JP2005037290A - Ultrasonic flowmeter - Google Patents
Ultrasonic flowmeter Download PDFInfo
- Publication number
- JP2005037290A JP2005037290A JP2003275869A JP2003275869A JP2005037290A JP 2005037290 A JP2005037290 A JP 2005037290A JP 2003275869 A JP2003275869 A JP 2003275869A JP 2003275869 A JP2003275869 A JP 2003275869A JP 2005037290 A JP2005037290 A JP 2005037290A
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- correlation
- attenuation
- signal
- ultrasonic flowmeter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
本発明は、自己診断機能を有する超音波流量計に関するものである。 The present invention relates to an ultrasonic flowmeter having a self-diagnosis function.
超音波流量計に関連する先行技術文献としては次のようなものがある。
図3はこのような従来の相関式超音波流量計の一例を示す要部構成説明図である。
図3において、送信アンプ1は、超音波の送信信号を検出端2に送信する。
受信アンプ3は検出端2からの超音波の受信信号を相関演算部4に送る。
相関演算部4では、流路の上流側と下流側の各位置の流体の流れに関する情報を検出し、各位置で検出された情報の相互相関値を演算する。
FIG. 3 is an explanatory view of the main part configuration showing an example of such a conventional correlation type ultrasonic flowmeter.
In FIG. 3, the transmission amplifier 1 transmits an ultrasonic transmission signal to the
The reception amplifier 3 sends an ultrasonic reception signal from the
The
流量演算部5では、相関演算部4で演算された相互相関値から流路の流体の流量を演算する。
自動利得調整アンプ6は、受信アンプ3と送信アンプ1間に接続され、送信アンプ1の出力電圧強度を一定に保持する。
The flow
The automatic gain adjustment amplifier 6 is connected between the reception amplifier 3 and the transmission amplifier 1 and keeps the output voltage intensity of the transmission amplifier 1 constant.
以上の構成において、受信信号強度、または自動利得調整アンプ6の増幅率が、所定値に達すると、受信信号なしとして、エラー信号を発する。 In the above configuration, when the received signal strength or the amplification factor of the automatic gain adjustment amplifier 6 reaches a predetermined value, an error signal is generated as no received signal.
こような、流量が測定出来ないと言う状況は、2種類考えられる。
一つは、流路配管に付着物が堆積したり、古い配管、密着性の低下などで、非常に大きな超音波の減衰が発生し、超音波の振幅自体が小さくなる場合である。
もう一種類は、気泡が混入し、受信超音波が乱れ、その結果、大きな時間差の誤差が発生し、測定不能となる場合である。
There are two types of situations where the flow rate cannot be measured.
One is a case where very large ultrasonic attenuation occurs due to deposits deposited on the flow path pipe, old pipes, poor adhesion, etc., and the ultrasonic amplitude itself becomes small.
The other type is a case where bubbles are mixed and the received ultrasonic wave is disturbed, resulting in a large time difference error, which makes measurement impossible.
従来においては、この両者を区別するのは困難である為に、気泡の影響か、配管に問題が有るのかが、はっきりしなかった。その為に、明確な対策が立て難かった。
これを明確にするためには、従来は、オシロスコープを使用して、実際の2つの波形を観察する方法が考えられるが、超音波流量計としては高価になってしまう。
Conventionally, since it is difficult to distinguish between the two, it is not clear whether there is an influence of air bubbles or a problem in piping. For this reason, it was difficult to develop clear measures.
In order to clarify this, conventionally, a method of observing two actual waveforms using an oscilloscope is conceivable, but it becomes expensive as an ultrasonic flowmeter.
本発明の目的は、上記の課題を解決するもので、超音波信号が通らないのか、超音波は通っていても気泡の影響で測定が出来ないのかを判定する診断回路を有する超音波流量計
を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described problems, and an ultrasonic flowmeter having a diagnostic circuit for determining whether an ultrasonic signal does not pass or whether an ultrasonic wave passes but cannot be measured due to the influence of bubbles. The purpose is to provide.
このような課題を達成するために、本発明では、請求項1の超音波流量計においては、
配管を流れる流体の上流側と下流側とで受信超音波を測定し、上流側と下流側とで測定した信号の相関から前記流体の流速を測定する超音波流量計において、
前記上流側信号と下流側信号との相互相関を演算する相関演算部と、前記受信超音波の減衰度を測定する減衰度測定手段と、前記相関演算部からの相関値と前記減衰度測定手段からの減衰値とに基づき配管の状態を診断する診断回路とを具備したことを特徴とする。
In order to achieve such a problem, in the ultrasonic flowmeter according to claim 1 of the present invention,
In the ultrasonic flowmeter that measures the received ultrasonic waves on the upstream side and the downstream side of the fluid flowing through the pipe, and measures the flow velocity of the fluid from the correlation of the signals measured on the upstream side and the downstream side,
A correlation calculation unit that calculates a cross-correlation between the upstream signal and the downstream signal, an attenuation measurement unit that measures the attenuation of the received ultrasonic wave, a correlation value from the correlation calculation unit, and the attenuation measurement unit And a diagnostic circuit for diagnosing the state of the pipe based on the attenuation value from.
本発明の請求項2においては、請求項1記載の超音波流量計において、
前記診断回路は、測定エラー信号が気泡に基づくか配管付着物に基づくかを判定することを特徴とする。
In
The diagnostic circuit determines whether the measurement error signal is based on air bubbles or piping deposits.
本発明の請求項3においては、請求項1又は請求項2記載の超音波流量計において、
前記減衰度測定手段は、超音波送信アンプと超音波受信アンプとに接続される自動利得調整アンプからの受信振幅強度に基づき測定することを特徴とする。
In Claim 3 of this invention, in the ultrasonic flowmeter of Claim 1 or
The attenuation measuring means performs measurement based on a reception amplitude intensity from an automatic gain adjustment amplifier connected to an ultrasonic transmission amplifier and an ultrasonic reception amplifier.
本発明の請求項4においては、請求項1乃至請求項3の何れかに記載の超音波流量計において、
前記診断回路の診断信号に基づきアラームを発するアラーム回路を具備したことを特徴とする。
In
An alarm circuit for generating an alarm based on a diagnostic signal of the diagnostic circuit is provided.
以上説明したように、本発明の請求項1によれば、次のような効果がある。
超音波流量計の取り付け時に、測定がうまく行かない場合に、何が原因なのか推定が可能になる為に、事前に対処が可能になる超音波流量計が得られる。
As described above, according to the first aspect of the present invention, the following effects can be obtained.
When an ultrasonic flowmeter is attached, if the measurement does not go well, it is possible to estimate what is the cause, so an ultrasonic flowmeter that can be handled in advance can be obtained.
本発明の請求項2によれば、次のような効果がある。
配管による減衰の場合は、配管の交換や、超音波流量計の取り付け場所の変更と言う対策ができる超音波流量計が得られる。
According to
In the case of attenuation by piping, an ultrasonic flow meter that can take measures such as replacing the piping or changing the installation location of the ultrasonic flow meter is obtained.
気泡による場合は、配管ラインに気泡が混入しないような施工や工夫を行うことができる超音波流量計が得られる。
これらは、超音波流量計の取り付け時に判定が可能となることで、トラブルを未然に防止できる超音波流量計が得られる。
In the case of bubbles, an ultrasonic flowmeter can be obtained that can be constructed and devised so that bubbles do not enter the piping line.
Since these can be determined when the ultrasonic flow meter is attached, an ultrasonic flow meter capable of preventing troubles can be obtained.
本発明の請求項3によれば、次のような効果がある。
超音波送信アンプと受信アンプとに接続される自動利得調整アンプからの受信振幅強度に基づき測定するようにしたので、従来例の構成部品を利用でき安価な超音波流量計が得られる。
According to claim 3 of the present invention, there are the following effects.
Since the measurement is made based on the received amplitude intensity from the automatic gain adjustment amplifier connected to the ultrasonic transmission amplifier and the reception amplifier, the conventional components can be used and an inexpensive ultrasonic flowmeter can be obtained.
本発明の請求項4によれば、次のような効果がある。
診断回路の診断信号に基づきアラームを発するアラーム回路が設けられたので、監視を続ける必要はなく、アラームにより迅速に対処が出来る超音波流量計が得られる。
According to
Since an alarm circuit for generating an alarm based on the diagnostic signal of the diagnostic circuit is provided, there is no need to continue monitoring, and an ultrasonic flowmeter that can be quickly dealt with by an alarm is obtained.
以下本発明を図面を用いて詳細に説明する。
図1は本発明の一実施例の要部構成説明図、図2は図1の動作説明図である。
図において、図3と同一記号の構成は同一機能を表す。
以下、図3と相違部分のみ説明する。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram illustrating the configuration of the main part of one embodiment of the present invention, and FIG. 2 is a diagram illustrating the operation of FIG.
In the figure, configurations with the same symbols as in FIG. 3 represent the same functions.
Only the differences from FIG. 3 will be described below.
相関演算部4は、受信超音波の上流側信号と下流側信号との相互相関を演算する。
減衰度測定手段6は、受信超音波の減衰度を測定する。
この場合は、減衰度測定手段6は、超音波送信アンプ1と超音波受信アンプ3とに接続される自動利得調整アンプからの受信振幅強度に基づき測定する。
The
The attenuation measuring means 6 measures the attenuation of the received ultrasonic waves.
In this case, the attenuation measuring means 6 measures based on the received amplitude intensity from the automatic gain adjustment amplifier connected to the ultrasonic transmission amplifier 1 and the ultrasonic reception amplifier 3.
診断回路11は、相関演算部4からの相関値と、減衰度測定手段6からの減衰値とに基づき、配管の状態を診断する。
この場合は、診断回路11は、測定エラー信号が気泡による乱れに基づくか、配管付着物に基づくかを判定する。
アラーム出力回路12は、診断回路11からの信号に基づき、アラーム信号を出力する。
The
In this case, the
The
以上の構成において、診断回路11は、自動利得調整アンプ6からの信号により受信振幅強度に関する信号を受信する。
また、診断回路11は、相関演算部4から相関値の最大値の信号を受信する。
ここで、相関値の最大値とは、時間差をずらして相関演算を行った時の最大値を言う。
相関値の最大値が、最も相関の確からしさを示す値であるからである。なお、最大値に近い値であっても良い事は勿論である。
In the above configuration, the
Further, the
Here, the maximum value of the correlation value refers to the maximum value when the correlation calculation is performed by shifting the time difference.
This is because the maximum correlation value is the value indicating the most likely correlation. Of course, it may be a value close to the maximum value.
診断回路11内で、相関値は、1が最大となるので、例えば、0.8を閾値として、相関値の大小の判定を行う。
つまり、0.8より相関値が大きければ相関値大、小さければ相関値小とする。
In the
That is, if the correlation value is greater than 0.8, the correlation value is large, and if it is smaller, the correlation value is small.
次に、診断回路11内で、受信振幅強度の大小の判定を行う。例えば、振幅の最大値を1とし、閾値を0.2と設定する。0.2より大きければ信号強度大、0.2より小さければ信号強度小とする。
Next, in the
相関値と受信振幅強度の大小の判定の組み合わせを図2に示す。
相関値と受信振幅強度が大の場合は問題なし。
相関値が大で、受信振幅強度が小の場合は、流路配管に付着物が堆積している可能性が大である。
相関値が小で、受信振幅強度が大の場合は、気泡の混入の可能性が大である。
相関値が小で、受信振幅強度が小の場合は、微小の気泡の混入の可能性が大である。
A combination of the correlation value and the determination of the magnitude of the received amplitude strength is shown in FIG.
There is no problem when the correlation value and the received amplitude intensity are large.
When the correlation value is large and the reception amplitude intensity is small, there is a high possibility that deposits are deposited on the flow path pipe.
When the correlation value is small and the reception amplitude intensity is large, there is a high possibility that air bubbles are mixed.
When the correlation value is small and the reception amplitude intensity is small, there is a high possibility that minute bubbles are mixed.
要するに、流路配管に付着物が堆積している場合は、流路配管を通る超音波は同様に減衰を受けるために、相関値は変わらず振幅が減衰するからである。
気泡の混入の場合は、一般的に、超音波が測定流体内を通る時に、一時的な乱れとなる為に、相関値自体が小さくなる。一方で、波形は乱れても、信号は受信機まで到達するので、振幅はそれほど小さくならないからである。
In short, when deposits are accumulated in the flow path pipe, the ultrasonic wave passing through the flow path pipe is similarly attenuated, so that the correlation value does not change and the amplitude is attenuated.
When bubbles are mixed, generally, when ultrasonic waves pass through the measurement fluid, the correlation value itself becomes small because of temporary disturbance. On the other hand, even if the waveform is disturbed, the signal reaches the receiver, so the amplitude is not so small.
この結果、
超音波流量計の取り付け時に、測定がうまく行かない場合に、何が原因なのか推定が可能になる為に、事前に対処が可能になる超音波流量計が得られる。
配管による減衰の場合は、配管の交換や、超音波流量計の取り付け場所の変更と言う方法が採用される。
As a result,
When an ultrasonic flowmeter is attached, if the measurement does not go well, it is possible to estimate what is the cause, so an ultrasonic flowmeter that can be handled in advance can be obtained.
In the case of attenuation by piping, a method of replacing the piping or changing the installation location of the ultrasonic flowmeter is adopted.
気泡による場合は、配管ラインに気泡が混入しないような施工や工夫を行うようにする。
これらは、超音波流量計の取り付け時に判定が可能となることで、トラブルを未然に防止できる超音波流量計が得られる。
If it is due to air bubbles, make sure that the work and measures are taken to prevent air bubbles from entering the piping line.
Since these can be determined when the ultrasonic flow meter is attached, an ultrasonic flow meter capable of preventing troubles can be obtained.
超音波送信アンプと受信アンプとに接続される自動利得調整アンプからの受信振幅強度に基づき測定するようにしたので、従来例の構成を利用でき安価な超音波流量計が得られる。
診断回路の診断信号に基づきアラームを発するアラーム回路が設けられたので、監視を続ける必要はなく、アラームにより迅速に対処が出来る超音波流量計が得られる。
Since the measurement is performed based on the received amplitude intensity from the automatic gain adjustment amplifier connected to the ultrasonic transmission amplifier and the reception amplifier, the configuration of the conventional example can be used and an inexpensive ultrasonic flowmeter can be obtained.
Since an alarm circuit for generating an alarm based on the diagnostic signal of the diagnostic circuit is provided, there is no need to continue monitoring, and an ultrasonic flowmeter that can be quickly dealt with by an alarm is obtained.
1 送信アンプ
2 検出端
3 受信アンプ
4 相関演算部
5 相関演算部
6 自動利得調整アンプ
7 IOモジュール
11 診断回路
12 アラーム出力回路
DESCRIPTION OF SYMBOLS 1
Claims (4)
前記上流側信号と下流側信号との相互相関を演算する相関演算部と、
前記受信超音波の減衰度を測定する減衰度測定手段と、
前記相関演算部からの相関値と前記減衰度測定手段からの減衰値とに基づき配管の状態を診断する診断回路と
を具備したことを特徴とする超音波流量計。 In the ultrasonic flowmeter that measures the received ultrasonic waves on the upstream side and the downstream side of the fluid flowing through the pipe, and measures the flow velocity of the fluid from the correlation of the signals measured on the upstream side and the downstream side,
A correlation calculator that calculates a cross-correlation between the upstream signal and the downstream signal;
An attenuation measuring means for measuring the attenuation of the received ultrasonic wave;
An ultrasonic flowmeter comprising: a diagnostic circuit for diagnosing a pipe state based on a correlation value from the correlation calculation unit and an attenuation value from the attenuation measuring means.
を特徴とする請求項1記載の超音波流量計。 The ultrasonic flowmeter according to claim 1, wherein the diagnostic circuit determines whether the diagnostic circuit is based on air bubbles or piping deposits.
を特徴とする請求項1又は請求項2記載の超音波流量計。 The ultrasonic wave according to claim 1, wherein the attenuation measurement unit performs measurement based on a reception amplitude intensity from an automatic gain adjustment amplifier connected to an ultrasonic transmission amplifier and an ultrasonic reception amplifier. Flowmeter.
を具備したことを特徴とする請求項1乃至請求項3の何れかに記載の超音波流量計。
The ultrasonic flowmeter according to claim 1, further comprising an alarm circuit that issues an alarm based on a diagnostic signal of the diagnostic circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003275869A JP4273519B2 (en) | 2003-07-17 | 2003-07-17 | Ultrasonic flow meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003275869A JP4273519B2 (en) | 2003-07-17 | 2003-07-17 | Ultrasonic flow meter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005037290A true JP2005037290A (en) | 2005-02-10 |
JP4273519B2 JP4273519B2 (en) | 2009-06-03 |
Family
ID=34212384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003275869A Expired - Fee Related JP4273519B2 (en) | 2003-07-17 | 2003-07-17 | Ultrasonic flow meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4273519B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012208057A (en) * | 2011-03-30 | 2012-10-25 | Azbil Corp | Diagnostic method and ultrasonic measuring device |
DE102012104042A1 (en) * | 2012-05-09 | 2013-11-14 | Endress + Hauser Flowtec Ag | Method for monitoring the operating state of an ultrasonic transducer in an ultrasonic flowmeter |
WO2020161927A1 (en) * | 2019-02-05 | 2020-08-13 | オムロン株式会社 | Flow rate measurement device |
WO2020183719A1 (en) * | 2019-03-14 | 2020-09-17 | オムロン株式会社 | Flow rate measurement device |
CN115876288A (en) * | 2023-02-27 | 2023-03-31 | 泰安奇正电子科技有限公司 | Electronic instrument fault analysis method and system based on big data |
-
2003
- 2003-07-17 JP JP2003275869A patent/JP4273519B2/en not_active Expired - Fee Related
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012208057A (en) * | 2011-03-30 | 2012-10-25 | Azbil Corp | Diagnostic method and ultrasonic measuring device |
DE102012104042A1 (en) * | 2012-05-09 | 2013-11-14 | Endress + Hauser Flowtec Ag | Method for monitoring the operating state of an ultrasonic transducer in an ultrasonic flowmeter |
DE102012104042A8 (en) * | 2012-05-09 | 2014-01-30 | Endress + Hauser Flowtec Ag | Method for monitoring the operating state of an ultrasonic transducer in an ultrasonic flowmeter |
US9970796B2 (en) | 2012-05-09 | 2018-05-15 | Endress + Hauser Flowtec Ag | Method for monitoring the operating state of an ultrasonic transducer in an ultrasonic, flow measuring device |
DE102012104042B4 (en) | 2012-05-09 | 2021-09-16 | Endress + Hauser Flowtec Ag | Method for monitoring the operating status of an ultrasonic transducer in an ultrasonic flow meter |
US11796361B2 (en) | 2019-02-05 | 2023-10-24 | Omron Corporation | Flow rate measurement apparatus measuring flow rate of fluid inside pipe having predetermined cross-sectional area |
WO2020161927A1 (en) * | 2019-02-05 | 2020-08-13 | オムロン株式会社 | Flow rate measurement device |
JP2020125987A (en) * | 2019-02-05 | 2020-08-20 | オムロン株式会社 | Flow rate measuring device |
WO2020183719A1 (en) * | 2019-03-14 | 2020-09-17 | オムロン株式会社 | Flow rate measurement device |
JP7111247B2 (en) | 2019-03-14 | 2022-08-02 | オムロン株式会社 | Flow measurement device |
EP3940345A4 (en) * | 2019-03-14 | 2022-10-26 | Omron Corporation | Flow rate measurement device |
US11709083B2 (en) | 2019-03-14 | 2023-07-25 | Omron Corporation | Flow-rate measuring apparatus capable of accurately measuring flow rate of fluid containing foreign objects |
JPWO2020183719A1 (en) * | 2019-03-14 | 2021-10-14 | オムロン株式会社 | Flow measuring device |
CN115876288A (en) * | 2023-02-27 | 2023-03-31 | 泰安奇正电子科技有限公司 | Electronic instrument fault analysis method and system based on big data |
CN115876288B (en) * | 2023-02-27 | 2023-06-16 | 泰安奇正电子科技有限公司 | Electronic instrument fault analysis method and system based on big data |
Also Published As
Publication number | Publication date |
---|---|
JP4273519B2 (en) | 2009-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101506629B (en) | Flow measurement diagnostics | |
RU2601223C1 (en) | Ultrasonic flow meter system with pressure transducer arranged upstream | |
CN100504310C (en) | Diagnostics of impulse piping in an industrial process | |
RU2443010C1 (en) | Method for detecting an imminent transmitter failure, system of imminent transmitter failure detection (variants) and machine-readable information storage medium | |
US7578203B2 (en) | System for sand detection at constrictions or flow obstacles in a pipe or similar | |
US7984637B2 (en) | System and method for field calibration of flow meters | |
US9024767B2 (en) | Condition monitoring with alarm confidence levels for flow metering systems | |
JP3129121B2 (en) | Pipe line obstruction detector | |
US11549841B2 (en) | Ultrasonic meter employing two or more dissimilar chordal multipath integration methods in one body | |
CN105865551A (en) | Ultrasonic flow sensor and flow detection method | |
JP4273519B2 (en) | Ultrasonic flow meter | |
US11635317B2 (en) | Ultrasound flow measurement device with signal quality monitoring | |
JP2009085769A (en) | Apparatus for measuring fluid in pipe line, and system for diagnosing clogging in connecting pipe | |
KR101965690B1 (en) | A monitoring system of water supply pipeline | |
JP4609025B2 (en) | Pressure detector and clogging diagnosis method for pressure detector | |
JP5489635B2 (en) | Ultrasonic flow meter | |
JP4019419B2 (en) | Pressure guiding tube clogging detector and differential pressure / pressure transmitter incorporating it | |
JP4623488B2 (en) | Fluid flow measuring device | |
Aswar et al. | Impulse Line Blockage Detection of Differential Pressure Transmitter by Using Blockage Factor Technique | |
JP2022161052A (en) | ultrasonic flow meter | |
NO319877B1 (en) | Application of system for detection of sand / solid particles in the pipe transport of fluids | |
JP2020134268A (en) | Meter device | |
Hackett | Fundamentals of Multipath Ultrasonic flow meters for Gas Measurement | |
JP2020134267A (en) | Meter device | |
Hackett | Ultrasonic Meter Diagnostics-Basic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060404 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081118 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090116 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090209 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090222 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120313 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120313 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130313 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140313 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |