JP4905915B2 - Method for creating tire numerical analysis model and method for analyzing tire rolling resistance - Google Patents

Method for creating tire numerical analysis model and method for analyzing tire rolling resistance Download PDF

Info

Publication number
JP4905915B2
JP4905915B2 JP2005327251A JP2005327251A JP4905915B2 JP 4905915 B2 JP4905915 B2 JP 4905915B2 JP 2005327251 A JP2005327251 A JP 2005327251A JP 2005327251 A JP2005327251 A JP 2005327251A JP 4905915 B2 JP4905915 B2 JP 4905915B2
Authority
JP
Japan
Prior art keywords
tire
model
numerical analysis
rolling resistance
viscoelastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005327251A
Other languages
Japanese (ja)
Other versions
JP2007131209A (en
Inventor
靖雄 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2005327251A priority Critical patent/JP4905915B2/en
Publication of JP2007131209A publication Critical patent/JP2007131209A/en
Application granted granted Critical
Publication of JP4905915B2 publication Critical patent/JP4905915B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、タイヤを有限個の要素に分割してタイヤの数値解析モデルを作成する方法と、この作成された数値解析モデルを用いてタイヤの転がり抵抗を解析する方法に関する。   The present invention relates to a method for creating a tire numerical analysis model by dividing a tire into a finite number of elements and a method for analyzing the rolling resistance of the tire using the created numerical analysis model.

従来、タイヤの性能をシミュレーションする方法として、評価しようとするタイヤを有限個の多数の要素に分割したタイヤ有限要素モデルで近似するとともに、各有限要素に密度や弾性率などの特性を与え、上記モデルに内圧、荷重などの境界条件を与えて上記各要素の変形状態を計算してタイヤの変形や転がり抵抗などのタイヤの動特性を数値解析する有限要素法(Finite Element Method)が多く用いられている。
ところで、タイヤの転がり抵抗の発生原因は、タイヤと路面の摩擦によるものや空気抵抗によるものもあるが、通常走行時においては、タイヤが転動する際の変形により発生するヒステリシスロスの影響が最も大きいとされている。このタイヤの転がり抵抗をシミュレーションする方法として、トレッドゴムなどのゴム材及びビードコアを3次元ソリッド要素でモデル化し、カーカスやベルトなどの繊維複合体を膜要素としたタイヤの有限要素モデル(タイヤモデルという)を、路面を平坦な剛表面要素によってモデル化した路面モデル上に接地させて所定の走行条件で走行させ、上記タイヤモデルの各要素の歪量の履歴を求め、この歪量の履歴、具体的には、ゴム材料の貯蔵弾性率、損失(tanδ)、及び、歪の最大振幅歪を求めたり、ヒステリシスループの囲む面積を求めたりするなどしてゴム部材のエネルギーロスを算出して、このエネルギーロスから転がり抵抗を算出する方法が提案されている(例えば、特許文献1,2、非特許文献1参照)。
Conventionally, as a method for simulating tire performance, the tire to be evaluated is approximated by a tire finite element model obtained by dividing a tire into a finite number of elements, and characteristics such as density and elastic modulus are given to each finite element. Finite Element Method (Finite Element Method) is often used to give boundary conditions such as internal pressure and load to the model and calculate the deformation state of each of the above elements to numerically analyze the tire dynamics such as tire deformation and rolling resistance. ing.
By the way, the cause of tire rolling resistance may be due to friction between the tire and the road surface or due to air resistance, but in normal driving, the effect of hysteresis loss caused by deformation when the tire rolls is the most. It is said to be big. As a method of simulating the rolling resistance of a tire, a tire finite element model (called a tire model) in which a rubber material such as tread rubber and a bead core are modeled as a three-dimensional solid element and a fiber composite such as a carcass or a belt is used as a membrane element. ) Is grounded on a road surface model that is modeled with a flat rigid surface element and travels under predetermined driving conditions, and a history of distortion amount of each element of the tire model is obtained. Specifically, the energy loss of the rubber member is calculated by calculating the storage elastic modulus, loss (tan δ) and maximum amplitude strain of the rubber material, or determining the area surrounded by the hysteresis loop, etc. Methods for calculating rolling resistance from energy loss have been proposed (see, for example, Patent Documents 1 and 2 and Non-Patent Document 1).

具体的には、例えば、図10のフローチャートに示すように、ゴム材、カーカス、ベルト、及び、ビードコアなどがタイヤ周方向に同一断面状に連続するタイヤモデルを設定する(ステップS51)とともに、路面モデルを設定し(ステップS52)、縦荷重や路面摩擦係数などの境界条件に基づいて、上記タイヤモデルを転動させることなく上記路面モデルに接地させて変形させ(ステップS53)、上記変形したタイヤモデルのトレッド部を構成する各ゴム要素の歪量をそれぞれ算出して、上記ゴム要素の周方向の歪分布を求め、この歪分布から、タイヤが一回転したときの上記ゴム要素の歪の履歴を計算した(ステップS54,S55)後、上記歪の履歴からエネルギーロスを算出して転がり抵抗をシミュレーションする(ステップS56)。
このように、タイヤの有限要素モデルを路面モデル上に接地させて変形させ、タイヤが転動する際の変形により発生するヒステリシスロスの大きさを数値解析すれば、タイヤの転がり抵抗を求めることができる。
特開2003−118328号公報 特開2005−186900号公報 Luchini;“Tire Rolling Loss Computation with the Finite Element Method” Tire Science Technology,Vol.22,4,(1994)
Specifically, for example, as shown in the flowchart of FIG. 10, a tire model in which a rubber material, a carcass, a belt, a bead core, and the like are continuous in the same cross-sectional shape in the tire circumferential direction is set (step S51) and the road surface A model is set (step S52), and based on boundary conditions such as longitudinal load and road friction coefficient, the tire model is grounded and deformed without rolling (step S53). The amount of strain of each rubber element constituting the tread portion of the model is calculated, and the strain distribution in the circumferential direction of the rubber element is obtained. From this strain distribution, the history of strain of the rubber element when the tire makes one revolution After calculating (steps S54 and S55), the energy loss is calculated from the strain history and the rolling resistance is simulated (step S). 6).
In this way, if the tire finite element model is grounded on the road surface model and deformed, and the magnitude of hysteresis loss caused by the deformation when the tire rolls is numerically analyzed, the tire rolling resistance can be obtained. it can.
JP 2003-118328 A JP 2005-186900 A Luchini; “Tire Rolling Loss Computation with the Finite Element Method” Tire Science Technology, Vol. 22, 4, (1994)

しかしながら、上記従来のシミュレーション方法では、求められた歪量からエネルギーロスを算出するときにはゴム部材を粘弾性体として扱っているが、タイヤモデルを路面モデルに接地させてゴム部材を構成する各要素の歪量を解析する際には、上記ゴム部材を弾性体としているため、解析精度がよくないといった問題点があった。
また、上記従来のタイヤモデルは、計算手法上、タイヤ回転方向に連続していない部分を考慮できないだけでなく、タイヤ回転方向の不連続部においては、転がり抵抗によりタイヤが路面に接する部分が進行方向後方に移動するように変形する効果を考慮することができないため、転がり抵抗を精度よく求めることが困難であった。
ところで、タイヤモデルにおいて、ゴム部材を構成する各要素に始めから粘弾性係数を与えてシミュレーションすることも考えられるが、ゴムの粘弾性係数は歪量や周波数により異なるため、予め様々な歪量及び周波数にて各ゴム部材の粘弾性特性試験を行わなければならないため、非常に多くの計測が必要であるだけでなく、転動状態での粘弾性係数を設定するためには、相当回数シミュレーションを繰り返さなければならないので、解析効率が著しく悪いといった問題点があった。
However, in the above conventional simulation method, when calculating the energy loss from the obtained strain amount, the rubber member is handled as a viscoelastic body. However, the tire model is grounded on the road surface model, and each element constituting the rubber member is grounded. When analyzing the amount of strain, since the rubber member is an elastic body, there is a problem that the analysis accuracy is not good.
In addition, the conventional tire model described above cannot calculate a portion that is not continuous in the tire rotation direction due to a calculation method, and a portion where the tire is in contact with the road surface due to rolling resistance proceeds in a discontinuous portion in the tire rotation direction. Since the effect of deformation so as to move backward in the direction cannot be considered, it is difficult to accurately determine the rolling resistance.
By the way, in a tire model, it is conceivable to perform simulation by giving a viscoelastic coefficient to each element constituting the rubber member from the beginning, but since the viscoelastic coefficient of rubber differs depending on the strain amount and frequency, various strain amounts and Not only is it necessary to perform viscoelastic property tests for each rubber member at the frequency, but it is not only necessary to measure a lot, but also to set the viscoelastic coefficient in the rolling state, a considerable number of simulations are required. Since it had to be repeated, there was a problem that the analysis efficiency was remarkably bad.

本発明は、従来の問題点に鑑みてなされたもので、タイヤの転がり抵抗を精度よくシミュレーションすることのできる方法と、このシミュレーションに好適に用いられる数値解析モデルの方法を提供することを目的とする。 The present invention has been made in view of the conventional problems, and a method capable of simulating accurately the rolling resistance of tires, providing the creation method of the numerical analysis models suitably used in the simulation With the goal.

本発明者は、鋭意検討の結果、まず、ゴムを弾性体としてモデル化してタイヤの転動解析を行って得られたトレッドゴム部の歪量と周波数とから、ゴムに上記歪量と周波数とを与える粘弾性特性を推定し、この推定された粘弾性特性をゴム部材に付与したモデルを新たに作成して再度転動解析を行うようにすれば、転がり抵抗などのタイヤの諸特性を精度よくシミュレーションすることができることを見出し本発明に到ったものである。
すなわち、本願の請求項1に記載の発明は、タイヤを有限個の要素に分割して数値解析モデルを作成する方法であって、上記タイヤを構成するゴム部材を弾性体とした数値解析モデルを作成して、上記数値解析モデルを路面モデル上で転動させる解析を行い、上記数値解析モデルのゴム要素の歪の振幅と周波数を算出する第1のステップと、上記ゴム部材を構成するゴム材料の粘弾性試験を上記算出された歪の振幅と周波数で実施して、上記ゴム材料の粘弾性特性を計測する第2のステップと、上記計測された粘弾性特性から上記ゴム材料の粘弾性係数を算出する第3のステップと、上記タイヤを構成するゴム部材を上記算出された粘弾性係数を有する粘弾性体とした新たな数値解析モデルを作成する第4のステップ、とを備えたことを特徴とするものである。
As a result of diligent study, the present inventor first determined from the strain amount and frequency of the tread rubber portion obtained by modeling the rubber as an elastic body and performing the rolling analysis of the tire, to the above-described strain amount and frequency. If the viscoelastic properties that give the tires are estimated, a new model is created with the estimated viscoelastic properties applied to the rubber member, and rolling analysis is performed again, the tire characteristics such as rolling resistance can be accurately measured. The inventors have found that simulation can be performed well and have arrived at the present invention.
That is, the invention described in claim 1 of the present application is a method of creating a numerical analysis model by dividing a tire into a finite number of elements, and a numerical analysis model using a rubber member constituting the tire as an elastic body. create analyzes for rolling the numerical analysis model on the road model, it constitutes a first step of calculating the amplitude and frequency of the distortion of the rubber elements of the numerical analysis models, the rubber member A second step of measuring a viscoelastic property of the rubber material by performing a viscoelasticity test of the rubber material at the calculated amplitude and frequency of the strain , and the viscosity of the rubber material from the measured viscoelastic property. A third step of calculating an elastic coefficient; and a fourth step of creating a new numerical analysis model using the rubber member constituting the tire as a viscoelastic body having the calculated viscoelastic coefficient. That It is an butterfly.

また、請求項2に記載の発明は、請求項1に記載のタイヤの数値解析モデルの作成方法において、上記路面モデルを、上記タイヤに当接し、上記タイヤに対して相対的に回転するドラムとしたことを特徴とする。
請求項に記載の発明は、請求項1または請求項2に記載のタイヤの数値解析モデルの作成方法において、上記第1のステップでタイヤ各部の温度を解析し、第2のステップでは、上記温度条件に従って上記ゴム部材の粘弾性特性を計測することを特徴とする。
Further, an invention according to claim 2, in creating a tire of the numerical analysis model according to claim 1, the upper SL road model, in contact with the said tire, rotated relative to the tire drum It is characterized by that.
According to a third aspect of the present invention, in the tire numerical analysis model creation method according to the first or second aspect, the temperature of each part of the tire is analyzed in the first step, and the second step includes the above The viscoelastic characteristics of the rubber member are measured according to temperature conditions.

請求項に記載の発明は、請求項1〜請求項のいずれかに記載のタイヤの数値解析モデルの作成方法において、上記ゴム部材を弾性体とした数値解析モデル及び上記ゴム部材を粘弾性体とした新たな数値解析モデルとして、トレッドパターンがモデル化されている数値解析モデルを用いたことを特徴とする。
請求項に記載の発明は、請求項1〜請求項のいずれかに記載のタイヤの数値解析モデルの作成方法において、上記ゴム部材を弾性体とした数値解析モデル及び上記ゴム部材を粘弾性体とした新たな数値解析モデル、タイヤをホイールに組み付けたモデルとしたたことを特徴とする。
According to a fourth aspect of the present invention, in the method for creating a numerical analysis model for a tire according to any one of the first to third aspects, a numerical analysis model in which the rubber member is an elastic body, and the rubber member is viscoelastic. As a new numerical analysis model that is a body, a numerical analysis model in which a tread pattern is modeled is used.
According to a fifth aspect of the present invention, in the method for creating a numerical analysis model for a tire according to any one of the first to fourth aspects, a numerical analysis model in which the rubber member is an elastic body, and the rubber member is viscoelastic. a new numerical model with the body, characterized in that as a model assembled with the tire to the wheel.

また、請求項に記載の発明は、タイヤを有限個の要素に分割して作成した数値解析モデルを用いてタイヤの転がり抵抗を解析する方法であって、請求項1〜請求項のいずれかに記載のタイヤの数値解析モデルの作成方法によって作成された数値解析モデルを路面モデル上で転動させる解析を行って、上記タイヤに発生する前後力を算出し、この算出された前後力の大きさから当該タイヤの転がり抵抗を求めるようにしたことを特徴とするものである。
請求項に記載の発明は、請求項に記載のタイヤの転がり抵抗の解析方法において、上記路面のモデルを上記タイヤに当接し、上記タイヤに対して相対的に回転するドラムとしたものである。
請求項に記載の発明は、請求項または請求項に記載のタイヤの転がり抵抗の解析方法において、上記解析を一定速度にてタイヤが転動する条件下で行うようにしたものである。
請求項に記載の発明は、請求項1〜請求項のいずれかに記載のタイヤの数値解析モデルの作成方法によって作成された数値解析モデルを路面モデル上で転動させるとともに、タイヤの回転速度が初期速度から転がり抵抗により低下する過程を解析して、当該タイヤの転がり抵抗を求めるようにしたことを特徴とするものである。
The invention according to claim 6 is a method of analyzing rolling resistance of a tire using a numerical analysis model created by dividing a tire into a finite number of elements, and any one of claims 1 to 5 and analyzed for rolling the numerical analysis model created on the road surface model by creating a numerical analysis model for tire crab according to calculate the longitudinal force generated in the tire longitudinal force which the calculated The rolling resistance of the tire is obtained from the size of the tire.
The invention according to claim 7 is the tire rolling resistance analysis method according to claim 6 , wherein the road surface model is a drum that abuts against the tire and rotates relative to the tire. is there.
The invention according to claim 8 is the tire rolling resistance analysis method according to claim 6 or claim 7 , wherein the analysis is performed under conditions where the tire rolls at a constant speed. .
According to a ninth aspect of the present invention, the numerical analysis model created by the tire numerical analysis model creation method according to any one of the first to fifth aspects is rolled on a road surface model and the tire is rotated. The process in which the speed decreases from the initial speed due to the rolling resistance is analyzed to determine the rolling resistance of the tire.

本発明によれば、タイヤを構成するゴム部材の各要素に与える粘弾性係数を求める際に、上記タイヤを弾性体とした数値解析モデルを用いて転動解析を行って上記数値解析モデルの各ゴム要素の歪の振幅と周波数を算出した後、上記ゴム部材を構成するゴム材料の粘弾性試験を上記算出された歪の振幅と周波数で実施して上記ゴム材料の粘弾性特性を計測し、この計測された粘弾性特性を用いて粘弾性係数を求めるようにしたので、タイヤを構成するゴム部材を上記算出された粘弾性係数を有する粘弾性体とした、実際のタイヤに近い特性を有するタイヤモデルを作成することができる。
また、上記タイヤモデルを路面モデル上で転動させる解析を行って、上記タイヤに発生する前後力を算出し、この算出された前後力の大きさから当該タイヤの転がり抵抗を求めるようにしたので、タイヤの転がり抵抗を精度よくシミュレーションすることができる。
このとき、上記数値解析モデルとして、トレッドパターンがモデル化されている数値解析モデルを用いるとともに、上記路面のモデルを上記タイヤに当接し、上記タイヤに対して相対的に回転するドラムとすれば、実際に用いられているタイヤの転がり抵抗を精度よくシミュレーションすることができる。
更に、上記数値解析モデルとして、タイヤをホイールに組み付けた数値解析モデルを用いれば、解析精度を更に向上させることができる。
According to the present invention, when obtaining the viscoelastic coefficient given to each element of rubber members constituting the tire, each of the numerical analysis models performed rolling analyzed using numerical analysis model of said tire and elastic after calculating the amplitude and frequency of the distortion of the rubber element, a viscoelastic test of rubber material forming the rubber member is performed in amplitude and frequency of the distortion which is calculated above to measure the viscoelastic properties of the rubber material Since the viscoelasticity coefficient is obtained using the measured viscoelasticity characteristics, the rubber member constituting the tire is a viscoelastic body having the calculated viscoelasticity coefficient, and the characteristics close to those of an actual tire are obtained. A tire model can be created.
Also, because the tire model was analyzed to roll on the road surface model, the longitudinal force generated in the tire was calculated, and the rolling resistance of the tire was determined from the calculated longitudinal force. The rolling resistance of the tire can be accurately simulated.
At this time, if a numerical analysis model in which a tread pattern is modeled is used as the numerical analysis model, and the road surface model is in contact with the tire and is a drum that rotates relative to the tire, It is possible to accurately simulate the rolling resistance of tires that are actually used.
Furthermore, as the numerical analysis model, by using the numerical analysis model assembled tire to the wheel, it is possible to further improve the analysis accuracy.

以下、本発明の最良の形態について、図面に基づき説明する。
図1(a)は、本最良の形態に係るタイヤ・ホイール組立体の数値解析モデル10の概要を示す図で、図1(b)は上記数値解析モデル10に用いられるタイヤモデル11の断面図である。なお、上記数値解析モデル10はタイヤモデル11とホイールモデルとから成るが、(a)図では、ホイールモデルについては省略してある。
上記数値解析モデル10では、タイヤモデル11については、トレッド部11aやサイド部11bなどのゴム部材とビードワイヤ11rとをソリッド要素でモデル化し、ベルト11p,カーカスプライ11q等の補強部材はシェル要素でモデル化している。なお、上記ベルト11p,カーカスプライ11q等の補強部材を膜要素、リバー要素でモデル化することも可能である。また、上記ビードワイヤ11rは、複数本のスチールコード全体を含むソリッド要素でモデル化しているが、それぞれのスチールコードを個別にソリッド要素、リバー要素、ビーム要素でモデル化することも可能である。
また、本例の数値解析モデル10では、ホイールについてはタイヤビード部に接するホイールリム部のみをモデル化した(図9参照)が、車軸に接続されるディスク部についてもモデル化することは可能である。一方、路面20は、平坦な剛体シェル要素でモデル化したり、実際の路面凹凸をモデル化したりすることも可能であるが、一般に、実タイヤの転がり抵抗計測はドラム上でタイヤを転動させて行なわれており、ドラム上では、その曲率のため、タイヤ接地部の回転方向長さが平坦路面と異なる。すなわち、接地部長さが相違すると、タイヤ各部、特に、トレッドゴム部の応力、歪の振幅、周波数に影響を及ぼす。そこで、本例では、ドラム上で計測した転がり抵抗値を精度よく推定するため、路面モデルとして、図2に示すような、路面20をタイヤ転動試験に用いられているドラムでモデル化したドラムモデル20Dを用い、このドラムモデル20D上で上記タイヤ・ホイール組立体の数値解析モデル10を転動させて数値解析するようにすれば、転がり抵抗の推定精度を更に向上させることができる。
また、タイヤを転動させる方法としては、車軸周りにタイヤ、ホイールが自由に回転するように境界条件を設定したり、ジョイント要素を使う等のモデル作成を行い、路面または車軸のどちらか一方を固定し、もう一方をタイヤ前後方向に並行移動させることで解析できる。更には、タイヤにスリップ角やキャンバー角を付与したり、タイヤにスリップ角やキャンバー角がついたように路面を移動させることも可能である。
Hereinafter, the best mode of the present invention will be described with reference to the drawings.
FIG. 1A is a diagram showing an outline of a numerical analysis model 10 of a tire / wheel assembly according to the best mode, and FIG. 1B is a cross-sectional view of a tire model 11 used in the numerical analysis model 10. It is. The numerical analysis model 10 includes a tire model 11 and a wheel model, but the wheel model is omitted in FIG.
In the numerical analysis model 10 described above, for the tire model 11, the rubber member such as the tread portion 11a and the side portion 11b and the bead wire 11r are modeled as solid elements, and the reinforcing members such as the belt 11p and the carcass ply 11q are modeled as shell elements. It has become. It is also possible to model reinforcing members such as the belt 11p and the carcass ply 11q with membrane elements and river elements. The bead wire 11r is modeled by a solid element including a plurality of steel cords, but each steel cord can be individually modeled by a solid element, a river element, and a beam element.
Further, in the numerical analysis model 10 of this example, only the wheel rim portion that contacts the tire bead portion is modeled with respect to the wheel (see FIG. 9), but it is also possible to model the disc portion connected to the axle. is there. On the other hand, the road surface 20 can be modeled by a flat rigid shell element or an actual road surface unevenness can be modeled. In general, the rolling resistance measurement of an actual tire is performed by rolling the tire on a drum. On the drum, due to its curvature, the rotational length of the tire ground contact portion is different from that of a flat road surface. That is, if the length of the ground contact portion is different, it affects the stress, strain amplitude, and frequency of each portion of the tire, particularly the tread rubber portion. Therefore, in this example, in order to accurately estimate the rolling resistance value measured on the drum, as a road surface model, a drum in which the road surface 20 is modeled with a drum used in a tire rolling test as shown in FIG. If the numerical analysis model 10 of the tire / wheel assembly is rolled on the drum model 20D and the numerical analysis is performed using the model 20D, the estimation accuracy of the rolling resistance can be further improved.
In addition, as a method of rolling the tire, create a model such as setting boundary conditions so that the tire and wheel rotate freely around the axle, and using joint elements, etc., and either the road surface or the axle is It can be analyzed by fixing and moving the other side in the longitudinal direction of the tire. Furthermore, it is possible to give the tire a slip angle or a camber angle, or to move the road surface so that the tire has a slip angle or a camber angle.

次に、上記タイヤ・ホイール組立体の数値解析モデル10を用いて、タイヤの転がり抵抗を求める方法について説明する。
タイヤの転がり抵抗は、ゴムの粘弾性特性により決まることが知られており、粘性が大きいほど転がり抵抗は大きい。また、ゴムの粘弾性特性は、歪の振幅、周波数、温度で変化する。そこで、実際のタイヤ転がり抵抗を精度よく解析するためには、タイヤ転動中の各要素に、その歪の振幅、周波数、温度に応じた粘弾性特性を与えてやる必要がある。
定常回転状態においては、タイヤの温度は定常値になっているので、この定常温度でのゴムの粘弾性特性をゴム材料試験にて計測すればよいが、歪の振幅、周波数については予測することが困難であるので、本例では、はじめにゴム材料を弾性体と見なして、歪の振幅、周波数を求め、この歪の振幅、周波数における粘弾性特性を上記ゴム材料に与えたタイヤモデル11を作成し、この新たに作成されたタイヤモデル11を用いた数値解析モデル10を用いて再度転動解析を行いタイヤの転がり抵抗を数値解析する。
図3は、本発明によるタイヤの転がり抵抗の解析方法の一例を示すフローチャートで、本例では、まず、路面をドラムでモデル化し、ゴム部材を弾性体としてモデル化した弾性モデルを用いて、路面上を一定速度(例えば、30km/hr)にてタイヤが転動する解析を行なって、タイヤモデル11の各ゴム要素に発生する歪波形(時系列波形)を求める(ステップS11)。なお、上記弾性モデルでは材料の粘性をモデル化していないため、前後力は0となる。
図4は、タイヤトレッド部11aのゴム要素に発生する歪の6成分(ε11,ε22,ε33,ε12,ε23,ε31)の時間変化を示す図で、歪成分により振幅、周期が異なっていることがわかる。また、タイヤサイド部11bのゴム要素に発生する歪の6成分の時間変化は、図5に示すように、上記図4に示したタイヤトレッド部とは大きく異なっている。
このように、タイヤ各部での応力と歪の振幅と周波数とは異なっているので、これらを全て同じ条件にて各ゴム部材の粘弾性試験を実施すると非常に多くの計測を実施する必要がある。そこで、本例では、ゴム材料を弾性体と見なしたときの歪の振幅と周波数を求め(ステップS12)た後、ゴム材料の粘弾性試験を上記求められた歪の振幅と周波数で実施(ステップS13)して、上記ステップS11の解析結果に最も近い粘弾性特性から粘弾性材料定数である緩和弾性率(G)を算出する(ステップS14)。これにより、粘弾性特性試験の回数を大幅に低減することができる。図6は上記歪の振幅と周波数を求める方法を示す図で、上記歪の各成分の時間波形から、歪波形の最大振幅を求めてこれを歪の振幅とし、その立ち上がりから立ち下がりまでの時間である歪周期を求め、この歪周期の逆数を歪み周波数とし、この求められた歪の振幅と周波数におけるゴム部材の粘弾性特性を計測する。
Next, a method for determining the rolling resistance of the tire using the numerical analysis model 10 of the tire / wheel assembly will be described.
It is known that the rolling resistance of a tire is determined by the viscoelastic properties of rubber. The higher the viscosity, the higher the rolling resistance. Also, the viscoelastic properties of rubber vary with strain amplitude, frequency, and temperature. Therefore, in order to accurately analyze the actual tire rolling resistance, it is necessary to give viscoelastic characteristics corresponding to the amplitude, frequency, and temperature of the strain to each element during tire rolling.
Since the tire temperature is a steady value in the steady rotation state, the viscoelastic properties of the rubber at this steady temperature may be measured by a rubber material test, but the strain amplitude and frequency should be predicted. In this example, first, the rubber material is regarded as an elastic body, the amplitude and frequency of the strain are obtained, and the tire model 11 in which viscoelastic characteristics at the amplitude and frequency of the strain are given to the rubber material is created. Then, the rolling analysis is performed again using the numerical analysis model 10 using the newly created tire model 11, and the rolling resistance of the tire is numerically analyzed.
FIG. 3 is a flowchart showing an example of a tire rolling resistance analysis method according to the present invention. In this example, first, the road surface is modeled using an elastic model in which a road surface is modeled as a drum and a rubber member is modeled as an elastic body. An analysis of the rolling of the tire at a constant speed (for example, 30 km / hr) is performed to obtain a distortion waveform (time-series waveform) generated in each rubber element of the tire model 11 (step S11). The elastic model does not model the viscosity of the material, so the longitudinal force is zero.
FIG. 4 is a diagram showing temporal changes of six components (ε 11 , ε 22 , ε 33 , ε 12 , ε 23 , ε 31 ) of strain generated in the rubber element of the tire tread portion 11a. It can be seen that the periods are different. Further, as shown in FIG. 5, the temporal change of the six components of strain generated in the rubber element of the tire side portion 11b is greatly different from the tire tread portion shown in FIG.
As described above, since the amplitude and frequency of stress and strain at each part of the tire are different, it is necessary to carry out very many measurements when the viscoelasticity test of each rubber member is performed under the same conditions. . Therefore, in this example, after obtaining the amplitude and frequency of strain when the rubber material is regarded as an elastic body (step S12), the viscoelasticity test of the rubber material is performed with the obtained amplitude and frequency of strain ( Then, the relaxation elastic modulus (G), which is a viscoelastic material constant, is calculated from the viscoelastic property closest to the analysis result of step S11 (step S14). Thereby, the frequency | count of a viscoelastic property test can be reduced significantly. FIG. 6 is a diagram showing a method for obtaining the amplitude and frequency of the distortion. The maximum amplitude of the distortion waveform is obtained from the time waveform of each component of the distortion, and this is used as the distortion amplitude. The strain period is determined, the reciprocal of the strain period is set as the strain frequency, and the viscoelastic characteristics of the rubber member at the determined strain amplitude and frequency are measured.

なお、ゴム部材の粘弾性特性試験を剪断入力と引張り入力の双方で行う場合には、それぞれの歪について、タイヤ内部での歪振幅と周波数を求めて試験に利用すればよい。また、どちらか片方の試験のみを行う場合には、歪6成分のタイヤ内部での歪振幅と周波数の平均値を用いてもよいし、歪6成分の中の最大の歪振幅を有する歪成分の歪振幅と周波数を用いてもよい。あるいは、転がり抵抗に大きな影響を与える剪断歪3成分のタイヤ内部での歪振幅と周波数の平均値を用いたり、剪断歪3成分の中の最大の歪振幅を有する歪成分の歪振幅と周波数を用いてもよい。
上記粘弾性特性は、周知の時間緩和型の試験や周波数変動型の試験を行えばよい。上記の時間緩和型の試験結果は容易に緩和弾性率のProny級数へ近似できる。一方、周波数変動型の試験を行った場合には、その結果で得られる貯蔵弾性率(G’)と損失弾性率(G”)とを緩和弾性率(G)へ変換する必要があるが、この変換には、下記の式(1)で表わされるNinomiyaの近似を用いることができる。
G(ω)=G’(ω)−0.4・G”(0.4ω)+0.01・G”(10ω)‥‥(1)
ω=2πf 〜 f:試験周波数
(例えば、Ninomiya,K and Ferry,J.D.”Some Approximate Equations Useful in the Phenomenological Treatment of Linear Viscoelastic Data”,Journal of Colloid Science,14,36-48,1959)
なお、上記では剪断型試験を仮定したが、引張型試験でも同様にして、各弾性係数E,E’,E”を求めることができる。
When the viscoelastic property test of the rubber member is performed with both shear input and tensile input, the strain amplitude and frequency inside the tire may be obtained and used for the test for each strain. When only one of the tests is performed, the average value of the strain amplitude and the frequency within the tire of the six strain components may be used, or the strain component having the maximum strain amplitude among the six strain components. The distortion amplitude and frequency may be used. Alternatively, the average value of the strain amplitude and the frequency within the tire of the three components of the shear strain that greatly affects the rolling resistance is used, or the strain amplitude and the frequency of the strain component having the maximum strain amplitude among the three components of the shear strain are used. It may be used.
For the viscoelastic characteristics, a known time relaxation type test or frequency variation type test may be performed. The above time relaxation type test results can be easily approximated to the Prony series of relaxation modulus. On the other hand, when a frequency variation type test is performed, it is necessary to convert the storage elastic modulus (G ′) and loss elastic modulus (G ″) obtained as a result thereof into relaxation elastic modulus (G). Ninomiya's approximation represented by the following formula (1) can be used for this conversion.
G (ω) = G ′ (ω) −0.4 · G ″ (0.4ω) + 0.01 · G ″ (10ω) (1)
ω = 2πf to f: test frequency (for example, Ninomiya, K and Ferry, JD “Some Approximate Equations Useful in the Phenomenological Treatment of Linear Viscoelastic Data”, Journal of Colloid Science, 14, 36-48, 1959)
In addition, although the shear type test was assumed in the above, each elastic modulus E, E ', E "can be calculated | required similarly also with a tension type test.

本例では、上記粘弾性特性試験で得られた結果を緩和弾性率のProny級数へ近似してゴム材料の粘弾性材料定数を求め、ゴム部材を上記求められた粘弾性材料定数を有する粘弾性体として、タイヤモデル11を再構築してタイヤ・ホイール組立体の数値解析モデル10を作成し(ステップS15)た後、上記タイヤ・ホイール組立体の数値解析モデル10を用いて、上記ステップS11と同様の転動解析を行って前後力を求めて転がり抵抗の値を解析する(ステップS16)。上記新たに作成されたタイヤ・ホイール組立体の数値解析モデル10では材料に粘性が考慮されているので、前後力、すなわち、転がり抵抗が発生し、これにより、接地面が進行方向後ろに変位する。したがって、上記変位を与える力である前後力の値を転がり抵抗とすれば、転がり抵抗を精度よく求めることができる。
なお、上記転動解析は、タイヤがドラム上を一定速度にて転動するとして行なったが、これは、ゴム部材に粘性を考慮した場合には、上記のように、タイヤ転動時に前後方向に進行を抑制する力が働き、このため、初期速度を与えた解析を行うと、ゴム物性、構造、形状、パターンなどの異なるタイヤでは、速度が異なってしまい精度のよい比較ができなくなる恐れがあるからである。したがって、本例のように、一定速度にて転動する解析を行えば、精度の高い解析を行うことができる。
なお、上記解析した変位量は、実測した変位量を100とすると90であり、本発明による解析により、実測に近い結果を得ることができることが確認された。なお、実施のタイヤの転がり抵抗はタイヤと路面の摩擦によるものやタイヤの空気抵抗により発生するものもあるので、当然ながら、解析で得られた値は実際の転がり抵抗より小さくなる。
In this example, the viscoelastic material constant of the rubber material is obtained by approximating the result obtained in the viscoelastic property test to the Prony series of relaxation elastic modulus, and the viscoelasticity of the rubber member having the obtained viscoelastic material constant is obtained. The tire model 11 is reconstructed as a body to create a numerical analysis model 10 of the tire / wheel assembly (step S15), and then the numerical analysis model 10 of the tire / wheel assembly is used. The same rolling analysis is performed to determine the longitudinal force and the rolling resistance value is analyzed (step S16). In the newly created numerical analysis model 10 of the tire and wheel assembly, since the viscosity is considered in the material, a longitudinal force, that is, rolling resistance is generated, and thereby the ground contact surface is displaced backward in the traveling direction. . Therefore, if the value of the longitudinal force, which is the force that gives the displacement, is the rolling resistance, the rolling resistance can be obtained with high accuracy.
The rolling analysis was performed on the assumption that the tire rolls on the drum at a constant speed. However, when the viscosity of the rubber member is taken into account, as described above, the rolling analysis is performed when the tire rolls. Therefore, if the analysis is performed with the initial speed given, the tires with different rubber properties, structures, shapes, patterns, etc. may have different speeds, making it impossible to make accurate comparisons. Because there is. Therefore, if an analysis of rolling at a constant speed is performed as in this example, a highly accurate analysis can be performed.
The analyzed displacement amount is 90 when the actually measured displacement amount is 100, and it was confirmed by the analysis according to the present invention that a result close to the actual measurement can be obtained. In addition, since the rolling resistance of the actual tire may be caused by friction between the tire and the road surface or may be generated by the air resistance of the tire, naturally, the value obtained by the analysis is smaller than the actual rolling resistance.

このように、本最良の形態では、路面をドラムでモデル化し、タイヤのゴム部材を弾性体としてモデル化して、路面上を一定速度にてタイヤが転動する解析を行ない、これにより得られたタイヤの各ゴム要素に発生する歪波形から、上記ゴム材料の歪の振幅と周波数を求めた後、ゴム材料の粘弾性試験を上記求められた歪の振幅と周波数で実施して、上記ゴム材料の粘弾性率を算出し、この粘弾性率を用いてタイヤモデルを作成するようにしたので、ゴム部材に実際の特性に近い粘性を与えたタイヤモデルを得ることができる。また、このタイヤモデルを用いてタイヤ・ホイール組立体の数値解析モデル10を作成して再度転動解析を行って前後力を算出して、転がり抵抗の値を求めるようにしたので、タイヤの転がり抵抗を精度よくシミュレーションすることができる。
また、本例では、ゴム材料を弾性体と見なしたときの歪の振幅と周波数に基づいて上記ゴム材料の粘弾性試験を実施して粘弾性材料定数を求めるようにしたので、効率よく粘弾性材料定数を求めることができ、解析の効率を大幅に向上させることができる。
Thus, in this best mode, the road surface is modeled as a drum, the rubber member of the tire is modeled as an elastic body, and the tire rolls at a constant speed on the road surface, and the analysis is performed. After obtaining the strain amplitude and frequency of the rubber material from the strain waveform generated in each rubber element of the tire, the rubber material is subjected to a viscoelasticity test with the obtained strain amplitude and frequency. Since the viscoelastic modulus is calculated and a tire model is created using this viscoelastic modulus, a tire model in which the rubber member is given a viscosity close to the actual characteristic can be obtained. Also, a tire / wheel assembly numerical analysis model 10 was created using this tire model, and the rolling analysis was performed again to calculate the longitudinal force, so that the value of the rolling resistance was obtained. The resistance can be simulated accurately.
In this example, since the viscoelasticity test of the rubber material is performed based on the amplitude and frequency of strain when the rubber material is regarded as an elastic body, the viscoelastic material constant is obtained. The elastic material constant can be obtained, and the efficiency of analysis can be greatly improved.

なお、上記最良の形態では、ゴム材料を弾性体と見なしたときの歪の振幅と周波数を求めるとともに、ゴム材料の粘弾性試験を上記求められた歪の振幅と周波数で実施して、弾性モデルによる解析結果に最も近い歪の振幅と周波数での粘弾性係数を用いて粘弾性材料定数を求めるようにしたが、歪量と周波数におけるゴム部材の粘弾性特性を予め計測しておき、この計測された粘弾性特性のうち、上記解析結果に近い粘弾性試験結果を補間するようにすれば、解析精度は更に向上する。あるいは、上記タイヤ・ホイール組立体の数値解析モデル10を用いてタイヤ各部分の歪の振幅と周波数とを測定した結果から粘弾性材料定数を求め、これを上記タイヤ・ホイール組立体の数値解析モデル10の粘弾性材料定数に置換えて再度数値解析すれば、解析精度を更に向上させることができる。また、上記操作を、求められた粘弾性材料定数がほぼ一定の値になるまで繰り返すようにすれば、解析精度を一層向上させることができる。
また、上記例では、タイヤに使用されるゴム部材の粘弾性特性試験を行う際に、弾性モデルの転動解析から求めた歪の振幅と周波数を試験条件としたが、応力成分に対しても上記と同様の判断を行い、この応力成分に対する歪成分で試験を行うことも可能である。また、この場合には、主歪を算出し、絶対値の一番大きい主歪のタイヤ内部での歪振幅と周波数の平均値を用いたり、主歪3成分の平均、主歪2成分の平均からタイヤ内部での歪振幅と周波数の平均値を求めて粘弾性特性試験に使うことも可能である。また、同様に、主応力についても上記主歪と同様のことを行うことができる。
ところで、タイヤの転がり抵抗は、色々な速度条件下で必要である。このように速度条件が異なる場合の転がり抵抗を推定するためには、上記一定速度にてタイヤが転動する解析を複数回繰返し行えばよいが、求めたい速度で最も速い速度を初期速度とし、転がり抵抗にて減速する解析(惰行解析)を行うようにすれば、連続した速度条件での転がり抵抗を容易に求めることができるので、各速度における転がり抵抗を、更に効率よく推定することができる。
また、転がり抵抗の小さなタイヤについては、擬似的にブレーキを付加して早くさせることも可能である。このブレーキ力は、実タイヤで発生する空気抵抗やドラムや実車などの試験機各部の回転摩擦抵抗分と同じ程度の大きさにすることが望ましい。
In the best mode, the amplitude and frequency of strain when the rubber material is regarded as an elastic body are obtained, and the viscoelasticity test of the rubber material is performed with the obtained amplitude and frequency of strain, and the elasticity is obtained. The viscoelastic material constant was calculated by using the viscoelastic coefficient at the strain amplitude and frequency closest to the analysis result by the model, but the viscoelastic characteristics of the rubber member at the strain amount and frequency were measured in advance. If the viscoelasticity test results close to the above analysis results are interpolated among the measured viscoelastic properties, the analysis accuracy is further improved. Alternatively, a viscoelastic material constant is obtained from a result of measuring the amplitude and frequency of strain in each portion of the tire using the numerical analysis model 10 of the tire / wheel assembly, and this is obtained as a numerical analysis model of the tire / wheel assembly. If the numerical analysis is performed again with the viscoelastic material constant of 10, the analysis accuracy can be further improved. Moreover, if the above operation is repeated until the obtained viscoelastic material constant reaches a substantially constant value, the analysis accuracy can be further improved.
In the above example, when the viscoelastic property test of the rubber member used in the tire was performed, the strain amplitude and frequency obtained from the rolling analysis of the elastic model were used as the test conditions. It is also possible to make a determination similar to the above and perform a test with a strain component corresponding to this stress component. In this case, the main strain is calculated and the average value of the strain amplitude and frequency inside the tire having the largest absolute value is used, or the average of the three main strain components and the average of the two main strain components. It is also possible to obtain the average value of strain amplitude and frequency inside the tire from the above and use it in the viscoelastic property test. Similarly, the main stress can be the same as the main strain.
Incidentally, the rolling resistance of the tire is necessary under various speed conditions. In order to estimate the rolling resistance when the speed conditions are different as described above, the analysis of rolling the tire at the constant speed may be repeated a plurality of times, but the fastest speed to be obtained is set as the initial speed, If the analysis that decelerates by rolling resistance (coasting analysis) is performed, the rolling resistance under continuous speed conditions can be easily obtained, so that the rolling resistance at each speed can be estimated more efficiently. .
In addition, a tire with a small rolling resistance can be accelerated by adding a brake in a pseudo manner. It is desirable that the braking force be as large as the air resistance generated in the actual tire and the rotational frictional resistance of each part of the test machine such as a drum or an actual vehicle.

また、上記例では、タイヤ回転方向に対して同じ要素が並んでいるモデルを採用したが、図7に示すような、ブロックパターンを有するタイヤなどでは、トレッドゴムが周方向に連続していないので、トレッドパターンを考慮してモデル化する必要がある。これは、トレッドパターンのあるタイヤをモデル化したタイヤモデル11Zでは、同図の要素11mと要素11nのように、タイヤ断面内では同じ位置にある要素でも、それぞれのトレッドブロック内部では、応力、歪の時刻履歴が異なるからである。すなわち、図8(a)に示すように、タイヤ転動に伴いトレッドブロックには剪断と曲げ変形が発生し、この変形はトレッドブロック内の位置、具体的には、踏込み側に位置する要素11mと蹴り出し側に位置する要素11nとで異なる変化を示す。すなわち、図8(b)に示すように、歪の時刻履歴を比較すると、踏込み側に位置する要素11mでは、踏み込み時に大きな歪が生じるが、蹴り出し側に位置する要素11nでは踏み込み時よりも蹴り出し時の歪の方が大きくなる。したがって、上記タイヤモデル11Zのように、トレッドパターンを考慮してモデル化するようにすれば、トレッドパターンブロック内部のそれぞれの場所での応力と歪を考慮することができるので、転がり抵抗を更に精度よく推定することができる。   In the above example, a model in which the same elements are arranged in the tire rotation direction is used. However, in a tire having a block pattern as shown in FIG. 7, the tread rubber is not continuous in the circumferential direction. It is necessary to model in consideration of the tread pattern. This is because, in the tire model 11Z in which a tire having a tread pattern is modeled, even in an element at the same position in the tire cross section, such as the element 11m and the element 11n in FIG. This is because the time histories are different. That is, as shown in FIG. 8 (a), shearing and bending deformation occur in the tread block as the tire rolls, and this deformation occurs at a position in the tread block, specifically, the element 11m located on the stepping side. And the element 11n located on the kicking side show different changes. That is, as shown in FIG. 8B, when comparing the strain time histories, the element 11m located on the stepping side has a large distortion when stepped on, but the element 11n located on the kicking side has a larger strain than when stepping on. The distortion when kicking out is greater. Therefore, if the tire model 11Z is modeled in consideration of the tread pattern, the stress and strain at each location inside the tread pattern block can be taken into account, so that the rolling resistance is more accurate. Can be estimated well.

また、上記例では、タイヤが定常状態にありタイヤ各部の温度は一定であるとして解析したが、タイヤの転動に伴うゴムの粘弾性による発熱は、空気やホイールに伝熱する際、一定速度で転動した場合でも、発熱と伝熱のバランスの取れた状態で各部は定常温度になる。すなわち、タイヤは、温度分布を有する。したがって、ゴム部材に粘弾性を与えることにより、タイヤ各部での定常状態での温度分布を推定することができるので、この温度分布に基づいて、上記ゴム部材の各要素の粘弾性特性を、当該温度の粘弾性特性に置換えてやれば、より精度の高い粘弾性特性を与えることができ、ひいては、より精度のよい転がり定数を推定することができる。なお、上記当該温度の粘弾性特性は、上記ステップS12の粘弾性特性試験において、温度を変えて行えばよい。
また、上記数値解析モデル10は、タイヤビード部がホイールリム部に接するように組み付けた状態をモデル化しているが、タイヤをホイールに組み付ける解析を行って、大きな歪や応力が発生している部分が明るくなるように表示してみると、図9に示すように、タイヤビード部11kのホイールリム部12に接している部分で大きな歪や応力が発生していることがわかる。したがって、タイヤをホイールに組み付ける解析を予め行って、上記部分に予め歪や応力を与えたモデルを作成し、このモデルを用いて解析するようにすれば、転がり抵抗を更に精度よく推定することができる。
In the above example, it was analyzed that the tire was in a steady state and the temperature of each part of the tire was constant, but the heat generated by the viscoelasticity of the rubber accompanying the rolling of the tire was constant when transferring heat to the air or the wheel. Even when rolling at, each part reaches a steady temperature with a balance between heat generation and heat transfer. That is, the tire has a temperature distribution. Therefore, by giving viscoelasticity to the rubber member, it is possible to estimate the temperature distribution in the steady state in each part of the tire. Based on this temperature distribution, the viscoelastic characteristics of each element of the rubber member are If it is replaced with the viscoelastic property of temperature, a viscoelastic property with higher accuracy can be given, and as a result, a more accurate rolling constant can be estimated. In addition, what is necessary is just to change the viscoelastic characteristic of the said temperature by changing temperature in the viscoelastic characteristic test of said step S12.
Further, the numerical analysis model 10 models a state where the tire bead portion is in contact with the wheel rim portion, but a portion where a large strain or stress is generated by performing an analysis of attaching the tire to the wheel. As shown in FIG. 9, it can be seen that large strain and stress are generated in the portion of the tire bead portion 11k in contact with the wheel rim portion 12 as shown in FIG. Therefore, if the analysis of assembling the tire on the wheel is performed in advance, a model in which the above part is pre-strained and strained is created, and the analysis is performed using this model, the rolling resistance can be estimated more accurately. it can.

タイヤサイズがPSR215/45R17のタイヤをリム幅が6Jのホイールに組み込み、これをドラム上で転動させるモデルを作成し、タイヤの転がり抵抗を推定する解析を行ない、ドラム試験機(外径1.7m、スムーススチール)にてISO 8767に則り実測した転がり抵抗値と比較した結果を以下の表1に示す。なお、結果はいずれも、実測の転がり抵抗値を100とした指数で示した。
なお、転動速度は時速80km/hrとし、タイヤ内圧は200kPaに、荷重は4.0Nに設定した。
従来手法:トレッドパターンなしの弾性モデルで転動解析して応力と歪量を求め、これに粘弾性特性を考慮して転がり抵抗を推定した。
新手法1:トレッドパターンなしの弾性モデルで転動解析して各ゴム要素の歪の振幅と周波数を求め、この歪の振幅と周波数とから各ゴム要素の粘弾性係数を設定したモデルを作成し、再度転動解析して転がり抵抗を求めた。なお、解析条件は、ドラム上を一定速度で転動するものとした。
新手法2:トレッドパターンをモデル化した以外は、上記新手法1と同じ。
新手法3:ホイール組み付け解析を含む以外は、上記新手法2と同じ。

Figure 0004905915
表1から明らかなように、本発明による各ゴム要素の粘弾性係数を設定したモデルを作成し転動解析する手法(新手法1)では、従来の手法に比較して精度のよい転がり抵抗の解析を行うことができることが確認された。更に、トレッドパターンをモデル化して解析すれば(新手法2)、転がり抵抗の値を更に精度よく求めることができる。
また、予め、ホイール組み付け解析を行って、タイヤビード部に歪や応力を与えたモデルを作成し、このモデルを用いて解析すれば(新手法3)、実測に極めて近い転がり抵抗値を得ることができることが確認された。 A tire model with a tire size of PSR215 / 45R17 is incorporated into a wheel with a rim width of 6J, a model is created by rolling it on a drum, an analysis is performed to estimate the rolling resistance of the tire, and a drum testing machine (outer diameter 1. Table 1 below shows the result of comparison with the rolling resistance measured in accordance with ISO 8767 at 7 m (smooth steel). In addition, all the results are shown as an index with the measured rolling resistance value as 100.
The rolling speed was 80 km / hr, the tire internal pressure was set to 200 kPa, and the load was set to 4.0 N.
Conventional method: Rolling analysis was performed using an elastic model without a tread pattern to determine the amount of stress and strain, and rolling resistance was estimated considering viscoelastic characteristics.
New method 1: Rolling analysis is performed with an elastic model without a tread pattern to determine the strain amplitude and frequency of each rubber element, and a model in which the viscoelastic coefficient of each rubber element is set from the strain amplitude and frequency is created. Then, rolling analysis was performed again to determine rolling resistance. The analysis conditions were that the drum rolls at a constant speed.
New method 2: Same as New method 1 except that the tread pattern is modeled.
New method 3: Same as New method 2 except for including wheel assembly analysis.
Figure 0004905915
As is apparent from Table 1, the method (new method 1) in which a model in which the viscoelastic coefficient of each rubber element is set and rolling analysis is performed according to the present invention (new method 1) has a higher rolling resistance than the conventional method. It was confirmed that analysis can be performed. Further, if the tread pattern is modeled and analyzed (new method 2), the value of the rolling resistance can be obtained with higher accuracy.
Moreover, if wheel assembly analysis is performed in advance to create a model in which strain and stress are applied to the tire bead, and analysis is performed using this model (new method 3), a rolling resistance value extremely close to actual measurement can be obtained. It was confirmed that

このように、本発明によれば、実際に用いられているタイヤの転がり抵抗を効率的にかつ精度よくシミュレーションすることができるので、タイヤの設計・開発効率を向上させることができる。   Thus, according to the present invention, the rolling resistance of a tire that is actually used can be simulated efficiently and accurately, so that the design / development efficiency of the tire can be improved.

本発明の最良の形態に係るタイヤの転がり抵抗の解析モデルの概要を示す図である。It is a figure which shows the outline | summary of the analytical model of the rolling resistance of the tire which concerns on the best form of this invention. 本発明によるタイヤをドラム上で転動させる、タイヤの転がり抵抗の解析モデルの概要を示す面である。It is a surface which shows the outline | summary of the analytical model of the rolling resistance of a tire which rolls the tire by this invention on a drum. 本発明によるタイヤの転がり抵抗の解析方法の一例を示すフローチャートである。It is a flowchart which shows an example of the analysis method of the rolling resistance of the tire by this invention. タイヤトレッド部のゴム要素に発生する歪の6成分の時間変化を示す図である。It is a figure which shows the time change of six components of the distortion which generate | occur | produces in the rubber element of a tire tread part. タイヤサイド部のゴム要素に発生する歪の6成分の時間変化を示す図である。It is a figure which shows the time change of six components of the distortion which generate | occur | produces in the rubber element of a tire side part. 歪成分の振幅と周波数を求める方法を示す図である。It is a figure which shows the method of calculating | requiring the amplitude and frequency of a distortion component. ブロックパターンを有するタイヤのモデルの一例を示す図である。It is a figure which shows an example of the model of the tire which has a block pattern. トレッドブロックの変形と歪み状態を示す模式図である。It is a schematic diagram which shows the deformation | transformation and distortion state of a tread block. タイヤをホイールに組み付ける解析を行ったときの、タイヤビード部の歪及び応力の発生状態を示す図である。It is a figure which shows the generation | occurrence | production state of the distortion | strain and stress of a tire bead part when the analysis which assembles | attaches a tire to a wheel is performed. 従来の転がり抵抗の解析方法を示すフローチャートである。It is a flowchart which shows the analysis method of the conventional rolling resistance.

符号の説明Explanation of symbols

10 タイヤ・ホイール組立て体の数値解析モデル、11 タイヤモデル、
11a トレッド部、11b サイド部、11p ベルト、11q カーカスプライ、
11r ビードワイヤ、11k タイヤビード部、12 ホイールリム部、20 路面、20D ドラムモデル。
10 Numerical analysis model of tire / wheel assembly, 11 Tire model,
11a tread part, 11b side part, 11p belt, 11q carcass ply,
11r bead wire, 11k tire bead part, 12 wheel rim part, 20 road surface, 20D drum model.

Claims (9)

タイヤを有限個の要素に分割して数値解析モデルを作成する方法であって、
上記タイヤを構成するゴム部材を弾性体とした数値解析モデルを作成して、上記数値解析モデルを路面モデル上で転動させる解析を行い、上記数値解析モデルのゴム要素の歪の振幅と周波数を算出する第1のステップと、
上記ゴム部材を構成するゴム材料の粘弾性試験を上記算出された歪の振幅と周波数で実施して、上記ゴム材料の粘弾性特性を計測する第2のステップと、
上記計測された粘弾性特性から上記ゴム材料の粘弾性係数を算出する第3のステップと、
上記タイヤを構成するゴム部材を上記算出された粘弾性係数を有する粘弾性体とした新たな数値解析モデルを作成する第4のステップ、
とを備えたことを特徴とするタイヤの数値解析モデルの作成方法
A method of creating a numerical analysis model by dividing a tire into a finite number of elements,
Create a numerical analysis model using the rubber member that constitutes the tire as an elastic body, perform an analysis by rolling the numerical analysis model on the road surface model, and the strain amplitude and frequency of each rubber element of the numerical analysis model A first step of calculating
A second step of measuring a viscoelastic property of the rubber material by performing a viscoelasticity test of the rubber material constituting the rubber member at the calculated strain amplitude and frequency;
A third step of calculating a viscoelastic coefficient of the rubber material from the measured viscoelastic properties;
A fourth step of creating a new numerical analysis model in which the rubber member constituting the tire is a viscoelastic body having the calculated viscoelastic coefficient;
The method of creating numerical analysis model of the tire, characterized in that it comprises and.
上記路面モデルを、上記タイヤに当接し、上記タイヤに対して相対的に回転するドラムとしたことを特徴とする請求項1に記載のタイヤの数値解析モデルの作成方法。 2. The method for creating a numerical analysis model for a tire according to claim 1, wherein the road surface model is a drum that abuts on the tire and rotates relative to the tire. 上記第1のステップにおいてタイヤ各部の温度を解析し、第2のステップでは、上記温度条件に従って上記ゴム部材を構成するゴム材料の粘弾性特性を計測することを特徴とする請求項1または請求項2に記載のタイヤの数値解析モデルの作成方法。 Analyzing the temperature of the tire each part in the first step, the second step, according to claim 1 or claim, characterized in that to measure the viscoelastic properties of the rubber material forming the rubber member in accordance with the temperature condition 2. A method for creating a numerical analysis model of a tire according to 2 . 上記ゴム部材を弾性体とした数値解析モデル及び上記ゴム部材を粘弾性体とした新たな数値解析モデルは、トレッドパターンがモデル化されていることを特徴とする請求項1〜請求項のいずれかに記載のタイヤの数値解析モデルの作成方法。 New numerical model of the numerical analysis models and the rubber member in which the rubber member and the elastic body and the viscoelastic body, any of claims 1 to 3 in which the tread pattern is characterized in that it is modeled A method for creating a numerical analysis model of a tire according to claim 1. 上記ゴム部材を弾性体とした数値解析モデル及び上記ゴム部材を粘弾性体とした新たな数値解析モデルは、タイヤをホイールに組み付けたモデルであることを特徴とする請求項1〜請求項のいずれかに記載のタイヤの数値解析モデルの作成方法。 New numerical model with viscoelastic numerical analysis model and the rubber member in which the rubber member and the elastic body of claim 1 to claim 4, characterized in that the model assembled tire to the wheel A method for creating a numerical analysis model of a tire according to any one of the above. 請求項1〜請求項のいずれかに記載のタイヤの数値解析モデルの作成方法によって作成された数値解析モデルを路面モデル上で転動させる解析を行って、上記タイヤに発生する前後力を算出し、この算出された前後力の大きさから当該タイヤの転がり抵抗を求めるようにしたことを特徴とするタイヤの転がり抵抗の解析方法。 The longitudinal force generated in the tire is calculated by performing an analysis of rolling the numerical analysis model created by the method for creating the numerical analysis model of a tire according to any one of claims 1 to 5 on a road surface model. Then, the tire rolling resistance analysis method is characterized in that the rolling resistance of the tire is obtained from the calculated magnitude of the longitudinal force. 上記路面モデルを、上記タイヤに当接し、上記タイヤに対して相対的に回転するドラムとしたことを特徴とする請求項に記載のタイヤの転がり抵抗の解析方法。 7. The tire rolling resistance analysis method according to claim 6 , wherein the road surface model is a drum that abuts on the tire and rotates relative to the tire. 上記解析を一定速度にてタイヤが転動する条件下で行うことを特徴とする請求項または請求項に記載のタイヤの転がり抵抗の解析方法。 The tire rolling resistance analysis method according to claim 6 or 7 , wherein the analysis is performed under conditions where the tire rolls at a constant speed. 請求項1〜請求項のいずれかに記載のタイヤの数値解析モデルの作成方法によって作成された上記ゴム部材を粘弾性体とした新たな数値解析モデルを路面モデル上で転動させるとともに、タイヤの回転速度が初期速度から転がり抵抗により低下する過程を解析して、当該タイヤの転がり抵抗を求めるようにしたことを特徴とするタイヤの転がり抵抗の解析方法 A new numerical analysis model using the rubber member created by the method for creating a numerical analysis model for a tire according to any one of claims 1 to 5 as a viscoelastic body rolls on a road surface model, and the tire The tire rolling resistance analysis method is characterized in that the rolling resistance of the tire is obtained by analyzing a process in which the rotational speed of the tire decreases from the initial speed due to the rolling resistance .
JP2005327251A 2005-11-11 2005-11-11 Method for creating tire numerical analysis model and method for analyzing tire rolling resistance Active JP4905915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005327251A JP4905915B2 (en) 2005-11-11 2005-11-11 Method for creating tire numerical analysis model and method for analyzing tire rolling resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005327251A JP4905915B2 (en) 2005-11-11 2005-11-11 Method for creating tire numerical analysis model and method for analyzing tire rolling resistance

Publications (2)

Publication Number Publication Date
JP2007131209A JP2007131209A (en) 2007-05-31
JP4905915B2 true JP4905915B2 (en) 2012-03-28

Family

ID=38153214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005327251A Active JP4905915B2 (en) 2005-11-11 2005-11-11 Method for creating tire numerical analysis model and method for analyzing tire rolling resistance

Country Status (1)

Country Link
JP (1) JP4905915B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5304093B2 (en) * 2008-08-05 2013-10-02 横浜ゴム株式会社 Method and apparatus for simulating tire rolling resistance
JP5564889B2 (en) * 2009-10-20 2014-08-06 横浜ゴム株式会社 Viscoelasticity test method, tire simulation method, and tire simulation apparatus
KR101675362B1 (en) * 2012-04-11 2016-11-11 브리지스톤 어메리카스 타이어 오퍼레이션스, 엘엘씨 System and method for steady state simulation of rolling tire
JP7451965B2 (en) 2018-12-03 2024-03-19 住友ゴム工業株式会社 Calculation method, computer program and calculation device for tire rolling resistance

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003118328A (en) * 2001-10-12 2003-04-23 Sumitomo Rubber Ind Ltd Method for predicting rolling resistance of tire
JP2003175710A (en) * 2001-12-13 2003-06-24 Yokohama Rubber Co Ltd:The Forecasting method for tire characteristic, manufacturing method for tire, pneumatic tire, and program
JP4067934B2 (en) * 2002-10-22 2008-03-26 横浜ゴム株式会社 Tire performance prediction method using tire model, tire performance prediction program, and input / output device
JP4372515B2 (en) * 2003-11-04 2009-11-25 横浜ゴム株式会社 Durability prediction method of rotating body, computer program for durability prediction of rotating body, and durability prediction apparatus of rotating body
JP4307225B2 (en) * 2003-12-01 2009-08-05 横浜ゴム株式会社 Tire simulation method, tire simulation program, and wheel model
JP4469172B2 (en) * 2003-12-26 2010-05-26 住友ゴム工業株式会社 Tire simulation method
JP2005306174A (en) * 2004-04-20 2005-11-04 Toyo Tire & Rubber Co Ltd Tire performance predicting method

Also Published As

Publication number Publication date
JP2007131209A (en) 2007-05-31

Similar Documents

Publication Publication Date Title
US7415871B2 (en) Method of simulating rolling tire
EP1840552B1 (en) Tire transient response data calculating method, tire designing method, and vehicle motion predicting method
JP4469172B2 (en) Tire simulation method
JP4931430B2 (en) Tire temperature distribution prediction method and tire temperature distribution prediction calculation program
JP4163236B2 (en) Method and apparatus for evaluating tire cornering characteristics
JP2003118328A (en) Method for predicting rolling resistance of tire
JP4699682B2 (en) Tire temporal change prediction method, apparatus, program, and medium
JP2007131206A (en) Method and model for analyzing assembly of tire and wheel
JP4905915B2 (en) Method for creating tire numerical analysis model and method for analyzing tire rolling resistance
CN105431849B (en) Method for the rolling radius for emulating automobile tire
JP5515779B2 (en) Method for predicting physical quantity that tire contact surface receives from road surface, method for predicting tire wear, tire wear prediction device, and program
JP5284686B2 (en) Tire model creation method, tire model creation device, and tire model creation program
JP4486420B2 (en) Tire temporal change prediction method, apparatus, program, and medium
JPH11201875A (en) Method for simulating tire performance
WO2021111942A1 (en) Maximum friction coefficient estimation system and maximum friction coefficient estimation method
Nakanishi et al. Experimental validation of elliptical contact patch tire model
JP2011226991A (en) Rolling resistance prediction method and rolling resistance prediction apparatus
JP2006232138A (en) Tire behavior simulating method
JP6039210B2 (en) Prediction method of tire durability
JP5189318B2 (en) Method for predicting rolling characteristics of pneumatic tires
JP4326177B2 (en) Tire simulation method
JP4557630B2 (en) Tire behavior simulation method
JP4761753B2 (en) Simulation method
Yintao et al. Finite element modeling for steel cord analysis in radial tires
JP6312975B2 (en) Tire durability evaluation method and design method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4905915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250