JP4931491B2 - A method for determining a natural period of a structure, a method for designing a structure, and a structure. - Google Patents

A method for determining a natural period of a structure, a method for designing a structure, and a structure. Download PDF

Info

Publication number
JP4931491B2
JP4931491B2 JP2006173022A JP2006173022A JP4931491B2 JP 4931491 B2 JP4931491 B2 JP 4931491B2 JP 2006173022 A JP2006173022 A JP 2006173022A JP 2006173022 A JP2006173022 A JP 2006173022A JP 4931491 B2 JP4931491 B2 JP 4931491B2
Authority
JP
Japan
Prior art keywords
mass
displacement
equation
natural
natural period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006173022A
Other languages
Japanese (ja)
Other versions
JP2008002167A (en
Inventor
辰治 石丸
一平 秦
正行 公塚
Original Assignee
辰治 石丸
株式会社i2S2
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 辰治 石丸, 株式会社i2S2 filed Critical 辰治 石丸
Priority to JP2006173022A priority Critical patent/JP4931491B2/en
Publication of JP2008002167A publication Critical patent/JP2008002167A/en
Application granted granted Critical
Publication of JP4931491B2 publication Critical patent/JP4931491B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、補助質量の回転慣性を利用して構造物の地震動に対する揺れを抑制する制振装置を構造物に設ける場合の構造物の固有周期の決定方法、構造物の設計方法、及び構造物に関する。 The present invention relates to a method for determining a natural period of a structure, a method for designing a structure, and a structure in the case where a vibration damping device that suppresses the vibration of the structure with respect to earthquake motion is provided in the structure using the rotational inertia of the auxiliary mass. About.

構造物である建築物の耐震設計において、粘性ダンパー等や免振構造により応答絶対加速度を抑えようとすれば応答変形が増大し、逆に、弾塑性ダンパー等による剛性を付与して応答変形を抑えようとすれば、応答絶対加速度が増大してしまい、応答絶対加速度と応答変形を両方とも抑える設計を行うことは一般的に困難であると考えられている。   In the seismic design of buildings, which are structures, response deformation increases if the response absolute acceleration is suppressed by a viscous damper, etc. or a vibration-isolating structure. If it tries to suppress, the response absolute acceleration increases, and it is generally considered difficult to perform a design that suppresses both the response absolute acceleration and the response deformation.

ここで、本出願人は、外輪と内輪を相対回転可能とした振動系を構成し、外輪と内輪の速度差に応じて運動エネルギーを生じる要素を慣性接続要素として、慣性接続要素が、振動系の周期を伸し、減衰定数を低下させ、地動加速度に対して入力低減効果を発揮させ、応答絶対加速度及び応答変形を抑える制振機構を提案している。(特許文献1)
この制振機構は、軸体と、軸体が挿入される円筒状の補助質量体と、補助質量体を回転可能に保持する保持体と、軸体の外周面と補助質量体の内周面に設けられ、軸体の軸方向への直動変位を補助質量体の回転変位に変える螺合手段と、を有しており、軸体の直動変位を補助質量の回転変位に変える機構となっている。
この制振機構によれば、回転式の梃子機構を利用し補助質量を回転させて慣性力を発生させることで、構造物に対して補助質量を大きく動かすことなく、その場で地動等による地震入力を低減させることができる。
Here, the present applicant configures a vibration system in which the outer ring and the inner ring can be rotated relative to each other. The element that generates kinetic energy in accordance with the speed difference between the outer ring and the inner ring is an inertial connection element. We propose a vibration damping mechanism that reduces the response absolute acceleration and response deformation by extending the period of, reducing the damping constant, exhibiting the effect of reducing the input to ground acceleration. (Patent Document 1)
The vibration control mechanism includes a shaft body, a cylindrical auxiliary mass body into which the shaft body is inserted, a holding body that rotatably supports the auxiliary mass body, an outer peripheral surface of the shaft body, and an inner peripheral surface of the auxiliary mass body. And a screwing means for changing the axial displacement of the shaft body in the axial direction to the rotational displacement of the auxiliary mass body, and a mechanism for changing the linear motion displacement of the shaft body to the rotational displacement of the auxiliary mass. It has become.
According to this vibration control mechanism, an inertial force is generated by rotating an auxiliary mass using a rotary lever mechanism, so that an earthquake caused by ground motion or the like does not move the auxiliary mass greatly with respect to the structure. Input can be reduced.

しかし、この慣性接続要素を用いた制振機構について、構造物の固有周期を変更した場合の応答絶対加速度及び応答変位の状態は不明となっている。このため、前述のトレードオフの関係を考慮すると、設計する構造物の持つ固有周期によっては、上記制振機構を用いることにより絶対加速度が増大し、建物に過剰な応答せん断力が作用する。
特願2004−317077
However, regarding the vibration damping mechanism using the inertia connecting element, the response absolute acceleration and response displacement state when the natural period of the structure is changed are unknown. For this reason, in consideration of the trade-off relationship described above, depending on the natural period of the structure to be designed, the absolute acceleration increases by using the vibration damping mechanism, and an excessive response shear force acts on the building.
Japanese Patent Application No. 2004-317077

本発明は、上記事実に鑑みてなされたものであり、慣性接続要素が用いられる構造物の固有周期の決定方法、構造物の設計方法、及び構造物を得ることを目的とする。   The present invention has been made in view of the above-described facts, and an object thereof is to obtain a method for determining a natural period of a structure in which an inertial connection element is used, a method for designing a structure, and a structure.

請求項1に記載の発明は、補助質量mfの回転慣性を利用して地震動に対する揺れを抑制する慣性接続要素が用いられる構造物の固有周期の決定方法であって、前記補助質量mfを有さない系に所定の地震動が与えられたときの前記構造物の変位X前記構造物の質量m、前記補助質量の内径と外径の比である変位増幅率βfを用いて表される質量m´=βf ・mf、減衰の係数c、ばね定数k、及び地動変位Yとして得られる(7)式においてm´=0とした振動方程式、又は、前記変位X、固有円振動数ω、粘性減衰定数h、前記地動変位Y、及び前記質量m´による入力低減効果ηとして得られる(8)式においてη=1とした振動方程式を用いて1質点系応答解析を行い算出した最大変位Xmaxに、固有周期Tとして固有円振動数ω=2π/Tを乗じたものを擬似速度ωXとし、前記固有周期Tを変化させて擬似速度ωXの値をプロットした応答スペクトルSaを求める工程と、前記構造物の質量m及び前記補助質量mfから(9)式を用いて求められる前記入力低減効果ηと、前記地震動の最大加速度y''maxと、により求められる地動加速度成分(1−η)y''maxを、前記構造物の固有円振動数ωで除したものを擬似速度Vbとし、該固有円振動数ω=2π/Tを用いて、固有周期Tを変化させて擬似速度Vbの値をプロットした応答スペクトルSbを求める工程と、前記応答スペクトルSaの前記擬似速度ωXと前記応答スペクトルSbの前記擬似速度Vbの大きさが入れ替わる周期点Tvを求めて、該周期点Tvよりも短周期側の固有周期を前記構造物の固有周期とする工程と、を有することを特徴としている。 The invention according to claim 1, by utilizing the rotational inertia of the auxiliary mass mf A method for determining the natural period of the swing suppressing inertia connecting element structure used for the ground motion, have the auxiliary mass mf displacement X of the structure when a predetermined ground motion is given to the system without the mass m of the structure, the mass m to be represented using the auxiliary mass inside diameter and a ratio of the outer diameter of the displacement amplification factor βf '= Βf 2 · mf, damping coefficient c, spring constant k, and vibration equation obtained as m' = 0 in equation (7) obtained as equation (7), or the displacement X, natural circular frequency ω, viscosity The maximum displacement Xmax calculated by performing a one-mass system response analysis using the vibration equation with η = 1 in the equation (8) obtained as the input reduction effect η obtained by the damping constant h, the ground motion displacement Y, and the mass m ′. , Natural circular frequency ω = 2π as natural period T / T is the pseudo speed ωX, the natural period T is changed, and the response spectrum Sa in which the value of the pseudo speed ωX is plotted is obtained from the mass m of the structure and the auxiliary mass mf (9 ) And the ground motion acceleration component (1-η) y ″ max determined by the input reduction effect η determined using the equation and the maximum acceleration y ″ max of the earthquake motion, and the natural circular frequency of the structure. The response frequency Sb obtained by plotting the value of the pseudo speed Vb by changing the natural period T using the natural circular frequency ω = 2π / T as the pseudo speed Vb divided by ω , and the response A periodic point Tv at which the magnitudes of the pseudo speed ωX of the spectrum Sa and the pseudo speed Vb of the response spectrum Sb are interchanged is obtained , and a natural period shorter than the periodic point Tv is defined as a natural period of the structure. And the process It is characterized by having.

上記構成によれば、慣性接続要素を用いて制振する構造物を設計する場合に、予め擬似速度の応答スペクトルSaとSbを求めて、擬似速度ωXと擬似速度Vbの大きさが入れ替わる周期点Tvを得ることにより、擬似的に慣性接続要素を用いた場合と、用いない場合の絶対加速度の変換点が判る。   According to the above configuration, when designing a structure to be damped using an inertia connecting element, the pseudo speed response spectrums Sa and Sb are obtained in advance, and the periodic points at which the magnitudes of the pseudo speed ωX and the pseudo speed Vb are switched. By obtaining Tv, the conversion point of absolute acceleration when pseudo inertial connection element is used and when it is not used can be known.

また、補助質量mfを有さない系に所定の地震動が与えられたときの擬似速度の応答スペクトルSaと、過去の地震動の最大加速度データy''maxを用いて得られる応答スペクトルSbとから周期点Tvが求められ、補助質量mfを含む振動方程式を解かなくてもよいので、周期点Tvを容易に求めることができる。   Further, a period is determined from a response spectrum Sa of a pseudo speed when a predetermined ground motion is given to a system having no auxiliary mass mf and a response spectrum Sb obtained by using past maximum acceleration data y ″ max of the ground motion. Since the point Tv is obtained and it is not necessary to solve the vibration equation including the auxiliary mass mf, the periodic point Tv can be easily obtained.

従って、慣性接続要素の制振効果が得られる構造物の固有周期を容易に決定でき、慣性接続要素を有効に利用することができる。   Therefore, it is possible to easily determine the natural period of the structure that can obtain the damping effect of the inertial connection element, and it is possible to effectively use the inertial connection element.

さらに、既に建てられた構造物については、固有周期の決定方法により得られた固有周期となるように補強等することにより、慣性接続要素による制振効果を得ることができる。   Furthermore, for a structure that has already been built, the vibration damping effect by the inertial connection element can be obtained by reinforcing the structure so as to have the natural period obtained by the natural period determining method.

請求項2に記載の発明は、補助質量mfの回転慣性を利用して地震動に対する揺れを抑制する慣性接続要素を用いた構造物の設計方法において、前記補助質量mfを有さない系に所定の地震動が与えられたときの前記構造物の変位X前記構造物の質量m、前記補助質量の内径と外径の比である変位増幅率βfを用いて表される質量m´=βf ・mf、減衰の係数c、ばね定数k、及び地動変位Yとして得られる(7)式においてm´=0とした振動方程式、又は、前記変位X、固有円振動数ω、粘性減衰定数h、前記地動変位Y、及び前記質量m´による入力低減効果ηとして得られる(8)式においてη=1とした振動方程式を用いて1質点系応答解析を行い算出した最大変位Xmaxに、固有周期Tとして固有円振動数ω=2π/Tを乗じたものを擬似速度ωXとし、前記固有周期Tを変化させて擬似速度ωXの値をプロットした応答スペクトルSaを求める工程と、前記構造物の質量m及び前記補助質量mfから(9)式を用いて求められる前記入力低減効果ηと、前記地震動の最大加速度y''maxと、により求められる地動加速度成分(1−η)y''maxを、前記構造物の固有円振動数ωで除したものを擬似速度Vbとし、該固有円振動数ω=2π/Tを用いて、固有周期Tを変化させて擬似速度Vbの値をプロットした応答スペクトルSbを求める工程と、前記応答スペクトルSaの前記擬似速度ωXと前記応答スペクトルSbの前記擬似速度Vbの大きさが入れ替わる周期点Tvを求める工程と、を有するとともに、前記周期点Tvよりも短周期側の固有周期を有する構造物を設計することを特徴としている。 According to a second aspect of the present invention, there is provided a structure design method using an inertia connecting element that suppresses a shake with respect to seismic motion using the rotational inertia of the auxiliary mass mf . Mass m= βf 2 · expressed using displacement X 1 of the structure when a seismic motion is applied, mass m of the structure, displacement amplification factor βf which is a ratio of the inner diameter to the outer diameter of the auxiliary mass. mf, a damping coefficient c, a spring constant k, and a vibration equation where m ′ = 0 in the equation (7) obtained as the ground motion displacement Y, or the displacement X, the natural circular frequency ω, the viscous damping constant h, As the natural period T, the maximum displacement Xmax calculated by performing a one-mass system response analysis using the vibration equation with η = 1 in the equation (8) obtained as the input reduction effect η by the ground displacement Y and the mass m ′ Multiplying natural circular frequency ω = 2π / T Is a pseudo speed ωX, the natural period T is changed, and the response spectrum Sa in which the value of the pseudo speed ωX is plotted is obtained, and the mass m and the auxiliary mass mf of the structure are used to calculate the response spectrum Sa. The ground motion acceleration component (1-η) y ″ max obtained by the required input reduction effect η and the maximum acceleration y ″ max of the ground motion is divided by the natural circular frequency ω of the structure. was a pseudo speed Vb, using the peculiar circular vibration frequency ω = 2π / T, and obtaining a response spectrum Sb that by changing the natural period T is plotted the value of the pseudo speed Vb, the pseudo of the response spectrum Sa And a step of obtaining a periodic point Tv at which the magnitude of the pseudo velocity Vb of the response spectrum Sb is switched, and a structure having a natural period shorter than the periodic point Tv is designed. It is characterized by a door.

上記構成によれば、慣性接続要素を用いて制振する構造物を設計する場合に、予め擬似速度の応答スペクトルSaとSbを求めて、擬似速度ωXと擬似速度Vbの大きさが入れ替わる周期点Tvを得ることにより、慣性接続要素の制振効果が得られる構造物の固有周期を決定できるので、慣性接続要素を有効に利用できる。   According to the above configuration, when designing a structure to be damped using an inertia connecting element, the pseudo speed response spectrums Sa and Sb are obtained in advance, and the periodic points at which the magnitudes of the pseudo speed ωX and the pseudo speed Vb are switched. By obtaining Tv, it is possible to determine the natural period of the structure from which the damping effect of the inertial connection element can be obtained, so that the inertial connection element can be used effectively.

請求項3に記載の発明は、補助質量mfの回転慣性を利用して地震動に対する揺れを抑制する慣性接続要素が用いられる構造物であって、請求項1の構造物の固有周期の決定方法又は請求項2の構造物の設計方法を用いて設計されたことを特徴としている。 The invention according to claim 3 is a structure in which an inertia connecting element that suppresses the shaking with respect to the earthquake motion using the rotational inertia of the auxiliary mass mf is used, and the method for determining the natural period of the structure according to claim 1 or The structure is designed using the structure designing method according to claim 2 .

上記構成によれば、予め擬似速度の応答スペクトルSaとSbを求めて、擬似速度ωXと擬似速度Vbの大きさが入れ替わる周期点Tvを求めることにより得られた構造物であるので、慣性接続要素を有効に利用できる。   According to the above configuration, the inertial connection element is a structure obtained by obtaining the response spectrums Sa and Sb of the pseudo speed in advance and obtaining the periodic point Tv where the magnitudes of the pseudo speed ωX and the pseudo speed Vb are switched. Can be used effectively.

本発明は上記構成としたので、慣性接続要素を有効に利用して、絶対加速度及び変形を抑えることができる建物の固有周期を決定できる。   Since the present invention is configured as described above, it is possible to determine the natural period of the building that can suppress the absolute acceleration and deformation by effectively using the inertial connection element.

本発明の実施形態を図面に基づき説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1には、実施形態に係る制振装置34が示されている。   FIG. 1 shows a vibration damping device 34 according to the embodiment.

図1において、床部10(下階スラブ)には、反力がとれ力を伝達できる基台12が設けられている。この基台12には、シャフト14が床部10と平行となるように片持ち状態で固定されている。   In FIG. 1, a floor 12 (lower slab) is provided with a base 12 that can remove reaction force and transmit force. A shaft 14 is fixed to the base 12 in a cantilever state so as to be parallel to the floor portion 10.

シャフト14の外周面には、中央部から先端部に渡って右雄ねじ溝16が形成されている。この右雄ねじ溝16と螺合する雌ねじが内周面に刻設された円筒状の補助質量20へシャフト14が挿入されている。   A right male thread groove 16 is formed on the outer peripheral surface of the shaft 14 from the center to the tip. The shaft 14 is inserted into a cylindrical auxiliary mass 20 in which an internal thread that engages with the right external thread groove 16 is engraved on the inner peripheral surface.

この補助質量20の両端部は、円筒状のホルダー22に回転可能に保持されている。ホルダー22の両端開口部にはフランジ24が形成されており、補助質量20の端部20Aに当接している。これにより、補助質量20は回転するが、軸方向への移動が規制されている。   Both ends of the auxiliary mass 20 are rotatably held by a cylindrical holder 22. Flange 24 is formed at both ends of the holder 22, and is in contact with the end 20 </ b> A of the auxiliary mass 20. Thereby, although the auxiliary | assistant mass 20 rotates, the movement to an axial direction is controlled.

ここで、ホルダー22の内周面と補助質量20の外周面との間にエネルギー吸収部材Lが設置されている。エネルギー吸収部材Lとして、粘性液(例えば、鉱物系オイル又はシリコン系オイル)を充填すれば、質量+粘性効果を合わせ持ち、摩擦材等を組み込めば、質量+剛性効果を合わせ持つ。むろん2つを合わせれば、質量+剛性+粘性を有するダンパーとなる。   Here, the energy absorbing member L is installed between the inner peripheral surface of the holder 22 and the outer peripheral surface of the auxiliary mass 20. When the energy absorbing member L is filled with a viscous liquid (for example, mineral oil or silicon oil), it has a mass + viscous effect, and if a friction material is incorporated, it has a mass + rigidity effect. Of course, when the two are combined, a damper having mass + rigidity + viscosity is obtained.

さらに、ホルダー22は、吊部材32で天井部28から懸架されており、地震動等により、建物30の床部10と天井部28が相対移動すると、シャフト14が床部10と一体に移動し、補助質量20が天井部28と一体に移動する構成である。   Furthermore, the holder 22 is suspended from the ceiling portion 28 by a suspension member 32, and when the floor portion 10 and the ceiling portion 28 of the building 30 are relatively moved by an earthquake motion or the like, the shaft 14 moves integrally with the floor portion 10, The auxiliary mass 20 is configured to move integrally with the ceiling portion 28.

次に、制振装置34の動作について説明する。   Next, the operation of the vibration damping device 34 will be described.

図2に示すように、地震動等により、建物30が右側へ変形し、床部10と天井部28が相対移動したとする。すると、天井部28に対して床部10に設けられたシャフト14が天井部28と平行に直動変位する。一方、補助質量20は天井部28と一体となって移動するので、シャフト14と補助質量20とには相対変位が生まれる。   As illustrated in FIG. 2, it is assumed that the building 30 is deformed to the right side due to earthquake motion or the like, and the floor 10 and the ceiling 28 are relatively moved. Then, the shaft 14 provided on the floor 10 is linearly displaced in parallel with the ceiling 28 with respect to the ceiling 28. On the other hand, since the auxiliary mass 20 moves integrally with the ceiling portion 28, relative displacement occurs between the shaft 14 and the auxiliary mass 20.

シャフト14と補助質量20は、右雄ねじ溝16と雌ねじが螺合しているため、シャフト14の相対直動変位が補助質量20の回転変位に変えられる。すなわち、補助質量20は、回転式の梃子機構により回転し、回転慣性力により、構造物に対して補助質量20が大きく動くことなく、その場で地動等による地震入力を低減させることができる。このため、建物30の振動を抑えることができる。   Since the shaft 14 and the auxiliary mass 20 are engaged with the right male screw groove 16 and the female screw, the relative linear displacement of the shaft 14 is changed to the rotational displacement of the auxiliary mass 20. That is, the auxiliary mass 20 is rotated by a rotary lever mechanism, and the earthquake input due to ground motion or the like can be reduced on the spot without the auxiliary mass 20 moving greatly with respect to the structure due to the rotational inertia force. For this reason, the vibration of the building 30 can be suppressed.

また、ホルダー22の内周面と補助質量20の外周面との間にエネルギー吸収部材Lが設置されているため、補助質量20が回転することにより、補助質量20の回転運動エネルギーを減衰させることができる。   Further, since the energy absorbing member L is installed between the inner peripheral surface of the holder 22 and the outer peripheral surface of the auxiliary mass 20, the rotational kinetic energy of the auxiliary mass 20 is attenuated by rotating the auxiliary mass 20. Can do.

ここで、模式図を用いて制振装置34の原理を説明する。   Here, the principle of the vibration damping device 34 will be described using a schematic diagram.

なお、以後において、補助質量20のように回転する振動系の節点間を結び、節点の速度差に応じて運動エネルギーを生じる要素を慣性接続要素と呼ぶことにする。   In the following, an element that connects the nodes of the rotating vibration system such as the auxiliary mass 20 and generates kinetic energy in accordance with the speed difference between the nodes will be referred to as an inertial connection element.

図3には、慣性接続要素の模式図が示されている。   FIG. 3 shows a schematic diagram of the inertial connection element.

図3において、補助質量20の内周面が、シャフト14の直動変位により接線方向へ加速度αで加力されたと考えると、シャフト14の直動変位の変位増幅率:βfは、補助質量20の内径r1と外径r2の比βf=r2/r1となる。   In FIG. 3, assuming that the inner peripheral surface of the auxiliary mass 20 is applied with an acceleration α in the tangential direction due to the linear displacement of the shaft 14, the displacement amplification factor βf of the linear motion displacement of the shaft 14 is The ratio of the inner diameter r1 to the outer diameter r2 is βf = r2 / r1.

従って、補助質量20の質量mfを加速するための慣性力の大きさは、慣性力:F=mf(βf・α)となる。 Therefore, the magnitude of the inertial force for accelerating the mass mf of the auxiliary mass 20 is inertial force: F = mf ( βf · α) .

補助質量20の内周面を接線方向へ押す力:反力Rは、R=βf・F=βf・mf(βfα)βf ・mf・α=m´α、即ち、系の外部から補助質量20の内周面の接線方向へかかる加速度αに対して質量m´=βf・mfに相当する大きさの慣性力が発生する。 Force that pushes the inner peripheral surface of the auxiliary mass 20 in the tangential direction: reaction force R is R = βf · F = βf · mf ( βf · α) = βf 2 · mf · α = m′α , that is, outside the system Inertial force having a magnitude corresponding to the mass m ′ = βf 2 · mf is generated with respect to the acceleration α applied in the tangential direction of the inner circumferential surface of the auxiliary mass 20.

なお、右雄ねじ溝のリードの大きさによって、シャフト14の直動変位をどれくらいの補助質量20の回転量に変えられるかが決まる。たとえば、リードを小さくすることで、シャフト14の直動変位量に対する補助質量20の回転数が大きくなり加速度αも大きくなる。   It should be noted that the amount of rotation of the auxiliary mass 20 can be determined by changing the linear displacement of the shaft 14 depending on the size of the lead of the right male screw groove. For example, by reducing the lead, the rotational speed of the auxiliary mass 20 with respect to the amount of linear motion displacement of the shaft 14 is increased, and the acceleration α is also increased.

ここで、図4に示すような1質点系の振動系に補助質量20のような回転体が組み込まれた振動系を考える。回転体の回転運動は、質点の地盤からの構造物の変位xの影響のみを受けており、直接的には地動変位yの影響は受けていない。   Here, consider a vibration system in which a rotating body such as the auxiliary mass 20 is incorporated in a one-mass system vibration system as shown in FIG. The rotational motion of the rotating body is only affected by the displacement x of the structure from the ground of the mass point, and is not directly affected by the ground motion displacement y.

いま、系全体の運動エネルギーをT,エネルギーの消散関数をF、ポテンシャルエネルギーをVとし、ばね定数をk、減衰の係数をcとすると、   Assuming that the kinetic energy of the entire system is T, the energy dissipation function is F, the potential energy is V, the spring constant is k, and the damping coefficient is c,


(1)

(1)


(2)

(2)


(3)
であり、Euler−Lagrangeの方程式は、

(3)
And the Euler-Lagrange equation is


(4)

(4)


(5)

(5)


(6)

(6)


(7)
ここで、(7)式の両辺を(m+m´)で除し、粘性減衰定数h、円振動数ω、臨界減衰の関係式を用いて得られる関係式2hω=c/(m+m´)、ω2=K/(m+m´)を用いて(7)式を整理すると、(8)式が得られる。

(7)
Here, the relational expression 2hω = c / (m + m ), ω2 obtained by dividing both sides of the expression (7) by (m + m ) and using the relational expression of the viscous damping constant h, the circular frequency ω, and the critical damping. When formula (7) is rearranged using = K / (m + m ), formula (8) is obtained.


(8)
(8)式において、ηは、質量m´による入力低減効果を意味しており、(9)式の関係がある。η=1は、慣性接続要素が用いられていない状態を示す。

(8)
In the equation (8), η means an input reduction effect due to the mass m ′, and has the relationship of the equation (9). η = 1 indicates a state where the inertia connecting element is not used.


(9)
(7)式又は(8)式が、解析を行うための振動方程式となる。また、円振動数ωは、構造物の固有周期をTとして、ω=2π/Tの関係を用いて変換できる。

(9)
Equation (7) or (8) is a vibration equation for analysis. Further, the circular frequency ω can be converted using the relationship of ω = 2π / T, where T is the natural period of the structure.

(7)式又は(8)式の振動方程式を、粘性減衰定数h、入力低減効果η、過去の地震動のデータである地動加速度y''を与えて解くことにより、固有周期Tと構造物の変位X、速度x'、加速度x''との相対応答スペクトルが得られる。ここで、構造物の変位Xが応答変形を表している。   By solving the vibration equation of the equation (7) or (8) by giving the viscous damping constant h, the input reduction effect η, and the ground motion acceleration y ″ that is the data of the past earthquake motion, the natural period T and the structure A relative response spectrum with displacement X, velocity x ′, and acceleration x ″ is obtained. Here, the displacement X of the structure represents the response deformation.

また、(7)式又は(8)式の振動方程式から、地動加速度を含めた絶対加速度(x''+y'')が得られる。   Further, the absolute acceleration (x ″ + y ″) including the ground acceleration is obtained from the vibration equation of the equation (7) or the equation (8).

次に、実際の地震動データを用いた応答スペクトルの解析について説明する。   Next, analysis of response spectrum using actual earthquake motion data will be described.

図5は、過去の各地域の地震動におけるh=0.05とした固有周期Tと、相対変位Xとの応答スペクトルが、入力低減効果ηによって変化する状態を示したグラフである。なお、地震動のデータとして、EL_CENTRO1940(NS)と、HACHINOHE1968(NS)と、TAFT1952(EW)とを用いた。   FIG. 5 is a graph showing a state in which the response spectrum of the natural period T and the relative displacement X in the past earthquake motion in each region changes with the input reduction effect η. Note that EL_CENTRO1940 (NS), HACHINOHE 1968 (NS), and TAFT1952 (EW) were used as earthquake motion data.

図5a〜図5cに示すように、各固有周期において、慣性接続要素を用いないη=1の相対変位が最も大きく、ηの値が1より小さくなるにつれて相対変位が小さくなっており、慣性接続要素を用いると相対変位が小さくなることが判る。   As shown in FIGS. 5a to 5c, in each natural period, the relative displacement of η = 1 without using the inertial connection element is the largest, and the relative displacement becomes smaller as the value of η becomes smaller than 1. It can be seen that the relative displacement is reduced when the element is used.

一方、図6は、過去の各地域の地震動におけるh=0.05とした固有周期Tと、絶対加速度(x''+y'')との応答スペクトルが、入力低減効果ηによって変化する状態を示したグラフである。なお、地震動のデータとして、図5と同様にEL_CENTRO1940(NS)と、HACHINOHE1968(NS)と、TAFT1952(EW)とを用いた。   On the other hand, FIG. 6 shows a state in which the response spectrum of the natural period T with h = 0.05 and the absolute acceleration (x ″ + y ″) in the past earthquake motion in each region changes due to the input reduction effect η. It is the shown graph. Note that EL_CENTRO 1940 (NS), HACHINOH 1968 (NS), and TAFT 1952 (EW) were used as the seismic motion data as in FIG.

図6a〜図6cのいずれのグラフからも、ηの値によって異なるが、固有周期T=1.5〜2.0s近傍を境界として、入力低減効果ηによる絶対加速度(x''+y'')の低減傾向が異なることが判る。   6A to 6C, depending on the value of η, the absolute acceleration (x ″ + y ″) due to the input reduction effect η with the natural period T = 1.5 to 2.0 s as a boundary. It can be seen that the tendency of reduction is different.

固有周期T=1.5〜2.0sよりも短い周期領域では、入力低減効果ηの値が減少するほど、絶対加速度(x''+y'')の値が減少している。   In a periodic region shorter than the natural period T = 1.5 to 2.0 s, the value of the absolute acceleration (x ″ + y ″) decreases as the value of the input reduction effect η decreases.

一方、固有周期T=1.5〜2.0sよりも長い周期領域では、入力低減効果ηの値が減少するほど絶対加速度(x''+y'')の値が増加しており、いずれも次第に(1−η)y''に収束している。   On the other hand, in the period region longer than the natural period T = 1.5 to 2.0 s, the value of the absolute acceleration (x ″ + y ″) increases as the value of the input reduction effect η decreases. It gradually converges to (1-η) y ″.

この収束は、(7)式の振動方程式において、C=0、k=0、m´≠0として求まるx''=−ηy''を(x''+y'')に代入して、x''+y''=−ηy''+y''=(1−η)y''となることからも判る。 This convergence is obtained by substituting x ″ = − ηy ″ obtained as C = 0, k = 0, m ≠ 0 in (x ″ + y ″) in the vibration equation of Equation (7), and x It can also be seen from the fact that “+ y” = − ηy ″ + y ″ = (1−η) y ″.

このように、慣性接続要素を用いて絶対加速度(x''+y'')を減少しようとしても、固有周期Tによっては、増加させてしまい、過剰なせん断力が働くことがあるので、慣性接続要素を用いる場合に、構造物の固有周期Tの決定は重要である。   In this way, even if it is attempted to reduce the absolute acceleration (x ″ + y ″) using the inertia connecting element, depending on the natural period T, the absolute acceleration (x ″ + y ″) may be increased, and an excessive shear force may be applied. When using elements, it is important to determine the natural period T of the structure.

次に、慣性接続要素を有効に利用できる固有周期の決定方法について説明する。   Next, a method for determining the natural period in which the inertial connection element can be effectively used will be described.

図7は、一例として、EL_CENTRO1940(NS)の地震動データを用いて、粘性減衰定数h=0.4としたときの固有周期Tと各擬似速度の応答スペクトルを示したものである。   FIG. 7 shows, as an example, the natural period T and the response spectrum of each pseudo speed when the viscous damping constant h = 0.4 using the EL_CENTRO1940 (NS) seismic motion data.

擬似速度の応答スペクトルのグラフは3軸のグラフであり、図7において、左上から右下に向かう方向が絶対加速度の減少方向を示している。また、右上から左下に向かう方向が変位の減少方向を示している。これにより、擬似速度の応答スペクトルのグラフからは、絶対加速度、速度、変位を読み取ることができる。   The graph of the response spectrum of the pseudo speed is a triaxial graph, and in FIG. 7, the direction from the upper left to the lower right indicates the decreasing direction of the absolute acceleration. Further, the direction from the upper right to the lower left indicates the direction of decreasing displacement. Thereby, absolute acceleration, speed, and displacement can be read from the graph of the response spectrum of the pseudo speed.

応答スペクトルSaは、m´=0とした(7)式又はη=1とした(8)式の振動方程式を用いて1質点系応答解析を行い算出した最大変位Xmaxに、固有円振動数ω=2π/Tを乗じたものを擬似速度ωXとし、固有周期Tを変化させて擬似速度ωXの値をプロットしたものである。 The response spectrum Sa has a natural circular frequency ω as the maximum displacement Xmax calculated by performing a one-mass system response analysis using the vibration equation of Equation (7) where m = 0 or Equation (8) where η = 1. A value obtained by multiplying = 2π / T is a pseudo speed ωX, and the value of the pseudo speed ωX is plotted by changing the natural period T.

応答スペクトルSbは、前述のように構造物の質量m及び慣性接続要素の補助質量mfから求められる入力低減効果ηと、EL_CENTROの地震動の最大加速度y''maxと、により求められる地動加速度成分(1−η)y''maxを、構造物の固有円振動数ωで除したものを擬似速度Vbとし、固有円振動数ω=2π/Tを用いて、固有周期Tを変化させて擬似速度Vbの値をプロットしたものである。   The response spectrum Sb is a ground acceleration component (obtained from the input reduction effect η obtained from the mass m of the structure and the auxiliary mass mf of the inertial connection element as described above and the maximum acceleration y ″ max of the ground motion of EL_CENTRO ( 1−η) y ″ max divided by the natural circular frequency ω of the structure is set as a pseudo speed Vb, and the natural period T is changed using the natural circular frequency ω = 2π / T to change the pseudo speed. The value of Vb is plotted.

Tv40は、応答スペクトルSaの擬似速度ωXと、応答スペクトルSbの擬似速度Vbの大きさが入れ替わる周期点である。   Tv40 is a periodic point where the magnitudes of the pseudo speed ωX of the response spectrum Sa and the pseudo speed Vb of the response spectrum Sb are interchanged.

ここで、図5の相対変位及び図6の絶対加速度のグラフを見ても判るように、周期点Tv40よりも短周期側では、慣性接続要素を用いることによって相対変位及び絶対加速度は小さくなり、入力低減効果ηによる絶対加速度の増幅は起こりにくいと言える。   Here, as can be seen from the graph of the relative displacement in FIG. 5 and the absolute acceleration in FIG. 6, the relative displacement and the absolute acceleration are reduced by using the inertia connecting element on the short cycle side from the periodic point Tv40. It can be said that amplification of absolute acceleration due to the input reduction effect η hardly occurs.

ここで、周期点Tv40の妥当性を確認するため、入力低減効果η=1(慣性接続要素無し)と、入力低減効果η=0.5(慣性接続要素有り)としたときの応答絶対加速度を固有円振動数で除した擬似速度応答スペクトルについて図7に示した。   Here, in order to confirm the validity of the periodic point Tv40, the response absolute acceleration when the input reduction effect η = 1 (without inertia connection element) and the input reduction effect η = 0.5 (with inertia connection element) is obtained. The pseudo speed response spectrum divided by the natural circular frequency is shown in FIG.

TABSは、慣性接続要素が無い状態での擬似速度と、慣性接続用を用いた状態での擬似速度の大きさが入れ替わる周期点を表しており、TABSとTv40はかなり近い値となっていることが判る。   TABS represents a periodic point where the pseudo speed in the state where there is no inertia connection element and the pseudo speed in the state where the inertia connection is used is switched, and TABS and Tv40 are fairly close values. I understand.

また、図8に示すように、他の地震動であるHACHINOHE1968(NS)、及びTAFT1952(EW)のデータを用いて周期点TABSとTv40を比較したところ、同様に、近い値となった。   Moreover, as shown in FIG. 8, when the periodic points TABS and Tv40 were compared using the data of HACHINOHE1968 (NS) and TAFT1952 (EW) which are other earthquake motions, the values were similarly close.

さらに、表1に示した上記以外の地域の実振動波形52波を用いて解析したところ、図9に示すように、TABSとTv40との比率の平均値は1に近い値となり、標準偏差も10%程度となった。これにより、Tv40がTABSの代用として用いられることが判った。   Furthermore, when analysis was performed using 52 actual vibration waveforms in regions other than the above shown in Table 1, as shown in FIG. 9, the average value of the ratio of TABS and Tv40 was close to 1, and the standard deviation was also It became about 10%. As a result, it was found that Tv40 was used as a substitute for TABS.







よって、周期点Tv40を用いて、慣性接続要素が用いられる構造物の固有周期を決定する方法は、慣性接続要素を効果的に利用する点で有効である。






Therefore, the method of determining the natural period of the structure in which the inertial connection element is used using the periodic point Tv40 is effective in that the inertial connection element is effectively used.

次に、本発明の実施形態の作用について説明する。   Next, the operation of the embodiment of the present invention will be described.

まず、慣性接続要素を用いて制振する構造物を設計する場合に、m´=0とした(7)式、又はη=1とした(8)式の振動方程式を用いて算出した最大変位Xmaxに固有円振動数ωを乗じた擬似速度ωXの値を、固有周期Tを変化させてプロットし、応答スペクトルSaを得る。 First, when designing a structure to be damped using an inertial connection element, the maximum displacement calculated using the vibration equation of Equation (7) with m = 0 or Equation (8) with η = 1 The value of the pseudo speed ωX obtained by multiplying Xmax by the natural circular frequency ω is plotted while changing the natural period T to obtain a response spectrum Sa.

次に、慣性接続要素の入力低減効果ηと、所定の地域の過去の地震動データの最大加速度y''maxと、により求められる地動加速度成分(1−η)y''maxを、構造物の固有円振動数ωで除した擬似速度Vbの値を、固有周期Tを変化させてプロットし、応答スペクトルSbを得る。   Next, the ground motion acceleration component (1-η) y ″ max obtained from the input connection reduction effect η of the inertial connection element and the maximum acceleration y ″ max of the past earthquake motion data in a predetermined area is obtained from the structure. The value of the pseudo speed Vb divided by the natural circular frequency ω is plotted while changing the natural period T to obtain a response spectrum Sb.

次に、応答スペクトルSaの擬似速度ωXと、応答スペクトルSbの擬似速度Vbの大きさが入れ替わる周期点Tv40を求める。   Next, a periodic point Tv40 where the magnitudes of the pseudo speed ωX of the response spectrum Sa and the pseudo speed Vb of the response spectrum Sb are obtained is obtained.

次に、周期点Tv40以下の固有周期Tとなるように構造物を設計する。   Next, the structure is designed so that the natural period T is equal to or less than the periodic point Tv40.

実際に構造物を建てるときには、慣性接続要素の制振装置を設置する。   When actually building a structure, install a damping device for inertial connection elements.

建てられた構造物は、地震動が発生しても慣性接続要素の制振装置の入力低減効果ηによって、絶対加速度、速度、及び変位が低減されるので、地震に強い構造物となる。   The built structure is resistant to earthquakes because the absolute acceleration, velocity, and displacement are reduced by the input reduction effect η of the damping device of the inertial connection element even if earthquake motion occurs.

以上説明したように、本発明の実施形態においては、慣性接続要素を用いて制振する構造物を設計する場合に、予め擬似速度の応答スペクトルSaとSbを求めて、擬似速度ωXと擬似速度Vbの大きさが入れ替わる周期点Tvを得ることにより、擬似的に慣性接続要素を用いた場合と、用いない場合の絶対加速度の変換点が判る。   As described above, in the embodiment of the present invention, when designing a structure to be damped using the inertia connecting element, the pseudo speed response spectrums Sa and Sb are obtained in advance, and the pseudo speed ωX and the pseudo speed are obtained. By obtaining the periodic point Tv at which the magnitude of Vb is switched, the conversion point of the absolute acceleration when the pseudo inertial connection element is used and when it is not used can be known.

また、補助質量mfを含む振動方程式を解かなくてもよいので、周期点Tvを容易に求めることができる。   Moreover, since it is not necessary to solve the vibration equation including the auxiliary mass mf, the periodic point Tv can be easily obtained.

従って、慣性接続要素の制振効果が得られる構造物の固有周期を容易に決定でき、慣性接続要素を有効に利用することができる。   Therefore, it is possible to easily determine the natural period of the structure that can obtain the damping effect of the inertial connection element, and it is possible to effectively use the inertial connection element.

また、既に建てられた構造物については、固有周期の決定方法により得られた固有周期となるように補強等することにより、慣性接続要素による制振効果を得ることができる。   In addition, for a structure that has already been built, the vibration damping effect by the inertial connection element can be obtained by reinforcing the structure so as to have the natural period obtained by the natural period determining method.

なお、本発明は上記の実施形態に限定されない。   In addition, this invention is not limited to said embodiment.

慣性接続要素としての制振装置は、図1の形態に限定されず、補助質量の回転慣性を利用するものであれば各種形態のものが使用可能である。   The vibration damping device as the inertia connecting element is not limited to the form shown in FIG. 1, and various forms can be used as long as they utilize the rotational inertia of the auxiliary mass.

実施形態に係る制振装置の斜視図である。It is a perspective view of the vibration damping device concerning an embodiment. 実施形態に係る制振装置の断面図である。It is sectional drawing of the damping device which concerns on embodiment. 実施形態に係る慣性接続要素の模式図である。It is a schematic diagram of the inertial connection element which concerns on embodiment. 実施形態に係る回転体付き振動系の模式図である。It is a mimetic diagram of a vibration system with a rotating body concerning an embodiment. 実施形態に係る相対変位スペクトルのグラフである。It is a graph of the relative displacement spectrum which concerns on embodiment. 実施形態に係る絶対加速度スペクトルのグラフである。It is a graph of the absolute acceleration spectrum which concerns on embodiment. 実施形態に係る擬似速度応答スペクトルのグラフである。It is a graph of the pseudo speed response spectrum concerning an embodiment. 実施形態に係る擬似速度応答スペクトルのグラフである。It is a graph of the pseudo speed response spectrum concerning an embodiment. 実施形態に係る入力低減効果ηと周期点TABS/Tv40の比率の関係を示したグラフである。It is the graph which showed the relationship between the input reduction effect (eta) which concerns on embodiment, and the ratio of periodic point TABS / Tv40.

符号の説明Explanation of symbols

20 補助質量(補助質量)
34 制振装置(慣性接続要素)
Sa 応答スペクトル(応答スペクトル)
Sb 応答スペクトル(応答スペクトル)
Tv40 周期点(周期点)


20 Auxiliary mass (Auxiliary mass)
34 Damping device (Inertial connection element)
Sa response spectrum (response spectrum)
Sb response spectrum (response spectrum)
Tv40 periodic point (periodic point)


Claims (3)

補助質量mfの回転慣性を利用して地震動に対する揺れを抑制する慣性接続要素が用いられる構造物の固有周期の決定方法であって、
前記補助質量mfを有さない系に所定の地震動が与えられたときの前記構造物の変位X前記構造物の質量m、前記補助質量の内径と外径の比である変位増幅率βfを用いて表される質量m´=βf ・mf、減衰の係数c、ばね定数k、及び地動変位Yとして得られる(7)式においてm´=0とした振動方程式、又は、前記変位X、固有円振動数ω、粘性減衰定数h、前記地動変位Y、及び前記質量m´による入力低減効果ηとして得られる(8)式においてη=1とした振動方程式を用いて1質点系応答解析を行い算出した最大変位Xmaxに、固有周期Tとして固有円振動数ω=2π/Tを乗じたものを擬似速度ωXとし、前記固有周期Tを変化させて擬似速度ωXの値をプロットした応答スペクトルSaを求める工程と、


前記構造物の質量m及び前記補助質量mfから(9)式を用いて求められる前記入力低減効果ηと、前記地震動の最大加速度y''maxと、により求められる地動加速度成分(1−η)y''maxを、前記構造物の固有円振動数ωで除したものを擬似速度Vbとし、該固有円振動数ω=2π/Tを用いて、固有周期Tを変化させて擬似速度Vbの値をプロットした応答スペクトルSbを求める工程と、

前記応答スペクトルSaの前記擬似速度ωXと前記応答スペクトルSbの前記擬似速度Vbの大きさが入れ替わる周期点Tvを求めて、該周期点Tvよりも短周期側の固有周期を前記構造物の固有周期とする工程と、
を有することを特徴とする構造物の固有周期の決定方法。
A method for determining a natural period of a structure in which an inertia connecting element that suppresses a shake with respect to a ground motion using a rotational inertia of an auxiliary mass mf is used,
Displacement X of the structure when a predetermined ground motion is given to the system without the auxiliary mass mf, mass m of the structure, the auxiliary mass inside diameter and a ratio of the outer diameter of the displacement amplification factor βf The mass equation m ′ = βf 2 · mf expressed by using , the damping coefficient c, the spring constant k, and the vibration equation with m ′ = 0 in the equation (7) obtained as the ground motion displacement Y, or the displacement X, One-mass system response analysis is performed using the vibration equation with η = 1 in the equation (8) obtained as the input reduction effect η obtained by the natural circular frequency ω, the viscous damping constant h, the ground motion displacement Y, and the mass m ′. A response spectrum Sa in which a value obtained by multiplying the calculated maximum displacement Xmax by the natural period T and the natural circular frequency ω = 2π / T is a pseudo speed ωX, and the value of the pseudo speed ωX is plotted by changing the natural period T. The process of seeking


The ground acceleration component (1-η) obtained from the input reduction effect η obtained from the mass m of the structure and the auxiliary mass mf using the equation (9) and the maximum acceleration y ″ max of the earthquake motion. A value obtained by dividing y ″ max by the natural circular frequency ω of the structure is set as a pseudo speed Vb. Using the natural circular frequency ω = 2π / T, the natural period T is changed to change the pseudo speed Vb. Obtaining a response spectrum Sb plotting the values ;

A periodic point Tv at which the magnitudes of the pseudo speed ωX of the response spectrum Sa and the pseudo speed Vb of the response spectrum Sb are interchanged is obtained , and the natural period on the short period side of the periodic point Tv is determined as the natural period of the structure. and a step shall be the,
A method for determining the natural period of a structure, comprising:
補助質量mfの回転慣性を利用して地震動に対する揺れを抑制する慣性接続要素を用いた構造物の設計方法において、
前記補助質量mfを有さない系に所定の地震動が与えられたときの前記構造物の変位X前記構造物の質量m、前記補助質量の内径と外径の比である変位増幅率βfを用いて表される質量m´=βf ・mf、減衰の係数c、ばね定数k、及び地動変位Yとして得られる(7)式においてm´=0とした振動方程式、又は、前記変位X、固有円振動数ω、粘性減衰定数h、前記地動変位Y、及び前記質量m´による入力低減効果ηとして得られる(8)式においてη=1とした振動方程式を用いて1質点系応答解析を行い算出した最大変位Xmaxに、固有周期Tとして固有円振動数ω=2π/Tを乗じたものを擬似速度ωXとし、前記固有周期Tを変化させて擬似速度ωXの値をプロットした応答スペクトルSaを求める工程と、


前記構造物の質量m及び前記補助質量mfから(9)式を用いて求められる前記入力低減効果ηと、前記地震動の最大加速度y''maxと、により求められる地動加速度成分(1−η)y''maxを、前記構造物の固有円振動数ωで除したものを擬似速度Vbとし、該固有円振動数ω=2π/Tを用いて、固有周期Tを変化させて擬似速度Vbの値をプロットした応答スペクトルSbを求める工程と、

前記応答スペクトルSaの前記擬似速度ωXと前記応答スペクトルSbの前記擬似速度Vbの大きさが入れ替わる周期点Tvを求める工程と、
を有するとともに、
前記周期点Tvよりも短周期側の固有周期を有する構造物を設計することを特徴とする構造物の設計方法。
In a method for designing a structure using an inertia connecting element that suppresses a shake with respect to an earthquake motion using the rotational inertia of the auxiliary mass mf,
The displacement X 1 of the structure when a predetermined seismic motion is applied to a system that does not have the auxiliary mass mf, the mass m of the structure, and the displacement amplification factor βf that is the ratio of the inner diameter to the outer diameter of the auxiliary mass. The mass equation m ′ = βf 2 · mf expressed by using , the damping coefficient c, the spring constant k, and the vibration equation with m ′ = 0 in the equation (7) obtained as the ground motion displacement Y, or the displacement X, One-mass system response analysis is performed using the vibration equation with η = 1 in the equation (8) obtained as the input reduction effect η obtained by the natural circular frequency ω, the viscous damping constant h, the ground motion displacement Y, and the mass m ′. A response spectrum Sa in which a value obtained by multiplying the calculated maximum displacement Xmax by the natural period T and the natural circular frequency ω = 2π / T is a pseudo speed ωX, and the value of the pseudo speed ωX is plotted by changing the natural period T. The process of seeking


The ground acceleration component (1-η) obtained from the input reduction effect η obtained from the mass m of the structure and the auxiliary mass mf using the equation (9) and the maximum acceleration y ″ max of the earthquake motion. A value obtained by dividing y ″ max by the natural circular frequency ω of the structure is set as a pseudo speed Vb. Using the natural circular frequency ω = 2π / T, the natural period T is changed to change the pseudo speed Vb. Obtaining a response spectrum Sb plotting the values ;

Obtaining a periodic point Tv at which the magnitudes of the pseudo speed ωX of the response spectrum Sa and the pseudo speed Vb of the response spectrum Sb are switched;
And having
A structure design method, wherein a structure having a natural period shorter than the periodic point Tv is designed.
補助質量mfの回転慣性を利用して地震動に対する揺れを抑制する慣性接続要素が用いられる構造物であって、請求項1の構造物の固有周期の決定方法又は請求項2の構造物の設計方法を用いて設計されたことを特徴とする構造物。 3. A method for determining a natural period of a structure according to claim 1 or a method for designing a structure according to claim 2, wherein an inertia connecting element is used to suppress the vibration against the earthquake motion using the rotational inertia of the auxiliary mass mf. A structure characterized by being designed using
JP2006173022A 2006-06-22 2006-06-22 A method for determining a natural period of a structure, a method for designing a structure, and a structure. Active JP4931491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006173022A JP4931491B2 (en) 2006-06-22 2006-06-22 A method for determining a natural period of a structure, a method for designing a structure, and a structure.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006173022A JP4931491B2 (en) 2006-06-22 2006-06-22 A method for determining a natural period of a structure, a method for designing a structure, and a structure.

Publications (2)

Publication Number Publication Date
JP2008002167A JP2008002167A (en) 2008-01-10
JP4931491B2 true JP4931491B2 (en) 2012-05-16

Family

ID=39006772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006173022A Active JP4931491B2 (en) 2006-06-22 2006-06-22 A method for determining a natural period of a structure, a method for designing a structure, and a structure.

Country Status (1)

Country Link
JP (1) JP4931491B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108256236A (en) * 2018-01-19 2018-07-06 哈尔滨工业大学 Nearly tomography seismic design spectra modification method based on Chinese earthquake resistant code

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5316850B2 (en) * 2008-09-16 2013-10-16 清水建設株式会社 Seismic isolation structure
JP5316849B2 (en) * 2008-09-16 2013-10-16 清水建設株式会社 Damping structure
JP5179314B2 (en) * 2008-10-04 2013-04-10 三井住友建設株式会社 Natural frequency identification method, structure isolation method and structural system vibration method
JP5252224B2 (en) * 2009-07-07 2013-07-31 清水建設株式会社 Damping structure of tower structure
JP5495013B2 (en) * 2009-09-03 2014-05-21 清水建設株式会社 Vibration control mechanism

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3707291B2 (en) * 1999-04-08 2005-10-19 株式会社大林組 Vibration control device
JP2002349090A (en) * 2001-05-28 2002-12-04 Tokyo Electric Power Co Inc:The Method for computing spring rigidity in design of base isolation building
JP4698984B2 (en) * 2004-08-16 2011-06-08 辰治 石丸 Seismic isolation design method
JP4515220B2 (en) * 2004-10-29 2010-07-28 学校法人日本大学 Vibration control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108256236A (en) * 2018-01-19 2018-07-06 哈尔滨工业大学 Nearly tomography seismic design spectra modification method based on Chinese earthquake resistant code
CN108256236B (en) * 2018-01-19 2021-04-02 哈尔滨工业大学 Near fault seismic design spectrum correction method based on Chinese seismic standard

Also Published As

Publication number Publication date
JP2008002167A (en) 2008-01-10

Similar Documents

Publication Publication Date Title
JP4931491B2 (en) A method for determining a natural period of a structure, a method for designing a structure, and a structure.
JP5696881B2 (en) Vibration control device using inertial mass damper
JP2011069104A (en) Seismic control device and seismic control structure
JP7094756B2 (en) Mass damper
JPWO2009017162A1 (en) Damping structure and method for designing damping structure
JP4515220B2 (en) Vibration control device
JP2013185598A (en) Torsional vibration damping device
JP5601824B2 (en) Damper and seismic isolation mechanism
JP2012007451A (en) Vibration control device, steel tower and structure
Pradono et al. Application of angular‐mass dampers to base‐isolated benchmark building
JP6726381B2 (en) Installation structure of rotary mass damper
JP5473000B2 (en) Vertical vibration control system for building floor
JP5318483B2 (en) Vibration control device
JP5358322B2 (en) Vibration control device and specification method of vibration control device
JP6811138B2 (en) Vibration control device and vibration control system
JP5787933B2 (en) Tower structure
JP7312342B2 (en) Damping device and damping structure
JP2016079611A (en) Structure
JP6442912B2 (en) Vibration control system
JP5996018B2 (en) Damper and seismic isolation mechanism
JP5781660B2 (en) Damper and seismic isolation mechanism
JP6870055B2 (en) Vibration damping device
JP5646392B2 (en) Compound damping damper
JP6280934B2 (en) Torsion device
JP5758532B2 (en) Compound damping damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120214

R150 Certificate of patent or registration of utility model

Ref document number: 4931491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250