JP4931127B2 - Corrosion-resistant conductive coating material and method for producing the same - Google Patents

Corrosion-resistant conductive coating material and method for producing the same Download PDF

Info

Publication number
JP4931127B2
JP4931127B2 JP2006308676A JP2006308676A JP4931127B2 JP 4931127 B2 JP4931127 B2 JP 4931127B2 JP 2006308676 A JP2006308676 A JP 2006308676A JP 2006308676 A JP2006308676 A JP 2006308676A JP 4931127 B2 JP4931127 B2 JP 4931127B2
Authority
JP
Japan
Prior art keywords
corrosion
fine particles
metal substrate
coating material
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006308676A
Other languages
Japanese (ja)
Other versions
JP2008121087A (en
Inventor
眞一郎 向畠
秀樹 温井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP2006308676A priority Critical patent/JP4931127B2/en
Publication of JP2008121087A publication Critical patent/JP2008121087A/en
Application granted granted Critical
Publication of JP4931127B2 publication Critical patent/JP4931127B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Non-Insulated Conductors (AREA)
  • Hybrid Cells (AREA)
  • Fuel Cell (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、金属基材に対して防食膜かつ導電膜として機能するπ共役系導電性高分子膜が形成された耐食導電被覆材料に関するものであり、特に酸性雰囲気下やハロゲン化物溶液など金属が腐食し易い環境で、長期に渡って優れた耐食性及び導電性を発揮する耐食導電被覆材料及びその製造方法に関するものである。   The present invention relates to a corrosion-resistant conductive coating material on which a π-conjugated conductive polymer film that functions as a corrosion-proof film and a conductive film is formed on a metal substrate, and in particular, a metal such as an acidic atmosphere or a halide solution is used. The present invention relates to a corrosion-resistant conductive coating material that exhibits excellent corrosion resistance and conductivity over a long period in a corrosive environment and a method for producing the same.

燃料電池用金属セパレータなどの用途に、高い防食能を有しかつ高導電性を有する耐食導電被覆材料が求められている。   Corrosion-resistant conductive coating materials having high anticorrosive ability and high conductivity are required for uses such as metal separators for fuel cells.

以下、従来の燃料電池セパレータ用材料を例に挙げ、背景技術を説明する。   Hereinafter, the background art will be described by taking a conventional fuel cell separator material as an example.

燃料電池用セパレータに求められる性能として、酸化剤ガスと隣接セルの燃料ガスを完全に分離するガスシール性、電圧低下による出力低下を防ぐ裏表間および面内で電子を伝導する高電子伝導性と良好な接触抵抗特性、プロトン伝導性電解質膜の膨潤収縮に伴う応力による破損を防ぐための機械的特性、高温で低酸性雰囲気における耐食性などが挙げられる。   The performance required for a fuel cell separator is a gas sealing property that completely separates the oxidant gas and the fuel gas of the adjacent cell, and high electron conductivity that conducts electrons between the front and back surfaces to prevent output reduction due to voltage drop. Good contact resistance characteristics, mechanical characteristics to prevent damage due to stress associated with swelling and shrinkage of the proton conductive electrolyte membrane, corrosion resistance in a low acid atmosphere at high temperatures, and the like.

上記セパレータは、一般的には樹脂含浸型等方性カーボンやカーボン/樹脂複合材料、あるいはステンレス鋼等の金属材料などで作製されている。   The separator is generally made of a resin-impregnated isotropic carbon, a carbon / resin composite material, or a metal material such as stainless steel.

樹脂含浸型等方性カーボンは高電気伝導性を有するが硬くて脆い材料であるために、ガス流路を形成するためには切削加工等の機械加工が必要となり、高価で生産性に劣るという問題がある。また、カーボン/樹脂複合材料は、安価で生産性が高い射出成法や圧縮成型法で作製できるが、多孔質絶縁樹脂とカーボン粒子との複合材料であるためにガス透過性が高い欠点があり、それを解決するためにセパレータ厚みを厚くすると内部抵抗が高くなり、燃料電池の電圧低下を引き起こす原因となる。   Resin-impregnated isotropic carbon has high electrical conductivity but is a hard and brittle material. Therefore, machining such as cutting is required to form a gas flow path, which is expensive and inferior in productivity. There's a problem. Carbon / resin composite materials can be manufactured by injection molding and compression molding methods that are inexpensive and highly productive. However, since they are composite materials of porous insulating resin and carbon particles, they have the disadvantage of high gas permeability. If the thickness of the separator is increased in order to solve this problem, the internal resistance increases, which causes a voltage drop in the fuel cell.

一方、金属セパレータは、機械的強度が高く、ガスシール性にも優れ、延性に富み、成型、加工性が容易であるといった特徴から、生産性が高く比較的安価なセパレータ材料として有望である。   On the other hand, a metal separator is promising as a separator material having high productivity and relatively low cost because of its features such as high mechanical strength, excellent gas sealability, excellent ductility, and easy molding and workability.

しかし、セパレータの使用環境は80℃〜120℃の高温で、pHが1〜2の酸性下であるために、金属セパレータでは、容易に腐食されて金属イオンが溶出し、プロトン伝導性電解質膜が劣化するという問題がある。そのため、セパレータにステンレス鋼やチタン等の耐食性に優れた金属材料を使用することが考えられるが、この耐食性は金属表面に形成される電気絶縁性を有する不動態皮膜に由来するものであり、その代償としてセパレータと電極との接触抵抗が増大するという問題点があり、電圧降下し電池性能を大きく低下させる。   However, since the separator is used at a high temperature of 80 ° C. to 120 ° C. and under an acidic pH of 1 to 2, the metal separator is easily corroded and the metal ions are eluted, and the proton conductive electrolyte membrane is formed. There is a problem of deterioration. Therefore, it is conceivable to use a metal material having excellent corrosion resistance such as stainless steel and titanium for the separator, but this corrosion resistance is derived from a passive film having electrical insulation formed on the metal surface. As a compensation, there is a problem that the contact resistance between the separator and the electrode increases, and the voltage drops to greatly reduce the battery performance.

良好な接触抵抗が得られ、なおかつ金属セパレータの耐食性を向上させるために、様々な方法が提案されている。例えば、特許文献1〜2に開示の燃料電池セパレータには、耐食性に優れたSUS316等の金属鋼板を基材として、該基材上にAu等の貴金属めっきを施すことによって、良好な接触抵抗と高耐食性を長期間達成する方法が提案されている。   Various methods have been proposed in order to obtain good contact resistance and improve the corrosion resistance of the metal separator. For example, in the fuel cell separator disclosed in Patent Documents 1 and 2, by using a metal steel plate such as SUS316 having excellent corrosion resistance as a base material, by applying a noble metal plating such as Au on the base material, good contact resistance and A method for achieving high corrosion resistance for a long period of time has been proposed.

しかしながら、特許文献1〜2の方法の場合、従来からあるSUS316等の金属基材に形成された貴金属めっき技術では、ピンホールが生じやすく、SUS316等の金属基材の表面を完全に被覆することは困難である。この技術ではSUS316等の金属表面を活性化し密着性を高めるために、極薄いNi中間層を設けるのが一般的であるが、これが原因で貴金属層とNi中間層の間で局部電池を形成してしまう。その結果、Ni中間層の溶解し、貴金属めっきが剥離してしまうという問題点が解決できていない。これを防ぐために貴金属めっき層の厚みを厚くする方法もあるが、工業的、コスト的にほぼ不可能に近く、ピンホールから溶出した金属イオンが固体高分子電解質の特性を低下させ、燃料電池の性能を劣化させる恐れがあった。   However, in the case of the methods of Patent Documents 1 and 2, the conventional noble metal plating technology formed on a metal base material such as SUS316 tends to cause pinholes, and the surface of the metal base material such as SUS316 is completely covered. It is difficult. In this technology, in order to activate a metal surface such as SUS316 and improve adhesion, it is common to provide an extremely thin Ni intermediate layer. This causes a local battery to be formed between the noble metal layer and the Ni intermediate layer. End up. As a result, the problem that the Ni intermediate layer melts and the noble metal plating peels cannot be solved. In order to prevent this, there is a method to increase the thickness of the noble metal plating layer, but it is almost impossible in terms of industrial and cost. The metal ions eluted from the pinhole deteriorate the characteristics of the solid polymer electrolyte, and the fuel cell There was a risk of degrading performance.

また、特許文献3に開示の燃料電池用セパレータでは、アニオン性樹脂またはカチオン性樹脂中に貴金属または導電性金属炭化物の粒子を分散させて電着塗装して焼付けを行うことによりにより、導電性被膜樹脂を金属基体に被覆させる方法が開示されている。   Further, in the fuel cell separator disclosed in Patent Document 3, a conductive coating is obtained by dispersing particles of noble metal or conductive metal carbide in an anionic resin or a cationic resin, electrodeposition coating, and baking. A method for coating a metal substrate with a resin is disclosed.

この場合、樹脂中に貴金属や炭化金属を混合すると腐食環境下であっても基材の腐食を防ぎ、導電性を保つことができるが、高い導電性を保持するにはこれらの微粒子を大量に必要とするため、工業的、コスト的にほぼ不可能に近い。そこでNiやステンレススチールフレークパウダーなどの耐食性の金属を用いてコストダウンする方法も考えられるが、これらは酸化被膜層によって基材を保護するため、高い導電性を得ることは難しいという問題点があった。   In this case, mixing noble metals or metal carbides in the resin can prevent corrosion of the base material even in a corrosive environment and maintain conductivity, but in order to maintain high conductivity, a large amount of these fine particles are required. Because it is necessary, it is almost impossible in terms of industrial and cost. Therefore, it is conceivable to reduce the cost by using a corrosion-resistant metal such as Ni or stainless steel flake powder. However, since these materials protect the substrate with an oxide film layer, it is difficult to obtain high conductivity. It was.

以上、燃料電池用セパレータ材料に関する従来技術を説明したが、耐食導電被覆材料に関しては、本出願人による特許文献4が開示されている。該特許文献には金属基材に導電性中間層を形成された後、π共役系導電性高分子層が形成されてなる耐食導電被覆材料が開示されているが、導電性中間層中に含まれる絶縁性の樹脂成分により、材料自身の電気抵抗が高くなりやすい問題点を抱えていた。さらに、導電性中間層は汎用金属との密着性が不十分であり、長時間経過とともに徐々に導電性が失われるという問題もあり、さらなる特性の向上が求められている。   As mentioned above, although the prior art regarding the separator material for fuel cells was demonstrated, the patent document 4 by the present applicant is disclosed regarding the corrosion-resistant conductive coating material. This patent document discloses a corrosion-resistant conductive coating material in which a conductive intermediate layer is formed on a metal substrate and then a π-conjugated conductive polymer layer is formed, but is included in the conductive intermediate layer. Due to the insulating resin component, the electrical resistance of the material itself tends to increase. Furthermore, the conductive intermediate layer has insufficient adhesion to a general-purpose metal, and there is a problem that the conductivity is gradually lost over time, and further improvement in characteristics is required.

特開2001−068129号公報JP 2001-068129 A 特開2000−021418号公報JP 2000-021418 A 特開2004−031166号公報JP 2004-031166 A 特開2006−167925号公報JP 2006-167925 A

本発明の目的は、上記した背景技術の問題点に鑑み、量産性に優れた金属基材に、耐食性と電気伝導性とに優れたπ共役系導電性高分子層を被覆し、良好な導電性と耐食性を兼ね備え、安価で量産性に優れた耐食導電被覆材料及びその製造方法を提供することを目的とする。   In view of the above-mentioned problems of the background art, the object of the present invention is to coat a metal substrate excellent in mass productivity with a π-conjugated conductive polymer layer excellent in corrosion resistance and electrical conductivity, thereby achieving good conductivity. An object of the present invention is to provide a corrosion-resistant conductive coating material that has both properties and corrosion resistance, is inexpensive and has excellent mass productivity, and a method for producing the same.

本発明者らは、鋭意研究を行った結果、表面が粗面加工された金属基材上に被覆されるπ共役系導電性高分子層の少なくとも一部が、該金属基材表面のエッチング孔内に付着された導電性微粒子を介して被覆されていることにより、良好な電気伝導性を保ちながら耐食性を兼備できることを見出し本発明の完成に至った。   As a result of intensive studies, the present inventors have found that at least a part of the π-conjugated conductive polymer layer coated on the metal substrate whose surface has been roughened has etched holes on the surface of the metal substrate. It has been found that by being coated via conductive fine particles adhering to the inside, it is possible to combine corrosion resistance while maintaining good electrical conductivity, and the present invention has been completed.

すなわち、本発明は以下に示すものである。   That is, the present invention is as follows.

(1)金属基材上にπ共役系導電性高分子層が形成されてなる耐食導電被覆材料において、
表面がエッチング加工された金属基材上に被覆されるπ共役系導電性高分子層の少なくとも一部が、
該エッチング孔内に付着された導電性微粒子を介して被覆されていることを特徴とする耐食導電被覆材料。
(1) In a corrosion-resistant conductive coating material in which a π-conjugated conductive polymer layer is formed on a metal substrate,
At least a part of the π-conjugated conductive polymer layer coated on the metal substrate whose surface is etched,
A corrosion-resistant conductive coating material, which is coated with conductive fine particles adhered in the etching hole.

(2)前記エッチング加工された金属基材表面の中心線平均表面粗さRa値がRa≧0.5μmの条件を満たすように粗面加工された金属基材であることを特徴とする前記(1)に記載の耐食導電被覆材料。   (2) The metal substrate roughened so that the center line average surface roughness Ra value of the etched metal substrate surface satisfies a condition of Ra ≧ 0.5 μm. The corrosion-resistant conductive coating material according to 1).

(3)前記金属基材が、
アルミニウム、チタン、鉄、銅およびその合金からなる群から選ばれる少なくとも1つの金属基材であることを特徴とする前記(1)又は(2)に記載の耐食導電被覆材料。
(3) The metal substrate is
The corrosion-resistant conductive coating material according to (1) or (2) above, which is at least one metal substrate selected from the group consisting of aluminum, titanium, iron, copper and alloys thereof.

(4)前記導電性微粒子が、樹脂バインダーを含まない黒鉛および/またはカーボンブラックからなる炭素微粒子であることを特徴とする前記(1)〜(3)のいずれかに記載の耐食導電被覆材料。   (4) The corrosion-resistant conductive coating material according to any one of (1) to (3), wherein the conductive fine particles are carbon fine particles composed of graphite and / or carbon black not containing a resin binder.

(5)前記導電性微粒子が、600℃以上で焼成されることにより得られる炭素微粒子であることを特徴とする前記(1)〜(4)のいずれかに記載の耐食導電被覆材料。   (5) The corrosion-resistant conductive coating material according to any one of (1) to (4), wherein the conductive fine particles are carbon fine particles obtained by firing at 600 ° C. or higher.

(6)用途が電気接点、端子および電極の材料であることを特徴とする前記(1)〜(5)のいずれかに記載の耐食導電被覆材料。   (6) The corrosion-resistant conductive coating material according to any one of (1) to (5), wherein the application is a material for electrical contacts, terminals and electrodes.

(7)用途が燃料電池用金属セパレータであることを特徴とする前記(1)〜(5)のいずれかに記載の耐食導電被覆材料。   (7) The corrosion-resistant conductive coating material according to any one of (1) to (5), wherein the use is a metal separator for a fuel cell.

(8)用途が色素増感型太陽電池用電極であることを特徴とする前記(1)〜(5)のいずれかに記載の耐食導電被覆材料。   (8) The corrosion-resistant conductive coating material according to any one of (1) to (5), wherein the use is an electrode for a dye-sensitized solar cell.

(9)金属基材上にπ共役系導電性高分子層が形成されてなる耐食導電被覆材料の製造方法において、
金属基材表面を脱脂・エッチングすることによって粗面加工する工程、
該エッチング孔内に導電性微粒子の分散溶液を含浸した後、乾燥することによってエッチング孔内に導電性微粒子を添着する工程、
エッチング孔内に過剰に添着した導電性微粒子の一部を除去し、金属基体の一部を露出する工程、
該金属表面をπ共役系導電性高分子層で被覆する工程
を包含することを特徴とする耐食導電被覆材料の製造方法。
(9) In the method for producing a corrosion-resistant conductive coating material in which a π-conjugated conductive polymer layer is formed on a metal substrate,
A process of roughening the surface of the metal substrate by degreasing and etching,
A step of impregnating the conductive fine particles in the etching holes by impregnating the etching fine holes with the dispersion solution of the conductive fine particles and then drying;
Removing a part of the conductive fine particles excessively attached in the etching hole and exposing a part of the metal substrate;
A method for producing a corrosion-resistant conductive coating material comprising the step of coating the metal surface with a π-conjugated conductive polymer layer.

(10)金属基材上にπ共役系導電性高分子層が形成されてなる耐食導電被覆材料の製造方法において、
金属基材表面を脱脂・エッチングすることによって粗面加工する工程、
該金属基材表面に黒鉛および/またはカーボンブラック材料を擦過することによってエッチング孔内に導電性微粒子を添着する工程、
エッチング孔内に過剰に添着した導電性微粒子の一部を除去し、金属基体の一部を露出する工程、
該金属表面をπ共役系導電性高分子層で被覆する工程
を包含することを特徴とする耐食導電被覆材料の製造方法。
(10) In the method for producing a corrosion-resistant conductive coating material in which a π-conjugated conductive polymer layer is formed on a metal substrate,
A process of roughening the surface of the metal substrate by degreasing and etching,
Attaching conductive fine particles in the etching hole by rubbing graphite and / or carbon black material on the surface of the metal substrate;
Removing a part of the conductive fine particles excessively attached in the etching hole and exposing a part of the metal substrate;
A method for producing a corrosion-resistant conductive coating material comprising the step of coating the metal surface with a π-conjugated conductive polymer layer.

本発明によれば、表面がエッチングなどにより粗面加工された金属基材上にπ共役系導電性高分子が形成された耐食導電被覆材料において、炭素微粒子、導電性酸化物微粒子または貴金属微粒子等からなる導電性微粒子がエッチング孔内へ付着され、該金属基材表面に付着された導電性微粒子を介してπ共役系導電性高分子層が被覆されていることで、金属基材とπ共役系導電性高分子層との密着性に優れ、導通性が著しく改善する。   According to the present invention, in a corrosion-resistant conductive coating material in which a π-conjugated conductive polymer is formed on a metal substrate whose surface is roughened by etching or the like, carbon fine particles, conductive oxide fine particles, noble metal fine particles, etc. The conductive fine particles made of are adhered into the etching holes, and the π-conjugated conductive polymer layer is coated via the conductive fine particles attached to the surface of the metal substrate, so that the metal substrate and the π conjugate Excellent adhesion to the conductive polymer layer and the conductivity is remarkably improved.

すなわち、π共役系導電性高分子をわずかに透過する酸素や水分などによって金属基材表層に絶縁性の高い金属酸化物が生成する虞があるが、該酸化皮膜層が形成されても、エッチング孔内に付着された炭素微粒子または導電性酸化物粒子または貴金属微粒子等の導電性微粒子がπ共役系導電性高分子膜と金属基材の導電経路を良好に保持し、良好な接触抵抗を長期にわたり維持することができる。   That is, there is a risk that oxygen or moisture that slightly permeates the π-conjugated conductive polymer may generate a highly insulating metal oxide on the surface of the metal substrate. Even if the oxide film layer is formed, etching is performed. Conductive fine particles such as carbon fine particles, conductive oxide particles, or noble metal fine particles attached in the pores maintain a good conductive path between the π-conjugated conductive polymer film and the metal substrate, and provide good contact resistance for a long time. Can be maintained over time.

以下、本発明を、図面を参照して、詳細に説明を行う。   Hereinafter, the present invention will be described in detail with reference to the drawings.

金属基材を陽極としてπ共役系導電性高分子膜を電解重合法により成膜する場合、電解重合反応は陽極反応であるため、一般的には電解重合初期に酸化被膜の形成が行われる。また、化学重合法の場合でも酸化剤を用いるために金属基材表面は酸化被膜の生成反応が起こる。燃料電池用セパレータや色素増感型太陽電池用の電極として用いる場合には、集電特性が非常に重要となるが、先に述べた酸化被膜は絶縁性のため、該絶縁被膜を通して金属へ電子を流すことはエネルギーロスにつながる。一方で、上述した絶縁性である酸化被膜は、電気化学的には腐食電流を抑制することができるので耐食性に優れる利点もある。そのため、金属基材表面に生成する酸化被膜により基材内部を保護しながら、基材内部の良好な導電特性を引き出すための構造を詳細に説明する。   When a π-conjugated conductive polymer film is formed by an electropolymerization method using a metal substrate as an anode, since the electropolymerization reaction is an anodic reaction, an oxide film is generally formed at the initial stage of electropolymerization. Even in the case of chemical polymerization, an oxidizing agent is formed on the surface of the metal substrate because an oxidizing agent is used. When used as an electrode for a fuel cell separator or a dye-sensitized solar cell, the current collection characteristics are very important. However, since the oxide film described above is insulative, the electrons are transferred to the metal through the insulating film. It causes energy loss. On the other hand, the insulating oxide film described above has an advantage of excellent corrosion resistance because it can electrochemically suppress the corrosion current. Therefore, a structure for extracting good conductive properties inside the base material while protecting the inside of the base material with an oxide film generated on the surface of the metal base material will be described in detail.

図1に示すように、金属基材が持つ導電性と酸化被膜の耐食性の両特性を発現させるために、まず金属基材の粗面加工を行うことが好ましい。この粗面化において、電子移動の妨げになる、すなわちエネルギーロスにつながる酸化被膜は除去することが望ましい。金属基材表面の粗面化にはエッチング等、従来既知の方法を用いることができる。導電性微粒子が埋め込み易く、かつ導電性高分子膜によって金属基材と導電性微粒子とを結着できるように、基材の中心線平均表面粗さRaとしてRa≧0.5μmの条件を満たすようにエッチング加工された金属基材を選択することが好ましい。Raが0.5μmに満たない場合、導電性微粒子の付着固定が不十分になる場合がある。   As shown in FIG. 1, in order to develop both the electrical properties of the metal substrate and the corrosion resistance of the oxide film, it is preferable to first rough the metal substrate. In this roughening, it is desirable to remove the oxide film that hinders electron movement, that is, leads to energy loss. Conventionally known methods such as etching can be used for roughening the surface of the metal substrate. To satisfy the condition of Ra ≧ 0.5 μm as the center line average surface roughness Ra of the base material so that the conductive fine particles can be easily embedded and the metal base material and the conductive fine particles can be bound by the conductive polymer film. It is preferable to select a metal substrate that has been etched. When Ra is less than 0.5 μm, the adhesion and fixing of the conductive fine particles may be insufficient.

上述したエッチング方法としては、湿式エッチング法、乾式エッチング法、ブラスト法、電解エッチング法、逆スパッタリング法、フォトエッチング法などが挙げられるが、簡便な湿式エッチング法、ブラスト法、電解エッチング法などが好ましい。   Examples of the etching method described above include a wet etching method, a dry etching method, a blast method, an electrolytic etching method, a reverse sputtering method, and a photo etching method, but a simple wet etching method, a blast method, an electrolytic etching method, and the like are preferable. .

次に導電性微粒子をエッチング孔内へ付着し、腐食環境から隔離された部位、すなわち金属基材内部と導電性微粒子によって、金属基材内部から導電性微粒子への導通経路を形成し、金属基材表面が酸化されても導電性が保持されるようにする。すなわち、金属基材表面とπ共役系導電性高分子とが、金属基材表面に付着された導電性微粒子を介して接触するようにすることが好ましい。(図1参照)   Next, conductive fine particles adhere to the etching holes, and a conductive path from the inside of the metal substrate to the conductive fine particles is formed by a portion isolated from the corrosive environment, that is, the inside of the metal substrate and the conductive fine particles. Conductivity is maintained even when the surface of the material is oxidized. That is, it is preferable that the surface of the metal substrate and the π-conjugated conductive polymer are in contact with each other through the conductive fine particles attached to the surface of the metal substrate. (See Figure 1)

エッチング孔内に埋め込む導電性微粒子として、炭素微粒子粉末を用いる場合、樹脂バインダーを含まない導電性の炭素材料からなる微細な炭素材料が好適である。これは、導電性微粒子や金属を結着させるための樹脂バインダーを含むと導電性性能が大きく低下するためである。また、黒鉛やカーボンブラックの表面に親水性の官能基、例えば水酸基、スルホン酸基、カルボン酸基などが導入されていると、エッチング孔内に入り込みやすいのでさらに好適である。   When carbon fine particle powder is used as the conductive fine particles embedded in the etching holes, a fine carbon material made of a conductive carbon material not containing a resin binder is suitable. This is because if the resin binder for binding the conductive fine particles and the metal is included, the conductive performance is greatly lowered. In addition, it is more preferable that a hydrophilic functional group such as a hydroxyl group, a sulfonic acid group, or a carboxylic acid group is introduced on the surface of graphite or carbon black because it easily enters the etching hole.

エッチング孔内に埋め込む導電性微粒子として焼成炭素材料を用いる場合には、炭素材料として黒鉛、アモルファスカーボン、カーボンブラック、ダイヤモンドライクカーボン、導電性ダイヤモンド、カーボンナノチューブなどの炭素材料と樹脂、粘土などの結合材とを混練し、600℃以上で焼成されることにより得られる炭素材料を用いるのが好適である。   When a baked carbon material is used as the conductive fine particles embedded in the etching hole, the carbon material such as graphite, amorphous carbon, carbon black, diamond-like carbon, conductive diamond, and carbon nanotube is bonded to the resin, clay, etc. It is preferable to use a carbon material obtained by kneading the material and firing at 600 ° C. or higher.

導電性微粒子をエッチング孔内へ埋め込む方法としては、特に限定されず従来公知のものを使用することができる。例えば、真空あるいは減圧含浸法、塗布法、高圧スプレー法などがあげられる。より好ましい方法としては、黒鉛やカーボンブラックなどの導電性微粒子が分散された溶媒中にエッチングされた金属基材を浸漬させ、減圧下によりエッチング孔内の空気を抜くことにより微粒子をエッチング孔内へ導入する方法、黒鉛やカーボンブラック等の炭素材料と粘土や樹脂の混合物を焼結した焼成炭素材料を高圧力下で擦過する方法などが挙げられる。   The method for embedding the conductive fine particles in the etching holes is not particularly limited, and conventionally known methods can be used. For example, a vacuum or reduced pressure impregnation method, a coating method, a high pressure spray method and the like can be mentioned. A more preferable method is to immerse the etched metal base material in a solvent in which conductive fine particles such as graphite and carbon black are dispersed, and to release the air in the etching holes under reduced pressure, thereby moving the fine particles into the etching holes. Examples thereof include a method of introducing a carbon material such as graphite and carbon black and a method of rubbing a fired carbon material obtained by sintering a mixture of clay and resin under high pressure.

導電性微粒子はエッチング孔内の一部に存在すればよく、金属基材表面に余って残存する導電性微粒子がある場合には、次工程で形成するπ共役系導電性高分子被膜との密着性を損なう場合があるため、除去することが好ましい。その際、上記したように、π共役系導電性高分子層の少なくとも一部が、金属基材表面に付着された導電性材料を仲介して金属基材表面に被覆されるよう、導電性微粒子はエッチング孔内にのみ存在するようにし、金属基材表面の少なくとも一部は導電性高分子層形成面に露出させることが好ましい。除去する方法としては、スキージ法や粘着テープ剥離法など、特に限定されず従来公知のものを使用することができる。   The conductive fine particles only need to exist in a part of the etching hole. If there are conductive fine particles remaining on the surface of the metal substrate, the conductive fine particles are in close contact with the π-conjugated conductive polymer film formed in the next step. Since it may impair the properties, it is preferable to remove them. At that time, as described above, the conductive fine particles are so formed that at least a part of the π-conjugated conductive polymer layer is coated on the surface of the metal substrate via the conductive material attached to the surface of the metal substrate. Is preferably present only in the etching holes, and at least a part of the surface of the metal substrate is preferably exposed on the conductive polymer layer forming surface. The removal method is not particularly limited, such as a squeegee method or an adhesive tape peeling method, and a conventionally known method can be used.

次いで、エッチング孔内に導電性微粒子を埋め込んだ金属基材の耐食性を向上させ、導電性微粒子をエッチング孔内で固定化させるために、金属基材上にπ共役系導電性高分子被膜を形成させる。π共役系導電性高分子の被膜形成方法には、化学重合法、電解重合法、溶液法など多くの方法があるが、目的とするπ共役系導電性高分子の種類やその形態によって適切な方法を選択できる。   Next, in order to improve the corrosion resistance of the metal substrate in which conductive fine particles are embedded in the etching holes and to fix the conductive fine particles in the etching holes, a π-conjugated conductive polymer film is formed on the metal substrate. Let There are many methods for forming a film of a π-conjugated conductive polymer, such as a chemical polymerization method, an electrolytic polymerization method, and a solution method, and an appropriate method depends on the type and form of the target π-conjugated conductive polymer. You can choose the method.

本発明に用いるπ共役系導電性高分子の種類としては、特に制限されないが、ポリピロールまたはその誘導体、ポリアルキルチオフェンまたはその誘導体、ポリアルキレンジオキシチオフェンまたはその誘導体、ポリアニリンまたはその誘導体が好適である。   The kind of the π-conjugated conductive polymer used in the present invention is not particularly limited, but polypyrrole or a derivative thereof, polyalkylthiophene or a derivative thereof, polyalkylenedioxythiophene or a derivative thereof, or polyaniline or a derivative thereof is preferable. .

高い電気伝導性と腐食環境下から基材を保護するバリアー効果を大きく得るには、ポリピロールまたはその誘導体では電解重合法または溶液法が好適であり、ポリアルキルチオフェンまたはその誘導体では電解重合法または溶液法または化学重合法が好適であり、ポリアルキレンジオキシチオフェンまたはその誘導体では化学重合法が好適であり、ポリアニリンまたはその誘導体では電解重合法または溶液法が好適である。特に、電解重合法により形成されるπ共役系導電性高分子膜は、ドーピング率が高いために電気伝導度が高く、他の形成法に比べて配向性が高く緻密なπ共役系導電性高分子膜を容易に得ることができるので最も好適である。   In order to obtain a high barrier property for protecting the substrate from high electrical conductivity and corrosive environment, the electrolytic polymerization method or solution method is suitable for polypyrrole or its derivative, and the electrolytic polymerization method or solution is suitable for polyalkylthiophene or its derivative. The chemical polymerization method is preferable, the polyalkylenedioxythiophene or a derivative thereof is preferably a chemical polymerization method, and the polyaniline or a derivative thereof is preferably an electrolytic polymerization method or a solution method. In particular, a π-conjugated conductive polymer film formed by an electropolymerization method has high electrical conductivity due to a high doping rate, and has a high orientation and dense π-conjugated conductive property compared to other formation methods. Since a molecular film can be obtained easily, it is most preferable.

ところで、π共役系導電性高分子膜は酸化反応によって形成される。そのため、金属が露出している部分は酸化状態に曝されるために、金属酸化物が生成する場合がある。通常、金属表面に生成した金属酸化物は高抵抗成分となるため、燃料電池や太陽電池などエネルギーデバイスに応用する場合は、導電性を低下させる原因となる。しかしながら、本発明では、π共役系導電性高分子膜を形成する場合に、金属表面に金属酸化物が形成されても、炭素や金属酸化物等の導電性微粒子がエッチング孔内で金属と接触していることにより良好な導電経路が確保される。   By the way, the π-conjugated conductive polymer film is formed by an oxidation reaction. Therefore, a portion where the metal is exposed is exposed to an oxidized state, and thus a metal oxide may be generated. Usually, since the metal oxide produced | generated on the metal surface becomes a high resistance component, when applying to energy devices, such as a fuel cell and a solar cell, it becomes a cause which reduces electroconductivity. However, in the present invention, when a π-conjugated conductive polymer film is formed, even if a metal oxide is formed on the metal surface, conductive fine particles such as carbon and metal oxide are in contact with the metal in the etching hole. As a result, a good conductive path is secured.

この耐食導電被覆材料では、π共役系導電性高分子膜が金属基材と導電性微粒子を腐食環境下から保護する機能を果たしているが、該π共役系導電性高分子被膜に欠陥が生じても、金属酸化物は耐食性には優れるため、基材を腐食環境下から保護する機能もある。   In this corrosion-resistant conductive coating material, the π-conjugated conductive polymer film functions to protect the metal substrate and the conductive fine particles from the corrosive environment, but the π-conjugated conductive polymer film has defects. However, since the metal oxide is excellent in corrosion resistance, it also has a function of protecting the substrate from a corrosive environment.

また、金属が腐食される環境下としては、硫酸水溶液などの酸性雰囲気だけではない。例えば、燃料電池内の酸素極側では酸素ガスによって酸化性雰囲気となり、色素増感型太陽電池では電解質であるヨウ素によって同様に酸化性雰囲気となる。そのような環境下では、ある種のドーパントでは、π共役系導電性高分子の電気伝導性が失われる恐れが生じる。そのため、酸化性腐食環境下では、π共役系導電性高分子のドーパントであるアニオン化合物が対酸化性に優れている必要がある。そのため、高い電気伝導度を発現させ、対酸化性に優れ、かつ耐食性の高いπ共役系導電性高分子膜のドーパントとしては、スルホン酸基またはヘテロポリ酸基を有するアニオン化合物を用いるのが好適である。また化合物中のスルホン酸基またはヘテロポリ酸基の数は、特に限定されない。   In addition, the environment in which metals are corroded is not limited to an acidic atmosphere such as an aqueous sulfuric acid solution. For example, an oxidizing atmosphere is formed by oxygen gas on the oxygen electrode side in the fuel cell, and an oxidizing atmosphere is similarly formed by iodine as an electrolyte in the dye-sensitized solar cell. Under such circumstances, certain dopants may cause the electrical conductivity of the π-conjugated conductive polymer to be lost. Therefore, in an oxidative corrosion environment, an anionic compound that is a dopant of the π-conjugated conductive polymer needs to be excellent in oxidation resistance. Therefore, it is preferable to use an anionic compound having a sulfonic acid group or a heteropolyacid group as a dopant for a π-conjugated conductive polymer film that exhibits high electrical conductivity, excellent oxidation resistance, and high corrosion resistance. is there. The number of sulfonic acid groups or heteropolyacid groups in the compound is not particularly limited.

アニオン化合物の分子量が240未満である場合、すなわち分子が小さいと容易に脱ドーピング作用が生じ易く、π共役系導電性高分子の電気伝導性が失われてしまう。この現象を防ぐには、分子が大きいアニオン化合物が適しており、その分子量は240以上であることが好ましい。1つ以上のスルホン酸基またはヘテロポリ酸基を有し、分子量が240以上のアニオン化合物としては、具体的に、アルキルナフタレンスルホン酸イオン、リグニンスルホン酸イオン、モリブド燐酸イオン、タングスト燐酸イオンなどを例示することができる。また、このようなアニオン化合物を含有するπ共役系導電性高分子被膜は緻密となり、腐食環境と基体とを遮断するバリアー効果が大きく好適である。   When the molecular weight of the anionic compound is less than 240, that is, when the molecule is small, the dedoping action is easily generated, and the electrical conductivity of the π-conjugated conductive polymer is lost. In order to prevent this phenomenon, an anionic compound having a large molecule is suitable, and its molecular weight is preferably 240 or more. Specific examples of anionic compounds having one or more sulfonic acid groups or heteropolyacid groups and having a molecular weight of 240 or more include alkylnaphthalene sulfonate ions, lignin sulfonate ions, molybdophosphate ions, and tungstophosphate ions. can do. In addition, a π-conjugated conductive polymer film containing such an anionic compound is dense and has a favorable barrier effect for blocking the corrosive environment from the substrate.

上述した、スルホン酸基またはヘテロポリ酸基を有し分子量が240以上のアニオン化合物をドーパントとするπ共役系導電性高分子膜の形成法としては、例えばポリピロール膜を成膜する場合には、単量体であるピロールと支持電解質であるアルキルナフタレンスルホン酸ナトリウムやモリブト燐酸テトラエチルアンモニウム等を水溶液中に溶解させ、導電性微粒子をエッチング孔内へ埋め込んだ金属基材を陽極、ステンレス基材などを陰極として電解する電解重合法により、ポリピロール膜を得ることができる。ポリピロールやポリアニリンの成膜における電解重合法は、緻密で規則性の高い電気伝導度を有するπ共役系導電性高分子膜が得やすく、バリアー性に優れるために耐食性に優れる。   As a method for forming the π-conjugated conductive polymer film using an anionic compound having a sulfonic acid group or a heteropolyacid group and having a molecular weight of 240 or more as a dopant, for example, when forming a polypyrrole film, A pyrrole as a monomer and a sodium electrolyte such as alkyl naphthalene sulfonate and tetraethylammonium molybtophosphate as a supporting electrolyte are dissolved in an aqueous solution, and a metal substrate in which conductive fine particles are embedded in an etching hole is an anode, and a stainless steel substrate is a cathode. A polypyrrole film can be obtained by an electropolymerization method of electrolyzing as follows. The electrolytic polymerization method for forming a film of polypyrrole or polyaniline is easy to obtain a π-conjugated conductive polymer film having a dense and highly regular electric conductivity, and is excellent in corrosion resistance because of excellent barrier properties.

化学重合法においては、基体表面上で目的とするπ共役系導電性高分子の単量体と酸化剤溶液を接触させることで、耐食性の高いπ共役系導電性高分子膜を形成することができる。例えばポリ−3,4−エチレンジオキシチオフェン被膜を形成する場合には、導電性微粒子をエッチング孔内へ埋め込んだ金属基材上で、単量体である3,4−エチレンジオキシチオフェンと酸化剤であるナフトキノンスルホン酸鉄(III)を含むブタノール−水混合溶液を接触させることによって、ポリ−3,4−エチレンジオキシチオフェン被膜を得ることができる。ポリチオフェンの成膜における化学重合法は、微細な粒子が緻密に充填されたπ共役系導電性高分子膜が得やすく、バリアー性に優れるために耐食性に優れる。   In the chemical polymerization method, a π-conjugated conductive polymer film having high corrosion resistance can be formed by contacting a target π-conjugated conductive polymer monomer with an oxidant solution on the substrate surface. it can. For example, in the case of forming a poly-3,4-ethylenedioxythiophene film, on the metal base material in which the conductive fine particles are embedded in the etching holes, the monomer 3,4-ethylenedioxythiophene is oxidized. A poly-3,4-ethylenedioxythiophene coating can be obtained by contacting a butanol-water mixed solution containing iron (III) naphthoquinonesulfonate as an agent. The chemical polymerization method for forming a polythiophene film is easy to obtain a π-conjugated conductive polymer film in which fine particles are densely packed, and is excellent in corrosion resistance because of excellent barrier properties.

溶液法においては、π共役系導電性高分子の単量体、酸化剤溶液、ドーパント溶液を接触させて重合させ、得られた重合物を乾燥後、有機溶媒に溶解させ塗布液とする。該塗布液を、導電性微粒子をエッチング孔内へ埋め込んだ金属基材上に塗布、乾燥すれば目的の耐食性の高いπ共役系導電性高分子膜を形成することができる。例えば、3−ヘキシルチオフェンの被膜を形成する場合には、3−ヘキシルチオフェン、酸化剤であるペルオキソ二硫酸アンモニウム、ドーパントであるフェロセンスルホン酸ナトリウムをエタノール−水混合溶液中で溶解、攪拌しながら重合反応を進め、得られたポリ−3−ヘキシルチオフェンチオフェンを乾燥後にトルエンに溶解させることで塗布液を得ることができる。該塗布液を、導電性微粒子をエッチング孔内へ埋め込んだ金属基材上に塗布後乾燥させることでポリアルキルチオフェン膜を得ることができる。   In the solution method, a monomer of a π-conjugated conductive polymer, an oxidant solution, and a dopant solution are brought into contact with each other for polymerization, and the obtained polymer is dried and then dissolved in an organic solvent to obtain a coating solution. If the coating solution is applied to a metal base material in which conductive fine particles are embedded in the etching holes and dried, a desired π-conjugated conductive polymer film having high corrosion resistance can be formed. For example, in the case of forming a film of 3-hexylthiophene, 3-hexylthiophene, ammonium peroxodisulfate as an oxidizing agent, and sodium ferrocenesulfonate as a dopant are dissolved in an ethanol-water mixed solution and polymerized while stirring. The coating liquid can be obtained by proceeding and dissolving the obtained poly-3-hexylthiophenethiophene in toluene after drying. A polyalkylthiophene film can be obtained by applying the coating solution onto a metal substrate in which conductive fine particles are embedded in the etching holes and then drying the coating solution.

溶液法によるπ導電性高分子膜の形成法としては、従来周知の方法が利用できる。例えば、スクリーン印刷法、ディップコート法、ロールコート法、噴霧法、カーテンフローコート法、バーコート法、ドクターブレード法等、刷毛塗布法などがあり、簡便で生産性が高いディップコート法、刷毛塗布法が好ましい。   As a method for forming the π conductive polymer film by the solution method, a conventionally known method can be used. For example, screen printing method, dip coating method, roll coating method, spraying method, curtain flow coating method, bar coating method, doctor blade method, brush coating method, etc., there are simple and highly productive dip coating method, brush coating The method is preferred.

上述のように、導電性高分子膜の形成は酸化反応により進行する。そのため、該導電性高分子形成時には金属基材表面は酸化雰囲気に晒されるために、金属基材表層には極薄い絶縁性の金属酸化物層が形成される。該金属酸化物層は耐食性に優れるため、内部の金属と導電性微粒子を腐食環境から保護する機能も併せ持つ。また、このとき金属内部では金属と導電性微粒子との接触、導電性微粒子とπ共役系導電性高分子との接触により導電経路が確保され、金属の持つ良好な電気特性を損なうことはない。   As described above, the formation of the conductive polymer film proceeds by an oxidation reaction. Therefore, since the surface of the metal substrate is exposed to an oxidizing atmosphere when the conductive polymer is formed, an extremely thin insulating metal oxide layer is formed on the surface of the metal substrate. Since the metal oxide layer is excellent in corrosion resistance, it also has a function of protecting internal metal and conductive fine particles from a corrosive environment. Further, at this time, a conductive path is secured by contact between the metal and the conductive fine particle, and contact between the conductive fine particle and the π-conjugated conductive polymer inside the metal, and the good electrical characteristics of the metal are not impaired.

金属基材としては、アルミニウム、チタン、鉄、銅およびそれらの合金からなる群から選ばれる少なくとも1つの金属基材が挙げられるが、生産性や電気伝導度、π共役系導電性高分子の密着性の観点からチタンおよびその合金を用いるのが好ましい。   Examples of the metal substrate include at least one metal substrate selected from the group consisting of aluminum, titanium, iron, copper, and alloys thereof, and productivity, electrical conductivity, and adhesion of π-conjugated conductive polymer. From the viewpoint of safety, titanium and its alloys are preferably used.

また、あらかじめ基材にプレス加工等の曲げ加工、切削加工、エッチング加工等の機械加工後に、π共役系導電性高分子の形成工程を行うことによって、複雑な形状の基材形成時にπ共役系導電性高分子膜を損傷することなく、該π共役系導電性高分子膜の効果を確実に得ることができる。例えば、π共役系導電性高分子膜の形成に関し、上記のように加工後の基材を電極として電解重合を行えば、加工によって基材表面が凹凸状態にあっても、均一にπ共役系導電性高分子膜を形成することが可能となり、安定した性能を得ることができる。   In addition, by forming the π-conjugated conductive polymer after the bending process such as press processing, cutting, etching, etc. on the base material in advance, the π-conjugated system is formed when forming a complex-shaped base material. The effect of the π-conjugated conductive polymer film can be reliably obtained without damaging the conductive polymer film. For example, with respect to the formation of a π-conjugated conductive polymer film, if electrolytic polymerization is performed using the processed substrate as an electrode as described above, even if the substrate surface is uneven due to processing, the π-conjugated system is uniformly formed. A conductive polymer film can be formed, and stable performance can be obtained.

形成するπ共役系導電性高分子層の厚みは、0.001μmから100μmが適当であるが、経済的観点から、0.01μmから50μmがより好ましく、0.1μmから35μmが最も好ましい。   The thickness of the π-conjugated conductive polymer layer to be formed is suitably 0.001 μm to 100 μm, but is preferably 0.01 μm to 50 μm, and most preferably 0.1 μm to 35 μm from the economical viewpoint.

以下、本発明を実施例に基づいて詳細に説明するが、本発明は実施例によりなんら限定されるものではない。なお、本実施例中wt%とあるのは質量%を指す。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited at all by the Example. In this example, wt% refers to mass%.

(実施例1)
金属基材としてAL5052合金を用いた。AL5052合金板は大きさが20×30mm、厚さが0.2mmの圧延材である。本基材を有機溶媒による脱脂処理後、耐水研磨紙#120番によって研磨を施した後、3N塩酸中に30秒間浸漬させて酸化被膜除去を行い、表面がRa=3.0μmのエッチング加工されAL5052合金基材とした。
Example 1
AL5052 alloy was used as the metal substrate. The AL5052 alloy plate is a rolled material having a size of 20 × 30 mm and a thickness of 0.2 mm. This substrate is degreased with an organic solvent, polished with water-resistant polishing paper # 120, and then immersed in 3N hydrochloric acid for 30 seconds to remove the oxide film, and the surface is etched to Ra = 3.0 μm. The AL5052 alloy base material was used.

東海カーボン製親水性カーボンブラック(登録商標Aqua−Black 162)分散溶液(20wt%)中に、エッチング加工されたAL5052合金板を浸漬させ、750mmHgの減圧下で5分間保持させて、カーボン微粒子をエッチング孔内へ導入し、減圧状態を解除後、90℃の乾燥機中にて30分間乾燥行い、カーボン微粒子をエッチング孔内へ埋め込んだ。   The etched AL5052 alloy plate is immersed in a dispersion solution (20 wt%) of hydrophilic carbon black (registered trademark Aqua-Black 162) manufactured by Tokai Carbon, and held for 5 minutes under a reduced pressure of 750 mmHg to etch carbon fine particles. After introducing into the hole and releasing the reduced pressure state, drying was performed in a dryer at 90 ° C. for 30 minutes to embed carbon fine particles in the etching hole.

株式会社クレシア製のキムタオル(登録商標)を用いて、カーボンブラック微粒子をエッチング孔内へ埋め込んだAL5052合金基材表面を擦り、続いて1N塩酸中に10秒間浸漬させて酸洗し、余分なカーボンブラック微粒子を除去し、カーボンブラック微粒子がエッチング孔内に埋め込まれたAL5052合金基材とした。   Rub the surface of the AL5052 alloy substrate with carbon black fine particles embedded in the etching holes using Kim Towel (registered trademark) manufactured by Crecia Co., Ltd., and then dipped in 1N hydrochloric acid for 10 seconds to pickle the excess carbon. The black fine particles were removed, and an AL5052 alloy base material in which the carbon black fine particles were embedded in the etching holes was obtained.

次に、電解重合法によってスルホン基を有する化合物をドーパントとして含むπ共役系導電性高分子膜を形成する。溶媒を純水とし、単量体としてピロール0.5mol/L、支持電解質として2,7−ナフタレンジスルホン酸ナトリウム0.30mol/Lを含む電解液を用いて、AL5052合金基材を陽極、SUS304を陰極、電解重合時間は1時間、電流密度を1mA/cmとして電解重合を行い、ポリピロール膜を形成し、耐食導電被覆材料を合計10枚作製した。 Next, a π-conjugated conductive polymer film containing a compound having a sulfone group as a dopant is formed by electrolytic polymerization. The solvent is pure water, and an electrolyte containing 0.5 mol / L of pyrrole as a monomer and 0.30 mol / L of sodium 2,7-naphthalenedisulfonate as a supporting electrolyte is used. Electrolysis was carried out with a cathode and an electropolymerization time of 1 hour and a current density of 1 mA / cm 2 to form a polypyrrole film, and a total of 10 corrosion-resistant conductive coating materials were produced.

(実施例2)
金属基材としてTi(JIS2種)板を用いた。Ti(JIS2種)板は大きさが20×30mm、厚さが0.2mmの圧延材である。本基材を有機溶媒による脱脂処理後、耐水研磨紙#120番によって研磨を施した後、3wt%フッ酸中に60秒間浸漬させて酸化被膜除去を行い、表面がRa=2.8μmのエッチング加工されたTi(JIS2種)基材とした。
(Example 2)
A Ti (JIS type 2) plate was used as the metal substrate. A Ti (JIS type 2) plate is a rolled material having a size of 20 × 30 mm and a thickness of 0.2 mm. This substrate is degreased with an organic solvent, polished with water-resistant abrasive paper # 120, and then immersed in 3 wt% hydrofluoric acid for 60 seconds to remove the oxide film. Etching with a surface with Ra = 2.8 μm A processed Ti (JIS type 2) base material was obtained.

昭和電工製人造黒鉛微粒子UF−G5を20wt%、ドデシルベンゼンスルホン酸ナトリウム0.1wt%となるように調整された水溶液に対して超音波照射10分行って黒鉛分散水溶液を得た。黒鉛分散水溶液中に、エッチング加工されたTi(JIS2種)基材を浸漬させ、750mmHgの減圧下で5分間保持させて、カーボン微粒子をエッチング孔内へ導入し、減圧状態を解除後、90℃の乾燥機中にて30分間乾燥行い、黒鉛微粒子をエッチング孔内へ埋め込んだ。   Shown Denko artificial graphite fine particles UF-G5 was subjected to ultrasonic irradiation for 10 minutes to an aqueous solution adjusted to 20 wt% and sodium dodecylbenzenesulfonate 0.1 wt% to obtain a graphite dispersed aqueous solution. An etched Ti (JIS type 2) base material is immersed in an aqueous graphite dispersion, and held under a reduced pressure of 750 mmHg for 5 minutes to introduce carbon fine particles into the etching hole. After releasing the reduced pressure state, 90 ° C. In the dryer for 30 minutes, and the graphite fine particles were embedded in the etching holes.

株式会社クレシア製のキムタオル(登録商標)を用いて、黒鉛微粒子をエッチング孔内へ埋め込んだTi(JIS2種)基材表面を擦り、続いて1N塩酸中に10秒間浸漬させて酸洗し、余分な黒鉛微粒子を除去し、黒鉛微粒子がエッチング孔内に埋め込まれたTi(JIS2種)基材とした。   Using a Crescia Co., Ltd. Kim Towel (registered trademark), rubbing the surface of the Ti (JIS type 2) base material in which the graphite fine particles are embedded in the etching holes, followed by dipping in 1N hydrochloric acid for 10 seconds, pickling, and extra The fine graphite particles were removed, and a Ti (JIS type 2) substrate in which the fine graphite particles were embedded in the etching holes was used.

次に、電解重合法によってヘテロポリ酸基を有する化合物をドーパントとして含むπ共役系導電性高分子膜を形成する。溶媒を純水とし、単量体としてピロール0.5mol/L、支持電解質としてモリブド燐酸ナトリウム0.30mol/Lを含む電解液を用いて、Ti(JIS2種)基材を陽極、SUS304を陰極、電解重合時間は1時間、電流密度を1mA/cmとして電解重合を行い、ポリピロール膜を形成し、耐食導電被覆材料を合計10枚作製した。 Next, a π-conjugated conductive polymer film containing a compound having a heteropolyacid group as a dopant is formed by electrolytic polymerization. The solvent is pure water, an electrolyte containing 0.5 mol / L of pyrrole as a monomer and 0.30 mol / L of sodium molybdophosphate as a supporting electrolyte, a Ti (JIS type 2) substrate as an anode, SUS304 as a cathode, The electropolymerization time was 1 hour, the current density was 1 mA / cm 2 , electropolymerization was performed to form a polypyrrole film, and a total of 10 corrosion-resistant conductive coating materials were produced.

(実施例3)
金属基材としてSUS430板を用いた。SUS430板は大きさが20×30mm、厚さが0.2mmの圧延材である。本基材を有機溶媒による脱脂処理後、窒化チタンビーズを用いたショットブラスト処理を行った後、1N硫酸中に60秒間浸漬させて酸化被膜除去を行い、表面がRa=1.1μmのエッチング加工されたSUS430基材とした。
(Example 3)
A SUS430 plate was used as the metal substrate. The SUS430 plate is a rolled material having a size of 20 × 30 mm and a thickness of 0.2 mm. This substrate is degreased with an organic solvent, then shot blasted with titanium nitride beads, then immersed in 1N sulfuric acid for 60 seconds to remove the oxide film, and the surface is etched with Ra = 1.1 μm It was set as the made SUS430 base material.

東海カーボン株式会社製の黒鉛棒G347をエッチング加工されたSUS430基材に10kg/cmの圧力で加圧しながら擦過する工程を5回繰り返すことで、黒鉛微粒子をエッチング孔内へ導入し、黒鉛微粒子をエッチング孔内へ埋め込んだ。 By repeating the process of rubbing the graphite rod G347 manufactured by Tokai Carbon Co., Ltd. with a pressure of 10 kg / cm 2 against the etched SUS430 substrate 5 times, graphite fine particles are introduced into the etching holes. Was embedded in the etching hole.

日東電工株式会社製のポリイミド粘着テープを、黒鉛微粒子を塗布したSUS430基材に5kg/cmの圧力下で貼り付けた後、剥離することで、余分な黒鉛微粒子を除去し、黒鉛微粒子がエッチング孔内に埋め込まれたSUS430基材とした。 A polyimide adhesive tape manufactured by Nitto Denko Co., Ltd. was applied to a SUS430 substrate coated with graphite fine particles under a pressure of 5 kg / cm 2 and then peeled off to remove excess graphite fine particles. A SUS430 base material embedded in the hole was used.

次に、電解重合法によってスルホン酸基を有する化合物をドーパントとして含むπ共役系導電性高分子膜を形成する。溶媒を純水とし、単量体としてアニリン0.1mol/L、支持電解質としてポリビニルスルホン酸0.15mol/Lを含む電解液を用いて、Auを陰極、銀/塩化銀(飽和KCl)を参照電極、電極電解重合時間は1時間、電解電圧を0.5V(vs銀/塩化銀参照電極)として定電位電解重合を10分間行い、ポリアニリン膜を形成し、耐食導電被覆材料を合計10枚作製した。   Next, a π-conjugated conductive polymer film containing a compound having a sulfonic acid group as a dopant is formed by electrolytic polymerization. Use pure water as solvent, 0.1 mol / L aniline as monomer, 0.15 mol / L polyvinyl sulfonic acid as supporting electrolyte, Au as cathode, see silver / silver chloride (saturated KCl) Electrode, electrode electropolymerization time is 1 hour, electrolysis voltage is 0.5 V (vs silver / silver chloride reference electrode), constant potential electropolymerization is performed for 10 minutes, polyaniline film is formed, and a total of 10 corrosion-resistant conductive coating materials are produced did.

(実施例4)
アニリン9.3gに水150gと濃塩酸10.1gを加え、温度0〜10℃に保ちながら、過硫酸アンモニウム22.8gを水40gに溶解した溶液を2時間で滴下した後、3時間攪拌した。その後、濃アンモニア水41gを1時間で滴下し、さらに5時間攪拌した後、ろ別し、水洗及びメタ ノール洗浄を繰り返した後、真空乾燥して銅色のポリアニリン8.3gを得た。得られた銅色のポリアニリンをメタノール200mlに分散し、ヒドラジン一水和物20gを加え、室温で15時間攪拌した後、ろ別し、水及びメタノールで洗浄し、真空乾燥して灰青色の可溶性ポリアニリン7.5gを得た。さらに、インジゴトリスルホン酸3.5wt%及びポリアニリン2.0wt%となるようにN−メチル−2−ピロリドンに溶解し、ドーパントを含むポリアニリン溶液を得た。
Example 4
150 g of water and 10.1 g of concentrated hydrochloric acid were added to 9.3 g of aniline, and a solution obtained by dissolving 22.8 g of ammonium persulfate in 40 g of water was added dropwise over 2 hours while maintaining the temperature at 0 to 10 ° C., followed by stirring for 3 hours. Thereafter, 41 g of concentrated aqueous ammonia was added dropwise over 1 hour, and the mixture was further stirred for 5 hours. After filtration, water washing and methanol washing were repeated, and vacuum drying was performed to obtain 8.3 g of copper-colored polyaniline. The obtained copper-colored polyaniline was dispersed in 200 ml of methanol, added with 20 g of hydrazine monohydrate, stirred at room temperature for 15 hours, filtered, washed with water and methanol, and vacuum-dried to obtain a grayish blue soluble 7.5 g of polyaniline was obtained. Furthermore, it melt | dissolved in N-methyl-2-pyrrolidone so that it might become 3.5 wt% of indigo trisulfonic acid and 2.0 wt% of polyaniline, and the polyaniline solution containing a dopant was obtained.

金属基材として無酸素銅板を用いた。無酸素銅板は大きさが20×30mm、厚さが0.2mmの圧延材である。本基材を有機溶媒による脱脂処理後、耐水研磨紙#120番によって研磨を施した後、0.5N硝酸中に60秒間浸漬させて酸化被膜除去を行い、表面がRa=2.1μmのエッチング加工された無酸素銅基材とした。   An oxygen-free copper plate was used as the metal substrate. The oxygen-free copper plate is a rolled material having a size of 20 × 30 mm and a thickness of 0.2 mm. This substrate is degreased with an organic solvent, polished with water-resistant abrasive paper # 120, and then immersed in 0.5N nitric acid for 60 seconds to remove the oxide film. Etching with a surface with Ra = 2.1 μm It was set as the processed oxygen-free copper base material.

ドデシルベンゼンスルホン酸テトラエチルアンモニウム1wt%を含有するエタノール溶液中に、一般的に市販されている日本黒鉛工業社製の高結晶性天然黒鉛微粒子CSSP−Bを20wt%となるように調整後、超音波照射を10分間行うことで黒鉛微粒子分散液を調整した。該黒鉛微粒子分散液中に、エッチング加工された無酸素銅基材を浸漬させ、750mmHgの減圧下で5分間保持させて、黒鉛微粒子をエッチング孔内へ導入し、減圧状態を解除後、90℃の乾燥機中にて30分間乾燥行い、黒鉛微粒子をエッチング孔内へ埋め込んだ。   In an ethanol solution containing 1 wt% of tetraethylammonium dodecylbenzenesulfonate, a commercially available highly crystalline natural graphite fine particle CSSP-B manufactured by Nippon Graphite Industry Co., Ltd. is adjusted to 20 wt%, and then subjected to ultrasonic waves. Irradiation was performed for 10 minutes to prepare a graphite fine particle dispersion. An oxygen-free copper base material that has been etched is immersed in the graphite fine particle dispersion, and held under a reduced pressure of 750 mmHg for 5 minutes to introduce the graphite fine particles into the etching holes. In the dryer for 30 minutes, and the graphite fine particles were embedded in the etching holes.

株式会社クレシア製のキムタオル(登録商標)を用いて、黒鉛微粒子をエッチング孔内へ埋め込んだ無酸素銅基材表面を擦り、余分な黒鉛微粒子を除去することで、黒鉛微粒子がエッチング孔内に埋め込まれた無酸素銅基材とした。   Using a Crescia Co., Ltd. Kim Towel (Registered Trademark), rubbing the surface of the oxygen-free copper base material in which the graphite fine particles are embedded in the etching holes, and removing the excess graphite fine particles, the graphite fine particles are embedded in the etching holes. An oxygen-free copper base material was obtained.

次に、溶液法によって耐食性の高いπ共役系導電性高分子膜を形成する。先に調製したポリアニリン溶液中に、黒鉛微粒子がエッチング孔内に埋め込まれた無酸素銅基材を浸漬し、温度150℃で10分間乾燥する工程を2回繰り返すことで、ポリアニリン膜を形成し、耐食導電被覆材料を合計10枚作製した。   Next, a π-conjugated conductive polymer film having high corrosion resistance is formed by a solution method. The polyaniline film is formed by repeating the step of immersing the oxygen-free copper base material in which the graphite fine particles are embedded in the etching holes in the previously prepared polyaniline solution and drying at a temperature of 150 ° C. for 10 minutes twice. A total of 10 corrosion-resistant conductive coating materials were produced.

(実施例5)
金属基材としてAL5052合金を用いた。AL5052合金基材は大きさが20×30mm、厚さが0.2mmの圧延材である。本基材を有機溶媒による脱脂処理後、耐水研磨紙#120番によって研磨を施した後、3N塩酸中に30秒間浸漬させて酸化被膜除去を行い、表面がRa=3.0μmのエッチング加工されたAL5052合金基材とした。
(Example 5)
AL5052 alloy was used as the metal substrate. The AL5052 alloy base material is a rolled material having a size of 20 × 30 mm and a thickness of 0.2 mm. This substrate is degreased with an organic solvent, polished with water-resistant polishing paper # 120, and then immersed in 3N hydrochloric acid for 30 seconds to remove the oxide film, and the surface is etched to Ra = 3.0 μm. The AL5052 alloy base material was used.

ドデシルベンゼンスルホン酸テトラエチルアンモニウム1wt%を含有するイソプロピルアルコール溶液中に、一般的に市販されているSCE社製の高純度人造黒鉛微粒子SGPを20wt%となるように調整後、超音波照射を10分間行うことで黒鉛微粒子分散液を調整した。該黒鉛微粒子分散液中に、エッチング加工された無酸素銅基材を浸漬させ、750mmHgの減圧下で5分間保持させて、黒鉛微粒子をエッチング孔内へ導入し、減圧状態を解除後、90℃の乾燥機中にて30分間乾燥行い、黒鉛微粒子をエッチング孔内へ埋め込んだ。   In an isopropyl alcohol solution containing 1 wt% of tetraethylammonium dodecylbenzenesulfonate, generally commercially available high-purity artificial graphite fine particles SGP manufactured by SCE are adjusted to 20 wt%, and then subjected to ultrasonic irradiation for 10 minutes. A graphite fine particle dispersion was prepared by carrying out the process. An oxygen-free copper base material that has been etched is immersed in the graphite fine particle dispersion, and held under a reduced pressure of 750 mmHg for 5 minutes to introduce the graphite fine particles into the etching holes. In the dryer for 30 minutes, and the graphite fine particles were embedded in the etching holes.

株式会社クレシア製のキムタオル(登録商標)を用いて、黒鉛微粒子をエッチング孔内へ埋め込んだTi(JIS2種)基材表面を擦ることで余分な基材表層の黒鉛微粒子を除去し、黒鉛微粒子がエッチング孔内に埋め込まれたAL5052合金基材とした。   Using a Crescia Co., Ltd. Kim Towel (registered trademark), the graphite fine particles on the surface layer of the base material are removed by rubbing the surface of the Ti (JIS type 2) base material in which the graphite fine particles are embedded in the etching holes. The AL5052 alloy base material embedded in the etching hole was used.

次に、溶液法によって耐食性の高いπ共役系導電性高分子膜を形成する。pHが7に調整されたエタノール・水混合溶媒中に、3−ヘキシルチオフェン0.4mol/L、酸化剤およびドーパント剤として作用する2,6−アントラキノンジスルホン酸鉄(III)0.20mol/Lを氷浴温度下で6時間攪拌した。その溶液をろ過後、得られた粉末に対して減圧乾燥を行って完全に溶媒を除去し、その粉末をトルエン溶液に溶解させてポリ−3−ヘキシルチオフェン溶液を得た。   Next, a π-conjugated conductive polymer film having high corrosion resistance is formed by a solution method. In ethanol / water mixed solvent whose pH is adjusted to 7, 3-hexylthiophene 0.4 mol / L, 2,6-anthraquinone disulfonate iron (III) 0.20 mol / L acting as an oxidizing agent and a dopant agent are added. Stir for 6 hours under ice bath temperature. After filtering the solution, the obtained powder was dried under reduced pressure to completely remove the solvent, and the powder was dissolved in a toluene solution to obtain a poly-3-hexylthiophene solution.

黒鉛微粒子がエッチング孔内に埋め込まれたAL5052合金基材に、噴霧法によって均一に溶液を塗布後、70℃の乾燥機中でトルエンを除去する工程を繰り返し、15μm厚みのポリ−3−ヘキシルチオフェン膜を形成し、耐食導電被覆材料を10枚作製した。   After the solution is uniformly applied to the AL5052 alloy base material in which fine graphite particles are embedded in the etching holes by a spraying method, the process of removing toluene in a dryer at 70 ° C. is repeated to obtain poly-3-hexylthiophene having a thickness of 15 μm. A film was formed to produce 10 corrosion-resistant conductive coating materials.

(実施例6)
金属基材としてTi(JIS2種)板を用いた。Ti(JIS2種)板は大きさが20×30mm、厚さが0.2mmの圧延材である。本基材を有機溶媒による脱脂処理後、耐水研磨紙#120番によって研磨を施した後、2wt%蓚酸中に16時間浸漬させて酸化被膜除去を行い、表面がRa=2.8μmのエッチング加工されたTi(JIS2種)基材とした。
(Example 6)
A Ti (JIS type 2) plate was used as the metal substrate. A Ti (JIS type 2) plate is a rolled material having a size of 20 × 30 mm and a thickness of 0.2 mm. This base material is degreased with an organic solvent, then polished with water-resistant abrasive paper # 120, and then immersed in 2 wt% oxalic acid for 16 hours to remove the oxide film. Etching with a surface of Ra = 2.8 μm Ti (JIS type 2) base material was obtained.

東海カーボン株式会社製の黒鉛棒G347をエッチング加工されたTi(JIS2種)基材に10kg/cmの圧力で加圧しながら擦過する工程を5回繰り返すことで、黒鉛微粒子をエッチング孔内へ導入し、黒鉛微粒子をエッチング孔内へ埋め込んだ。 The graphite particles G347 manufactured by Tokai Carbon Co., Ltd. are introduced into the etching holes by repeating the process of rubbing the Ti (JIS type 2) base material with 10 kg / cm 2 of pressure on the etched Ti (JIS type) substrate 5 times. Then, the graphite fine particles were embedded in the etching holes.

日東電工株式会社製のポリイミドテープを、黒鉛微粒子を塗布したSUS430基材に5kg/cmの圧力下で貼り付けた後、剥離することで、余分な黒鉛微粒子を除去し、黒鉛微粒子がエッチング孔内に埋め込まれたTi(JIS2種)基材とした。 A polyimide tape manufactured by Nitto Denko Corporation was applied to a SUS430 substrate coated with graphite fine particles under a pressure of 5 kg / cm 2 and then peeled off to remove excess graphite fine particles. A Ti (JIS type 2) base material embedded inside was used.

次に、耐食性の高いπ共役系導電性高分子膜を化学重合法により形成する。黒鉛微粒子がエッチング孔内にTi(JIS2種)基材表面上に、単量体であるポリ−3,4−エチレンジオキシチオフェンとドーパント剤であるポリスチレンスルホン酸テトラエチルアンモニウム(平均分子量100000)を含むエタノール−水混合溶液を塗布後、酸化剤溶液である塩化鉄(III)水溶液を噴霧し、50℃で10分間乾燥する工程を繰り返し、厚みが21μmであるポリ−3,4−エチレンジオキシチオフェン膜を形成し、耐食導電被覆材料を10枚作製した。   Next, a π-conjugated conductive polymer film having high corrosion resistance is formed by a chemical polymerization method. Graphite fine particles contain poly-3,4-ethylenedioxythiophene as a monomer and tetraethylammonium polystyrene sulfonate (average molecular weight 100000) as a dopant agent on the surface of a Ti (JIS type 2) substrate in an etching hole. After applying the ethanol-water mixed solution, an iron (III) chloride aqueous solution that is an oxidant solution is sprayed, and the process of drying at 50 ° C. for 10 minutes is repeated to obtain poly-3,4-ethylenedioxythiophene having a thickness of 21 μm. A film was formed to produce 10 corrosion-resistant conductive coating materials.

(実施例7)
金属基材としてTi(JIS2種)板を用いた。Ti(JIS2種)板は大きさが20×30mm、厚さが0.2mmの圧延材である。本基材を有機溶媒による脱脂処理後、耐水研磨紙#120番によって研磨を施した後、2wt%蓚酸中に16時間浸漬、続いて0.5wt%フッ酸中に30秒間浸漬させて酸化被膜除去を行い、表面がRa=2.9μmのエッチング加工されたTi(JIS2種)基材とした。
(Example 7)
A Ti (JIS type 2) plate was used as the metal substrate. A Ti (JIS type 2) plate is a rolled material having a size of 20 × 30 mm and a thickness of 0.2 mm. This substrate is degreased with an organic solvent, polished with water-resistant abrasive paper # 120, immersed in 2 wt% oxalic acid for 16 hours, and then immersed in 0.5 wt% hydrofluoric acid for 30 seconds to form an oxide film. Removal was performed to obtain an etched Ti (JIS type 2) substrate having a surface with Ra = 2.9 μm.

昭和電工株式会社製の黒鉛棒SS1をエッチング加工されたTi(JIS2種)基材に10kg/cmの圧力で加圧しながら擦過する工程を5回繰り返すことで、黒鉛微粒子をエッチング孔内へ導入し、黒鉛微粒子をエッチング孔内へ埋め込んだ。 By introducing the graphite rod SS1 made by Showa Denko Co., Ltd. into the etching hole by repeating the process of rubbing the Ti (JIS type 2) base material with 10 kg / cm 2 while applying pressure to the Ti (JIS type 2) base material. Then, the graphite fine particles were embedded in the etching holes.

日東電工株式会社製のポリイミドテープを、黒鉛微粒子を塗布したTi(JIS2種)基材に5kg/cmの圧力下で貼り付けた後、剥離することで、余分な黒鉛微粒子を除去し、黒鉛微粒子がエッチング孔内に埋め込まれたTi(JIS2種)基材とした。 A polyimide tape manufactured by Nitto Denko Corporation was applied to a Ti (JIS type 2) substrate coated with graphite fine particles under a pressure of 5 kg / cm 2 and then peeled off to remove excess graphite fine particles. A Ti (JIS type 2) base material in which fine particles were embedded in the etching holes was used.

π共役系導電性高分子膜を化学重合法により形成する。黒鉛微粒子がエッチング孔内に埋め込まれたTi(JIS2種)基材表面上で、単量体であるピロールと酸化剤である2,7−ナフタレンジスルホン酸鉄(III)を含む水溶液を塗布後、50℃で10分間乾燥する工程を繰り返し、厚みが3μmであるポリピロール膜を形成した。   A π-conjugated conductive polymer film is formed by a chemical polymerization method. After applying an aqueous solution containing pyrrole as a monomer and iron (III) 2,7-naphthalenedisulfonate as an oxidizing agent on the surface of a Ti (JIS type 2) substrate in which graphite fine particles are embedded in etching holes, The process of drying at 50 ° C. for 10 minutes was repeated to form a polypyrrole film having a thickness of 3 μm.

続いて、耐食性の高いπ共役系導電性高分子膜を電解重合法により形成する。溶媒を純水とし、単量体としてピロール0.5mol/L、支持電解質としてドデシルベンゼンスルホン酸0.30mol/Lを含む電解液を用いて、化学重合ポリピロールが被覆されている、黒鉛微粒子がエッチング孔内に埋め込まれたTi(JIS2種)基材を陽極、SUS304を陰極、電解重合時間は1時間、電流密度を1mA/cmとして電解重合を行い、厚みが18μmのポリピロール膜を形成し、耐食導電被覆材料を合計10枚作製した。 Subsequently, a π-conjugated conductive polymer film having high corrosion resistance is formed by an electrolytic polymerization method. Etching of fine graphite particles coated with chemically polymerized polypyrrole using an electrolytic solution containing pure water as a solvent, 0.5 mol / L of pyrrole as a monomer, and 0.30 mol / L of dodecylbenzenesulfonic acid as a supporting electrolyte Ti (JIS type 2) base material embedded in the hole is an anode, SUS304 is a cathode, electropolymerization time is 1 hour, current density is 1 mA / cm 2 , electropolymerization is performed to form a polypyrrole film having a thickness of 18 μm, A total of 10 corrosion-resistant conductive coating materials were produced.

(比較例1)
実施例1において、Al5052合金基材に対して、有機溶媒による脱脂処理後、粒径5μmアルミナ粒子を用いてバフ研磨を施した後、0.01N塩酸水溶液中に30秒間浸漬させて酸化被膜除去を行い、表面がRa=0.3μmであるAl5052合金基材とした以外は、同様に実施してポリピロール膜を形成し、被覆材料を合計10枚作製した。
(Comparative Example 1)
In Example 1, the Al 5052 alloy base material was degreased with an organic solvent, then buffed with 5 μm alumina particles, and then immersed in a 0.01N hydrochloric acid aqueous solution for 30 seconds to remove the oxide film. And a polypyrrole film was formed in the same manner except that the surface was changed to an Al5052 alloy base with Ra = 0.3 μm, and a total of 10 coating materials were produced.

(比較例2)
実施例2において、電解重合工程を行わなかった以外は、同様に実施して黒鉛微粒子がエッチング孔内に埋め込まれたTi(JIS2種)基材を作製し、被覆材料を合計10枚作製した。
(Comparative Example 2)
In Example 2, except that the electrolytic polymerization step was not performed, a Ti (JIS type 2) base material in which graphite fine particles were embedded in etching holes was produced in the same manner, and a total of 10 coating materials were produced.

(比較例3)
実施例3において、表面がエッチング加工されたSUS430基材に黒鉛微粒子を埋め込まなかった以外は、同様に実施して黒鉛微粒子がエッチング孔内に埋め込まれたSUS430基材を作製し、被覆材料を合計10枚作製した。
(Comparative Example 3)
In Example 3, a SUS430 base material in which graphite fine particles were embedded in the etching holes was prepared in the same manner except that the graphite fine particles were not embedded in the SUS430 base material whose surface was etched. Ten sheets were produced.

(比較例4)   (Comparative Example 4)

884シンナーにて粘度を調整された、藤倉化成株式会社製の導電性ニッケルペーストであるFE−107溶液中に、粒径5μmアルミナを用いてバフ研磨して表面粗さがRa=0.3μmとなるようにエッチング加工された無酸素銅板を浸漬させた。
750mmHgの減圧下で5分間保持させて、ニッケル微粒子および樹脂バインダーをエッチング孔内へ導入し、減圧状態を解除後、50℃の乾燥機中にて30分間乾燥行い、ニッケル微粒子をエッチング孔内へ埋め込んだ。
その後、ニッケル微粒子および樹脂バインダーをエッチング孔内へ埋め込んだ無酸素銅基材表面にある余剰な樹脂バインダーを含むニッケル微粒子層を耐水研磨紙#3000を用いて除去して、ニッケル微粒子および樹脂バインダーをエッチング孔内へ埋め込んだニッケル合金基材を作製した。
In a FE-107 solution, which is a conductive nickel paste manufactured by Fujikura Kasei Co., Ltd., whose viscosity is adjusted with 884 thinner, buffing is performed using 5 μm particle size alumina and the surface roughness is Ra = 0.3 μm. An oxygen-free copper plate etched so as to be immersed was immersed.
The nickel fine particles and the resin binder are introduced into the etching holes for 5 minutes under a reduced pressure of 750 mmHg. After releasing the reduced pressure state, the nickel fine particles are put into the etching holes by drying in a dryer at 50 ° C. for 30 minutes. Embedded.
Thereafter, the nickel fine particle layer containing the excess resin binder on the surface of the oxygen-free copper base material in which the nickel fine particles and the resin binder are embedded in the etching holes is removed using water-resistant abrasive paper # 3000, and the nickel fine particles and the resin binder are removed. A nickel alloy base material embedded in the etching hole was produced.

次に、化学重合法によってπ共役系導電性高分子であるポリアニリン膜を形成した。
アニリン9.3gに水150gと濃塩酸10.1gを加え、温度0〜10℃に保ちながら、過硫酸アンモニウム22.8gを水40gに溶解した溶液を2時間で滴下した後、3時間攪拌した。その後、濃アンモニア水41gを1時間で滴下し、さらに5時間攪拌した後、ろ別し、水洗及びメタノール洗浄を繰り返した後、真空乾燥して銅色のポリアニリン8.3gを得た。得られた銅色のポリアニリンをメタノール200mlに分散し、ヒドラジン一水和物20gを加え、室温で15時間攪拌した後、ろ別し、水及びメタノールで洗浄し、真空乾燥して灰青色の可溶性ポリアニリン7.5gを得た。さらに、インジゴトリスルホン酸 3.5wt%及びポリアニリン2.0wt%、ドデシルベンゼンスルホン酸1.0wt%となるようにトルエン溶媒に加え、ドーパントを含むポリアニリン分散液を得た。
このポリアニリン分散液中に、ニッケル微粒子がエッチング孔内に埋め込まれた無酸素銅基材を浸漬し、温度150℃で5分間乾燥する工程を10回繰り返すことで、ポリアニリン膜を形成し、被覆材料を合計10枚作製した。
Next, a polyaniline film, which is a π-conjugated conductive polymer, was formed by chemical polymerization.
150 g of water and 10.1 g of concentrated hydrochloric acid were added to 9.3 g of aniline, and a solution obtained by dissolving 22.8 g of ammonium persulfate in 40 g of water was added dropwise over 2 hours while maintaining the temperature at 0 to 10 ° C., followed by stirring for 3 hours. Thereafter, 41 g of concentrated aqueous ammonia was added dropwise over 1 hour, and the mixture was further stirred for 5 hours, followed by filtration, repeated washing with water and methanol, and then vacuum drying to obtain 8.3 g of copper-colored polyaniline. The obtained copper-colored polyaniline was dispersed in 200 ml of methanol, added with 20 g of hydrazine monohydrate, stirred at room temperature for 15 hours, filtered, washed with water and methanol, and vacuum-dried to obtain a grayish blue soluble 7.5 g of polyaniline was obtained. Furthermore, in addition to toluene solvent so that it might become 3.5 wt% of indigo trisulfonic acid, 2.0 wt% of polyaniline, and 1.0 wt% of dodecylbenzenesulfonic acid, the polyaniline dispersion liquid containing a dopant was obtained.
A polyaniline film is formed by immersing an oxygen-free copper base material in which nickel fine particles are embedded in the etching holes in this polyaniline dispersion and drying it at a temperature of 150 ° C. for 5 minutes to form a polyaniline film. A total of 10 sheets were produced.

(比較例5)
実施例5において、π共役系導電性高分子膜であるポリ−3−ヘキシルチオフェン膜の代わりに、市販されている藤倉化成株式会社製の導電性銀ペーストXA−874を刷毛塗り法により塗布後、150℃で30分間乾燥することで導電性膜を形成した以外は、同様に実施し、被覆材料を10枚作製した。
(Comparative Example 5)
In Example 5, instead of the poly-3-hexylthiophene film which is a π-conjugated conductive polymer film, a commercially available conductive silver paste XA-874 manufactured by Fujikura Kasei Co., Ltd. was applied by a brush coating method. 10 coating materials were produced in the same manner except that the conductive film was formed by drying at 150 ° C. for 30 minutes.

(比較例6)
特開2001−234361号公報に準じて、金属基体としてリン脱酸銅板(20×30mm、厚さが0.2mm)を用いた。本基体をアルカリ脱脂液にて脱脂、続いて10%蓚酸にて酸洗後、めっき基体として供した。まず、硫酸ニッケル6水和物1.00mol/L、塩化ニッケル6水和物0.25mol/L、ホウ酸0.65mol/Lとする塩化ニッケルを多く含むワット浴を用いて、電流密度100mA/cm、浴温度50℃にて硫黄含有率の低い第1Niめっき層を形成した。続いて、硫酸ニッケル6水和物1.2mol/L、塩化ニッケル6水和物0.19mol/L、ホウ酸0.65mol/L、1,5−ナフタリンジスルホン酸ナトリウム2.33×10−2mol/L、チオ尿素1.31×10−3mol/Lとするワット浴を用いて、電流密度100mA/cm、浴温度50℃にて、第2Niめっき層を形成した。次に、市販のシアン金めっき浴(上村工業株式会社:オールナ556)を用いて、電流密度800mA/cm、浴温度50℃にて、金めっき層を形成し、被覆材料を10枚作製した。
(Comparative Example 6)
In accordance with JP 2001-234361 A, a phosphorous deoxidized copper plate (20 × 30 mm, thickness 0.2 mm) was used as the metal substrate. The substrate was degreased with an alkaline degreasing solution, subsequently pickled with 10% oxalic acid, and then used as a plating substrate. First, using a Watt bath containing a large amount of nickel chloride having a nickel sulfate hexahydrate of 1.00 mol / L, nickel chloride hexahydrate of 0.25 mol / L, and boric acid of 0.65 mol / L, a current density of 100 mA / A first Ni plating layer having a low sulfur content was formed at cm 2 and a bath temperature of 50 ° C. Subsequently, nickel sulfate hexahydrate 1.2 mol / L, nickel chloride hexahydrate 0.19 mol / L, boric acid 0.65 mol / L, sodium 1,5-naphthalene disulfonate 2.33 × 10 −2 A second Ni plating layer was formed at a current density of 100 mA / cm 2 and a bath temperature of 50 ° C. using a Watt bath having mol / L and thiourea of 1.31 × 10 −3 mol / L. Next, using a commercially available cyan gold plating bath (Uemura Kogyo Co., Ltd .: Allna 556), a gold plating layer was formed at a current density of 800 mA / cm 2 and a bath temperature of 50 ° C., and 10 coating materials were produced. .

(比較例7)
特開2004−31166号公報に準じて、2,3,5−トリカルボキシシクロペンチル酢酸二無水物22.4g、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン36.95gをトルエン中で60℃にて6時間反応させて60%ポリアミック樹脂溶液を得た。ポリアミック酸樹脂100重量部に対して炭化タングステン20重量部になるように配合し、ペブルミルで分散を行い、次いでトリエチルアミンで水分散化物のpHが7となるように中和し、固形分20wt%のアニオン性電着塗料を得た。
(Comparative Example 7)
According to Japanese Patent Application Laid-Open No. 2004-31166, 22.4 g of 2,3,5-tricarboxycyclopentylacetic acid dianhydride and 36.95 g of 2,2-bis [4- (4-aminophenoxy) phenyl] propane were added to toluene. The mixture was reacted at 60 ° C. for 6 hours to obtain a 60% polyamic resin solution. Formulated to 20 parts by weight of tungsten carbide with respect to 100 parts by weight of polyamic acid resin, dispersed with a pebble mill, then neutralized with triethylamine so that the pH of the water-dispersed product becomes 7, and has a solid content of 20 wt%. An anionic electrodeposition paint was obtained.

続いて、SUS304基体(20×30mm、厚さが0.2mm)をアルカリ脱脂後、10%HF水溶液中でエッチングして洗浄を行った。先に調整したアニオン性電着塗料中(浴温28℃)にSUS304基体を浸漬させて、膜厚20μmになるまで塗装した。次いで、得られた電着塗膜を有する被塗物を水洗後、硬化させるために170℃で20分間乾燥させて、被覆材料を10枚作製した。   Subsequently, the SUS304 substrate (20 × 30 mm, thickness 0.2 mm) was alkali degreased and then etched and washed in a 10% HF aqueous solution. The SUS304 substrate was immersed in the previously prepared anionic electrodeposition coating (bath temperature 28 ° C.), and coating was performed until the film thickness reached 20 μm. Next, the coated object having the obtained electrodeposition coating film was washed with water and then dried at 170 ° C. for 20 minutes to produce 10 coating materials.

(各材料の評価)
このようにして作製した本発明にかかる耐食導電被覆材料と比較例に対して、燃料電池動作環境に近い模擬液である80℃に保持された10wt%硫酸水溶液を用いて浸漬試験を90日間実施し、金属基材から模擬液中に溶出された金属イオン濃度をシーケンシャル形高周波プラズマ発光分析装置によって測定し、耐食性を比較した結果(5回実施した平均値)を表1に示す。また集電特性を図るために、図2に示した接触抵抗測定法によって、負荷加重10kg/cmにおける初期抵抗と浸漬試験実施後の比較を行った結果を表2に示す。
(Evaluation of each material)
The immersion test was carried out for 90 days using the 10 wt% sulfuric acid aqueous solution maintained at 80 ° C., which is a simulated liquid close to the fuel cell operating environment, for the corrosion-resistant conductive coating material according to the present invention and the comparative example. Table 1 shows the results of measuring the concentration of metal ions eluted from the metal base material in the simulated liquid using a sequential high-frequency plasma emission spectrometer and comparing the corrosion resistance (average value obtained five times). Table 2 shows the results of comparison between the initial resistance at a load load of 10 kg / cm 2 and after the immersion test by the contact resistance measurement method shown in FIG.

続いて、作製した本発明にかかる耐食導電被覆材料と比較例に対して、太陽電池作動環境に近い模擬液である50℃に保持された3wt%I含有アセトニトリル溶液を用いて浸漬試験を30日間実施し、金属基材から模擬液中に溶出された金属イオン濃度をシーケンシャル形高周波プラズマ発光分析装置によって測定し、耐食性を比較した結果(5回実施した平均値)を表3に示す。また集電特性を図るために、図2に示した表面抵抗測定によって、初期表面抵抗と浸漬試験実施後表面処理抵抗の比較を行った結果を表4に示す。 Subsequently, a 30 wt% I 2 -containing acetonitrile solution maintained at 50 ° C., which is a simulated solution close to the solar cell operating environment, was subjected to 30 immersion tests on the produced corrosion-resistant conductive coating material according to the present invention and the comparative example. Table 3 shows the results of measuring the concentration of metal ions eluted from the metal base material in the simulated solution using a sequential high-frequency plasma emission spectrometer and comparing the corrosion resistance (average value performed five times). Table 4 shows the results of comparing the initial surface resistance and the surface treatment resistance after the immersion test by the surface resistance measurement shown in FIG.

その表1の結果によれば、本発明にかかる各耐食導電被覆材料は、浸漬試験90日後においてもほとんど変化することなく基材を保護し、燃料電池用途に必要な耐食特性に優れていることが認められた。これに対し、同様に浸漬試験を行った比較例1、4では表面粗さが最適化されていないために、浸漬時間が長くなるにつれてπ共役系導電性高分子膜の剥離が始まるために金属基材の溶出量が大きくなる傾向にあることが確認された。比較例2では、腐食間環境から基材を保護するπ共役系導電性高分子膜がないために金属基材は常に溶解している状態であった。比較例5では、導電性銀ペースト膜では試験環境に対して耐食がなく、銀が溶解していた。さらに、比較例6で作製した耐食導電被覆材料は、銅基体の溶出は少ないものの、犠牲となるニッケル層からのニッケルの溶出があった。以上の比較例では金属イオンの溶出が見られ、固体高分子形燃料電池のプロトン伝導度膜に悪影響を及ぼす恐れがあることが確認できた。   According to the results of Table 1, each of the corrosion-resistant conductive coating materials according to the present invention protects the substrate with almost no change even after 90 days of the immersion test, and has excellent corrosion resistance characteristics necessary for fuel cell applications. Was recognized. On the other hand, in Comparative Examples 1 and 4 in which the immersion test was conducted in the same manner, the surface roughness was not optimized, so that peeling of the π-conjugated conductive polymer film started as the immersion time increased. It was confirmed that the elution amount of the base material tends to increase. In Comparative Example 2, the metal base material was always dissolved because there was no π-conjugated conductive polymer film protecting the base material from the environment between corrosion. In Comparative Example 5, the conductive silver paste film had no corrosion resistance against the test environment, and silver was dissolved. Furthermore, although the corrosion-resistant conductive coating material produced in Comparative Example 6 had a small elution of the copper base, there was an elution of nickel from the sacrificial nickel layer. In the above comparative examples, elution of metal ions was observed, and it was confirmed that the proton conductivity membrane of the polymer electrolyte fuel cell may be adversely affected.

その表2の結果によれば、本発明にかかる耐食導電被覆材料は、浸漬試験90日後においても良好な接触抵抗を保持し、固体電解質形燃料電池用途に必要な集電特性に優れていることが認められた。これに対し、同様に浸漬試験を行った比較例1〜7で作製した耐食導電被覆材料において、比較例1、4では金属基材、導電性微粒子、π共役系導電性高分子膜との密着性が低いために、浸漬時間の経過とともに金属基材から導電性微粒子とπ共役系導電性高分子膜が剥離を始めて、接触抵抗が高くなる傾向にあることがわかった。比較例3、5では、金属基材に適切な導電性微粒子が埋め込まれていないために、初期接触抵抗が高いことがわかった。また、比較例7では、被膜中に絶縁性の樹脂成分が多いために接触抵抗が高いことが確認された。以上の比較例では接触抵抗が高く、固体高分子形燃料電池の発電特性に悪影響を及ぼす恐れがあることが確認できた。   According to the results of Table 2, the corrosion-resistant conductive coating material according to the present invention maintains good contact resistance even after 90 days of immersion test and has excellent current collecting characteristics required for solid oxide fuel cell applications. Was recognized. On the other hand, in the corrosion-resistant conductive coating materials produced in Comparative Examples 1 to 7 which were similarly subjected to the immersion test, in Comparative Examples 1 and 4, the adhesion to the metal base material, conductive fine particles, and π-conjugated conductive polymer film It has been found that the contact resistance tends to increase due to the low dipping property since the conductive fine particles and the π-conjugated conductive polymer film start to peel from the metal substrate as the immersion time elapses. In Comparative Examples 3 and 5, it was found that the initial contact resistance was high because appropriate conductive fine particles were not embedded in the metal substrate. Further, in Comparative Example 7, it was confirmed that the contact resistance was high because there were many insulating resin components in the coating. In the above comparative examples, it was confirmed that the contact resistance was high and there was a possibility of adversely affecting the power generation characteristics of the polymer electrolyte fuel cell.

その表3の結果によれば、本発明にかかる各導電耐食被覆材料は、浸漬試験30日後においても全く変化することなく基材を保護し、色素増感型太陽電池用途に必要な耐食特性に優れていることが認められた。これに対し、同様に浸漬試験を行った比較例1、4では表面粗さが最適化されていないために、浸漬時間が長くなるにつれてπ共役系導電性高分子膜の剥離が始まるために金属基材の溶出量が大きくなる傾向にあることが確認された。比較例2では、腐食間環境から基材を保護するπ共役系導電性高分子膜がないために金属基材は常に溶解している状態であった。比較例5では、導電性銀ペースト膜では試験環境に対して耐食がなく、銀が溶解していた。さらに、比較例6で作製した耐食導電被覆材料は、銅基体の溶出は少ないものの、犠牲となるニッケル層からのニッケルの溶出があった。以上の比較例では金属イオンの溶出が見られ、金属基材が侵されてしまうため、電解液の封止が困難であることが確認された。   According to the results in Table 3, each conductive and corrosion-resistant coating material according to the present invention protects the substrate without any change even after 30 days of immersion test, and has the corrosion resistance characteristics necessary for dye-sensitized solar cell applications. It was found to be excellent. On the other hand, in Comparative Examples 1 and 4 in which the immersion test was conducted in the same manner, the surface roughness was not optimized, so that peeling of the π-conjugated conductive polymer film started as the immersion time increased. It was confirmed that the elution amount of the base material tends to increase. In Comparative Example 2, the metal base material was always dissolved because there was no π-conjugated conductive polymer film protecting the base material from the environment between corrosion. In Comparative Example 5, the conductive silver paste film had no corrosion resistance against the test environment, and silver was dissolved. Furthermore, although the corrosion-resistant conductive coating material produced in Comparative Example 6 had a small elution of the copper base, there was an elution of nickel from the sacrificial nickel layer. In the above comparative examples, elution of metal ions was observed, and the metal base material was attacked. Therefore, it was confirmed that sealing of the electrolytic solution was difficult.

その表4の結果によれば、本発明にかかる耐食導電被覆材料は、浸漬試験30日後においても良好な表面抵抗を保持し、色素増感型太陽電池用途に必要な集電特性に優れていることが認められた。これに対し、同様に浸漬試験を行った比較例1〜7で作製した耐食導電被覆材料において、比較例1、4では金属基材、導電性微粒子、π共役系導電性高分子膜との密着性が低いために、浸漬時間の経過とともに金属基材から導電性微粒子とπ共役系導電性高分子膜が剥離を始めて、表面抵抗が高くなる傾向にあることがわかった。比較例3、5では、金属基材に適切な導電性微粒子が埋め込まれていないために、初期表面抵抗が高いことがわかった。また、比較例7では、被膜中に絶縁性の樹脂成分が多いために表面抵抗が高いことが確認された。以上の比較例では表面抵抗が高く、色素増感型太陽電池の発電特性に悪影響を及ぼす恐れがあることが確認できた。   According to the results of Table 4, the corrosion-resistant conductive coating material according to the present invention retains good surface resistance even after 30 days of immersion test, and is excellent in current collection characteristics necessary for dye-sensitized solar cell applications. It was recognized that On the other hand, in the corrosion-resistant conductive coating materials produced in Comparative Examples 1 to 7 which were similarly subjected to the immersion test, in Comparative Examples 1 and 4, the adhesion to the metal base material, conductive fine particles, and π-conjugated conductive polymer film It was found that since the property is low, the conductive fine particles and the π-conjugated conductive polymer film start to peel from the metal substrate with the lapse of the immersion time, and the surface resistance tends to increase. In Comparative Examples 3 and 5, it was found that the initial surface resistance was high because appropriate conductive fine particles were not embedded in the metal substrate. Further, in Comparative Example 7, it was confirmed that the surface resistance was high because there were many insulating resin components in the film. In the above comparative examples, the surface resistance was high, and it was confirmed that the power generation characteristics of the dye-sensitized solar cell might be adversely affected.

Figure 0004931127
Figure 0004931127

Figure 0004931127
Figure 0004931127

Figure 0004931127
Figure 0004931127

Figure 0004931127
Figure 0004931127

本発明の耐食導電被覆材料は、燃料電池用金属セパレータを主たる用途とするが、電気接点、端子、色素増感型太陽電池用電極へ好適に使用できる。   The corrosion-resistant conductive coating material of the present invention is mainly used for metal separators for fuel cells, but can be suitably used for electrical contacts, terminals, and electrodes for dye-sensitized solar cells.

本発明の耐食導電被覆材料の製造工程を示すフロー図Flow diagram showing the manufacturing process of the corrosion-resistant conductive coating material of the present invention 集電特性を評価するための接触抵抗測定法Contact resistance measurement method for evaluating current collection characteristics.

符号の説明Explanation of symbols

1 金属基材
2 導電性微粒子層
3 π共役系導電性高分子
4 金属酸化物
11 負荷加重装置
12 金電極
13 カーボン電極
14 耐食導電被覆材料
DESCRIPTION OF SYMBOLS 1 Metal base material 2 Conductive fine particle layer 3 (pi) conjugated system conductive polymer 4 Metal oxide 11 Load load apparatus 12 Gold electrode 13 Carbon electrode 14 Corrosion-resistant conductive coating material

Claims (10)

金属基材上にπ共役系導電性高分子層が形成されてなる耐食導電被覆材料において、
表面がエッチング加工された金属基材上に被覆されるπ共役系導電性高分子層の少なくとも一部が、
該エッチング孔内に付着された導電性微粒子を介して被覆されていることを特徴とする耐食導電被覆材料。
In a corrosion-resistant conductive coating material in which a π-conjugated conductive polymer layer is formed on a metal substrate,
At least a part of the π-conjugated conductive polymer layer coated on the metal substrate whose surface is etched,
A corrosion-resistant conductive coating material, which is coated with conductive fine particles adhered in the etching hole.
前記エッチング加工された金属基材表面の中心線平均表面粗さRa値がRa≧0.5μmの条件を満たすように粗面加工された金属基材であることを特徴とする請求項1に記載の耐食導電被覆材料。   2. The metal substrate that has been roughened so that a center line average surface roughness Ra value of the etched metal substrate surface satisfies a condition of Ra ≧ 0.5 μm. Corrosion-resistant conductive coating material. 前記金属基材が、
アルミニウム、チタン、鉄、銅およびその合金からなる群から選ばれる少なくとも1つの金属基材であることを特徴とする請求項1又は2に記載の耐食導電被覆材料。
The metal substrate is
The corrosion-resistant conductive coating material according to claim 1 or 2, which is at least one metal substrate selected from the group consisting of aluminum, titanium, iron, copper and alloys thereof.
前記導電性微粒子が、樹脂バインダーを含まない黒鉛および/またはカーボンブラックからなる炭素微粒子であることを特徴とする請求項1〜3のいずれかに記載の耐食導電被覆材料。   The corrosion-resistant conductive coating material according to claim 1, wherein the conductive fine particles are carbon fine particles made of graphite and / or carbon black not containing a resin binder. 前記導電性微粒子が、600℃以上で焼成されることにより得られる炭素微粒子であることを特徴とする請求項1〜4のいずれかに記載の耐食導電被覆材料。   The corrosion-resistant conductive coating material according to claim 1, wherein the conductive fine particles are carbon fine particles obtained by firing at 600 ° C. or higher. 用途が電気接点、端子および電極の材料であることを特徴とする請求項1〜5のいずれかに記載の耐食導電被覆材料。   The corrosion-resistant conductive coating material according to any one of claims 1 to 5, wherein the application is a material for electrical contacts, terminals and electrodes. 用途が燃料電池用金属セパレータであることを特徴とする請求項1〜5のいずれかに記載の耐食導電被覆材料。   The corrosion-resistant conductive coating material according to any one of claims 1 to 5, wherein the use is a metal separator for a fuel cell. 用途が色素増感型太陽電池用電極であることを特徴とする請求項1〜5のいずれかに記載の耐食導電被覆材料。   The corrosion-resistant conductive coating material according to any one of claims 1 to 5, wherein the use is an electrode for a dye-sensitized solar cell. 金属基材上にπ共役系導電性高分子層が形成されてなる耐食導電被覆材料の製造方法において、
金属基材表面を脱脂・エッチングすることによって粗面加工する工程、
該エッチング孔内に導電性微粒子の分散溶液を含浸した後、乾燥することによってエッチング孔内に導電性微粒子を添着する工程、
エッチング孔内に過剰に添着した導電性微粒子の一部を除去し、金属基体の一部を露出する工程、
該金属表面をπ共役系導電性高分子層で被覆する工程
を包含することを特徴とする耐食導電被覆材料の製造方法。
In the method for producing a corrosion-resistant conductive coating material in which a π-conjugated conductive polymer layer is formed on a metal substrate,
A process of roughening the surface of the metal substrate by degreasing and etching,
A step of impregnating the conductive fine particles in the etching holes by impregnating the etching fine holes with the dispersion solution of the conductive fine particles and then drying;
Removing a part of the conductive fine particles excessively attached in the etching hole and exposing a part of the metal substrate;
A method for producing a corrosion-resistant conductive coating material comprising the step of coating the metal surface with a π-conjugated conductive polymer layer.
金属基材上にπ共役系導電性高分子層が形成されてなる耐食導電被覆材料の製造方法において、
金属基材表面を脱脂・エッチングすることによって粗面加工する工程、
該金属基材表面に黒鉛および/またはカーボンブラック材料を擦過することによってエッチング孔内に導電性微粒子を添着する工程、
エッチング孔内に過剰に添着した導電性微粒子の一部を除去し、金属基体の一部を露出する工程、
該金属表面をπ共役系導電性高分子層で被覆する工程
を包含することを特徴とする耐食導電被覆材料の製造方法。
In the method for producing a corrosion-resistant conductive coating material in which a π-conjugated conductive polymer layer is formed on a metal substrate,
A process of roughening the surface of the metal substrate by degreasing and etching,
Attaching conductive fine particles in the etching hole by rubbing graphite and / or carbon black material on the surface of the metal substrate;
Removing a part of the conductive fine particles excessively attached in the etching hole and exposing a part of the metal substrate;
A method for producing a corrosion-resistant conductive coating material comprising the step of coating the metal surface with a π-conjugated conductive polymer layer.
JP2006308676A 2006-11-15 2006-11-15 Corrosion-resistant conductive coating material and method for producing the same Expired - Fee Related JP4931127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006308676A JP4931127B2 (en) 2006-11-15 2006-11-15 Corrosion-resistant conductive coating material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006308676A JP4931127B2 (en) 2006-11-15 2006-11-15 Corrosion-resistant conductive coating material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008121087A JP2008121087A (en) 2008-05-29
JP4931127B2 true JP4931127B2 (en) 2012-05-16

Family

ID=39506161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006308676A Expired - Fee Related JP4931127B2 (en) 2006-11-15 2006-11-15 Corrosion-resistant conductive coating material and method for producing the same

Country Status (1)

Country Link
JP (1) JP4931127B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302018A (en) * 2008-06-17 2009-12-24 Toyo Aluminium Kk Aluminum alloy foil electrode for dye-sensitized solar cell
JP5494064B2 (en) * 2010-03-17 2014-05-14 富士電機株式会社 High-frequency conducting conductor
CN101894677A (en) * 2010-06-30 2010-11-24 中国乐凯胶片集团公司 Flexible carbon counter electrode for flexible dye-sensitized solar cell and preparation method thereof
JP5594035B2 (en) * 2010-10-05 2014-09-24 大日本印刷株式会社 Separator for fuel cell and manufacturing method thereof
JP5856805B2 (en) * 2010-11-01 2016-02-10 株式会社アルバック Manufacturing method of vacuum parts
JP5573610B2 (en) * 2010-11-05 2014-08-20 日本軽金属株式会社 Fuel cell separator and method for producing the same
JP6206419B2 (en) 2012-02-23 2017-10-04 トレードストーン テクノロジーズ インク Metal substrate surface coating method, electrochemical device, and fuel cell plate
KR101546585B1 (en) 2013-10-31 2015-08-21 현대제철 주식회사 Method of forming electrode for dye sensitive solar cell using surface pattering
JP6170477B2 (en) * 2013-11-11 2017-07-26 株式会社神戸製鋼所 Titanium fuel cell separator material and method for producing titanium fuel cell separator material
JP6862316B2 (en) * 2016-09-08 2021-04-21 Jfeスチール株式会社 High-strength steel sheet with excellent delayed fracture resistance and its manufacturing method
CN113994439B (en) * 2019-06-28 2024-05-24 住友电气工业株式会社 Copper-clad steel wire, spring, twisted wire, insulated wire, and cable
WO2020261563A1 (en) * 2019-06-28 2020-12-30 住友電気工業株式会社 Copper-covered steel wire, stranded wire, insulated electric wire, and cable
JP7488050B2 (en) 2020-01-27 2024-05-21 矢崎総業株式会社 Connectors and mechanical parts
CN114864984B (en) * 2022-05-26 2024-05-31 一汽解放汽车有限公司 Fuel cell bipolar plate coating and preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283880A (en) * 2000-03-30 2001-10-12 Nisshin Steel Co Ltd Low-temperature fuel cell separator and its manufacturing method
JP3961434B2 (en) * 2002-08-21 2007-08-22 株式会社日本製鋼所 Manufacturing method of fuel cell separator
JP2006172720A (en) * 2004-12-10 2006-06-29 Japan Carlit Co Ltd:The Separator for fuel cell and its manufacturing method
JP2006172719A (en) * 2004-12-10 2006-06-29 Japan Carlit Co Ltd:The Separator for fuel cell and its manufacturing method

Also Published As

Publication number Publication date
JP2008121087A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
JP4931127B2 (en) Corrosion-resistant conductive coating material and method for producing the same
JP3444769B2 (en) Aluminum foil for current collector and manufacturing method thereof, current collector, secondary battery and electric double layer capacitor
JP3933573B2 (en) Aluminum foil for current collector of lithium ion battery, current collector of lithium ion battery and lithium ion battery
JP5614861B2 (en) Process for manufacturing electrodes used in fuel cells
JP2536817B2 (en) Method for producing corrosion-protected metal material and material obtained by this method
JPWO2003079477A1 (en) Cell unit of solid polymer electrolyte fuel cell
CN109478656B (en) Corrosion resistant coating
US20170309925A1 (en) Bipolar plate for electrochemical cells and method for the production thereof
US20070212558A1 (en) Surface treatment process for metal articles
JP3961434B2 (en) Manufacturing method of fuel cell separator
JP4210556B2 (en) Method for producing aluminum foil
CN111926309B (en) Titanium-based passivation prevention coating for metal oxide electrode and preparation method thereof
CN209779038U (en) Production system of corrosion-resistant and wear-resistant stainless steel-based coating structure
JPS61133557A (en) Battery having polymer electrode and making thereof
JP2007073232A (en) Separator for fuel cell and method of manufacturing same
JP4840966B2 (en) Conductive polymer coated metal material
JP2008266744A (en) Corrosion resistant conductive coating material, and its use
JP2006172719A (en) Separator for fuel cell and its manufacturing method
Li et al. Electrochemical properties of RuO 2 electrodes as a function of thin film thickness
JP5388162B2 (en) Method for producing corrosion-resistant conductive coating material
Sanad et al. Characterization and corrosion protection ability of conducting polymer coatings on mild steel in acid media
CN113981502A (en) Aluminum alloy surface corrosion-resistant antifriction composite coating and preparation method thereof
CN110257857B (en) Preparation method of electrochemical anode and electrochemical anode
CN109252197B (en) Method for electroplating silver on carburized part
JP2006302529A (en) Manufacturing method of separator for solid polymer fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120210

R150 Certificate of patent or registration of utility model

Ref document number: 4931127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees