導圧管が詰まっているかどうかを判定することができる。
【0006】
また、相関演算部によって差圧揺動と静圧揺動の相互相関および静圧揺動の自己相関を下記(7)、(8)式によって演算し、これらの相関係数の比率からどの導圧管が詰まっているかを判断することも行われる。
差圧揺動と静圧揺動の相互相関C1=Σ(FiΔP*FiP) ・・・ (7)
静圧揺動の自己相関C2=Σ(FiP*FiP) ・・・・・・・・・ (8)
【特許文献1】
特許3129121号明細書
【特許文献2】
特願2002−297174号明細書
【0007】
【発明が解決しようとする課題】
しかしながら、このような管路閉塞検出装置には次のような課題があった。
【0008】
前記(3)式、(4)式から明らかなように、今回の測定値と前回の測定値の差を揺動値として、分散や相関を計算していた。しかしながら、差圧や静圧が過渡的に一方向に変動している途中においては、この変動している成分のために揺動値が変化してしまい、正確な揺動を計算することができず、正確な詰まり判定を行うことができないという課題があった。
【0009】
従って本発明の目的は、差圧あるいは静圧が一方向に変動している場合でも、正確な詰まり判定ができる導圧管閉塞検出装置を提供することにある。
【0010】
【課題を解決するための手段】
このような課題を解決するために、本発明のうち請求項1記載の発明は、2本の導圧管の間の差圧信号および前記導圧管のどちらかの静圧信号が入力され、これらの信号の揺動を演算する揺動演算部と、この揺動演算部の出力が入力され、前記差圧信号の分散と前記静圧信号の分散を演算する分散演算部と、この分散演算部の出力が入力され、前記導圧管の詰まりを検出する判定部とを有し、この判定部は前記差圧信号の分散および前記差圧信号の分散と前記静圧信号の分散比から前記導圧管の詰まりを検出すると共に、前記揺動演算部は前記差圧信号または前記静圧信号の引き続いた3つの信号から揺動を演算するようにしたものである。圧力の過渡的な変化に影響されない。
【0011】
請求項2記載の発明は、請求項1記載の発明において、前記揺動演算部は、下記(9)式に基づいて揺動を演算するようにしたものである。
揺動値Fi=P(i)−2×P(i−1)+P(i−2) ・・・・・(9)
但し、P(i)、P(i−1)、P(i−2)はそれぞれ時刻i、i−1、i−2の差圧または静圧信号である。圧力の過渡的な変化に影響されない。
【0012】
請求項3記載の発明は、請求項1または請求項2記載の発明において、前記判定部は、前記分散比が1に近い値であるときに前記静圧信号を得た導圧管でない側の導圧管が詰まっていると判断し、前記分散比のばらつきが大きいときに前記静圧信号を得た側の導圧管が詰まっていると判断するようにしたものである。どちらかの導圧管が詰まっている場合に、検出できる。
【0013】
請求項4記載の発明は、請求項1ないし請求項3いずれかに記載の発明において、前記判定部は、前記差圧信号の分散を所定の基準値と比較して、前記2本の導圧管の両方が詰まっていると判断するようにしたものである。両方の導圧管の詰まりを検出できる。
【0014】
請求項5記載の発明は、2本の導圧管の間の差圧信号および前記導圧管のどちらかの静圧信号が入力され、これらの信号の揺動を演算する揺動演算部と、この揺動演算部の出力が入力され、前記差圧信号の分散と前記静圧信号の分散を演算する分散演算部と、前記揺動演算部の出力が入力され、これらの入力の相関値を演算する相関演算部と、前記分散演算部が演算した前記差圧信号の分散と前記静圧信号の分散および前記相関演算部が演算した前記相関値が入力され、前記導圧管の詰まりを検出する判定部とを有し、この判定部は前記差圧信号の分散と前記相関値と前記静圧信号の分散の比である相関係数から前記導圧管の詰まりを検出すると共に、前記揺動演算部は前記差圧信号または前記静圧信号の引き続いた3つの信号から揺動を演算するようにしたものである。圧力の過渡的な変化に影響されずに詰まりを検出できる。
【0015】
請求項6記載の発明は、請求項5記載の発明において、前記揺動演算部は、下記(10)式に基づいて揺動を演算するようにしたものである。圧力の過渡的な変化に影響されずに詰まりを検出できる。
揺動値Fi=P(i)−2×P(i−1)+P(i−2) ・・・・・(10)
但し、P(i)、P(i−1)、P(i−2)はそれぞれ時刻i、i−1、i−2の差圧または静圧信号である。
【0016】
請求項7記載の発明は、請求項5または請求項6記載の発明において、前記判定部は、前記相関係数が1に近い値のときに前記静圧信号を得た導圧管でない側の導圧管が詰まっていると判断し、前記相関関数のばらつきが大きいときに前記静圧信号を得た側の導圧管が詰まっていると判断するようにしたものである。どちらかの導圧管が詰まっていることを検出できる。
【0017】
請求項8記載の発明は、請求項5ないし請求項7記いずれかに記載の発明において、前記判定部は、前記差圧信号の分散を所定の基準値と比較して、前記2本の導圧管の両方が詰まっていると判断するようにしたものである。両方の導圧管の詰まりを検出できる。
【0018】
【発明の実施の形態】
以下に、図に基づいて本発明を詳細に説明する。
図1は本発明に係る導圧管閉塞検出装置の一実施例を示す構成図である。図1において、1は揺動演算部であり差圧信号と静圧信号が入力され静圧揺動FiPH、差圧揺動FiΔPを演算して出力する。静圧信号は高圧側の圧力を用いる。
【0019】
21は分散演算部であり、静圧揺動FiPH、差圧揺動FiΔPが入力され、差圧分散値D1,静圧分散値D2を演算して出力する。22は相関演算部であり、静圧揺動FiPH、差圧揺動FiΔPが入力され、それらの相関係数D3を演算して出力する。3は判定部であり、差圧分散値D1,静圧分散値D2および相関係数D3が入力され、それらの値から導圧管の詰まりを判定する。
【0020】
次に差圧測定について説明する。図2は差圧測定の原理図である。配管41内には矢印の方向に流体が流れている。この配管41の途中にはオリフィス42が設置されており、その上下流の圧力は導圧管51,52を介して差圧伝送器6に導かれる。導圧管51,52は圧力の変化に対して時定数TH、TLの1次遅れ要素となり、導圧管が詰まるとこの時定数TH、TLが大きくなると考えることができる。
【0021】
差圧伝送器6には圧力検出部と電気回路が内蔵されており、これらは時定数Ttransの1次遅れ要素61となる。また、細かな変動があると制御に支障を来す場合があるので、62のように平均化されて差圧信号および高圧側または低圧側の静圧信号が出力される。
【0022】
次に、図1の実施例を詳細に説明する。揺動演算部1は下記(11)、(12)式に基づいて静圧揺動FiPH、差圧揺動FiΔPを演算する。添え字のiは時刻iの値であることを表す。
時刻iの静圧揺動FiPH=PH(i)−2×PH(i−1)+PH(i−2)・・・(11)
時刻iの差圧揺動FiΔP=ΔP(i)―2×ΔP(i−1)+ΔP(i−2)・・・(12)
ここにおいて、PH(i)は時刻iの静圧信号、ΔP(i)は同差圧信号である。すなわち、現在の静圧(差圧)と2つ前の静圧(差圧)を加算し、それから1つ前の静圧(差圧)の2倍を減算する。
【0023】
単純に今回の値から前回の値を減算して揺動を計算すると、圧力が増加しているときは正になる傾向があり、減少しているときは負になる傾向がある。本来揺動はランダムであると仮定して判定を行うので、このような傾向があると導圧管の詰まりによる揺動の変化と運転状態の変化が区別できず、誤判定の原因になる。前記(11)、(12)式では運転状態の変化が揺動計算に表れないので、正しい判定が可能になる。
【0024】
このことを図3を用いて説明する。図3は圧力測定値の変化の一例を示したものであり、横軸は時間、縦軸は圧力値である。また、曲線7は測定圧力のグラフであり、細かく変動しながら増加している。●は測定点である。従来例のように揺動を今回の測定値と前回の測定値の差で計算すると、揺動値に増加成分が含まれてしまう。それに対して、前記(11)式は下記(13)式に分解することができるので、増加成分はうち消されて揺動FiPHには表れない。そのため、揺動成分のみを抽出することができる。差圧についても同様である。
iPH={PH(i)−PH(i−1)}−{PH(i−1)―PH(i−2)}・・・・(13)
【0025】
分散演算部21は下記(14)、(15)式に基づいて差圧揺動と静圧揺動の分散D1,D2を演算する。
差圧揺動の分散D1=Σ(FiΔP×FiΔP) ・・・・・ (14)
静圧揺動の分散D2=Σ(FiPH×FiPH) ・・・・・ (15)
iPH、FiΔPはそれぞれ前記(11)、(12)式で求めた静圧と差圧の揺動である。また、加算は連続するn個のデータについて行う。
【0026】
相関演算部22は下記(16)式に基づいて静圧揺動と差圧揺動の相関係数D3を演算する。
相関係数D3=Σ(FiPH×FiΔP) ・・・・・・・・・ (16)
ここにおいて、FiPH、FiΔPはそれぞれ前記(11)、(12)式で求めた静圧揺動、差圧揺動である。また、添え字のiは時間的に同等な値を用いることを表している。
【0027】
判定部3は入力された値に基づいて導圧管の詰まりを判定する。そのために、下記(17)式によって分散比率D4を、下記(18)によって相関係数D5を演算する。
分散比率D4=D1/D2 ・・・・・・・・ (17)
相関係数D5=D3/D2 ・・・・・・・・ (18)
ここにおいて、D1は前記(14)式で求めた差圧揺動の分散、D2は前記(15)式で求めた静圧揺動の分散、D3は前記(16)式で求めた相関係数である。この分散比率D4,相関係数D5および差圧揺動の分散D1を正常時における基準値R4,R5,R1と比較して詰まりの判定を行う。
【0028】
分散比率D4は低圧側導圧管のみ、あるいは高圧側導圧管のみの詰まりを検出することができる。低圧側導圧管が詰まると低圧側の静圧揺動がゼロに近くなるので、差圧揺動D1は高圧側の静圧揺動D2に近くなる。そのため、分散比率D4は1に近づく。高圧側導圧管が詰まると高圧側の静圧揺動の分散D2が小さくなるので、分散比率D4のばらつきが大きくなる。
【0029】
相関係数D5によっても低圧側導圧管のみ、または高圧側導圧管のみの詰まりを検出できる。低圧側導圧管が詰まると低圧側の静圧揺動がゼロに近くなるので差圧揺動は高圧側の静圧揺動に近くなり、相関係数D5は1に近づく。高圧側導圧管が詰まると差圧揺動は低圧側の静圧揺動に近くなり、高圧側の静圧揺動と関連がなくなる。そのため、相関係数D3はゼロに近づく。しかし、静圧揺動も小さくなるので、分母の静圧揺動の分散D2は2乗の早さでゼロに近づく。従って、相関係数D5のばらつきが大きくなる。
【0030】
高圧側導圧管と低圧側導圧管の両方の詰まりに対しては、差圧揺動の分散D1と事前に計算した正常値における値を比較して判定する。両方の導圧管が詰まると差圧の揺動は一般に小さくなる。しかし、高圧側の導圧管が詰まっても差圧揺動の分散が正常値であることもあるので、分散比率D4による判定か、相関係数D5による判定と組み合わせる必要がある。
【0031】
図4は前述した判定基準をまとめた表である。両方の導圧管の詰まりに対しては差圧揺動の分散(差圧分散)D1はゼロに収束するが詰まり直前で大きくなることもある。分散比率D4,相関係数D5共にばらつきが大きくなる。高圧側(H側)導圧管の詰まりに対しては、差圧分散D1は低圧側(L側)の揺動に収束するが詰まり直前で大きくなることもある。分散比率、相関係数共にばらつきが大きくなる。
【0032】
低圧側(L側)導圧管の詰まりに対しては、差圧分散D1は高圧側(H側)揺動に収束するが、詰まり直前で大きくなることもある。分散比率D4、相関係数共に1に収束する。正常な状態では分散比率D4,相関係数D5共に0〜1の値を取るが、高圧側と低圧側(H/L)の揺動が類似すると1に近くなる。
【0033】
これらのことから、差圧分散D1と分散比率D4、あるいは差圧分散D1と相関係数D5のいずれかの組み合わせを用いることにより、高圧側導圧管か低圧側導圧管のいずれかが詰まった場合および両方の導圧管が詰まった場合を区別することができる。
【0034】
なお、この実施例では静圧として高圧側の圧力を用いたが、低圧側の圧力を用いることもできる。低圧側の圧力を用いた場合は、前述の説明で高圧側導圧管の詰まりと低圧側導圧管の詰まりを逆にすればよい。
【0035】
すなわち、分散比率D4については、高圧側導圧管が詰まると高圧側の揺動が小さくなるので差圧揺動は低圧側の静圧揺動に近くなり、分散比率は1に近づく。低圧側導圧管が詰まると低圧側の静圧揺動がゼロ近くになり、分散比率のばらつきが大きくなる。
【0036】
また、相関係数D5については、高圧側導圧管が詰まると差圧揺動と静圧揺動が同程度になり相関係数D5は1に近づく。低圧側導圧管が詰まると差圧揺動と静圧揺動の間に相関がなくなり相関値はゼロに近づくが、分母が2乗でゼロに近づくのでばらつきが大きくなる。
【発明の効果】
以上説明したことから明らかなように、本発明によれば次の効果が期待できる。
請求項1記載の発明によれば、2本の導圧管の間の差圧信号および前記導圧管のどちらかの静圧信号が入力され、これらの信号の揺動を演算する揺動演算部と、この揺動演算部の出力が入力され、前記差圧信号の分散と前記静圧信号の分散を演算する分散演算部と、この分散演算部の出力が入力され、前記導圧管の詰まりを検出する判定部とを有し、この判定部は前記差圧信号の分散および前記差圧信号の分散と前記静圧信号の分散比から前記導圧管の詰まりを検出すると共に、前記揺動演算部は前記差圧信号または前記静圧信号の引き続いた3つの信号から揺動を演算するようにした。
【0037】
プラントが過渡的な状態にあって、圧力や差圧が上昇中や下降中である場合でもこれらの圧力の変化が揺動に表れないので、導圧管の詰まりを正確に判断することができるという効果がある。また、一様な温度変化などで差圧や圧力の値が変化しても、これらの変化が揺動に表れないので、正確な詰まり検出ができるという効果もある。
【0038】
請求項2記載の発明によれば、請求項1記載の発明において、前記揺動演算部は、下記(19)式に基づいて揺動を演算するようにした。
揺動値Fi=P(i)−2×P(i−1)+P(i−2) ・・・・・(19)
但し、P(i)、P(i−1)、P(i−2)はそれぞれ時刻i、i−1、i−2の差圧または静圧信号である。
【0039】
時間的に引き続いた3つの値を用い、中間の値の2倍を差し引くことにより圧力の変動を除去でき、純粋に揺動部分のみを取り出すことができる。そのため、正確に導圧管の詰まりを検出することができるという効果がある。
【0040】
請求項3記載の発明によれば、請求項1または請求項2記載の発明において、前記判定部は、前記分散比が1に近い値であるときに前記静圧信号を得た導圧管でない側の導圧管が詰まっていると判断し、前記分散比のばらつきが大きいときに前記静圧信号を得た側の導圧管が詰まっていると判断するようにした。プラントの状態に影響されることなく、どちらかの導圧管が詰まっていることを正確に、検出することができるという効果がある。また、事前に正常なときの値を調べておく必要がないという効果もある。
【0041】
請求項4記載の発明によれば、請求項1ないし請求項3いずれかに記載の発明において、前記判定部は前記差圧信号の分散を所定の基準値と比較して、前記2本の導圧管の両方が詰まっていると判断するようにした。プラントの状態に影響されることなく、両方の導圧管の詰まりを正確に検出することができるという効果がある。
【0042】
請求項5記載の発明によれば、2本の導圧管の間の差圧信号および前記導圧管のどちらかの静圧信号が入力され、これらの信号の揺動を演算する揺動演算部と、この揺動演算部の出力が入力され、前記差圧信号の分散と前記静圧信号の分散を演算する分散演算部と、前記揺動演算部の出力が入力され、これらの入力の相関値を演算する相関演算部と、前記分散演算部が演算した前記差圧信号の分散と前記静圧信号の分散および前記相関演算部が演算した前記相関値が入力され、前記導圧管の詰まりを検出する判定部とを有し、この判定部は前記差圧信号の分散と前記相関値と前記静圧信号の分散の比である相関係数から前記導圧管の詰まりを検出すると共に、前記揺動演算部は前記差圧信号または前記静圧信号の引き続いた3つの信号から揺動を演算するようにした。
【0043】
プラントが過渡的な状態にあって、圧力や差圧が上昇中や下降中である場合でもこれらの圧力の変化が揺動に表れないので、導圧管の詰まりを正確に判断することができるという効果がある。また、一様な温度変化などで差圧や圧力の値が変化しても、これらの変化が揺動に表れないので、正確な詰まり検出ができるという効果もある。
【0044】
請求項6記載の発明によれば、請求項5記載の発明において、前記揺動演算部は、下記(20)式に基づいて揺動を演算するようにした。
揺動値Fi=P(i)−2×P(i−1)+P(i−2) ・・・・・(20)
但し、P(i)、P(i−1)、P(i−2)はそれぞれ時刻i、i−1、i−2の差圧または静圧信号である。
【0045】
時間的に引き続いた3つの値を用い、中間の値の2倍を差し引くことにより圧力の変動を除去でき、純粋に揺動部分のみを取り出すことができる。そのため、正確に導圧管の詰まりを検出することができるという効果がある。
【0046】
請求項7記載の発明によれば、請求項5または請求項6記載の発明において、前記判定部は、前記相関係数が1に近い値のときに前記静圧信号を得た導圧管でない側の導圧管が詰まっていると判断し、前記相関関数のばらつきが大きいときに前記静圧信号を得た側の導圧管が詰まっていると判断するようにした。プラントの状態に影響されることなく、どちらかの導圧管が詰まっていることを正確に、検出することができるという効果がある。また、事前に正常なときの値を調べておく必要がないという効果もある。
【0047】
請求項8記載の発明によれば、請求項5ないし請求項7記いずれかに記載の発明において、前記判定部は、前記差圧信号の分散を所定の基準値と比較して、前記2本の導圧管の両方が詰まっていると判断するようにした。プラントの状態に影響されることなく、両方の導圧管の詰まりを正確に検出することができるという効果がある。
【図面の簡単な説明】
【図1】本発明の一実施例を示す構成図である。
【図2】差圧測定の状態を示した構成図である。
【図3】本発明の効果を示す特性図である。
【図4】詰まり検出の判定基準を示した表である。
【図5】従来の導圧管閉塞検出装置の構成図である。
【符号の説明】
1 揺動演算部
21 分散演算部
22 相関演算部
3 判定部
51,52 導圧管
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a device for detecting blockage of a pressure guiding tube used in a pressure transmitter, a differential pressure transmitter, and the like, and particularly to a pressure guiding tube closing device that is hardly affected by transient pressure fluctuation.
[0001]
[Prior art]
In a pressure transmitter or a differential pressure transmitter, if the pressure guiding tube for guiding pressure to the transmitter main body is clogged, accurate pressure and differential pressure cannot be detected. Patent Literature 1 and Patent Literature 2 disclose inventions of a device for detecting such blockage of a pressure guiding tube. Hereinafter, the outline of the invention described in Patent Document 2 will be described.
[0002]
FIG. 5 shows the configuration of the pipeline closing device. An orifice 82 is provided in the conduit 81, and the fluid flows in the direction of the arrow. The upstream pressure PH and the downstream pressure PL of the orifice 82 are taken out by the pressure guiding tubes 83a and 83b, respectively, and input to the differential pressure transmitter 84, where the differential pressure and the static pressure are detected.
[0003]
The differential pressure and static pressure signals are input to the line blockage detecting device 9 to diagnose whether the pressure guiding tubes 83a and 83b are clogged. For this purpose, the differential pressure and static pressure signals are input to a swing calculator 911 in the dispersion calculator 91, and the swing is calculated based on the following equations (3) and (4).
Differential pressure fluctuation F iΔP = ΔP i -ΔP i-1 (3)
Static pressure fluctuation F iP = P i −P i−1 (4)
Here, ΔP i and ΔP i−1 are the current and previous differential pressures, respectively, and P i and P i−1 are the current and previous static pressures, respectively.
[0004]
This swing is input to the sum of squares calculation unit 912, and the sum of squares of differential pressure swing σ ΔP and the sum of squares of static pressure swing σ P are calculated based on the following equations (5) and (6). You. These sums of squares are values representing the degree of data variation, and are equivalent to variance.
Sum of squares of differential pressure fluctuation σ ΔP = Σ (F iΔP * F iΔP ) / n (5)
Sum of squares of static pressure fluctuations σ P = Σ ( FiP * FiP ) / n (6)
Note that n is the number of data to be integrated.
[0005]
These sums of squares are input to the determination unit 93, and it is determined whether the pressure guiding tube is clogged. Therefore, the ratio of the sum of squares of the differential pressure fluctuation and the sum of the squares of the static pressure fluctuation is calculated by the ratio calculation unit 92, and the clogging is determined based on the magnitude of the ratio. In this way, it is possible to determine which of the high pressure side and the low pressure side pressure impulse pipes or which impulse pipes are clogged.
[0006]
Further, the cross-correlation between the differential pressure fluctuation and the static pressure fluctuation and the auto-correlation of the static pressure fluctuation are calculated by the correlation calculation unit according to the following equations (7) and (8), and which is obtained from the ratio of these correlation coefficients It is also performed to determine whether the pressure tube is blocked.
Correlation C1 = sigma of differential pressure fluctuation and static swing (F iΔP * F iP) ··· (7)
Autocorrelation of static pressure fluctuation C2 = Σ ( FiP * FiP ) (8)
[Patent Document 1]
Patent No. 3129121 [Patent Document 2]
Japanese Patent Application No. 2002-297174 specification
[Problems to be solved by the invention]
However, such a pipeline blockage detection device has the following problems.
[0008]
As is clear from the equations (3) and (4), the variance and correlation are calculated using the difference between the current measured value and the previous measured value as the swing value. However, while the differential pressure or the static pressure is transiently fluctuating in one direction, the fluctuation value changes due to the fluctuating component, and the accurate fluctuation can be calculated. Therefore, there is a problem that it is not possible to perform an accurate clogging determination.
[0009]
Therefore, an object of the present invention is to provide a pressure guiding tube blockage detection device that can accurately determine clogging even when a differential pressure or a static pressure fluctuates in one direction.
[0010]
[Means for Solving the Problems]
In order to solve such a problem, the invention according to claim 1 of the present invention receives a differential pressure signal between two impulse lines and a static pressure signal of one of the impulse lines, and inputs these signals. A swing calculating unit for calculating the swing of the signal, a dispersion calculating unit to which an output of the swing calculating unit is input, and calculating a variance of the differential pressure signal and a variance of the static pressure signal; An output is input, and a determining unit for detecting clogging of the impulse line is provided, and the determination unit determines the variance of the differential pressure signal and the variance of the differential pressure signal and the variance ratio of the static pressure signal. In addition to detecting the clogging, the swing calculating section calculates the swing from three consecutive signals of the differential pressure signal or the static pressure signal. Unaffected by transient changes in pressure.
[0011]
According to a second aspect of the present invention, in the first aspect of the invention, the swing calculating section calculates the swing based on the following equation (9).
Swing value Fi = P (i) −2 × P (i−1) + P (i−2) (9)
Here, P (i), P (i-1), and P (i-2) are differential pressure or static pressure signals at times i, i-1, and i-2, respectively. Unaffected by transient changes in pressure.
[0012]
According to a third aspect of the present invention, in the first or the second aspect of the present invention, the determination unit is configured to determine whether the static pressure signal is obtained when the dispersion ratio is close to 1 on the side other than the impulse line. The pressure tube is determined to be clogged, and when the dispersion ratio is large, it is determined that the pressure guiding tube on the side from which the static pressure signal is obtained is clogged. It can be detected if either impulse line is clogged.
[0013]
According to a fourth aspect of the present invention, in the first aspect of the present invention, the determination unit compares a variance of the differential pressure signal with a predetermined reference value, and determines whether the two pressure guiding tubes are different from each other. Are determined to be both jammed. Blockage of both impulse lines can be detected.
[0014]
According to a fifth aspect of the present invention, a differential pressure signal between two impulse lines and a static pressure signal of one of the impulse lines are input, and an oscillating operation unit for oscillating these signals; An output of the swing calculator is input, a dispersion calculator for calculating the variance of the differential pressure signal and the variance of the static pressure signal, and an output of the swing calculator are input, and a correlation value of these inputs is calculated. And a variance of the differential pressure signal and the variance of the static pressure signal calculated by the variance calculation unit and the correlation value calculated by the correlation calculation unit are input to determine whether the pressure guiding tube is clogged. The determination unit detects clogging of the pressure guiding tube from a correlation coefficient which is a ratio of a variance of the differential pressure signal and a variance of the correlation value and the variance of the static pressure signal. Performs a swing from the following three signals of the differential pressure signal or the static pressure signal. It is obtained by way. Blockage can be detected without being affected by a transient change in pressure.
[0015]
According to a sixth aspect of the present invention, in the fifth aspect of the invention, the swing calculating section calculates the swing based on the following equation (10). Blockage can be detected without being affected by a transient change in pressure.
Swing value Fi = P (i) −2 × P (i−1) + P (i−2) (10)
Here, P (i), P (i-1), and P (i-2) are differential pressure or static pressure signals at times i, i-1, and i-2, respectively.
[0016]
According to a seventh aspect of the present invention, in the invention of the fifth or sixth aspect, when the correlation coefficient has a value close to 1, the determining unit determines a value of the non-pressure guiding tube that has obtained the static pressure signal. The pressure tube is determined to be clogged, and when the variation of the correlation function is large, it is determined that the pressure guiding tube on the side from which the static pressure signal is obtained is clogged. It can be detected that one of the pressure guiding tubes is clogged.
[0017]
In the invention according to claim 8, in the invention according to any one of claims 5 to 7, the determination unit compares the variance of the differential pressure signal with a predetermined reference value, and It is determined that both of the pressure tubes are clogged. Blockage of both impulse lines can be detected.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a configuration diagram showing one embodiment of a pressure guiding tube blockage detection device according to the present invention. In FIG. 1, reference numeral 1 denotes a swing calculation unit which receives a differential pressure signal and a static pressure signal , calculates and outputs a static pressure swing FiPH and a differential pressure swing FiAP . The static pressure signal uses the pressure on the high pressure side.
[0019]
21 is a variance calculating section, the static pressure swing F IPH, the differential pressure fluctuation F AiderutaP is input, the differential pressure variance value D1, calculates and outputs the static pressure variance D2. 22 is a correlation calculation section, the static pressure swing F IPH, the differential pressure fluctuation F AiderutaP is input calculates and outputs their correlation coefficient D3. Reference numeral 3 denotes a determination unit to which the differential pressure variance value D1, the static pressure variance value D2, and the correlation coefficient D3 are input, and determine from these values whether the pressure guiding tube is clogged.
[0020]
Next, the differential pressure measurement will be described. FIG. 2 is a principle diagram of the differential pressure measurement. Fluid flows in the pipe 41 in the direction of the arrow. An orifice 42 is provided in the middle of the pipe 41, and the pressure upstream and downstream of the orifice 42 is guided to the differential pressure transmitter 6 via the pressure guiding pipes 51 and 52. The pressure guiding tubes 51 and 52 become first-order lag elements of the time constants TH and TL with respect to a change in pressure, and it can be considered that the time constants TH and TL increase when the pressure guiding tubes are blocked.
[0021]
The differential pressure transmitter 6 has a built-in pressure detection unit and an electric circuit, which serve as a first-order lag element 61 of a time constant Ttrans. Further, if there is a small fluctuation, the control may be hindered. Therefore, the differential pressure signal and the high pressure side or the low pressure side static pressure signal are output as averaged as indicated by 62.
[0022]
Next, the embodiment of FIG. 1 will be described in detail. Fluctuation calculating unit 1 below (11), calculates the static pressure fluctuation F IPH, the differential pressure fluctuation F AiderutaP based on equation (12). The subscript i represents the value at time i.
Static pressure fluctuation F iPH at time i = PH (i) −2 × PH (i−1) + PH (i−2) (11)
Differential pressure fluctuation F iΔP at time i = ΔP (i) −2 × ΔP (i−1) + ΔP (i−2) (12)
Here, PH (i) is the static pressure signal at time i, and ΔP (i) is the same differential pressure signal. That is, the current static pressure (differential pressure) and the previous static pressure (differential pressure) are added, and then twice the previous static pressure (differential pressure) is subtracted therefrom.
[0023]
When the swing is calculated by simply subtracting the previous value from the current value, the swing tends to be positive when the pressure is increasing, and tends to be negative when the pressure is decreasing. Judgment is made on the assumption that the swing is random, and therefore, if there is such a tendency, a change in the swing and a change in the operating state due to the blockage of the pressure guiding tube cannot be distinguished, which causes an erroneous determination. In the equations (11) and (12), a change in the operating state does not appear in the swing calculation, so that a correct determination can be made.
[0024]
This will be described with reference to FIG. FIG. 3 shows an example of a change in the measured pressure value. The horizontal axis represents time, and the vertical axis represents pressure value. Curve 7 is a graph of the measured pressure, which is increasing while finely varying. ● is a measurement point. If the swing is calculated based on the difference between the current measured value and the previous measured value as in the conventional example, the swing value includes an increasing component. On the other hand, since the above equation (11) can be decomposed into the following equation (13), the increased component is eliminated and does not appear in the swing FiPH . Therefore, only the swing component can be extracted. The same applies to the differential pressure.
FiPH = {PH (i) -PH (i-1)}-{PH (i-1) -PH (i-2)} (13)
[0025]
The variance calculator 21 calculates the variances D1 and D2 of the differential pressure fluctuation and the static pressure fluctuation based on the following equations (14) and (15).
Variance of differential pressure fluctuation D1 = Σ ( FiΔP × FiΔP ) (14)
Dispersion of static pressure fluctuation D2 = Σ ( FiPH × FiPH ) (15)
FiPH and FiΔP are fluctuations of the static pressure and the differential pressure obtained by the above equations (11) and (12), respectively. The addition is performed for n consecutive data.
[0026]
The correlation calculator 22 calculates a correlation coefficient D3 between the static pressure fluctuation and the differential pressure fluctuation based on the following equation (16).
Correlation coefficient D3 = Σ ( FiPH × FiΔP ) (16)
Here, FiPH and FiΔP are the static pressure fluctuation and the differential pressure fluctuation obtained by the above equations (11) and (12), respectively. Also, the subscript i indicates that a temporally equivalent value is used.
[0027]
The determination unit 3 determines whether the pressure guiding tube is clogged based on the input value. For this purpose, the variance ratio D4 is calculated by the following equation (17), and the correlation coefficient D5 is calculated by the following equation (18).
Dispersion ratio D4 = D1 / D2 (17)
Correlation coefficient D5 = D3 / D2 (18)
Here, D1 is the variance of the differential pressure fluctuation obtained by the above equation (14), D2 is the variance of the static pressure fluctuation obtained by the above equation (15), and D3 is the correlation coefficient obtained by the above equation (16). It is. The clogging is determined by comparing the dispersion ratio D4, the correlation coefficient D5, and the dispersion D1 of the differential pressure fluctuation with reference values R4, R5, R1 in a normal state.
[0028]
The dispersion ratio D4 can detect clogging of only the low pressure side impulse line or only the high pressure side impulse line. When the low-pressure side impulse line is clogged, static pressure fluctuation on the low pressure side approaches zero, so differential pressure fluctuation D1 approaches static pressure fluctuation D2 on the high pressure side. Therefore, the dispersion ratio D4 approaches 1. When the high pressure side impulse line is clogged, the variance D2 of the static pressure fluctuation on the high pressure side decreases, and the dispersion of the variance D4 increases.
[0029]
Clogging of only the low-pressure impulse line or only the high-pressure impulse line can be detected by the correlation coefficient D5. When the low-pressure side impulse line is clogged, static pressure fluctuation on the low pressure side approaches zero, so differential pressure fluctuation approaches static pressure fluctuation on the high pressure side, and the correlation coefficient D5 approaches 1. When the high-pressure side impulse line is clogged, the differential pressure fluctuation approaches the low-pressure side static pressure fluctuation, and becomes unrelated to the high-pressure side static pressure fluctuation. Therefore, the correlation coefficient D3 approaches zero. However, since the static pressure fluctuation also becomes small, the variance D2 of the static pressure fluctuation of the denominator approaches zero at the speed of the square. Therefore, the variation of the correlation coefficient D5 increases.
[0030]
The clogging of both the high pressure side impulse line and the low pressure side impulse line is determined by comparing the variance D1 of the differential pressure fluctuation with the value at the normal value calculated in advance. When both impulse lines are clogged, the fluctuation of the differential pressure generally decreases. However, even if the high pressure side impulse line is clogged, the dispersion of the differential pressure fluctuation may be a normal value, so it is necessary to combine the determination with the dispersion ratio D4 or the determination with the correlation coefficient D5.
[0031]
FIG. 4 is a table summarizing the aforementioned criteria. The dispersion (differential pressure dispersion) D1 of the differential pressure fluctuation converges to zero when both pressure guiding tubes are clogged, but may increase immediately before the clogging. Both the dispersion ratio D4 and the correlation coefficient D5 have large variations. For the blockage of the high pressure side (H side) impulse line, the differential pressure dispersion D1 converges on the swing of the low pressure side (L side), but may become large immediately before the blockage. Both the dispersion ratio and the correlation coefficient vary greatly.
[0032]
For the blockage of the low pressure side (L side) impulse line, the differential pressure variance D1 converges on the high pressure side (H side) swing, but may increase immediately before the blockage. Both the dispersion ratio D4 and the correlation coefficient converge to 1. In a normal state, the dispersion ratio D4 and the correlation coefficient D5 both take a value of 0 to 1, but approach 1 when the swings on the high pressure side and the low pressure side (H / L) are similar.
[0033]
From these facts, when any one of the high pressure side impulse line and the low pressure side impulse line is clogged by using any combination of the differential pressure dispersion D1 and the dispersion ratio D4 or the differential pressure dispersion D1 and the correlation coefficient D5. And when both impulse lines are clogged.
[0034]
In this embodiment, the pressure on the high pressure side is used as the static pressure, but the pressure on the low pressure side can also be used. When the low pressure side pressure is used, clogging of the high pressure side impulse line and clogging of the low pressure side impulse line may be reversed in the above description.
[0035]
That is, as for the dispersion ratio D4, when the high pressure side impulse line is clogged, the fluctuation on the high pressure side becomes small, so that the differential pressure fluctuation approaches the static pressure fluctuation on the low pressure side, and the dispersion ratio approaches 1. When the low pressure side impulse line is clogged, the static pressure fluctuation on the low pressure side becomes close to zero, and the dispersion ratio becomes large.
[0036]
As for the correlation coefficient D5, when the high-pressure side impulse line is clogged, the differential pressure fluctuation and the static pressure fluctuation become almost equal, and the correlation coefficient D5 approaches 1. When the low-pressure side impulse line is clogged, there is no correlation between the differential pressure fluctuation and the static pressure fluctuation, and the correlation value approaches zero, but the dispersion increases because the denominator approaches zero by the square.
【The invention's effect】
As is clear from the above description, the following effects can be expected according to the present invention.
According to the first aspect of the present invention, a differential pressure signal between the two pressure guiding tubes and a static pressure signal of one of the pressure guiding tubes are input, and a swing calculating unit that calculates a swing of these signals. A variance calculator for receiving the output of the swing calculator, calculating the variance of the differential pressure signal and the variance of the static pressure signal, and detecting the clogging of the pressure guiding tube by receiving the output of the variator. The determination unit detects clogging of the pressure guiding tube from the variance of the differential pressure signal and the variance of the differential pressure signal and the variance ratio of the static pressure signal. The swing is calculated from three consecutive signals of the differential pressure signal or the static pressure signal.
[0037]
Even if the plant is in a transient state and the pressure or differential pressure is rising or falling, these pressure changes do not appear in the swing, so it is possible to accurately judge the blockage of the impulse line. effective. Further, even if the value of the differential pressure or the pressure changes due to a uniform temperature change or the like, these changes do not appear in the swing, so that there is an effect that the clogging can be accurately detected.
[0038]
According to a second aspect of the present invention, in the first aspect of the invention, the swing calculating section calculates the swing based on the following equation (19).
Swing value Fi = P (i) −2 × P (i−1) + P (i−2) (19)
Here, P (i), P (i-1), and P (i-2) are differential pressure or static pressure signals at times i, i-1, and i-2, respectively.
[0039]
By using three values successive in time and subtracting twice the intermediate value, pressure fluctuations can be eliminated, and only the oscillating part can be taken out. Therefore, there is an effect that clogging of the pressure guiding tube can be accurately detected.
[0040]
According to a third aspect of the present invention, in the first or second aspect of the present invention, the determination unit is configured to obtain the static pressure signal when the variance ratio is close to 1 on the side other than the impulse line. Is determined to be clogged, and when the dispersion ratio is large, it is determined that the impulse tube on the side from which the static pressure signal is obtained is clogged. There is an effect that any one of the pressure guiding tubes can be accurately detected without being affected by the state of the plant. In addition, there is also an effect that it is not necessary to check a normal value in advance.
[0041]
According to the invention described in claim 4, in the invention described in any one of claims 1 to 3, the determination unit compares the variance of the differential pressure signal with a predetermined reference value, and It was decided that both pressure tubes were clogged. There is an effect that clogging of both impulse lines can be accurately detected without being affected by the state of the plant.
[0042]
According to the invention as set forth in claim 5, a differential pressure signal between the two pressure guiding tubes and a static pressure signal of one of the pressure guiding tubes are input, and a swing calculating unit that calculates the swing of these signals. , An output of the oscillating operation unit is input, a variance operation unit for calculating the variance of the differential pressure signal and the variance of the static pressure signal, and an output of the oscillating operation unit, and a correlation value of these inputs And the variance of the differential pressure signal and the variance of the static pressure signal calculated by the variance calculator and the correlation value calculated by the correlation calculator are input, and the clogging of the pressure guiding tube is detected. A determination unit that detects clogging of the pressure guiding tube from a variance of the differential pressure signal and a correlation coefficient that is a ratio of the variance of the correlation value and the variance of the static pressure signal, and performs the swinging operation. The arithmetic unit oscillates from the following three signals of the differential pressure signal or the static pressure signal. It was to be calculated.
[0043]
Even if the plant is in a transient state and the pressure or differential pressure is rising or falling, these pressure changes do not appear in the swing, so it is possible to accurately judge the blockage of the impulse line. effective. Further, even if the value of the differential pressure or the pressure changes due to a uniform temperature change or the like, these changes do not appear in the swing, so that there is an effect that the clogging can be accurately detected.
[0044]
According to a sixth aspect of the present invention, in the fifth aspect of the invention, the swing calculating section calculates the swing based on the following equation (20).
Swing value Fi = P (i) −2 × P (i−1) + P (i−2) (20)
Here, P (i), P (i-1), and P (i-2) are differential pressure or static pressure signals at times i, i-1, and i-2, respectively.
[0045]
By using three values successive in time and subtracting twice the intermediate value, pressure fluctuations can be eliminated, and only the oscillating part can be taken out. Therefore, there is an effect that clogging of the pressure guiding tube can be accurately detected.
[0046]
According to the invention described in claim 7, in the invention described in claim 5 or claim 6, the determination unit determines the side other than the impulse line from which the static pressure signal is obtained when the correlation coefficient is close to 1. Is determined to be clogged, and when the variation of the correlation function is large, it is determined that the impulse tube on the side from which the static pressure signal is obtained is clogged. There is an effect that any one of the pressure guiding tubes can be accurately detected without being affected by the state of the plant. In addition, there is also an effect that it is not necessary to check a normal value in advance.
[0047]
According to the invention described in claim 8, in the invention described in any one of claims 5 to 7, the determination unit compares the variance of the differential pressure signal with a predetermined reference value, and It is determined that both of the pressure guiding tubes are clogged. There is an effect that clogging of both impulse lines can be accurately detected without being affected by the state of the plant.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing one embodiment of the present invention.
FIG. 2 is a configuration diagram showing a state of differential pressure measurement.
FIG. 3 is a characteristic diagram showing the effect of the present invention.
FIG. 4 is a table showing criteria for detecting clogging.
FIG. 5 is a configuration diagram of a conventional pressure guiding tube blockage detection device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Swing operation part 21 Dispersion operation part 22 Correlation operation part 3 Judgment part 51,52 Impulse pipe

Claims (8)

2本の導圧管の間の差圧信号および前記導圧管のどちらかの静圧信号が入力され、これらの信号の揺動を演算する揺動演算部と、この揺動演算部の出力が入力され、前記差圧信号の分散と前記静圧信号の分散を演算する分散演算部と、この分散演算部が演算した前記差圧信号の分散と前記静圧信号の分散が入力され、前記導圧管の詰まりを検出する判定部とを有し、この判定部は前記差圧信号の分散および前記差圧信号の分散と前記静圧信号の分散比から前記導圧管の詰まりを検出すると共に、前記揺動演算部は前記差圧信号または前記静圧信号の引き続いた3つの信号から揺動を演算するようにしたことを特徴とする導圧管閉塞検出装置。A differential pressure signal between the two pressure guiding tubes and a static pressure signal of one of the pressure guiding tubes are input, and a swing calculating unit for calculating the swing of these signals, and an output of the swing calculating unit are input. A variance calculator for calculating the variance of the differential pressure signal and the variance of the static pressure signal; and the variance of the differential pressure signal and the variance of the static pressure signal calculated by the variance calculator are input to the impulse line. A determination unit for detecting clogging of the pressure guiding tube. The determination unit detects clogging of the pressure guiding tube from the variance of the differential pressure signal and the variance of the variance of the differential pressure signal and the static pressure signal. The pressure guiding tube blockage detecting device, wherein the dynamic calculation unit calculates the swing from three consecutive signals of the differential pressure signal or the static pressure signal. 前記揺動演算部は、下記(1)式に基づいて揺動を演算するようにしたことを特徴とする請求項1記載の導圧管閉塞検出装置。
揺動値Fi=P(i)−2×P(i−1)+P(i−2) ・・・・・(1)
但し、P(i)、P(i−1)、P(i−2)はそれぞれ時刻i、i−1、i−2の差圧または静圧信号である。
The pressure guiding tube blockage detecting device according to claim 1, wherein the swing calculating unit calculates the swing based on the following equation (1).
Swing value Fi = P (i) −2 × P (i−1) + P (i−2) (1)
Here, P (i), P (i-1), and P (i-2) are differential pressure or static pressure signals at times i, i-1, and i-2, respectively.
前記判定部は、前記分散比が1に近い値であるときに前記静圧信号を得た導圧管でない側の導圧管が詰まっていると判断し、前記分散比のばらつきが大きいときに前記静圧信号を得た側の導圧管が詰まっていると判断するようにしたことを特徴とする請求項1または請求項2記載の導圧管閉塞検出装置。The determination unit determines that the impulse line on the side other than the impulse line from which the static pressure signal was obtained is clogged when the dispersion ratio is close to 1, and when the dispersion of the dispersion ratio is large, the static ratio is large. 3. The pressure guiding tube blockage detecting device according to claim 1, wherein it is determined that the pressure guiding tube on the side from which the pressure signal is obtained is clogged. 前記判定部は、前記差圧信号の分散を所定の基準値と比較して、前記2本の導圧管の両方が詰まっていると判断するようにしたことを特徴とする請求項1ないし請求項3いずれかに記載の導圧管閉塞検出装置。4. The apparatus according to claim 1, wherein the determination unit compares the variance of the differential pressure signal with a predetermined reference value to determine that both of the two pressure guiding tubes are clogged. 4. The pressure guiding tube blockage detecting device according to any one of 3 above. 2本の導圧管の間の差圧信号および前記導圧管のどちらかの静圧信号が入力され、これらの信号の揺動を演算する揺動演算部と、この揺動演算部の出力が入力され、前記差圧信号の分散と前記静圧信号の分散を演算する分散演算部と、前記揺動演算部が演算した前記差圧信号の揺動と前記静圧信号の揺動が入力され、これらの入力の相関値を演算する相関演算部と、前記分散演算部が演算した前記差圧信号の分散と前記静圧信号の分散および前記相関演算部が演算した前記相関値が入力され、前記導圧管の詰まりを検出する判定部とを有し、この判定部は前記差圧信号の分散と前記相関値と前記静圧信号の分散の比である相関係数から前記導圧管の詰まりを検出すると共に、前記揺動演算部は前記差圧信号または前記静圧信号の引き続いた3つの信号から揺動を演算するようにしたことを特徴とする導圧管閉塞検出装置。A differential pressure signal between the two pressure guiding tubes and a static pressure signal of one of the pressure guiding tubes are input, and a swing calculating unit for calculating the swing of these signals, and an output of the swing calculating unit are input. A dispersion calculation unit that calculates the variance of the differential pressure signal and the variance of the static pressure signal, and the swing of the differential pressure signal and the swing of the static pressure signal calculated by the swing calculation unit are input; A correlation calculator for calculating the correlation values of these inputs, and the variance of the differential pressure signal and the variance of the static pressure signal calculated by the variance calculator and the correlation value calculated by the correlation calculator are input; A determining unit for detecting blockage of the pressure guiding tube, wherein the determining unit detects the blockage of the pressure guiding tube from a variance of the differential pressure signal and a correlation coefficient that is a ratio of a variance of the correlation value and the variance of the static pressure signal In addition, the swing calculation unit outputs the differential pressure signal or the static Impulse line blockage detector for the signals, characterized in that so as to calculate the swing. 前記揺動演算部は、下記(2)式に基づいて揺動を演算するようにしたことを特徴とする請求項5記載の導圧管閉塞検出装置。
揺動値Fi=P(i)−2×P(i−1)+P(i−2) ・・・・・(1)
但し、P(i)、P(i−1)、P(i−2)はそれぞれ時刻i、i−1、i−2の差圧または静圧信号である。
The pressure guiding tube blockage detecting device according to claim 5, wherein the swing calculating unit calculates the swing based on the following equation (2).
Swing value Fi = P (i) −2 × P (i−1) + P (i−2) (1)
Here, P (i), P (i-1), and P (i-2) are differential pressure or static pressure signals at times i, i-1, and i-2, respectively.
前記判定部は、前記相関係数が1に近い値のときに前記静圧信号を得た導圧管でない側の導圧管が詰まっていると判断し、前記相関関数のばらつきが大きいときに前記静圧信号を得た側の導圧管が詰まっていると判断するようにしたことを特徴とする請求項5または請求項6記載の導圧管閉塞検出装置。The determination unit determines that the impulse line on the side other than the impulse line from which the static pressure signal was obtained is clogged when the correlation coefficient is close to 1, and when the dispersion of the correlation function is large, 7. The pressure guiding tube blockage detecting device according to claim 5, wherein it is determined that the pressure guiding tube on the side from which the pressure signal is obtained is clogged. 前記判定部は、前記差圧信号の分散を所定の基準値と比較して、前記2本の導圧管の両方が詰まっていると判断するようにしたことを特徴とする請求項5ないし請求項7記いずれかに記載の導圧管閉塞検出装置。The variance of the differential pressure signal is compared with a predetermined reference value, and the determination unit determines that both of the two pressure guiding tubes are clogged. 7. The pressure guiding tube blockage detecting device according to any one of 7 above.
JP2003084970A 2003-03-26 2003-03-26 Pressure guiding tube blockage detection device Expired - Lifetime JP4379680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003084970A JP4379680B2 (en) 2003-03-26 2003-03-26 Pressure guiding tube blockage detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003084970A JP4379680B2 (en) 2003-03-26 2003-03-26 Pressure guiding tube blockage detection device

Publications (2)

Publication Number Publication Date
JP2004294175A true JP2004294175A (en) 2004-10-21
JP4379680B2 JP4379680B2 (en) 2009-12-09

Family

ID=33400006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084970A Expired - Lifetime JP4379680B2 (en) 2003-03-26 2003-03-26 Pressure guiding tube blockage detection device

Country Status (1)

Country Link
JP (1) JP4379680B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177833A (en) * 2004-12-24 2006-07-06 Yokogawa Electric Corp Differential pressure transmitter
JP2007256231A (en) * 2006-03-27 2007-10-04 Yokogawa Electric Corp Connecting pipe clogging detector and connecting pipe clogging detection method
JP2007292733A (en) * 2006-03-27 2007-11-08 Yokogawa Electric Corp Device and method for detecting connecting pipe clogging
JP2008241544A (en) * 2007-03-28 2008-10-09 Yokogawa Electric Corp Apparatus and method for detecting clogging of connecting pipe
US7650245B2 (en) 2007-02-26 2010-01-19 Yokogawa Electric Corporation Impulse line-clogging detecting unit and impulse line-clogging detecting method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177833A (en) * 2004-12-24 2006-07-06 Yokogawa Electric Corp Differential pressure transmitter
JP2007256231A (en) * 2006-03-27 2007-10-04 Yokogawa Electric Corp Connecting pipe clogging detector and connecting pipe clogging detection method
JP2007292733A (en) * 2006-03-27 2007-11-08 Yokogawa Electric Corp Device and method for detecting connecting pipe clogging
US7406387B2 (en) 2006-03-27 2008-07-29 Yokogawa Electric Corporation Apparatus and method for detecting blockage of impulse lines
US7650245B2 (en) 2007-02-26 2010-01-19 Yokogawa Electric Corporation Impulse line-clogging detecting unit and impulse line-clogging detecting method
JP2008241544A (en) * 2007-03-28 2008-10-09 Yokogawa Electric Corp Apparatus and method for detecting clogging of connecting pipe

Also Published As

Publication number Publication date
JP4379680B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
JP4970820B2 (en) Pressure guiding tube clogging detection apparatus and pressure guiding tube clogging detection method
AU2010254079B2 (en) Method and apparatus for monitoring multiphase fluid flow
CA2770898C (en) Method and apparatus for monitoring multiphase fluid flow
CN101506629A (en) Flow measurement diagnostics
JP4476540B2 (en) Pipe blockage detection device
CN103403503A (en) Treatment liquid flow rate meter
CN108351239A (en) Flow measurement device based on vortex flow measuring principle
JP4379680B2 (en) Pressure guiding tube blockage detection device
JP2006329846A (en) Pressure sensor and diagnostic method for clogging of pressure sensor
JP2007057452A (en) Flowmeter
JP2010223855A (en) Ultrasonic flowmeter
JP2004020523A (en) Differential pressure type flow measurement method and differential flowmeter
JP2008268066A (en) Ultrasonic vortex flowmeter
JPH0727658A (en) Gas leakage detection method
JP4019419B2 (en) Pressure guiding tube clogging detector and differential pressure / pressure transmitter incorporating it
JP5365456B2 (en) Pressure guiding tube clogging detection apparatus and pressure guiding tube clogging detection method
JP2005037290A (en) Ultrasonic flowmeter
JP6447826B2 (en) Flow measuring device
JP6447827B2 (en) Flow measuring device
JP4623488B2 (en) Fluid flow measuring device
JP4117635B2 (en) Vortex flow meter
JP3117844B2 (en) Gas leak detection method
JP2003207379A (en) Erroneous output preventing device and vortex flowmeter with the same
JP4623487B2 (en) Flow measuring device
JP4390350B2 (en) Gas meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090827

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090909

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4379680

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

EXPY Cancellation because of completion of term