JP4931430B2 - Tire temperature distribution prediction method and tire temperature distribution prediction calculation program - Google Patents

Tire temperature distribution prediction method and tire temperature distribution prediction calculation program Download PDF

Info

Publication number
JP4931430B2
JP4931430B2 JP2006034275A JP2006034275A JP4931430B2 JP 4931430 B2 JP4931430 B2 JP 4931430B2 JP 2006034275 A JP2006034275 A JP 2006034275A JP 2006034275 A JP2006034275 A JP 2006034275A JP 4931430 B2 JP4931430 B2 JP 4931430B2
Authority
JP
Japan
Prior art keywords
tire
temperature distribution
model
temperature
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006034275A
Other languages
Japanese (ja)
Other versions
JP2007210527A (en
Inventor
俊哉 宮園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2006034275A priority Critical patent/JP4931430B2/en
Publication of JP2007210527A publication Critical patent/JP2007210527A/en
Application granted granted Critical
Publication of JP4931430B2 publication Critical patent/JP4931430B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Description

本発明は、タイヤを有限個の要素に分割してタイヤの数値解析モデルを用いて走行時のタイヤの温度分布を予測する方法と、これに用いられるタイヤの温度分布予測計算プログラムに関するものである。   The present invention relates to a method for predicting a tire temperature distribution during traveling using a numerical analysis model of a tire by dividing a tire into a finite number of elements, and a tire temperature distribution prediction calculation program used for the method. .

従来、タイヤの性能をシミュレーションする方法として、評価しようとするタイヤを有限個の多数の要素に分割したタイヤ有限要素モデルで近似し、各有限要素に密度や弾性率などの材料物性を与えるとともに、上記モデルに内圧、荷重などの境界条件を与えて上記各要素の変形状態を計算してタイヤの変形や転がり抵抗などのタイヤの動特性を数値解析する有限要素法(Finite Element Method)が多く用いられている(例えば、特許文献1,2参照)。
一方、タイヤの耐久性を評価する方法の一つとして、粘弾性体であるゴム材料の転動時の発熱による温度上昇を考慮した評価方法が提案されている。
図7はそのフローチャートを示す図で、図8はこの評価方法に用いられるタイヤの有限要素モデル(タイヤモデル)70の概要を示す図である。このタイヤモデル70は、タイヤを有限個の要素70Sに分割するとともに、トレッド部71とサイド部72等のゴム部材をソリッド要素でモデル化し、ベルト73等の補強部材を膜要素などでモデル化したもので、耐久性の評価を行う際には、まず、上記タイヤモデル70を用いて静的応力解析、あるいは、転動解析等の動的解析を行って、上記タイヤモデル70の各要素の応力解析を行った(ステップS51)後、上記応力解析で得られた各要素の、タイヤを一回転させた場合の応力σと歪εを求めるとともに、上記歪εにゴム材料の損失正接に応じた位相遅れδを与えて得られる応力σと歪εとのヒステリシスループの面積から各要素の発熱エネルギーを演算し(ステップS52)、この発熱エネルギーを温度に換算して、タイヤが所定時間θだけ走行して発熱した場合の温度分布を求める(ステップS53)。
次に、上記モデル化したタイヤを所定時間θだけ走行させて放熱させる伝熱解析を実行してタイヤの温度分布を予測し(ステップS54)、上記予測された放熱後の各要素の温度における破断強度と破断伸びとから当該タイヤの安全率を演算して(ステップS55)、タイヤの耐久性を評価する(ステップS56)。なお、発熱時の解析においては、タイヤは発熱するのみで放熱しないものとし、放熱時の解析においては、タイヤは放熱するのみで発熱はしないものとして計算する。
このように、発熱の解析と放熱の解析とを別個に行った後、発熱時間と放熱時間とを一致させることにより、温度分布の予測計算時間を大幅に短縮することができる(例えば、特許文献3参照)。
特開2003−118328号公報 特開2005−186900号公報 特開2005−138621号公報
Conventionally, as a method of simulating tire performance, the tire to be evaluated is approximated by a tire finite element model divided into a finite number of elements, and material properties such as density and elastic modulus are given to each finite element, The Finite Element Method is often used for numerical analysis of tire dynamics such as tire deformation and rolling resistance by applying boundary conditions such as internal pressure and load to the above model and calculating the deformation state of each element. (For example, see Patent Documents 1 and 2).
On the other hand, as one method for evaluating the durability of a tire, an evaluation method has been proposed that takes into account the temperature rise due to heat generated during rolling of a rubber material that is a viscoelastic body.
FIG. 7 is a diagram showing the flowchart, and FIG. 8 is a diagram showing an outline of a tire finite element model (tire model) 70 used in this evaluation method. In the tire model 70, the tire is divided into a finite number of elements 70S, rubber members such as the tread portion 71 and the side portion 72 are modeled as solid elements, and a reinforcing member such as the belt 73 is modeled as a membrane element. Therefore, when evaluating the durability, first, the tire model 70 is used to perform a static stress analysis or a dynamic analysis such as a rolling analysis to determine the stress of each element of the tire model 70. After the analysis (step S51), the stress σ and the strain ε when the tire is rotated once are obtained for each element obtained in the stress analysis, and the strain ε corresponds to the loss tangent of the rubber material. The heat generation energy of each element is calculated from the area of the hysteresis loop of the stress σ and the strain ε obtained by giving the phase delay δ (step S52). Determine the temperature distribution in the case of exothermic traveling by theta (step S53).
Next, a heat transfer analysis is performed in which the modeled tire travels for a predetermined time θ to dissipate heat to predict the temperature distribution of the tire (step S54), and the predicted breakage at the temperature of each element after heat dissipation. The tire safety factor is calculated from the strength and elongation at break (step S55), and the durability of the tire is evaluated (step S56). In the analysis at the time of heat generation, it is assumed that the tire only generates heat but does not dissipate heat, and in the analysis at the time of heat dissipation, the tire only calculates heat and does not generate heat.
In this way, after performing the heat generation analysis and the heat dissipation analysis separately, by matching the heat generation time and the heat dissipation time, the prediction calculation time of the temperature distribution can be greatly shortened (for example, patent document) 3).
JP 2003-118328 A JP 2005-186900 A JP 2005-138621 A

ところで、上記タイヤモデル70の各要素の発熱量を算出する際に使用されるゴム部材の粘弾性係数やtanδは、温度依存性と歪量依存性とを示すことが知られている。
しかしながら、上記従来の温度分布の予測方法では、上記粘弾性係数やtanδとして、応力解析を行う際の与えた数値をそのまま用いており、粘弾性係数やtanδの温度依存性について考慮していないだけでなく、歪量依存性について考慮していないため、タイヤの温度分布を精度よく予測することが困難であった。
By the way, it is known that the viscoelastic coefficient and tan δ of the rubber member used when calculating the calorific value of each element of the tire model 70 show temperature dependency and strain amount dependency.
However, in the conventional temperature distribution prediction method, the numerical values given when performing the stress analysis are used as they are as the viscoelastic coefficient and tan δ, and the temperature dependence of the viscoelastic coefficient and tan δ is not considered. In addition, since the strain dependence is not considered, it is difficult to accurately predict the temperature distribution of the tire.

本発明は、従来の問題点に鑑みてなされたもので、走行時のタイヤの温度分布を精度よく予測することのできる方法を提供することを目的とする。   The present invention has been made in view of the conventional problems, and an object of the present invention is to provide a method capable of accurately predicting the temperature distribution of a tire during traveling.

願の請求項1に記載の発明は、3次元タイヤモデルまたは3次元タイヤモデルと路面モデルとから成る応力解析モデルを作成するとともに、上記タイヤモデルの各ゴム部材の要素に弾性率を与えて、負荷または転動解析を行ってタイヤ各部の応力と歪量とを算出した後、上記算出されたタイヤ各部の応力と歪量とゴム部材の損失正接とを用いて求められたタイヤの発熱分布に基づいて、熱解析計算を行って、タイヤの表面及び内部の温度分布を予測するタイヤの温度分布予測方法であって、上記タイヤモデルの各ゴム部材の要素に所定の温度の損失正接を与えてタイヤの温度分布を予測した後、上記タイヤモデルの各ゴム部材の要素の弾性率を上記予測された温度での弾性率に置換えた新たな応力解析モデルを用いて負荷または転動解析を行ってタイヤ各部の応力と歪量とを再度算出し、この算出された応力と歪量と上記予測された温度でのゴム部材の損失正接とを用いてタイヤの発熱分布を求めるとともに、上記タイヤモデルにタイヤ内部の空気を有限個の要素に分割した内部空気モデル、及び、少なくともリム部を含むホイールの一部または全部を有限個の要素に分割したリムモデルのいずれか一方または両方を付加して作成された熱解析モデルについて、上記発熱分布に基づいて熱解析計算を行ってタイヤの温度分布予測を行、上記新たな熱解析計算で予測された温度分布と、前の熱解析計算で予測された温度分布とを比較して、上記温度分布の収束性を判定し、上記温度分布が収束しない場合には、上記タイヤモデルの各ゴム部材の要素に、上記新たな熱解析計算により予測された温度における弾性率と損失正接とを与え、タイヤの温度分布を予測して温度分布の収束性を判定する操作を上記温度分布が収束するまで繰り返し、当該タイヤの温度分布を予測するようにしたことを特徴とするものである。
請求項2に記載の発明は、請求項1に記載のタイヤの温度分布予測方法であって、上記リムモデルの各要素にはホイールの材質に合わせた熱伝導率を物性値として与え、上記内部空気モデルの各要素には空気の熱伝導率を物性値として与えるようにしたことを特徴とする。
According to a first aspect of the present gun, as well as to create a stress analysis model comprising a three-dimensional tire model or 3D tire model and the road model, giving elasticity to the elements of each rubber member of the tire model After calculating the stress and strain amount of each part of the tire by performing load or rolling analysis, the heat generation distribution of the tire obtained by using the calculated stress and strain amount of each part of the tire and the loss tangent of the rubber member Is a tire temperature distribution prediction method for predicting the temperature distribution inside and outside the tire by performing thermal analysis calculation, and giving a loss tangent of a predetermined temperature to each rubber member element of the tire model. after predicting the temperature distribution of the tire Te, the load or rolling analysis using the new stress analysis model by replacing the elastic modulus of the elastic modulus of the elements of the rubber members of the tire model with the predicted temperature I calculated the stress and strain of the tire each portion again obtains the heat generation distribution of the tire with the loss tangent of the rubber member in which the calculated stress and strain amount and the upper Symbol predicted temperature Rutotomoni, Add one or both of the above-mentioned tire models to the tire model, the internal air model that divides the air inside the tire into finite elements, and the rim model that divides at least part of the wheel including the rim part into finite elements. and the thermal analysis model is created, have rows prediction temperature distribution of the tire by performing the thermal analysis calculations based on the heat generation distribution, and predicted temperature distribution in the new thermal analysis calculations, before thermal analysis The temperature distribution predicted by the calculation is compared to determine the convergence of the temperature distribution. If the temperature distribution does not converge, the new thermal analysis calculation is added to each rubber member element of the tire model. By Predict the tire temperature distribution by giving the elastic modulus and loss tangent at the predicted temperature, predicting the temperature distribution of the tire and determining the convergence of the temperature distribution until the temperature distribution converges. It is characterized by that.
The invention according to claim 2 is the tire temperature distribution prediction method according to claim 1, wherein each element of the rim model is given a thermal conductivity according to a wheel material as a physical property value, and the internal air Each element of the model is characterized in that the thermal conductivity of air is given as a physical property value.

請求項に記載の発明は、請求項1または請求項2に記載のタイヤの温度分布予測方法において、上記新たな熱解析計算で予測された温度分布と前の熱解析計算で予測された温度分布との差が5%以内になったときに収束判定するようにしたものである。
請求項に記載の発明は、請求項1請求項3のいずれかに記載のタイヤの温度分布予測方法において、上記各ゴム部材に与える弾性率及び損失正接と温度との関係を予め実験により求めるようにしたものである。
また、請求項に記載の発明は、請求項1〜請求項のいずれかに記載のタイヤの温度分布予測方法において、上記新たな応力解析モデルを用いて負荷または転動解析を行う際の弾性率と、再度発熱分布を求める際に用いる損失正接とを、上記予測された温度分布に加えて、上記前の負荷または転動解析により求められたタイヤ各部の歪量に基づいて設定するようにしたものである。
請求項に記載の発明は、請求項に記載のタイヤの温度分布予測方法において、上記各ゴム部材に与える弾性率及び損失正接と歪量との関係を予め実験により求めるようにしたものである。
The invention according to claim 3 is the tire temperature distribution prediction method according to claim 1 or 2 , wherein the temperature distribution predicted by the new thermal analysis calculation and the temperature predicted by the previous thermal analysis calculation are used. The convergence is determined when the difference from the distribution is within 5%.
According to a fourth aspect of the present invention, in the tire temperature distribution prediction method according to any one of the first to third aspects, the relationship between the elastic modulus and loss tangent given to each of the rubber members and the temperature is experimentally determined in advance. It is what you want.
According to a fifth aspect of the present invention, in the tire temperature distribution prediction method according to any one of the first to fourth aspects, the load or rolling analysis is performed using the new stress analysis model. In addition to the predicted temperature distribution, the elastic modulus and the loss tangent used when calculating the heat generation distribution again are set based on the strain of each part of the tire determined by the previous load or rolling analysis. It is a thing.
According to a sixth aspect of the present invention, in the tire temperature distribution prediction method according to the fifth aspect , the relationship between the elastic modulus and loss tangent given to each rubber member and the amount of strain is obtained in advance by experiments. is there.

求項7に記載の発明は、請求項1〜請求項6のいずれかに記載のタイヤの温度分布予測方法において、上記熱解析計算を、カットサンプル型または軸対称の2次元タイヤモデルを用いて行うようにしたものである。 The invention described in Motomeko 7 is the prediction temperature distribution method tire according to any one of claims 1 to 6, the thermal analysis calculations, using a two-dimensional tire model cut sample type or axisymmetric This is what we do.

また、請求項8に記載の発明は、タイヤの表面及び内部の温度分布を、タイヤを有限個の要素に分割した解析モデルを用いて予測計算するための計算プログラムであって、
タイヤを構成する各ゴム部材の弾性率と損失正接の温度依存性と歪量依存性とを予め実験により求める第1のステップと、
3次元のタイヤモデルまたは3次元のタイヤモデルと路面モデルとから成る応力解析モデルを作成する第2のステップと、
上記タイヤモデルの各ゴム部材の要素に所定の同一温度の弾性率と損失正接とを与える第3のステップと、
弾性率が与えられた解析モデルを用いて負荷または転動解析を行ってタイヤ各部の応力と歪量とを算出する第4のステップと、
上記算出されたタイヤ各部の応力と歪量とから歪エネルギーの密度分布を求め、この密度分布に損失正接を乗算してタイヤの発熱分布を求める第5のステップと、
上記3次元のタイヤモデル、もしくは、カットサンプル型または軸対称の2次元タイヤモデルにタイヤ内部の空気を有限個の要素に分割した内部空気モデル、及び、少なくともリム部を含むホイールの一部または全部を有限個の要素に分割したリムモデルのいずれか一方または両方を付加した熱解析モデルを作成し、上記熱解析モデルについて、上記発熱分布に基づいて熱解析計算を行って、タイヤの表面及び内部の温度分布を求める第6のステップと、
上記温度分布に基づいて、上記タイヤモデルの各ゴム部材の要素に、当該要素の温度及び歪量における弾性率を与えた負荷または転動解析用の3次元解析モデルを新たな応力解析モデルとするとともに、発熱分布を求める際に用いる損失正接を当該要素の温度における損失正接に置換える第7のステップと、
上記新たな応力解析モデルと上記置換えられた損失正接とを用いて上記第4のステップから第6のステップまでを繰り返して新たな温度分布を求める第8のステップと、
上記第8のステップで求められた温度分布と上記第6のステップで求められた温度分布とを比較して温度分布の収束性を判定する第9のステップとを備えるとともに、
上記第9のステップにおいて収束判定がなされなかった場合には、上記第7のステップに戻って第8のステップで求められた温度分布に基づいて新たな応力解析モデルを作成するとともに、発熱分布を求める際に用いる各要素の損失正接を上記温度分布に基づいた損失正接に置換えて再度温度分布を予測して温度分布の収束性を確認するように構成したことを特徴とするものである
The invention according to claim 8 is a calculation program for predicting and calculating the temperature distribution inside and outside the tire using an analysis model in which the tire is divided into finite elements.
A first step of previously determining the temperature dependence and strain dependence of the elastic modulus and loss tangent of each rubber member constituting the tire;
A second step of creating a stress analysis model comprising a three-dimensional tire model or a three-dimensional tire model and a road surface model;
A third step of giving an elastic modulus and a loss tangent at a predetermined temperature to elements of each rubber member of the tire model;
A fourth step of calculating a stress and a strain amount of each part of the tire by performing a load or rolling analysis using an analysis model given an elastic modulus;
A fifth step of obtaining a strain energy density distribution from the calculated stress and strain amount of each part of the tire and multiplying the density distribution by a loss tangent to obtain a heat generation distribution of the tire;
A part or all of the above three-dimensional tire model, or an internal air model in which the air inside the tire is divided into a finite number of elements in the cut sample type or axisymmetric two-dimensional tire model, and at least part of the wheel including the rim portion the create a thermal analysis model obtained by adding one or both of Rimumoderu divided into a finite number of elements, with the above thermal analysis model, by performing the thermal analysis calculations based on the heat generation distribution, surface and internal of the tire A sixth step for obtaining a temperature distribution of
Based on the temperature distribution, a three-dimensional analysis model for load analysis or rolling analysis in which an elastic modulus in the temperature and strain amount of each rubber member of the tire model is given as a new stress analysis model. And a seventh step of replacing the loss tangent used in obtaining the heat generation distribution with the loss tangent at the temperature of the element;
An eighth step of obtaining a new temperature distribution by repeating the fourth step to the sixth step using the new stress analysis model and the replaced loss tangent;
A ninth step of comparing the temperature distribution obtained in the eighth step and the temperature distribution obtained in the sixth step to determine the convergence of the temperature distribution;
If the convergence determination is not made in the ninth step, the process returns to the seventh step to create a new stress analysis model based on the temperature distribution obtained in the eighth step and The loss tangent of each element used for the determination is replaced with the loss tangent based on the temperature distribution, and the temperature distribution is predicted again to confirm the convergence of the temperature distribution .

本発明によれば、3次元タイヤモデルまたは3次元タイヤモデルと路面モデルとから成る応力解析モデルを作成して負荷または転動解析を行ってタイヤ各部の応力と歪量とを算出し、上記算出されたタイヤ各部の応力と歪量とゴム部材の損失正接とを用いてタイヤの発熱分布を求めた後、熱解析モデルを用いて熱解析計算を行い、タイヤの表面及び内部の温度分布を予測する際に、上記タイヤモデルの各ゴム部材の要素に所定の温度の弾性率と損失正接とを与えてタイヤの温度分布を予測した後、上記タイヤモデルの各ゴム部材の要素に、当該要素の上記予測された温度での弾性率を与えた解析モデルを新たな応力解析モデルとして応力と歪量とを再度算出し、この応力と歪量と上記予測された温度での損失正接とを用いて新たな発熱分布を求めてから熱解析計算を行って新たなタイヤの温度分布を予測するとともに、上記新たな熱解析計算で予測した温度分布と、前の熱解析計算で予測した温度分布とを比較して、上記温度分布の収束性を判定する操作を、その差が、例えば5%以内になるまで繰返し行って、当該タイヤの温度分布を予測するようにしたので、転動時のタイヤの温度分布を精度よく予測することができる。
このとき、熱解析モデルとして、上記3次元のタイヤモデルにタイヤ内部の空気を有限個の要素に分割した内部空気モデル、及び、少なくともリム部を含むホイールの一部または全部を有限個の要素に分割したリムモデルのいずれか一方または両方を付加した熱解析モデルを用いたので、転動時のタイヤの温度分布を精度よく予測することができる。
また、上記新たな応力解析モデルを用いて負荷または転動解析を行う際に用いる弾性率と、新たな発熱分布を求める際に用いる損失正接とを、上記予測された温度分布に加えて、上記負荷または転動解析により求められたタイヤ各部の歪量に基づいて設定するようにしたので、温度分布の予測精度を更に向上させることができる。
また、タイヤは回転体であるので、カットサンプル型または軸対称の2次元解析モデルを用いて上記熱解析計算を行うようにすれば、計算を効率よく行うことができる。
According to the present invention, a stress analysis model composed of a three-dimensional tire model or a three-dimensional tire model and a road surface model is created, and a load or rolling analysis is performed to calculate the stress and strain amount of each part of the tire. After obtaining the heat distribution of the tire using the stress and strain amount of each part of the tire and the loss tangent of the rubber member, the thermal analysis calculation is performed using the thermal analysis model to predict the temperature distribution on the tire surface and inside When the tire temperature distribution of the tire model is predicted by giving an elastic modulus and a loss tangent of a predetermined temperature to each rubber member element of the tire model, The stress and strain are recalculated using the analysis model given the elastic modulus at the predicted temperature as a new stress analysis model, and the stress and strain and the loss tangent at the predicted temperature are used. New heat distribution After that, perform a thermal analysis calculation to predict the temperature distribution of the new tire, compare the temperature distribution predicted by the new thermal analysis calculation with the temperature distribution predicted by the previous thermal analysis calculation, and Since the temperature distribution of the tire is predicted by repeatedly performing the operation of determining the convergence of the temperature distribution until the difference is within 5%, for example, the temperature distribution of the tire at the time of rolling is accurately determined. Can be predicted.
At this time, as the thermal analysis model, an internal air model in which the air inside the tire is divided into a finite number of elements in the three-dimensional tire model, and at least a part or all of the wheel including the rim portion is converted into a finite number of elements. Since the thermal analysis model to which one or both of the divided rim models are added is used, the tire temperature distribution during rolling can be accurately predicted.
Further, in addition to the predicted temperature distribution, the elastic modulus used when performing the load or rolling analysis using the new stress analysis model and the loss tangent used when obtaining the new heat generation distribution, since so as to set based on the amount of distortion of the tire each part determined by the load or rolling analysis, the prediction accuracy of the temperature distribution can be further improved.
Further , since the tire is a rotating body , the calculation can be efficiently performed if the thermal analysis calculation is performed using a cut sample type or an axially symmetric two-dimensional analysis model.

以下、本発明の最良の形態について、図1のフローチャートに基づき説明する。
まず、タイヤの温度予測シミュレーションの事前準備として、タイヤを構成する各ゴム部材の弾性率/動弾性率と損失正接(tanδ)の温度依存性と歪量依存性とを計測する(ステップS10)。詳細には、各ゴムの加硫試験片、望ましくは新品タイヤまたは走行品タイヤから採取した試験片を、JIS K6394/ISO4664にある規格に基づいて計測して求める。なお、温度と歪量の計測範囲としては、歪については予測計算によって得られた各ゴム部材の使用歪範囲とし、温度については、温度の実測により得られた範囲(40℃〜120℃程度)とした。
次に、負荷解析または転動解析などのタイヤの応力解析を行うための数値解析モデル(以下、応力解析モデルという)M(k)の初期モデルM(0)を作成する(ステップS11)。上記応力解析モデルM(k)は、図2(a),(b)に示すように、タイヤモデル10とリムモデル20と路面モデル30とから構成され、タイヤモデル10については、トレッド部11やサイド部12などのゴム部材とビードワイヤ13とをソリッド要素でモデル化し、ベルト14,カーカスプライ15等の補強部材はシェル要素、膜要素、リバー要素でモデル化し、リムモデル20についてはソリッド要素でモデル化している。一方、路面は平坦な剛体シェル要素でモデル化しているが、実際の路面凹凸をモデル化することも可能である(なお、図2(a)ではリムモデル20については省略した)。また、路面モデル30を省略し、上記タイヤモデル10に境界条件を与えてもよい。
上記各モデル10〜30の各要素にはそれぞれ密度や弾性率などの材料物性が初期特性として与えられるが、本例では、まず、タイヤモデル10の各要素の温度は均一と仮定し、タイヤモデル10のゴム部材に、上記ステップS10で計測した弾性率/動弾性率とtanδのうち、初期設定温度(例えば、40℃)での弾性率/動弾性率とtanδの値を初期値として設定する(ステップS12)。
そして、上記初期応力解析モデルM(0)に、上記ステップS12で設定された弾性率/動弾性率の初期値を与えて負荷または転動解析を行ない、タイヤ各部に作用する応力σと歪量εとを算出する(ステップS13)。
The best mode of the present invention will be described below with reference to the flowchart of FIG.
First, as advance preparations for tire temperature prediction simulation, the temperature dependence and strain dependence of the elastic modulus / dynamic elastic modulus and loss tangent (tan δ) of each rubber member constituting the tire are measured (step S10). In detail, a vulcanized test piece of each rubber, preferably a test piece taken from a new tire or a running tire is measured and obtained based on the standard in JIS K6394 / ISO4664. In addition, as a measurement range of temperature and strain amount, the strain is the use strain range of each rubber member obtained by prediction calculation, and the temperature is a range obtained by actual measurement of temperature (about 40 ° C to 120 ° C). It was.
Next, an initial model M (0) of a numerical analysis model (hereinafter referred to as a stress analysis model) M (k) for performing stress analysis of the tire such as load analysis or rolling analysis is created (step S11). As shown in FIGS. 2A and 2B, the stress analysis model M (k) includes a tire model 10, a rim model 20, and a road surface model 30, and the tire model 10 includes a tread portion 11 and a side surface. The rubber member such as the portion 12 and the bead wire 13 are modeled by solid elements, the reinforcing members such as the belt 14 and the carcass ply 15 are modeled by shell elements, membrane elements, and river elements, and the rim model 20 is modeled by solid elements. Yes. On the other hand, the road surface is modeled by a flat rigid shell element, but actual road surface irregularities can also be modeled (note that the rim model 20 is omitted in FIG. 2A). Further, the road surface model 30 may be omitted, and boundary conditions may be given to the tire model 10.
Material properties such as density and elastic modulus are given as initial characteristics to the elements of the models 10 to 30, respectively. In this example, first, it is assumed that the temperature of each element of the tire model 10 is uniform, and the tire model Of the elastic modulus / dynamic elastic modulus and tan δ measured in step S10, the elastic modulus / dynamic elastic modulus and tan δ at the initial set temperature (for example, 40 ° C.) are set as initial values for the ten rubber members. (Step S12).
The initial stress analysis model M (0) is subjected to the load or rolling analysis by giving the initial value of the elastic modulus / dynamic elastic modulus set in step S12, and the stress σ and the amount of strain acting on each part of the tire are analyzed. ε is calculated (step S13).

ここで、タイヤを転動させる方法としては、車軸周りにタイヤ、ホイールが自由に回転するように境界条件を設定したり、ジョイント要素を使う等のモデル作成を行い、路面または車軸のどちらか一方を固定し、もう一方をタイヤ前後方向に並行移動させることで解析できる。更には、タイヤにスリップ角やキャンバー角を付与したり、タイヤにスリップ角やキャンバー角がついたように路面を移動させることも可能である。なお、上記転動解析に代えて、タイヤモデル10の平押し計算(負荷解析)を行ってもよい。
タイヤ各部の応力σと歪量εとの算出が完了した後には、各要素のタイヤ1回転分の歪エネルギーを計算し、これに上記ステップS12で与えた各要素の初期設定温度におけるtanδを乗算して各要素の歪エネルギーロスを算出してタイヤの発熱分布P(0)を求める(ステップS14)。
そして、上記求められた発熱分布P(0)に基づいて熱解析モデルを作成し、この熱解析モデルを用いて熱解析計算を行い、タイヤの表面及び内部の温度分布F(0)を求める(ステップS15)。図3は、熱解析モデルの一例を示す図で、本例では、熱解析モデルG(k)として、タイヤモデル40とリムモデル50とから構成される数値解析モデルに、更に、タイヤ内部の気体(ここでは、空気)を有限個の要素に分割した内部空気モデル60を付加した3次元モデル、または、カットサンプル型または軸対称の2次元解析モデルを用いているとともに、上記タイヤモデル40の形状を内圧時の形状とし、リムモデル50の各要素には、ホイールの材質に合わせた熱伝導率を、内部空気モデル60に対しては、空気の熱伝導率を物性値として設定している。
すなわち、ステップS15では、上記ステップS14で求められた発熱分布P(0)を有する熱解析モデルG(0)を作成し、上記熱解析モデルG(0)を用いて熱解析計算して、初期設定条件下における温度分布F(0)を求める。
本例のように、熱解析モデルG(k)として、タイヤモデル40とリムモデル50とに内部空気モデル60とを付加したモデルを採用することにより、図4に示すように、タイヤモデル40のトレッド部41やサイド部42から放出される熱の流れだけでなく、ビード部46からリムモデル50のフランジ部51を介して外気に放出される熱の流れや、タイヤモデル40の内表面からリムモデル50のベース部52に伝導されて外気に放出される熱の流れについても考慮することができるので、タイヤの温度分布を精度よく求めることができる。なお、上記トレッド部41の熱解析計算は、路面に接している状態と路面とは接していない状態との平均的な熱の流れを用いて行う。
Here, as a method of rolling the tire, set a boundary condition so that the tire and wheel rotate freely around the axle, create a model such as using joint elements, and either the road surface or the axle Can be analyzed by moving the other side in the longitudinal direction of the tire. Furthermore, it is possible to give the tire a slip angle or a camber angle, or to move the road surface so that the tire has a slip angle or a camber angle. Instead of the above rolling analysis, a flat push calculation (load analysis) of the tire model 10 may be performed.
After the calculation of the stress σ and the strain amount ε of each part of the tire is completed, the strain energy for one rotation of the tire of each element is calculated, and this is multiplied by tan δ at the initial set temperature of each element given in step S12 above. Then, the strain energy loss of each element is calculated to obtain the heat generation distribution P (0) of the tire (step S14).
Then, a thermal analysis model is created based on the obtained heat generation distribution P (0), and thermal analysis calculation is performed using this thermal analysis model to obtain the temperature distribution F (0) on the tire surface and inside ( Step S15). FIG. 3 is a diagram showing an example of a thermal analysis model. In this example, as a thermal analysis model G (k), a numerical analysis model including a tire model 40 and a rim model 50 is further added to a gas ( Here, a three-dimensional model to which an internal air model 60 in which air is divided into finite elements is added, or a cut sample type or an axisymmetric two-dimensional analysis model is used, and the shape of the tire model 40 is The shape of the rim model 50 is set to the shape at the time of internal pressure, and the thermal conductivity according to the material of the wheel is set for each element of the rim model 50, and the thermal conductivity of air is set as the physical property value for the internal air model 60.
That is, in step S15, a thermal analysis model G (0) having the heat generation distribution P (0) obtained in step S14 is created, and thermal analysis calculation is performed using the thermal analysis model G (0). The temperature distribution F (0) under the set conditions is obtained.
As shown in FIG. 4, by adopting a model obtained by adding the internal air model 60 to the tire model 40 and the rim model 50 as the thermal analysis model G (k) as in this example, as shown in FIG. In addition to the flow of heat released from the portion 41 and the side portion 42, the flow of heat released from the bead portion 46 to the outside air via the flange portion 51 of the rim model 50, and the rim model 50 from the inner surface of the tire model 40. Since the heat flow conducted to the base portion 52 and released to the outside air can also be considered, the tire temperature distribution can be obtained with high accuracy. The thermal analysis calculation of the tread portion 41 is performed using an average heat flow in a state in contact with the road surface and a state in which the road surface is not in contact.

次に、くり返し数をk=1に設定し(ステップS16)、上記タイヤモデル10の各ゴム部材の各要素に、上記ステップS15で求めた温度分布F(k−1)(ここでは、温度分布F(0))に対応する温度と上記ステップS13で算出した各要素の歪量εに応じた弾性率/動弾性率を与えた新たな応力解析モデルM(k)を作成する(ステップS17)。なお、応力解析モデルM(k)の形状は、図2に示したものと同じである。また、この段階では、初めての繰返しなので、応力解析モデルはM(1)で、上記弾性率/動弾性率としては、上記ステップS10で計測した弾性率/動弾性率を用いる。
図5(a),(b)は、本例で用いるtanδと弾性率/動弾性率(Modulus)の概略を示すグラフで、tanδの値も弾性率/動弾性率の値も温度の上昇に伴って一旦高くなった後、低下する傾向にあるが、外気温25℃で20km/h〜80km/hの定常走行時(タイヤトレッド部の温度;40℃〜80℃)においては、各温度の弾性率/動弾性率とtanδは、初期設定温度である40℃での弾性率/動弾性率とtanδよりも高い値となる。
次に、上記応力解析モデルM(k)を用いて、負荷または転動解析を行なってタイヤ各部に作用する応力σと歪量εとを算出した(ステップS18)後、各要素のタイヤ1回転分の歪エネルギーを計算し、これに各要素の上記温度分布F(k−1)に対応する温度におけるtanδを乗算して各要素の歪エネルギーロスを算出して、タイヤの発熱分布P(k)を求める(ステップS19)。そして、ステップS20に進んで、上記求められた発熱分布P(k)を有する熱解析モデルG(k)を作成した後、この熱解析モデルG(k)を用いて熱解析計算を行って、タイヤの表面及び内部の温度分布を再度求める(ステップS21)。このステップS21で求められた温度分布は、くり返し数kにおける温度分布であるので、これを温度分布F(k)とおく。
次に、ステップS22に進み、上記ステップS21で求められた温度分布F(k)と上記ステップS17で用いた温度分布F(k−1)とを比較して、温度分布の収束性について判定する。具体的には、温度分布F(k)と温度分布F(k−1)との差が、例えば、5%以内であれば、収束したと判定する。
上記ステップS22において収束判定がなされなかった場合には、くり返し数kを1個増やして(ステップS23)ステップS17に戻り、上記ステップS18で算出した各要素の歪量εと上記ステップS21で求めた新たな温度分布F(k)に応じた弾性率/動弾性率をタイヤモデル10の各要素与えた新たな応力解析モデルM(k+1)を作成するとともに、新たな発熱分布P(k+1)を求める際に用いる各要素のtanδの値を上記温度分布F(k)に対応する温度におけるtanδに置換えた後、上記ステップS18からステップS21までの操作を行って新たな温度分布F(k+1)を求め、ステップS22にて、この温度分布F(k+1)と上記温度分布F(k)とを比較して温度分布の収束性について判定する。
このような操作を、収束判定まで繰り返すことにより求められた、最終的なタイヤの温度分布F(n)は、上記温度分布F(n)にほぼ等しい温度分布F(n−1)に応じた弾性率/動弾性率を与えた応力解析モデルM(n)を用いて求められた応力と歪量とに対応する弾性率/動弾性率と、上記温度分布F(n−1)におけるtanδとを用いて求めた発熱分布P(n)を有する熱解析モデルG(n)を用いて熱解析計算して得られた温度分布であるので、従来の、各要素の温度が均一と仮定して予測し温度分布F(0)に比較して、予測精度を大幅に向上させることができる。
Next, the number of repetitions is set to k = 1 (step S16), and the temperature distribution F (k−1) (here, temperature distribution) obtained in step S15 is applied to each element of each rubber member of the tire model 10. F (0)) and a new stress analysis model M (k) that gives the elastic modulus / dynamic elastic modulus corresponding to the strain amount ε of each element calculated in step S13 is created (step S17). . The shape of the stress analysis model M (k) is the same as that shown in FIG. At this stage, since this is the first iteration, the stress analysis model is M (1), and the elastic modulus / dynamic elastic modulus measured in step S10 is used as the elastic modulus / dynamic elastic modulus.
FIGS. 5A and 5B are graphs showing an outline of tan δ and elastic modulus / dynamic elastic modulus (Modulus) used in this example. The values of tan δ and the elastic modulus / dynamic elastic modulus both increase in temperature. The temperature tends to decrease after increasing once, but during steady running (temperature of the tire tread; 40 ° C. to 80 ° C.) at 20 km / h to 80 km / h at an outside air temperature of 25 ° C., The elastic modulus / dynamic elastic modulus and tan δ are higher than the elastic modulus / dynamic elastic modulus and tan δ at 40 ° C. which is the initial set temperature.
Next, using the stress analysis model M (k), a load or rolling analysis is performed to calculate a stress σ and a strain amount ε acting on each part of the tire (step S18), and then one rotation of the tire of each element Is calculated by multiplying tan δ at a temperature corresponding to the temperature distribution F (k-1) of each element to calculate the strain energy loss of each element, and thereby calculating the heat distribution P (k of the tire). ) Is obtained (step S19). Then, the process proceeds to step S20, and after creating the thermal analysis model G (k) having the calculated heat generation distribution P (k), the thermal analysis calculation is performed using the thermal analysis model G (k). The temperature distribution inside and inside the tire is obtained again (step S21). Since the temperature distribution obtained in step S21 is a temperature distribution at the number of repetitions k, this is referred to as a temperature distribution F (k).
Next, proceeding to step S22, the temperature distribution F (k) obtained at step S21 is compared with the temperature distribution F (k-1) used at step S17 to determine the convergence of the temperature distribution. . Specifically, if the difference between the temperature distribution F (k) and the temperature distribution F (k−1) is within 5%, for example, it is determined that the convergence has occurred.
If the convergence determination is not made in step S22, the number of repetitions k is increased by 1 (step S23), the process returns to step S17, and the distortion amount ε of each element calculated in step S18 and the step S21 are obtained. A new stress analysis model M (k + 1) in which the elastic modulus / dynamic elastic modulus corresponding to the new temperature distribution F (k) is given to each element of the tire model 10 is created, and a new heat generation distribution P (k + 1) is obtained. After replacing the tan δ value of each element used at the time with tan δ at the temperature corresponding to the temperature distribution F (k), the operation from step S18 to step S21 is performed to obtain a new temperature distribution F (k + 1). In step S22, the temperature distribution F (k + 1) is compared with the temperature distribution F (k) to determine the convergence of the temperature distribution.
The final tire temperature distribution F (n) obtained by repeating such an operation until the convergence determination corresponds to the temperature distribution F (n−1) substantially equal to the temperature distribution F (n). The elastic modulus / dynamic elastic modulus corresponding to the stress and strain obtained using the stress analysis model M (n) giving the elastic modulus / dynamic elastic modulus, and tan δ in the temperature distribution F (n−1) Is the temperature distribution obtained by thermal analysis calculation using the thermal analysis model G (n) having the heat generation distribution P (n) obtained using Prediction accuracy can be greatly improved as compared with the predicted temperature distribution F (0).

このように、本最良の形態では、タイヤモデル10とリムモデル20と路面モデル30とから成る応力解析モデルを作成するとともに、上記各モデル10〜30の各要素にそれぞれ密度、弾性率、熱伝導係数などの材料物性が初期特性として与えて、温度分布が均一であると仮定して応力解析を行ない、タイヤ各部に作用する応力σと歪量εとを算出して、タイヤの発熱分布P(0)を求め、この発熱分布に基づいて熱解析計算を行って、タイヤの表面及び内部の初期設定条件下の温度分布F(0)を求めた後、くり返し数kを設定するとともに、上記タイヤモデル10の各ゴム部材の各要素に、予め実験にて求めた各ゴム部材の弾性率の、前回(くり返し数が(k−1)のとき)に求めた温度と歪量とに応じた弾性率を与えた新たな応力解析モデルM(k)を作成し、この新たな応力解析モデルM(k)を用いて応力解析を行って応力σと歪量εとを再度算出する。そして、この応力σと歪量εと、予め実験にて求めた各ゴム部材のtanδの、前回に求めた温度分布F(k−1)における値とを用いて求められる発熱分布P(k)を有するタイヤモデル40を備えた熱解析モデルG(k)を用いて熱解析計算を行なって新たなタイヤの温度分布温度分布F(k)を求める。そして、上記F(k−1)と F(k)とを比較して、温度分布の収束性について判定し、収束判定がなされなかった場合には、上記温度分布F(k)に応じた弾性率/動弾性率とtanδとを用いて新たな応力解析モデルM(k+1)と熱解析モデルG(k)とを作成して、再度温度分布F(k+1)を求めて温度分布の収束を判定する操作を繰り返して、タイヤの表面及び内部の温度を予測するようにしたので、予測精度を大幅に向上させることができる。
また、上記熱解析計算を行う際に、タイヤモデル40とリムモデル50とに、タイヤ内部の空気を有限個の要素に分割した内部空気モデル60を付加した3次元モデルまたは2次元解析モデル(熱解析モデルG(k))を作成し、この熱解析モデルG(k)について、熱解析計算を行って、タイヤの表面及び内部の温度分布を求めるようにしたので、実際のタイヤの放熱過程に近い状態の熱解析計算を行うことができ、タイヤの温度分布を更に精度よく予測することができる。
As described above, in the best mode, a stress analysis model composed of the tire model 10, the rim model 20, and the road surface model 30 is created, and the density, elastic modulus, and thermal conductivity coefficient are added to the elements of the models 10 to 30, respectively. The material physical properties such as the above are given as initial characteristics, the stress analysis is performed assuming that the temperature distribution is uniform, the stress σ and the strain amount ε acting on each part of the tire are calculated, and the heat generation distribution P (0 ), And thermal analysis calculation is performed based on the heat generation distribution to obtain the temperature distribution F (0) under the initial setting conditions on the surface and inside of the tire. The elastic modulus corresponding to the temperature and the amount of strain obtained in the previous time (when the number of repetitions is (k-1)) of the elastic modulus of each rubber member obtained in advance by experiment in each element of 10 rubber members New stress analysis A model M (k) is created, a stress analysis is performed using the new stress analysis model M (k), and the stress σ and the strain amount ε are calculated again. Then, the heat generation distribution P (k) obtained using the stress σ and the strain amount ε and the value of the tan δ of each rubber member obtained in advance in the experiment in the previously obtained temperature distribution F (k−1). A thermal analysis calculation is performed using a thermal analysis model G (k) having a tire model 40 having a tire temperature distribution F (k) of a new tire. Then, F (k-1) and F (k) are compared to determine the convergence of the temperature distribution. If the convergence is not determined, the elasticity corresponding to the temperature distribution F (k) is determined. A new stress analysis model M (k + 1) and thermal analysis model G (k) are created using the modulus / dynamic elastic modulus and tan δ, and the temperature distribution F (k + 1) is obtained again to determine the convergence of the temperature distribution. By repeating the operation to predict the temperature of the tire surface and the inside, the prediction accuracy can be greatly improved.
Further, when performing the thermal analysis calculation, a three-dimensional model or a two-dimensional analysis model (thermal analysis) in which the tire model 40 and the rim model 50 are added with an internal air model 60 obtained by dividing the air inside the tire into a finite number of elements. Model G (k)) is created, and thermal analysis calculation is performed on the thermal analysis model G (k) to obtain the temperature distribution on the surface and inside of the tire, which is close to the actual heat dissipation process of the tire. Thermal analysis calculation of the state can be performed, and the temperature distribution of the tire can be predicted with higher accuracy.

なお、上記実施の形態では、タイヤモデルとして、タイヤ回転方向に対して同じ要素が並んでいるモデルを採用したが、トレッドパターンを考慮してモデル化したり、実物タイヤにあるような部材の小さな重なり、厚みの変化、剛性の変化をモデル化して、回転方向に不均一なモデルを作成するようにすれば、解析の精度を更に向上させることができる。
なお、タイヤの発熱はトレッド部が主となるので、上記ステップS13で行う応力解析をタイヤモデル10のみで行ってもよい。
また、上記例の熱解析計算においては、リム部のみをモデル化したリムモデル50を用いたが、ホイールのリム部及びディスク部を構成する材料は熱伝導性が良好なので、熱解析計算においては、ホイール全体をモデル化すれば、タイヤ温度の予測精度を更に向上させることができる。
また、上記例において、tanδと弾性率/動弾性率に対しては、温度依存性のみを持たせても予測精度を向上させることは可能であるが、本例のように、各ゴム部材の各要素に予測した温度分布に対応する温度と算出した歪量εに応じたtanδと弾性率/動弾性率とをそれぞれ与えるようにした方が予測精度を確実に向上させることができる。
また、熱解析計算は3次元モデルを用いれば精度は向上するが、境界条件が複雑になるだけでなく、計算時間が膨大となるといった問題点がある。タイヤは回転体であるので、本例のように、カットサンプル型または軸対称の2次元解析モデル(熱解析モデルG(k)を用いて行うようにすれば、計算を効率よく行うことができる。
In the above embodiment, a model in which the same elements are arranged in the tire rotation direction is adopted as the tire model. However, the tire model is modeled in consideration of a tread pattern, or a small overlap of members as in a real tire. If the change in thickness and the change in rigidity are modeled to create a non-uniform model in the rotational direction, the accuracy of the analysis can be further improved.
In addition, since the heat generation of the tire is mainly in the tread portion, the stress analysis performed in step S13 may be performed only with the tire model 10.
In the thermal analysis calculation of the above example, the rim model 50 in which only the rim portion is modeled is used. However, since the materials constituting the rim portion and the disk portion of the wheel have good thermal conductivity, in the thermal analysis calculation, If the entire wheel is modeled, the tire temperature prediction accuracy can be further improved.
Further, in the above example, it is possible to improve the prediction accuracy with respect to tan δ and the elastic modulus / dynamic elastic modulus even if only the temperature dependency is provided. By providing each element with a temperature corresponding to the predicted temperature distribution and a tan δ and an elastic modulus / dynamic elastic modulus corresponding to the calculated strain amount ε, the prediction accuracy can be improved with certainty.
In addition, although the accuracy of thermal analysis calculation is improved if a three-dimensional model is used, there are problems that not only the boundary conditions become complicated, but the calculation time becomes enormous. Since the tire is a rotating body, calculation can be efficiently performed by using a cut sample type or an axially symmetric two-dimensional analysis model (thermal analysis model G (k)) as in this example. .

タイヤサイズがPSR195/65R14のタイヤをホイールに組み込んだモデルを作成するとともに、ゴム部材を構成する各要素に与える弾性率/動弾性率とtanδとに、図5(a),(b)に示した温度依存性と歪量依存性とを与え、これを、室温45℃、速度60km/h、荷重105%にて、路面上で転動させてタイヤの温度分布を予測するシミュレーションを行った結果を以下の表1に示す。

Figure 0004931430
なお、上記表1の数字は、試験車両を、上記シミュレーションと同様の条件で走行させて熱平衡状態となった時のベルト端の実測温度を100としたときの予測温度である。
実施例1は熱解析をタイヤモデルのみで行ったもので、実施例2は、図6(a)に示すような、タイヤとリムと内部空気をモデル化した熱解析モデルを用いて熱解析を行ったものである。一方、従来例は、ゴム部材の弾性率/動弾性率とを一定にし、かつ、タイヤモデルのみ熱解析を行ったものである。
表1から明らかなように、弾性率/動弾性率とtanδとして、予測した温度のものを用いた実施例1の方が、弾性率/動弾性率とtanδを一定とした従来例よりも、ベルト端の予測温度が高く、しかも、実測温度との差が指数で従来例の約半分であることから、本発明の方法により、タイヤ温度の予測精度が向上していることが確認された。
また、実施例2は、指数が103とほぼ実測温度に近い値となったことから、リム及び内部空気を介した放熱を考慮した熱解析を行うことにより、タイヤ温度の予測精度を大幅に向上させることができることが確認された。 FIGS. 5A and 5B show a model in which a tire having a tire size of PSR195 / 65R14 is incorporated in a wheel, and the elastic modulus / dynamic elastic modulus and tan δ given to each element constituting the rubber member are shown in FIGS. As a result of simulation that predicts the tire temperature distribution by rolling on the road surface at a room temperature of 45 ° C., a speed of 60 km / h, and a load of 105%. Is shown in Table 1 below.
Figure 0004931430
The numbers in Table 1 are predicted temperatures when the measured temperature of the belt end when the test vehicle is run under the same conditions as in the simulation and is in a thermal equilibrium state is taken as 100.
In Example 1, thermal analysis was performed only on a tire model, and in Example 2, thermal analysis was performed using a thermal analysis model that models a tire, a rim, and internal air as shown in FIG. It is what I did. On the other hand, in the conventional example, the elastic modulus / dynamic elastic modulus of the rubber member is made constant, and only the tire model is subjected to thermal analysis.
As is apparent from Table 1, the elastic modulus / dynamic elastic modulus and tan δ in Example 1 using the predicted temperature were higher than the conventional example in which the elastic modulus / dynamic elastic modulus and tan δ were constant. Since the predicted temperature at the belt end is high and the difference from the measured temperature is an index that is about half that of the conventional example, it was confirmed that the prediction accuracy of the tire temperature was improved by the method of the present invention.
In Example 2, since the index was 103, which was close to the actually measured temperature, the accuracy of prediction of the tire temperature was greatly improved by conducting a thermal analysis that considered heat dissipation through the rim and internal air. It was confirmed that it can be made.

また、図6(b)に示すような、タイヤサイズがTBR295/75R22.5のタイヤ(2種類の構造のもの)をホイールに組み込んだモデルを作成し、上記実施例1,2と同様の方法で、タイヤの温度分布を予測した結果を以下の表2に示す。
なお、上記Tタイプのタイヤでは、予測箇所及び測定箇所として、3ベルト端、プライ端、ナイロンチェーファー端(プライ端がワイヤーチェーファー端よりも高い構造のタイヤの場合)またはワイヤーチェーファー端(ワイヤーチェーファー端がプライ端よりも高い構造のタイヤの場合;表2の*印)の3箇所とした。

Figure 0004931430
実施例3は熱解析をタイヤモデルのみで行ったもので、実施例4は、図6(b)に示すような、タイヤとリムと内部空気をモデル化した熱解析モデルを用いて熱解析を行ったものである。また、従来例は、ゴム部材の弾性率/動弾性率とを一定にし、かつ、タイヤモデルのみ熱解析を行ったものである。
表2から明らかなように、Tタイプのタイヤにおいても、弾性率/動弾性率とtanδとして予測した温度のものを用いた実施例3の方が、弾性率/動弾性率とtanδを一定とした従来例よりも、それぞれの測定箇所での予測温度が高く、しかも、実測温度との差が指数で従来例の約半分であることから、本発明の方法により、タイヤのタイプによらず、タイヤ温度の予測精度が向上することが確認された。
また、実施例4は、実測温度との指数の差がいずれも上記実施例3の半分以下であり、熱解析をタイヤとリムと内部空気をモデル化したもので行えば、タイヤのタイプによらず、タイヤ温度の予測精度を大幅に向上させることができることが確認された。 Also, as shown in FIG. 6B, a model in which a tire (two types of structures) having a tire size of TBR295 / 75R22.5 is incorporated in a wheel is prepared, and the same method as in the first and second embodiments is performed. The results of predicting the tire temperature distribution are shown in Table 2 below.
In the T-type tire, as the predicted location and the measurement location, the 3 belt end, the ply end, the nylon chafer end (when the ply end is higher than the wire chafer end) or the wire chafer end ( In the case of a tire having a structure in which the end of the wire chafer is higher than the end of the ply;
Figure 0004931430
In Example 3, thermal analysis was performed only on a tire model, and in Example 4, thermal analysis was performed using a thermal analysis model that models a tire, a rim, and internal air as shown in FIG. 6B. It is what I did. In the conventional example, the elastic modulus / dynamic elastic modulus of the rubber member is kept constant, and only the tire model is subjected to thermal analysis.
As is apparent from Table 2, even in the T-type tire, the elastic modulus / dynamic elastic modulus and tan δ are constant in Example 3 using the temperature predicted as the elastic modulus / dynamic elastic modulus and tan δ. Since the predicted temperature at each measurement location is higher than the conventional example, and the difference from the measured temperature is an index that is about half of the conventional example, the method of the present invention does not depend on the tire type, It was confirmed that the prediction accuracy of the tire temperature was improved.
Further, in Example 4, the difference in index from the actually measured temperature is less than half of that in Example 3, and if the thermal analysis is performed by modeling the tire, the rim, and the internal air, it depends on the tire type. Therefore, it was confirmed that the prediction accuracy of the tire temperature can be greatly improved.

このように、本発明によれば、タイヤの表面及び内部の温度分布を精度よくシミュレーションすることができるので、タイヤの耐久性を正確に評価することができるとともに、タイヤの設計・開発効率を向上させることができる。   As described above, according to the present invention, the temperature distribution inside and inside the tire can be accurately simulated, so that the durability of the tire can be accurately evaluated, and the design and development efficiency of the tire can be improved. Can be made.

本発明の最良の形態に係るタイヤの温度予測方法を示すフローチャートである。It is a flowchart which shows the temperature prediction method of the tire which concerns on the best form of this invention. 本発明の負荷または転動解析に使用する応力解析モデルを示す図である。It is a figure which shows the stress analysis model used for the load or rolling analysis of this invention. 本発明の熱解析に使用する熱解析モデルを示す図である。It is a figure which shows the thermal analysis model used for the thermal analysis of this invention. 熱解析モデルにおけるタイヤの放熱状態を説明するための図である。It is a figure for demonstrating the thermal radiation state of the tire in a thermal analysis model. tanδと弾性率/動弾性率の温度変化の概要を示す図である。It is a figure which shows the outline | summary of the temperature change of tan-delta and elastic modulus / dynamic elastic modulus. 本発明の実施例に使用した熱解析モデルの一例を示す図である。It is a figure which shows an example of the thermal analysis model used for the Example of this invention. 従来のタイヤの温度分布予測に用いられるタイヤモデルを示す図である。It is a figure which shows the tire model used for the temperature distribution prediction of the conventional tire. 従来のタイヤの温度分布予測方法を示すフローチャートである。It is a flowchart which shows the temperature distribution prediction method of the conventional tire.

符号の説明Explanation of symbols

M(k) 応力解析モデル、10 タイヤモデル、11 トレッド部、
12 サイド部、13 ビードワイヤ、14 ベルト、15 カーカスプライ、
20 リムモデル、30 路面モデル、
G(k) 熱解析モデル、40 タイヤモデル、41 トレッド部、
42 サイド部、46 ビード部、50 リムモデル、51 フランジ部、
52 ベース部、60 内部空気モデル。
M (k) Stress analysis model, 10 tire model, 11 tread part,
12 side parts, 13 bead wires, 14 belts, 15 carcass plies,
20 rim model, 30 road surface model,
G (k) thermal analysis model, 40 tire model, 41 tread part,
42 side part, 46 bead part, 50 rim model, 51 flange part,
52 base, 60 internal air model.

Claims (8)

3次元タイヤモデルまたは3次元タイヤモデルと路面モデルとから成る応力解析モデルを作成するとともに、上記タイヤモデルの各ゴム部材の要素に弾性率を与えて、負荷または転動解析を行ってタイヤ各部の応力と歪量とを算出した後、上記算出されたタイヤ各部の応力と歪量とゴム部材の損失正接とを用いて求められたタイヤの発熱分布に基づいて、熱解析計算を行って、タイヤの表面及び内部の温度分布を予測するタイヤの温度分布予測方法であって、
上記タイヤモデルの各ゴム部材の要素に所定の温度の損失正接を与えてタイヤの温度分布を予測した後、上記タイヤモデルの各ゴム部材の要素の弾性率を上記予測された温度での弾性率に置換えた新たな応力解析モデルを用いて負荷または転動解析を行ってタイヤ各部の応力と歪量とを再度算出し、この算出された応力と歪量と上記予測された温度でのゴム部材の損失正接とを用いてタイヤの発熱分布を求めるとともに、上記タイヤモデルにタイヤ内部の空気を有限個の要素に分割した内部空気モデル、及び、少なくともリム部を含むホイールの一部または全部を有限個の要素に分割したリムモデルのいずれか一方または両方を付加して作成された熱解析モデルについて、上記発熱分布に基づいて熱解析計算を行ってタイヤの温度分布予測を行、上記新たな熱解析計算で予測された温度分布と、前の熱解析計算で予測された温度分布とを比較して、上記温度分布の収束性を判定し、上記温度分布が収束しない場合には、上記タイヤモデルの各ゴム部材の要素に、上記新たな熱解析計算により予測された温度における弾性率と損失正接とを与え、タイヤの温度分布を予測して温度分布の収束性を判定する操作を上記温度分布が収束するまで繰り返し、当該タイヤの温度分布を予測するようにしたことを特徴とするタイヤの温度分布予測方法。
A stress analysis model composed of a three-dimensional tire model or a three-dimensional tire model and a road surface model is created, and an elastic modulus is given to each rubber member element of the tire model, and a load or rolling analysis is performed to analyze each part of the tire. After calculating the stress and strain amount, the tire is subjected to thermal analysis calculation based on the heat generation distribution of the tire obtained using the calculated stress and strain amount of each part of the tire and the loss tangent of the rubber member. A tire temperature distribution prediction method for predicting the temperature distribution inside and outside the tire,
After predicting the temperature distribution of the tire giving the loss tangent of a predetermined temperature to the elements of the rubber members of the tire model, the elasticity of the elastic modulus of the elements of the rubber members of the tire model with the predicted temperature calculating the stress and strain of the tire each unit again performs load or rolling analysis using the new stress analysis model by replacing the rate, in the calculated stress and strain amount and the upper Symbol predicted temperature Rutotomoni seek heat generation distribution of the tire with the loss tangent of the rubber member, the tire model within the air model divided the air inside the tire to a finite number of elements, and, or a portion of the wheel including at least the rim portion all the finite number of elements divided either or both the thermal analysis model is created by adding the Rimumoderu, the tire temperature distribution predicted by performing thermal analysis calculated based on the heat generation distribution There compares the predicted temperature distribution in the new thermal analysis calculations, the predicted temperature distribution in the previous thermal analysis calculations, to determine the convergence of the temperature distribution, when the temperature distribution does not converge Provides the elastic modulus and loss tangent at the temperature predicted by the new thermal analysis calculation to each rubber member of the tire model, and predicts the temperature distribution of the tire to determine the convergence of the temperature distribution operation was repeated until the temperature distribution converges, the temperature distribution prediction method of the tire, characterized in that so as to predict the temperature distribution of the tire.
上記リムモデルの各要素にはホイールの材質に合わせた熱伝導率を物性値として与え、上記内部空気モデルの各要素には空気の熱伝導率を物性値として与えることを特徴とする請求項1に記載のタイヤの温度分布予測方法。  The thermal conductivity according to the material of the wheel is given as a physical property value to each element of the rim model, and the thermal conductivity of air is given as a physical property value to each element of the internal air model. The tire temperature distribution prediction method described. 上記新たな熱解析計算で予測された温度分布と前の熱解析計算で予測された温度分布との差が5%以内になったときに収束判定するようにしたことを特徴とする請求項1または請求項2に記載のタイヤの温度分布予測方法。 The convergence determination is performed when the difference between the temperature distribution predicted by the new thermal analysis calculation and the temperature distribution predicted by the previous thermal analysis calculation is within 5%. Alternatively, the tire temperature distribution prediction method according to claim 2 . 上記各ゴム部材に与える弾性率及び損失正接と温度との関係を予め実験により求めるようにしたことを特徴とする請求項1請求項3のいずれかに記載のタイヤの温度分布予測方法。 Temperature distribution method for predicting tire according to any one of claims 1 to 3, characterized in that so as to obtain by experiment the relationship between the elastic modulus and the loss tangent and the temperature given to the respective rubber members. 上記新たな応力解析モデルを用いて負荷または転動解析を行う際の弾性率と、再度の発熱分布を求める際に用いる損失正接とを、上記予測された温度分布に加えて、上記前の負荷または転動解析により求められたタイヤ各部の歪量に基づいて設定するようにしたことを特徴とする請求項1〜請求項のいずれかに記載のタイヤの温度分布予測方法。 In addition to the predicted temperature distribution, the elastic modulus when performing load or rolling analysis using the new stress analysis model and the loss tangent used when obtaining the heat generation distribution again are added to the previous load. The tire temperature distribution prediction method according to any one of claims 1 to 4 , wherein the tire temperature distribution is set based on a strain amount of each part of the tire obtained by rolling analysis. 上記各ゴム部材に与える弾性率及び損失正接と歪量との関係を予め実験により求めるようにしたことを特徴とする請求項に記載のタイヤの温度分布予測方法 6. The tire temperature distribution prediction method according to claim 5 , wherein the relationship between the elastic modulus and loss tangent applied to each rubber member and the amount of strain are obtained in advance by experiments . 上記熱解析計算を、カットサンプル型または軸対称の2次元解析モデルを用いて行うようにしたことを特徴とする請求項1〜請求項のいずれかに記載のタイヤの温度分布予測方法。 The tire temperature distribution prediction method according to any one of claims 1 to 6 , wherein the thermal analysis calculation is performed using a cut sample type or an axisymmetric two-dimensional analysis model. タイヤの表面及び内部の温度分布を、タイヤを有限個の要素に分割した解析モデルを用いて予測計算するための計算プログラムであって、
タイヤを構成する各ゴム部材の弾性率と損失正接の温度依存性と歪量依存性とを予め実験により求める第1のステップと、
3次元のタイヤモデルまたは3次元のタイヤモデルと路面モデルとから成る応力解析モデルを作成する第2のステップと、
上記タイヤモデルの各ゴム部材の要素に所定の同一温度の弾性率と損失正接とを与える第3のステップと、
弾性率が与えられた解析モデルを用いて負荷または転動解析を行ってタイヤ各部の応力と歪量とを算出する第4のステップと、
上記算出されたタイヤ各部の応力と歪量とから歪エネルギーの密度分布を求め、この密度分布に損失正接を乗算してタイヤの発熱分布を求める第5のステップと、
上記3次元のタイヤモデル、もしくは、カットサンプル型または軸対称の2次元タイヤモデルにタイヤ内部の空気を有限個の要素に分割した内部空気モデル、及び、少なくともリム部を含むホイールの一部または全部を有限個の要素に分割したリムモデルのいずれか一方または両方を付加した熱解析モデルを作成し、上記熱解析モデルについて、上記発熱分布に基づいて熱解析計算を行って、タイヤの表面及び内部の温度分布を求める第6のステップと、
上記温度分布に基づいて、上記タイヤモデルの各ゴム部材の要素に、当該要素の温度及び歪量における弾性率を与えた負荷または転動解析用の3次元解析モデルを新たな応力解析モデルとするとともに、発熱分布を求める際に用いる損失正接を当該要素の温度における損失正接に置換える第7のステップと、
上記新たな応力解析モデルと上記置換えられた損失正接とを用いて上記第4のステップから第6のステップまでを繰り返して新たな温度分布を求める第8のステップと、
上記第8のステップで求められた温度分布と上記第6のステップで求められた温度分布とを比較して温度分布の収束性を判定する第9のステップとを備えるとともに、
上記第9のステップにおいて収束判定がなされなかった場合には、上記第7のステップに戻って第8のステップで求められた温度分布に基づいて新たな応力解析モデルを作成するとともに、発熱分布を求める際に用いる各要素の損失正接を上記温度分布に基づいた損失正接に置換えて再度温度分布を予測して温度分布の収束性を確認するように構成したことを特徴とするタイヤの温度分布予測計算プログラム
A calculation program for predicting and calculating the temperature distribution inside and outside the tire using an analytical model in which the tire is divided into a finite number of elements,
A first step of previously determining the temperature dependence and strain dependence of the elastic modulus and loss tangent of each rubber member constituting the tire;
A second step of creating a stress analysis model comprising a three-dimensional tire model or a three-dimensional tire model and a road surface model;
A third step of giving an elastic modulus and a loss tangent at a predetermined temperature to elements of each rubber member of the tire model;
A fourth step of calculating a stress and a strain amount of each part of the tire by performing a load or rolling analysis using an analysis model given an elastic modulus;
A fifth step of obtaining a strain energy density distribution from the calculated stress and strain amount of each part of the tire and multiplying the density distribution by a loss tangent to obtain a heat generation distribution of the tire;
A part or all of the above three-dimensional tire model, or an internal air model in which the air inside the tire is divided into a finite number of elements in the cut sample type or axisymmetric two-dimensional tire model, and at least part of the wheel including the rim portion the create a thermal analysis model obtained by adding one or both of Rimumoderu divided into a finite number of elements, with the above thermal analysis model, by performing the thermal analysis calculations based on the heat generation distribution, surface and internal of the tire A sixth step for obtaining a temperature distribution of
Based on the temperature distribution, a three-dimensional analysis model for load analysis or rolling analysis in which an elastic modulus in the temperature and strain amount of each rubber member of the tire model is given as a new stress analysis model. And a seventh step of replacing the loss tangent used in obtaining the heat generation distribution with the loss tangent at the temperature of the element;
An eighth step of obtaining a new temperature distribution by repeating the fourth step to the sixth step using the new stress analysis model and the replaced loss tangent;
A ninth step of comparing the temperature distribution obtained in the eighth step and the temperature distribution obtained in the sixth step to determine the convergence of the temperature distribution;
If the convergence determination is not made in the ninth step, the process returns to the seventh step to create a new stress analysis model based on the temperature distribution obtained in the eighth step and Predicting the temperature distribution of a tire, wherein the loss tangent of each element used in the determination is replaced with the loss tangent based on the above temperature distribution, and the temperature distribution is predicted again to confirm the convergence of the temperature distribution Calculation program .
JP2006034275A 2006-02-10 2006-02-10 Tire temperature distribution prediction method and tire temperature distribution prediction calculation program Active JP4931430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006034275A JP4931430B2 (en) 2006-02-10 2006-02-10 Tire temperature distribution prediction method and tire temperature distribution prediction calculation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006034275A JP4931430B2 (en) 2006-02-10 2006-02-10 Tire temperature distribution prediction method and tire temperature distribution prediction calculation program

Publications (2)

Publication Number Publication Date
JP2007210527A JP2007210527A (en) 2007-08-23
JP4931430B2 true JP4931430B2 (en) 2012-05-16

Family

ID=38489325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006034275A Active JP4931430B2 (en) 2006-02-10 2006-02-10 Tire temperature distribution prediction method and tire temperature distribution prediction calculation program

Country Status (1)

Country Link
JP (1) JP4931430B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010033427A (en) * 2008-07-30 2010-02-12 Yokohama Rubber Co Ltd:The Simulation method and simulation device of viscoelastic object
JP5239593B2 (en) * 2008-07-30 2013-07-17 横浜ゴム株式会社 Structure simulation method and apparatus
JP5239595B2 (en) * 2008-07-30 2013-07-17 横浜ゴム株式会社 Viscoelastic body simulation method
JP5705425B2 (en) * 2009-09-24 2015-04-22 株式会社ブリヂストン Tire performance simulation method, tire performance simulation apparatus, and tire performance simulation program
JP5533181B2 (en) * 2010-04-16 2014-06-25 横浜ゴム株式会社 Tire simulation method
JP5343052B2 (en) * 2010-08-31 2013-11-13 日立Geニュークリア・エナジー株式会社 Structure analysis method, program, and analysis apparatus
JP5785457B2 (en) * 2011-08-09 2015-09-30 住友ゴム工業株式会社 Prediction method of tire durability
JP5946628B2 (en) * 2011-11-11 2016-07-06 東洋ゴム工業株式会社 Device for designing cross-sectional shape of viscoelastic body structure, method and program thereof
JP5971001B2 (en) * 2012-07-24 2016-08-17 村田機械株式会社 Material heat propagation simulation device for thermal cutting machine
JP6027361B2 (en) * 2012-07-25 2016-11-16 住友ゴム工業株式会社 Tire durability evaluation method and design method using the same
JP6454221B2 (en) * 2014-06-03 2019-01-16 住友ゴム工業株式会社 Tire simulation method
JP6726607B2 (en) * 2016-11-28 2020-07-22 株式会社ブリヂストン Tire temperature prediction method and tire temperature prediction device
JP7406092B2 (en) * 2020-02-27 2023-12-27 横浜ゴム株式会社 Tire simulation method, program, and tire simulation device
CN112016242B (en) * 2020-07-23 2023-09-05 武汉数字化设计与制造创新中心有限公司 Data-driven distributed parameter thermal process temperature prediction method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4372515B2 (en) * 2003-11-04 2009-11-25 横浜ゴム株式会社 Durability prediction method of rotating body, computer program for durability prediction of rotating body, and durability prediction apparatus of rotating body
JP4469172B2 (en) * 2003-12-26 2010-05-26 住友ゴム工業株式会社 Tire simulation method
JP2005306174A (en) * 2004-04-20 2005-11-04 Toyo Tire & Rubber Co Ltd Tire performance predicting method

Also Published As

Publication number Publication date
JP2007210527A (en) 2007-08-23

Similar Documents

Publication Publication Date Title
JP4931430B2 (en) Tire temperature distribution prediction method and tire temperature distribution prediction calculation program
JP4931431B2 (en) Tire thermal analysis model and tire temperature distribution prediction calculation program
JP6682369B2 (en) Tire deterioration condition prediction method
EP0953834A2 (en) Method for designing pneumatic tires for rolling conditions
JP4469172B2 (en) Tire simulation method
JP2005306174A (en) Tire performance predicting method
JP4372515B2 (en) Durability prediction method of rotating body, computer program for durability prediction of rotating body, and durability prediction apparatus of rotating body
JP4699682B2 (en) Tire temporal change prediction method, apparatus, program, and medium
US7464586B2 (en) Tire designing method and program
Cho et al. Finite element estimation of hysteretic loss and rolling resistance of 3-D patterned tire
JP2007131206A (en) Method and model for analyzing assembly of tire and wheel
JP4285991B2 (en) Tire temporal change prediction method, tire characteristic prediction method, tire design method, tire manufacturing method, and program
Ballo et al. Motorcycle tire modeling for the study of tire–rim interaction
JP4486420B2 (en) Tire temporal change prediction method, apparatus, program, and medium
JP2007083925A (en) Behavior simulation method of tire and wheel assembly, and tire behavior simulation method
JP5128853B2 (en) Pneumatic tire design method
JP2018086892A (en) Tire temperature prediction method of tire and tire temperature predictor
JP6039210B2 (en) Prediction method of tire durability
JP4905915B2 (en) Method for creating tire numerical analysis model and method for analyzing tire rolling resistance
JP6312975B2 (en) Tire durability evaluation method and design method using the same
JP5373411B2 (en) Pneumatic tire simulation method
JP2005008051A (en) Simulation method for tire performance and tire designing method
JP5320806B2 (en) Rotating body simulation method
JP2011226991A (en) Rolling resistance prediction method and rolling resistance prediction apparatus
JP4708759B2 (en) Simulation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120214

R150 Certificate of patent or registration of utility model

Ref document number: 4931430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250