JP4930332B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP4930332B2
JP4930332B2 JP2007288105A JP2007288105A JP4930332B2 JP 4930332 B2 JP4930332 B2 JP 4930332B2 JP 2007288105 A JP2007288105 A JP 2007288105A JP 2007288105 A JP2007288105 A JP 2007288105A JP 4930332 B2 JP4930332 B2 JP 4930332B2
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
intake valve
valve
external egr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007288105A
Other languages
Japanese (ja)
Other versions
JP2009114931A (en
Inventor
知広 品川
雄一 加藤
陽平 細川
真吾 是永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007288105A priority Critical patent/JP4930332B2/en
Publication of JP2009114931A publication Critical patent/JP2009114931A/en
Application granted granted Critical
Publication of JP4930332B2 publication Critical patent/JP4930332B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、吸気弁の開閉特性を変更する可変動弁機構と外部EGR装置とを制御する内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine that controls a variable valve mechanism that changes the opening / closing characteristics of an intake valve and an external EGR device.

内燃機関の可変動弁機構として、吸気弁の開閉特性である開弁期間(バルブ作用角)の変更を行うバルブ作用角可変機構が知られている。また、内燃機関の排気通路から排気の一部を外部EGRガスとして取り込み、内燃機関の吸気通路へ当該外部EGRガスを還流させる外部EGR装置が知られている。   2. Description of the Related Art As a variable valve mechanism for an internal combustion engine, a valve operating angle variable mechanism that changes a valve opening period (valve operating angle) that is an opening / closing characteristic of an intake valve is known. There is also known an external EGR device that takes a part of exhaust gas as an external EGR gas from an exhaust passage of the internal combustion engine and recirculates the external EGR gas to the intake passage of the internal combustion engine.

そして、内燃機関の運転状態が低負荷領域側にある場合には、吸気弁のバルブ作用角を小作用角にして燃費の向上を図り、内燃機関の運転状態が高負荷領域側にある場合には、吸気弁のバルブ作用角を大作用角にすると共に外部EGRガスを導入して、燃費の向上と共にNOxの低減を図る技術が開示されている(例えば、特許文献1参照)。
特開2002−89341号公報 特開2000−73803号公報 特開2005−351154号公報
When the operating state of the internal combustion engine is on the low load region side, the valve operating angle of the intake valve is set to a small operating angle to improve fuel consumption, and when the operating state of the internal combustion engine is on the high load region side. Discloses a technique for increasing the valve operating angle of the intake valve and introducing external EGR gas to improve fuel efficiency and reduce NOx (see, for example, Patent Document 1).
JP 2002-89341 A JP 2000-73803 A JP-A-2005-351154

ところで、内燃機関の運転状態が低負荷領域側から高負荷領域側へ移行する際には、吸気弁のバルブ作用角を小作用角から大作用角へ切り替える。またこのとき、吸気弁のバルブ作用角の切り替えと同時に、外部EGRガスが大量に要求される。しかし、外部EGRガスは内燃機関に還流されるまでの還流経路が長いため、外部EGRガスを導入開始してからも実際に内燃機関に外部EGRガスが到達するまでには時間がかかり、内燃機関の運転状態が高負荷領域側にある場合に要求される要求量の外部EGRガスが内燃機関に供給されるまでに還流遅れが生じている。   By the way, when the operating state of the internal combustion engine shifts from the low load region side to the high load region side, the valve operating angle of the intake valve is switched from the small operating angle to the large operating angle. At this time, a large amount of external EGR gas is required simultaneously with switching of the valve operating angle of the intake valve. However, since the external EGR gas has a long recirculation path until it is recirculated to the internal combustion engine, it takes time until the external EGR gas actually reaches the internal combustion engine even after the introduction of the external EGR gas is started. There is a recirculation delay until the required amount of external EGR gas is supplied to the internal combustion engine when the operating state is on the high load region side.

よって、内燃機関の運転状態が高負荷領域側へ移行した直後、すなわち吸気弁のバルブ作用角を小作用角から大作用角へ切り替えた直後は、外部EGRガスが不足してしまう。すると、外部EGRガスの不足に起因して内燃機関の筒内ガスの熱容量が大きくならず、燃焼温度が低下せず、冷却損失が低下しない。このため、冷却損失が低下することで得られる燃費の向上の効果が得られなくなる。また、内燃機関の運転状態が高負荷領域側にある場合に要求される要求量の外部EGRガスが内燃機関に供給されるまでの還流遅れが生じている間は、吸入空気量の制御が変動する外部EGRガスの導入量に対応しなければならないことから制御が困難になり、これによっても燃費悪化が改善できなくなる。   Therefore, immediately after the operating state of the internal combustion engine shifts to the high load region side, that is, immediately after the valve operating angle of the intake valve is switched from the small operating angle to the large operating angle, the external EGR gas becomes insufficient. Then, due to the shortage of external EGR gas, the heat capacity of the in-cylinder gas of the internal combustion engine does not increase, the combustion temperature does not decrease, and the cooling loss does not decrease. For this reason, the effect of the improvement of the fuel consumption obtained when cooling loss falls cannot be acquired. In addition, the control of the intake air amount fluctuates while a recirculation delay occurs until the required amount of external EGR gas is supplied to the internal combustion engine when the operating state of the internal combustion engine is on the high load region side. Therefore, the control becomes difficult because the amount of external EGR gas introduced must be accommodated, and this also makes it impossible to improve fuel consumption.

本発明は上記事情に鑑みてなされたものであり、その目的とするところは、内燃機関の制御装置において、吸気弁のバルブ作用角を小作用角から大作用角へ切り替える時に外部EGRガス量を急激に変化させず、燃費の向上を図る技術を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to control the amount of external EGR gas when a valve operating angle of an intake valve is switched from a small operating angle to a large operating angle in a control device for an internal combustion engine. The purpose is to provide a technique for improving fuel efficiency without causing abrupt changes.

本発明にあっては、以下の構成を採用する。すなわち、本発明は、
吸気弁のバルブ作用角を少なくとも2段階に切り替え可能な吸気弁バルブ作用角可変機構と、
前記吸気弁のバルブタイミングを変更可能な吸気弁バルブタイミング可変機構と、
内燃機関の排気通路から排気の一部を外部EGRガスとして取り込み、前記内燃機関の
吸気通路へ当該外部EGRガスを還流させる外部EGR装置と、
を備え、
前記内燃機関の運転状態が低負荷領域側にある場合には、前記吸気弁のバルブ作用角を小作用角とすると共に前記吸気弁のバルブタイミングを前記吸気弁の閉弁時期が下死点よりも早い早閉じのタイミングとし、
前記内燃機関の運転状態が高負荷領域側にある場合には、前記吸気弁のバルブ作用角を大作用角とすると共に前記外部EGRガスを前記内燃機関の運転状態が前記低負荷領域側にある場合よりも多く還流させる内燃機関の制御装置であって、
前記内燃機関の運転状態が前記低負荷領域側内で前記高負荷領域側手前の所定領域に移行した場合に、前記吸気弁のバルブタイミングを前記吸気弁の開閉時期が前記内燃機関の運転状態が前記低負荷領域側にある場合よりも遅角されるタイミングとすると共に前記外部EGRガスを前記内燃機関の運転状態が前記高負荷領域側にある場合に要求される要求量へ向けて導入開始することを特徴とする内燃機関の制御装置である。
In the present invention, the following configuration is adopted. That is, the present invention
An intake valve valve operating angle variable mechanism capable of switching the valve operating angle of the intake valve in at least two stages;
An intake valve valve timing variable mechanism capable of changing the valve timing of the intake valve;
An external EGR device that takes in a part of the exhaust gas from the exhaust passage of the internal combustion engine as an external EGR gas and recirculates the external EGR gas to the intake passage of the internal combustion engine;
With
When the operating state of the internal combustion engine is on the low load region side, the valve operating angle of the intake valve is set to a small operating angle, and the valve timing of the intake valve is set to the closing timing of the intake valve from the bottom dead center. As soon as possible the timing of early closing,
When the operating state of the internal combustion engine is on the high load region side, the valve operating angle of the intake valve is set to a large operating angle and the operating state of the internal combustion engine is on the low load region side. A control device for an internal combustion engine that recirculates more than the case,
When the operating state of the internal combustion engine shifts to a predetermined region within the low load region side and before the high load region side, the valve timing of the intake valve is determined according to the opening / closing timing of the intake valve. At a timing that is retarded from the case of being on the low load region side, introduction of the external EGR gas toward the required amount required when the operating state of the internal combustion engine is on the high load region side is started. This is a control device for an internal combustion engine.

内燃機関の運転状態が低負荷領域側から高負荷領域側へ移行する際には、吸気弁のバルブ作用角を小作用角から大作用角へ切り替える。またこのとき、吸気弁のバルブ作用角の切り替えと同時に、内燃機関の運転状態が低負荷領域側にある場合よりも多くの外部EGRガスが大量に要求される。しかし、外部EGRガスは内燃機関に還流されるまでの還流経路が長いため、外部EGRガスを導入開始してからも実際に内燃機関に外部EGRガスが到達するまでには時間がかかり、内燃機関の運転状態が高負荷領域側にある場合に要求される要求量の外部EGRガスが内燃機関に供給されるまでに還流遅れが生じている。   When the operating state of the internal combustion engine shifts from the low load region side to the high load region side, the valve operating angle of the intake valve is switched from the small operating angle to the large operating angle. Further, at this time, a large amount of external EGR gas is required at the same time when the valve operating angle of the intake valve is switched, as compared with the case where the operating state of the internal combustion engine is on the low load region side. However, since the external EGR gas has a long recirculation path until it is recirculated to the internal combustion engine, it takes time until the external EGR gas actually reaches the internal combustion engine even after the introduction of the external EGR gas is started. There is a recirculation delay until the required amount of external EGR gas is supplied to the internal combustion engine when the operating state is on the high load region side.

よって、内燃機関の運転状態が高負荷領域側へ移行した直後、すなわち吸気弁のバルブ作用角を小作用角から大作用角へ切り替えた直後は、外部EGRガスが不足してしまう。すると、外部EGRガスの不足に起因して内燃機関の筒内ガスの熱容量が大きくならず、燃焼温度が低下せず、冷却損失が低下しない。このため、冷却損失が低下することで得られる燃費の向上の効果が得られなくなる。また、内燃機関の運転状態が高負荷領域側にある場合に要求される要求量の外部EGRガスが内燃機関に供給されるまでの還流遅れが生じている間は、吸入空気量の制御が変動する外部EGRガスの導入量に対応しなければならないことから制御が困難になり、これによっても燃費悪化が改善できなくなる。   Therefore, immediately after the operating state of the internal combustion engine shifts to the high load region side, that is, immediately after the valve operating angle of the intake valve is switched from the small operating angle to the large operating angle, the external EGR gas becomes insufficient. Then, due to the shortage of external EGR gas, the heat capacity of the in-cylinder gas of the internal combustion engine does not increase, the combustion temperature does not decrease, and the cooling loss does not decrease. For this reason, the effect of the improvement of the fuel consumption obtained when cooling loss falls cannot be acquired. In addition, the control of the intake air amount fluctuates while a recirculation delay occurs until the required amount of external EGR gas is supplied to the internal combustion engine when the operating state of the internal combustion engine is on the high load region side. Therefore, the control becomes difficult because the amount of external EGR gas introduced must be accommodated, and this also makes it impossible to improve fuel consumption.

これに対し、内燃機関の運転状態が低負荷領域側にある時から少しずつ外部EGRガスを導入し、吸気弁のバルブ作用角を小作用角から大作用角へ切り替えた時に内燃機関の運転状態が高負荷領域側にある場合に要求される要求量の外部EGRガスが内燃機関に供給できるようにしておくことも考えられる。しかし、内燃機関の運転状態が低負荷領域側にある場合には、吸気弁のバルブ作用角が小作用角であり、早期に吸気流動がなくなるので、内燃機関の筒内ガスの乱れが少ししか形成できない。このため、燃焼悪化要因に対する耐性が低い。外部EGRガスの導入は燃焼悪化要因であるため、燃焼悪化要因に対する耐性が低い状態では大量に外部EGRガスを導入することはできない。したがって、吸気弁のバルブ作用角が小作用角である場合には、内燃機関の運転状態が高負荷領域側にある場合に要求される要求量の外部EGRガスを導入することは困難と考えられていた。   In contrast, when the operating state of the internal combustion engine is on the low load region side, the external EGR gas is gradually introduced, and the operating state of the internal combustion engine is switched when the valve operating angle of the intake valve is switched from the small operating angle to the large operating angle. It is also conceivable that the required amount of external EGR gas required when the engine is on the high load region side can be supplied to the internal combustion engine. However, when the operating state of the internal combustion engine is on the low load region side, the valve operating angle of the intake valve is a small operating angle, and the intake flow disappears early, so there is little turbulence in the cylinder gas of the internal combustion engine. It cannot be formed. For this reason, the tolerance with respect to a combustion deterioration factor is low. Since the introduction of the external EGR gas is a combustion deterioration factor, a large amount of the external EGR gas cannot be introduced in a state where resistance to the combustion deterioration factor is low. Therefore, when the valve operating angle of the intake valve is a small operating angle, it is considered difficult to introduce the required amount of external EGR gas required when the operating state of the internal combustion engine is on the high load region side. It was.

そこで、本発明では、内燃機関の運転状態が低負荷領域側内で高負荷領域側手前の所定領域に移行した場合に、吸気弁のバルブタイミングを吸気弁の開閉時期が内燃機関の運転状態が低負荷領域側にある場合よりも遅角されるタイミングとすると共に外部EGRガスを内燃機関の運転状態が高負荷領域側にある場合に要求される要求量へ向けて導入開始することとした。   Therefore, in the present invention, when the operating state of the internal combustion engine shifts to a predetermined region before the high load region side within the low load region side, the valve timing of the intake valve is determined based on the opening / closing timing of the intake valve. The timing is delayed more than when the engine is on the low load region side, and introduction of the external EGR gas is started toward the required amount when the operating state of the internal combustion engine is on the high load region side.

ここで、所定領域とは、内燃機関の運転状態が低負荷領域側内にあるものであって、運転状態がそれよりも高負荷方向へ移行すると、運転状態が高負荷領域側へ移行する高負荷
領域側手前の領域である。
Here, the predetermined region is a state in which the operation state of the internal combustion engine is in the low load region side, and when the operation state shifts to a higher load direction than that, the operation state shifts to the high load region side. This is the area in front of the load area.

本発明によると、内燃機関の運転状態が低負荷領域側内で所定領域に移行した場合に、外部EGRガスを内燃機関の運転状態が高負荷領域側にある場合に要求される要求量へ向けて導入開始し、外部EGRガスを増量する。このため、内燃機関の運転状態が所定領域から実際に高負荷領域側に移行する時には、内燃機関の運転状態が高負荷領域側にある場合に要求される要求量に近い量の外部EGRガスが導入済みとなる。したがって、内燃機関の運転状態が高負荷領域側へ移行した直後、すなわち吸気弁のバルブ作用角を小作用角から大作用角へ切り替えた直後には、外部EGRガスの不足が生じない。よって、十分な外部EGRガスが導入されて内燃機関の筒内ガスの熱容量が大きくなり、燃焼温度が低下し、冷却損失が低下する。このため、冷却損失が低下することで燃費の向上の効果が得られる。また、内燃機関の運転状態が高負荷領域側にある場合に要求される要求量の外部EGRガスが内燃機関に供給されるまでに還流遅れが生じないので、吸入空気量の制御が容易になり、これによっても燃費悪化を改善できる。   According to the present invention, when the operating state of the internal combustion engine shifts to a predetermined region in the low load region side, the external EGR gas is directed to the required amount required when the internal combustion engine is in the high load region side. The introduction is started and the amount of external EGR gas is increased. For this reason, when the operating state of the internal combustion engine actually shifts from the predetermined region to the high load region side, an amount of external EGR gas that is close to the required amount required when the operating state of the internal combustion engine is on the high load region side is It is already installed. Therefore, there is no shortage of external EGR gas immediately after the operating state of the internal combustion engine shifts to the high load region side, that is, immediately after the valve operating angle of the intake valve is switched from the small operating angle to the large operating angle. Therefore, sufficient external EGR gas is introduced, the heat capacity of the in-cylinder gas of the internal combustion engine increases, the combustion temperature decreases, and the cooling loss decreases. For this reason, the effect of the improvement of a fuel consumption is acquired because cooling loss falls. In addition, since there is no recirculation delay until the required amount of external EGR gas is supplied to the internal combustion engine when the operating state of the internal combustion engine is on the high load region side, the intake air amount can be easily controlled. This can also improve fuel consumption.

しかし、上記のように内燃機関の運転状態が低負荷領域側内で所定領域に移行した場合に、外部EGRガスを増量することは燃焼悪化要因であり、このままでは燃焼が悪化するおそれがある。そこで、本発明によると、内燃機関の運転状態が低負荷領域側内で所定領域に移行した場合に、吸気弁のバルブタイミングを吸気弁の開閉時期が内燃機関の運転状態が低負荷領域側にある場合よりも遅角されるタイミングとする。これによると、吸気弁の開弁時期を遅開きにでき、吸気弁の閉弁時期を下死点近傍閉じにできる。このため、吸気弁の開弁時期を遅開きにすることによって、吸気弁開弁時に吸気弁を通過する吸気による摩擦損失が温度に変換され内燃機関の筒内温度が上昇する。また、吸気弁の閉弁時期を下死点近傍閉じにすることによって、実圧縮比が上がり内燃機関の筒内温度が上昇する。このような2つの要因によって内燃機関の筒内温度が上昇することによって、燃焼が良化し、燃焼悪化要因に対して耐性が高くなる。したがって、本発明では燃焼悪化要因に対して耐性が高いので、燃焼悪化要因である外部EGRガスを増量しても燃焼が悪化せず、要求量近くの大量の外部EGRガスを導入できる。   However, when the operating state of the internal combustion engine shifts to a predetermined region within the low load region as described above, increasing the amount of external EGR gas is a cause of combustion deterioration, and there is a risk that combustion will deteriorate if this condition remains unchanged. Therefore, according to the present invention, when the operating state of the internal combustion engine shifts to a predetermined region within the low load region side, the valve timing of the intake valve is changed so that the opening / closing timing of the intake valve is changed to the low load region side. The timing is delayed more than in some cases. According to this, the opening timing of the intake valve can be delayed, and the closing timing of the intake valve can be closed near the bottom dead center. For this reason, by delaying the opening timing of the intake valve, the friction loss due to the intake air passing through the intake valve when the intake valve is opened is converted into temperature, and the in-cylinder temperature of the internal combustion engine rises. Further, by closing the closing timing of the intake valve near the bottom dead center, the actual compression ratio is increased and the in-cylinder temperature of the internal combustion engine is increased. By increasing the in-cylinder temperature of the internal combustion engine due to these two factors, combustion is improved and resistance to the deterioration factor of combustion is increased. Therefore, in the present invention, since the resistance to the combustion deterioration factor is high, the combustion does not deteriorate even if the external EGR gas that is the combustion deterioration factor is increased, and a large amount of external EGR gas close to the required amount can be introduced.

以上のように本発明によると、吸気弁のバルブ作用角を小作用角から大作用角へ切り替える時に外部EGRガス量を急激に変化させず、スムースに大量の外部EGRガスを導入でき、吸気弁のバルブ作用角を大作用角へ切り替え直後の燃費の向上を図ることができる。   As described above, according to the present invention, when the valve working angle of the intake valve is switched from the small working angle to the large working angle, the amount of external EGR gas can be smoothly introduced without abruptly changing the external EGR gas amount. The fuel efficiency can be improved immediately after switching the valve operating angle to the large operating angle.

前記内燃機関の運転状態が前記低負荷領域側内で前記高負荷領域側手前の所定領域に移行した場合に、前記吸気弁のバルブタイミングを前記吸気弁の開弁時期が前記内燃機関の運転状態が前記低負荷領域側にある場合よりも遅い遅開き且つ前記吸気弁の閉弁時期が前記内燃機関の運転状態が前記低負荷領域側にある場合よりも遅い下死点近傍で閉じるタイミングとするとよい。   When the operating state of the internal combustion engine shifts to a predetermined region before the high load region within the low load region side, the valve timing of the intake valve is determined based on the valve opening timing of the intake valve. Is delayed later than when the engine is on the low load region side, and the closing timing of the intake valve is close to the bottom dead center when the operating state of the internal combustion engine is on the low load region side. Good.

本発明によると、内燃機関の運転状態が低負荷領域側内で所定領域に移行した場合に、吸気弁の開弁時期を遅開きにし、吸気弁の閉弁時期を下死点近傍閉じにする。したがって、吸気弁の開弁時期を遅開きにすることによって、吸気弁開弁時に吸気弁を通過する吸気による摩擦損失が温度に変換され内燃機関の筒内温度が上昇する。また、吸気弁の閉弁時期を下死点近傍閉じにすることによって、実圧縮比が上がり内燃機関の筒内温度が上昇する。このような2つの要因によって内燃機関の筒内温度が上昇することによって、燃焼が良化し、燃焼悪化要因に対して耐性を高くすることができる。   According to the present invention, when the operating state of the internal combustion engine shifts to a predetermined region within the low load region side, the opening timing of the intake valve is delayed and the closing timing of the intake valve is closed near the bottom dead center. . Therefore, by delaying the opening timing of the intake valve, the friction loss due to the intake air passing through the intake valve when the intake valve is opened is converted into temperature, and the in-cylinder temperature of the internal combustion engine rises. Further, by closing the closing timing of the intake valve near the bottom dead center, the actual compression ratio is increased and the in-cylinder temperature of the internal combustion engine is increased. By increasing the in-cylinder temperature of the internal combustion engine due to these two factors, the combustion is improved and the resistance to the combustion deterioration factor can be increased.

前記内燃機関の運転状態が前記低負荷領域側内で前記高負荷領域側手前の所定領域に移行した場合に、前記吸気弁のバルブタイミングを前記吸気弁の開閉時期が前記内燃機関の
運転状態が前記低負荷領域側にある場合よりも遅角されるタイミングとするときの前記吸気弁の開閉時期の遅角量は、前記内燃機関の機関回転数に応じて変更されるとよい。
When the operating state of the internal combustion engine shifts to a predetermined region within the low load region side and before the high load region side, the valve timing of the intake valve is determined according to the opening / closing timing of the intake valve. The retard amount of the opening / closing timing of the intake valve when the timing is retarded relative to that in the low load region side may be changed according to the engine speed of the internal combustion engine.

本発明によると、吸気弁の開閉時期の遅角量を内燃機関の機関回転数に応じて変更する。   According to the present invention, the retard amount of the opening / closing timing of the intake valve is changed according to the engine speed of the internal combustion engine.

内燃機関の運転状態が所定領域に移行した場合において、内燃機関の機関回転数が高いときには、内燃機関の筒内ガスの乱れが発生し易く、燃焼悪化要因に対する耐性が高い。このため、この場合には、燃焼悪化要因に対する耐性を高めるための吸気弁の開閉時期の遅角量を減少させることができる。よって、吸気弁の開閉時期の遅角量を減少させて、吸気弁の閉弁時期をできるだけ早閉じ側とすることで、ポンプ損失を低減し、燃費の低下を抑制できる。   When the operating state of the internal combustion engine shifts to a predetermined region, when the engine speed of the internal combustion engine is high, the in-cylinder gas of the internal combustion engine is likely to be turbulent and has high resistance to combustion deterioration factors. For this reason, in this case, the retard amount of the opening / closing timing of the intake valve for increasing the resistance to the combustion deterioration factor can be reduced. Therefore, by reducing the retard amount of the opening / closing timing of the intake valve and making the closing timing of the intake valve as close as possible, the pump loss can be reduced and the reduction in fuel consumption can be suppressed.

一方、内燃機関の運転状態が所定領域に移行した場合において、内燃機関の機関回転数が低いときには、内燃機関の筒内ガスの乱れが発生し難く、燃焼悪化要因に対する耐性が低い。また、内燃機関の運転状態がこの場合から高負荷領域側に移行すると、移行直後に内燃機関の運転状態が低回転高負荷のノックが発生し易い状態となるので、ノックの発生を抑制するためより大量の外部EGRガスが要求される。このため、この場合には、燃焼悪化要因に対する耐性を最大限高めるために、吸気弁の開閉時期の遅角量を、吸気弁の開弁時期を遅開き且つ吸気弁の閉弁時期を下死点近傍閉じにできるだけ近づけるよう増加させたい。よって、吸気弁の開閉時期の遅角量を増加させて、吸気弁の開弁時期を遅開き且つ吸気弁の閉弁時期を下死点近傍閉じにできるだけ近づけることで、燃焼悪化要因に対する耐性をより高めることができる。   On the other hand, when the operating state of the internal combustion engine shifts to a predetermined region, when the engine speed of the internal combustion engine is low, the in-cylinder gas of the internal combustion engine is less likely to be disturbed, and the resistance to the combustion deterioration factor is low. In addition, when the operating state of the internal combustion engine shifts to the high load region side from this case, the operating state of the internal combustion engine becomes a state in which knocking at a low rotation and high load is likely to occur immediately after the transition, so that the occurrence of knocking is suppressed. A larger amount of external EGR gas is required. Therefore, in this case, in order to maximize the resistance against the cause of combustion deterioration, the retard amount of the intake valve opening / closing timing is delayed, the intake valve opening timing is delayed, and the intake valve closing timing is lowered. I want to increase it as close as possible to the point close. Therefore, by increasing the retard amount of the opening and closing timing of the intake valve, delaying the opening timing of the intake valve and making the closing timing of the intake valve as close as possible to closing near the bottom dead center, resistance to combustion deterioration factors can be obtained. Can be increased.

このように、本発明によると、内燃機関の機関回転数が高いときには若干でも燃費低下を抑制できると共に、外部EGRガスを導入するための燃焼悪化要因に対する耐性を高めた状態に維持することができる。   As described above, according to the present invention, when the engine speed of the internal combustion engine is high, a reduction in fuel consumption can be suppressed even slightly, and the resistance to combustion deterioration factors for introducing the external EGR gas can be maintained at a high level. .

前記遅角量は、前記内燃機関の機関回転数が低くなる程増加するとよい。   The retard amount may be increased as the engine speed of the internal combustion engine is lowered.

本発明によると、内燃機関の機関回転数が高いときには、吸気弁の開閉時期の遅角量を減少させて、吸気弁の閉弁時期をできるだけ早閉じ側とすることで、ポンプ損失を低減し、燃費の低下を抑制できる。また内燃機関の機関回転数が低いときには、吸気弁の開閉時期の遅角量を増加させて、吸気弁の開弁時期を遅開き且つ吸気弁の閉弁時期を下死点近傍閉じにできるだけ近づけることで、燃焼悪化要因に対する耐性をより高めることができる。   According to the present invention, when the engine speed of the internal combustion engine is high, the retard amount of the opening / closing timing of the intake valve is decreased, and the closing timing of the intake valve is made as close as possible to reduce the pump loss. , Can reduce fuel consumption. Also, when the engine speed of the internal combustion engine is low, the retard amount of the opening / closing timing of the intake valve is increased so that the opening timing of the intake valve is delayed and the closing timing of the intake valve is made as close as possible to close near the bottom dead center. Thereby, the tolerance with respect to a combustion deterioration factor can be improved more.

前記内燃機関の運転状態が前記低負荷領域側内で前記高負荷領域側手前の所定領域に移行した場合に、前記吸気弁のバルブタイミングを前記吸気弁の開閉時期が前記内燃機関の運転状態が前記低負荷領域側にある場合よりも遅角されるタイミングとするときの前記吸気弁の開閉時期の遅角量は、外部EGRガスの前記要求量に応じて変更されるとよい。   When the operating state of the internal combustion engine shifts to a predetermined region within the low load region side and before the high load region side, the valve timing of the intake valve is determined according to the opening / closing timing of the intake valve. The retard amount of the opening / closing timing of the intake valve when the timing is retarded compared to the case where it is on the low load region side may be changed according to the required amount of external EGR gas.

本発明によると、吸気弁の開閉時期の遅角量を外部EGRガスの要求量に応じて変更する。   According to the present invention, the retard amount of the opening / closing timing of the intake valve is changed according to the required amount of external EGR gas.

外部EGRガスの要求量が少ないときには、燃焼悪化要因である外部EGRガスの増加量は少なく、燃焼悪化要因に対する耐性が比較的低くてもよい。このため、この場合には、燃焼悪化要因に対する耐性を高めるための吸気弁の開閉時期の遅角量を減少させることができる。よって、吸気弁の開閉時期の遅角量を減少させて、吸気弁の閉弁時期をできるだけ早閉じ側とすることで、ポンプ損失を低減し、燃費の低下を抑制できる。   When the required amount of external EGR gas is small, the amount of increase in external EGR gas that is a cause of combustion deterioration is small, and the resistance to the combustion deterioration factor may be relatively low. For this reason, in this case, the retard amount of the opening / closing timing of the intake valve for increasing the resistance to the combustion deterioration factor can be reduced. Therefore, by reducing the retard amount of the opening / closing timing of the intake valve and making the closing timing of the intake valve as close as possible, the pump loss can be reduced and the reduction in fuel consumption can be suppressed.

一方、外部EGRガスの要求量が多いときには、燃焼悪化要因である外部EGRガスの増加量は多く、燃焼悪化要因に対する耐性ができるだけ高い方がよい。このため、この場合には、燃焼悪化要因に対する耐性を最大限高めるために、吸気弁の開閉時期の遅角量を、吸気弁の開弁時期を遅開き且つ吸気弁の閉弁時期を下死点近傍閉じにできるだけ近づけるよう増加させたい。よって、吸気弁の開閉時期の遅角量を増加させて、吸気弁の開弁時期を遅開き且つ吸気弁の閉弁時期を下死点近傍閉じにできるだけ近づけることで、燃焼悪化要因に対する耐性をより高めることができる。   On the other hand, when the required amount of external EGR gas is large, the amount of increase in external EGR gas, which is a cause of combustion deterioration, is large, and it is preferable that resistance to the deterioration factor of combustion is as high as possible. Therefore, in this case, in order to maximize the resistance against the cause of combustion deterioration, the retard amount of the intake valve opening / closing timing is delayed, the intake valve opening timing is delayed, and the intake valve closing timing is lowered. I want to increase it as close as possible to the point close. Therefore, by increasing the retard amount of the opening and closing timing of the intake valve, delaying the opening timing of the intake valve and making the closing timing of the intake valve as close as possible to closing near the bottom dead center, resistance to combustion deterioration factors can be obtained. Can be increased.

このように、本発明によると、外部EGRガスの要求量が少ないときには若干でも燃費低下を抑制できる。   As described above, according to the present invention, when the required amount of the external EGR gas is small, it is possible to suppress a reduction in fuel consumption even slightly.

前記遅角量は、外部EGRガスの前記要求量が多くなる程増加するとよい。   The retard amount may be increased as the required amount of external EGR gas increases.

本発明によると、外部EGRガスの要求量が少ないときには、吸気弁の開閉時期の遅角量を減少させて、吸気弁の閉弁時期をできるだけ早閉じ側とすることで、ポンプ損失を低減し、燃費の低下を抑制できる。また外部EGRガスの要求量が多いときには、吸気弁の開閉時期の遅角量を増加させて、吸気弁の開弁時期を遅開き且つ吸気弁の閉弁時期を下死点近傍閉じにできるだけ近づけることで、燃焼悪化要因に対する耐性をより高めることができる。   According to the present invention, when the required amount of external EGR gas is small, the retard amount of the opening / closing timing of the intake valve is decreased, and the closing timing of the intake valve is made as close as possible to reduce the pump loss. , Can reduce fuel consumption. When the required amount of external EGR gas is large, the retard amount of the opening / closing timing of the intake valve is increased so that the opening timing of the intake valve is delayed and the closing timing of the intake valve is as close as possible to closing near the bottom dead center. Thereby, the tolerance with respect to a combustion deterioration factor can be improved more.

本発明にあっては、以下の構成を採用する。すなわち、本発明は、
吸気弁のバルブ作用角を少なくとも2段階に切り替え可能な吸気弁バルブ作用角可変機構と、
前記吸気弁のバルブタイミングを変更可能な吸気弁バルブタイミング可変機構と、
内燃機関の排気通路から排気の一部を外部EGRガスとして取り込み、前記内燃機関の吸気通路へ当該外部EGRガスを還流させる外部EGR装置と、
を備え、
前記内燃機関の運転状態が低負荷領域側にある場合には、前記吸気弁のバルブ作用角を小作用角とすると共に前記吸気弁のバルブタイミングを前記吸気弁の閉弁時期が下死点よりも早い早閉じのタイミングとし、
前記内燃機関の運転状態が高負荷領域側にある場合には、前記吸気弁のバルブ作用角を大作用角とすると共に前記外部EGRガスを前記内燃機関の運転状態が前記低負荷領域側にある場合よりも多く還流させる内燃機関の制御装置であって、
前記外部EGR装置は、当該外部EGR装置内を流通する前記外部EGRガスを冷却するEGRクーラと、当該外部EGR装置内を流通する前記外部EGRガスに前記EGRクーラを迂回させるバイパス通路と、前記バイパス通路を開閉するバイパス弁と、を有し、
前記内燃機関の運転状態が前記低負荷領域側内で前記高負荷領域側手前の所定領域に移行した場合に、前記外部EGRガスを前記内燃機関の運転状態が前記高負荷領域側にある場合に要求される要求量へ向けて導入開始し、導入された外部EGRガス量が前記内燃機関の燃焼状態を悪化させないために前記外部EGRガスの温度を上昇させる必要が生じる閾値となる所定量に達すると、前記バイパス弁を開弁することを特徴とする内燃機関の制御装置である。
In the present invention, the following configuration is adopted. That is, the present invention
An intake valve valve operating angle variable mechanism capable of switching the valve operating angle of the intake valve in at least two stages;
An intake valve valve timing variable mechanism capable of changing the valve timing of the intake valve;
An external EGR device that takes in a part of the exhaust gas from the exhaust passage of the internal combustion engine as an external EGR gas and recirculates the external EGR gas to the intake passage of the internal combustion engine;
With
When the operating state of the internal combustion engine is on the low load region side, the valve operating angle of the intake valve is set to a small operating angle, and the valve timing of the intake valve is set to the closing timing of the intake valve from the bottom dead center. As soon as possible the timing of early closing,
When the operating state of the internal combustion engine is on the high load region side, the valve operating angle of the intake valve is set to a large operating angle and the operating state of the internal combustion engine is on the low load region side. A control device for an internal combustion engine that recirculates more than the case,
The external EGR device includes an EGR cooler that cools the external EGR gas that circulates in the external EGR device, a bypass passage that bypasses the EGR cooler to the external EGR gas that circulates in the external EGR device, and the bypass A bypass valve for opening and closing the passage,
When the operating state of the internal combustion engine is shifted to a predetermined region within the low load region side and before the high load region side, the external EGR gas is used when the operating state of the internal combustion engine is on the high load region side. The introduction starts toward the required amount, and the amount of the introduced external EGR gas reaches a predetermined amount that becomes a threshold value that requires the temperature of the external EGR gas to be raised so as not to deteriorate the combustion state of the internal combustion engine. Then, the internal combustion engine control apparatus is characterized in that the bypass valve is opened.

本発明では、内燃機関の運転状態が低負荷領域側内で高負荷領域側手前の所定領域に移行した場合に、外部EGRガスを内燃機関の運転状態が高負荷領域側にある場合に要求される要求量へ向けて導入開始し、導入された外部EGRガス量が内燃機関の燃焼状態を悪化させないために外部EGRガスの温度を上昇させる必要が生じる閾値となる所定量に達すると、バイパス弁を開弁することとした。   In the present invention, the external EGR gas is required when the operating state of the internal combustion engine is on the high load region side when the operating state of the internal combustion engine shifts to a predetermined region in the low load region side and before the high load region side. When the introduced external EGR gas amount reaches a predetermined amount that becomes a threshold value that requires the temperature of the external EGR gas to be increased so as not to deteriorate the combustion state of the internal combustion engine, the bypass valve Was decided to open.

ここで、所定量とは、それ以上の外部EGRガス量が導入されると、導入された外部EGRガス量が内燃機関の燃焼状態を悪化させないために外部EGRガスの温度を上昇させる必要が生じる閾値となる外部EGRガス量である。   Here, the predetermined amount means that when an external EGR gas amount larger than that is introduced, the introduced external EGR gas amount does not deteriorate the combustion state of the internal combustion engine, so that the temperature of the external EGR gas needs to be raised. This is the amount of external EGR gas that becomes the threshold value.

本発明によると、内燃機関の運転状態が低負荷領域側内で所定領域に移行した場合に、外部EGRガスを内燃機関の運転状態が高負荷領域側にある場合に要求される要求量へ向けて導入開始し、外部EGRガスを増量する。このため、内燃機関の運転状態が所定領域から実際に高負荷領域側に移行する時には、内燃機関の運転状態が高負荷領域側にある場合に要求される要求量に近い量の外部EGRガスが導入済みとなる。したがって、内燃機関の運転状態が高負荷領域側へ移行した直後、すなわち吸気弁のバルブ作用角を小作用角から大作用角へ切り替えた直後には、外部EGRガスの不足が生じない。よって、十分な外部EGRガスが導入されて内燃機関の筒内ガスの熱容量が大きくなり、燃焼温度が低下し、冷却損失が低下する。このため、冷却損失が低下することで燃費の向上の効果が得られる。また、内燃機関の運転状態が高負荷領域側にある場合に要求される要求量の外部EGRガスが内燃機関に供給されるまでに還流遅れが生じないので、吸入空気量の制御が容易になり、これによっても燃費悪化を改善できる。   According to the present invention, when the operating state of the internal combustion engine shifts to a predetermined region in the low load region side, the external EGR gas is directed to the required amount required when the internal combustion engine is in the high load region side. The introduction is started and the amount of external EGR gas is increased. For this reason, when the operating state of the internal combustion engine actually shifts from the predetermined region to the high load region side, an amount of external EGR gas that is close to the required amount required when the operating state of the internal combustion engine is on the high load region side is It is already installed. Therefore, there is no shortage of external EGR gas immediately after the operating state of the internal combustion engine shifts to the high load region side, that is, immediately after the valve operating angle of the intake valve is switched from the small operating angle to the large operating angle. Therefore, sufficient external EGR gas is introduced, the heat capacity of the in-cylinder gas of the internal combustion engine increases, the combustion temperature decreases, and the cooling loss decreases. For this reason, the effect of the improvement of a fuel consumption is acquired because cooling loss falls. In addition, since there is no recirculation delay until the required amount of external EGR gas is supplied to the internal combustion engine when the operating state of the internal combustion engine is on the high load region side, the intake air amount can be easily controlled. This can also improve fuel consumption.

しかし、上記のように内燃機関の運転状態が低負荷領域側内で所定領域に移行した場合に、外部EGRガスを増量することは燃焼悪化要因であり、このままでは燃焼が悪化するおそれがある。そこで、本発明によると、導入された外部EGRガス量が所定量に達すると、バイパス弁を開弁する。これによると、外部EGRガスにEGRクーラを迂回させ、外部EGRガスはバイパス通路を通過する。このようにEGRクーラを迂回した外部EGRガスはEGRクーラで冷却されないため高温である。よって、高温の外部EGRガスが内燃機関に導入されることになる。高温の外部EGRガスが導入されると、高温の外部EGRガスの熱容量が小さいので、内燃機関の筒内温度が上昇する。これによって内燃機関の筒内温度が上昇することによって、燃焼が良化し、燃焼悪化要因に対して耐性が高くなる。したがって、本発明では燃焼悪化要因に対して耐性が高いので、燃焼悪化要因である外部EGRガスを増量しても燃焼が悪化せず、要求量近くの大量の外部EGRガスを導入できる。   However, when the operating state of the internal combustion engine shifts to a predetermined region within the low load region as described above, increasing the amount of external EGR gas is a cause of combustion deterioration, and there is a risk that combustion will deteriorate if this condition remains unchanged. Therefore, according to the present invention, when the introduced external EGR gas amount reaches a predetermined amount, the bypass valve is opened. According to this, the EGR cooler is bypassed by the external EGR gas, and the external EGR gas passes through the bypass passage. The external EGR gas that bypasses the EGR cooler in this way is high temperature because it is not cooled by the EGR cooler. Therefore, high temperature external EGR gas is introduced into the internal combustion engine. When the high-temperature external EGR gas is introduced, the in-cylinder temperature of the internal combustion engine increases because the heat capacity of the high-temperature external EGR gas is small. As a result, the in-cylinder temperature of the internal combustion engine rises, so that combustion is improved and resistance to combustion deterioration factors is increased. Therefore, in the present invention, since the resistance to the combustion deterioration factor is high, the combustion does not deteriorate even if the external EGR gas that is the combustion deterioration factor is increased, and a large amount of external EGR gas close to the required amount can be introduced.

ここで、本発明では、内燃機関の運転状態が低負荷領域側内で所定領域に移行した場合に、吸気弁のバルブタイミングを吸気弁の閉弁時期が下死点よりも早い早閉じのタイミングに維持したままである。このため、内燃機関の運転状態が低負荷領域側内で所定領域に移行した場合であっても、吸気弁の閉弁時期を下死点よりも早い早閉じとすることで、ポンプ損失を低減し、燃費の向上を図ることができる。   Here, in the present invention, when the operating state of the internal combustion engine shifts to a predetermined region within the low load region side, the valve timing of the intake valve is set to the timing of early closing when the closing timing of the intake valve is earlier than the bottom dead center. Is maintained. For this reason, even when the operating state of the internal combustion engine shifts to a predetermined region in the low load region side, the pump loss is reduced by closing the intake valve earlier than the bottom dead center. In addition, fuel consumption can be improved.

以上のように本発明によると、吸気弁のバルブ作用角を小作用角から大作用角へ切り替える時に外部EGRガス量を急激に変化させず、スムースに大量の外部EGRガスを導入でき、吸気弁のバルブ作用角を大作用角へ切り替え前後の燃費の向上を図ることができる。   As described above, according to the present invention, when the valve working angle of the intake valve is switched from the small working angle to the large working angle, the amount of external EGR gas can be smoothly introduced without abruptly changing the external EGR gas amount. It is possible to improve fuel efficiency before and after switching the valve operating angle to a large operating angle.

本発明によると、内燃機関の制御装置において、吸気弁のバルブ作用角を小作用角から大作用角へ切り替える時に外部EGRガス量を急激に変化させず、燃費の向上を図ることができる。   According to the present invention, in the control device for an internal combustion engine, when the valve operating angle of the intake valve is switched from a small operating angle to a large operating angle, the external EGR gas amount is not changed suddenly, and fuel consumption can be improved.

以下に本発明の具体的な実施例を説明する。   Specific examples of the present invention will be described below.

<実施例1>
図1は、本実施例に係る内燃機関の制御装置を適用する内燃機関の概略構成を示す図である。図1に示す内燃機関1は、ガソリンを燃料とする火花点火式の内燃機関(ガソリンエンジン)である。
<Example 1>
FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which the control device for an internal combustion engine according to the present embodiment is applied. An internal combustion engine 1 shown in FIG. 1 is a spark ignition internal combustion engine (gasoline engine) using gasoline as fuel.

内燃機関1のシリンダヘッド2には、燃焼室3に連通する吸気ポート4と排気ポート5とが各々設けられている。シリンダヘッド2には、吸気ポート4を開閉する吸気弁6と、排気ポート5を開閉する排気弁7とが設けられている。   The cylinder head 2 of the internal combustion engine 1 is provided with an intake port 4 and an exhaust port 5 that communicate with the combustion chamber 3. The cylinder head 2 is provided with an intake valve 6 that opens and closes the intake port 4 and an exhaust valve 7 that opens and closes the exhaust port 5.

吸気弁6には、当該吸気弁6の開閉特性を変更する可変動弁機構が設けられている。この可変動弁機構として、吸気弁6の開閉特性である開弁期間(バルブ作用角)の変更を行う吸気弁バルブ作用角可変機構8と、吸気弁6の開閉特性である開閉時期(バルブタイミング)の変更を行う吸気弁バルブタイミング可変機構9とを備えている。   The intake valve 6 is provided with a variable valve mechanism that changes the opening / closing characteristics of the intake valve 6. As this variable valve mechanism, an intake valve valve operating angle variable mechanism 8 that changes a valve opening period (valve operating angle), which is an opening / closing characteristic of the intake valve 6, and an opening / closing timing (valve timing), which is an opening / closing characteristic of the intake valve 6. And an intake valve valve timing variable mechanism 9 for changing the above.

本実施例における吸気弁バルブ作用角可変機構8は、吸気弁6のリフト量と共にバルブ作用角を2段階に変更する機構である。ここでは、吸気弁6のリフト量及びバルブ作用角が小さい方を小作用角、吸気弁6のリフト量及びバルブ作用角が大きい方を大作用角という。   The intake valve valve operating angle variable mechanism 8 in the present embodiment is a mechanism that changes the valve operating angle in two stages together with the lift amount of the intake valve 6. Here, the smaller lift angle and the valve operating angle of the intake valve 6 are referred to as a small operating angle, and the larger lift amount and the valve operating angle of the intake valve 6 are referred to as a large operating angle.

なお、本実施例では、吸気弁バルブ作用角可変機構8は、吸気弁6のリフト量と共にバルブ作用角を2段階に変更するだけの機構であったが、本発明としては、バルブ作用角を少なくとも2段階に変更できればよく、例えば、バルブ作用角を2段階以上の3段階などに変更できるものにも適用できるし、バルブ作用角を連続的に変更できるものでもバルブ作用角を瞬間的に大きさの離れた作用角に変更する場合に適用できる。   In the present embodiment, the intake valve valve operating angle variable mechanism 8 is a mechanism that only changes the valve operating angle in two stages together with the lift amount of the intake valve 6. It is only necessary to be able to change it to at least two stages. For example, it can be applied to those in which the valve working angle can be changed to three or more stages, and even if the valve working angle can be changed continuously, the valve working angle is instantaneously increased. This can be applied when changing to a farther working angle.

一方、本実施例における吸気弁バルブタイミング可変機構9は、吸気弁6のバルブ作用角を一定に維持したまま吸気弁6の開閉タイミングを連続的に変更する機構である。   On the other hand, the intake valve valve timing variable mechanism 9 in the present embodiment is a mechanism that continuously changes the opening / closing timing of the intake valve 6 while keeping the valve operating angle of the intake valve 6 constant.

シリンダヘッド2には、内燃機関1の筒内にて火花を発生する点火プラグ10が設けられている。   The cylinder head 2 is provided with a spark plug 10 that generates a spark in the cylinder of the internal combustion engine 1.

シリンダヘッド2には、吸気ポート4に連通する吸気管11と、排気ポート5に連通する排気管12とが接続されている。また、吸気管11には、吸気ポート4へ向けて燃料を噴射する燃料噴射弁13が設けられている。吸気管11には、エアフローメータ14が設けられている。   An intake pipe 11 that communicates with the intake port 4 and an exhaust pipe 12 that communicates with the exhaust port 5 are connected to the cylinder head 2. The intake pipe 11 is provided with a fuel injection valve 13 that injects fuel toward the intake port 4. An air flow meter 14 is provided in the intake pipe 11.

内燃機関1には、排気管12内を流通する排気の一部を吸気管11へ還流させる外部EGR装置30が備えられている。この外部EGR装置30は、外部EGR通路31、外部EGR弁32、及び外部EGRクーラ33を有して構成されている。   The internal combustion engine 1 is provided with an external EGR device 30 that recirculates a part of the exhaust gas flowing through the exhaust pipe 12 to the intake pipe 11. The external EGR device 30 includes an external EGR passage 31, an external EGR valve 32, and an external EGR cooler 33.

外部EGR通路31は、排気管12と吸気管11とを接続している。この外部EGR通路31を通って、排気が内燃機関1へ送り込まれる。本実施例では、外部EGR通路31を流通して還流される排気を外部EGRガスと称している。   The external EGR passage 31 connects the exhaust pipe 12 and the intake pipe 11. Exhaust gas is fed into the internal combustion engine 1 through the external EGR passage 31. In this embodiment, the exhaust gas recirculated through the external EGR passage 31 is referred to as external EGR gas.

外部EGR弁32は、外部EGR通路31に配置され、外部EGR通路31の通路断面積を調整することにより、該外部EGR通路31を流れる外部EGRガスの量を調節する。   The external EGR valve 32 is disposed in the external EGR passage 31 and adjusts the amount of external EGR gas flowing through the external EGR passage 31 by adjusting the passage cross-sectional area of the external EGR passage 31.

外部EGRクーラ33は、外部EGR通路31に配置され、該外部EGRクーラ33を通過する外部EGRガスと内燃機関1の機関冷却水とで熱交換をして、該外部EGRガスの温度を低下させる。本実施例における外部EGRクーラ33が本発明のEGRクーラに
相当する。
The external EGR cooler 33 is disposed in the external EGR passage 31 and exchanges heat between the external EGR gas passing through the external EGR cooler 33 and the engine coolant of the internal combustion engine 1 to lower the temperature of the external EGR gas. . The external EGR cooler 33 in this embodiment corresponds to the EGR cooler of the present invention.

以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニットであるECU15が併設されている。このECU15は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御するユニットである。   The internal combustion engine 1 configured as described above is provided with an ECU 15 that is an electronic control unit for controlling the internal combustion engine 1. The ECU 15 is a unit that controls the operation state of the internal combustion engine 1 in accordance with the operation conditions of the internal combustion engine 1 and the request of the driver.

ECU15には、エアフローメータ14、内燃機関1に取り付けられた水温センサ16及びクランクポジションセンサ17などの各種センサが電気配線を介して接続され、これら各種センサの出力信号がECU15に入力されるようになっている。   Various sensors such as an air flow meter 14, a water temperature sensor 16 attached to the internal combustion engine 1, and a crank position sensor 17 are connected to the ECU 15 through electrical wiring, and output signals of these various sensors are input to the ECU 15. It has become.

ECU15は、各種センサの出力信号に基づいて、吸気弁バルブ作用角可変機構8、吸気弁バルブタイミング可変機構9、点火プラグ10、燃料噴射弁13、及び外部EGR弁32を電気的に制御することが可能になっている。   The ECU 15 electrically controls the intake valve valve operating angle variable mechanism 8, the intake valve valve timing variable mechanism 9, the ignition plug 10, the fuel injection valve 13, and the external EGR valve 32 based on the output signals of various sensors. Is possible.

次に、従来における内燃機関1の運転状態に応じた制御について説明する。図2は、従来における内燃機関1の運転状態に応じた制御状態を例示した概略図である。図2の横軸は内燃機関1の機関回転数を表し、縦軸は内燃機関1の機関負荷を表している。   Next, control according to the operation state of the conventional internal combustion engine 1 will be described. FIG. 2 is a schematic view illustrating a control state according to the operation state of the internal combustion engine 1 in the related art. 2 represents the engine speed of the internal combustion engine 1, and the vertical axis represents the engine load of the internal combustion engine 1.

図2において、内燃機関1の運転状態が低負荷領域側Lでは、吸入空気量が少なくてすむので、吸気弁6のバルブ作用角に小作用角が選択される。またこれと共に、ポンプ損失を低減して燃費を向上するために、吸気弁のバルブタイミングを吸気弁の閉弁時期が下死点よりも早い早閉じのタイミングに設定される。さらに燃費を向上するために、外部EGRガスを内燃機関1に供給する場合もある。   In FIG. 2, when the operating state of the internal combustion engine 1 is in the low load region side L, the amount of intake air can be reduced, so a small operating angle is selected as the valve operating angle of the intake valve 6. At the same time, in order to reduce pump loss and improve fuel efficiency, the valve timing of the intake valve is set to an early closing timing at which the intake valve closes earlier than the bottom dead center. In order to further improve fuel efficiency, external EGR gas may be supplied to the internal combustion engine 1 in some cases.

一方、内燃機関1の運転状態が高負荷領域側Hでは、吸入空気量が多く必要なので、吸気弁6のバルブ作用角に大作用角が選択される。またこれと共に、内燃機関1の筒内ガスの熱容量を大きくし燃焼温度を低下させて冷却損失を低下させ燃費を向上するために、内燃機関1の運転状態が低負荷領域側Lにある場合に比して大量の外部EGRガスを内燃機関1に供給する。   On the other hand, when the operating state of the internal combustion engine 1 is in the high load region side H, a large amount of intake air is required, so a large operating angle is selected as the valve operating angle of the intake valve 6. At the same time, when the operating state of the internal combustion engine 1 is on the low load region side L in order to increase the heat capacity of the in-cylinder gas of the internal combustion engine 1 and lower the combustion temperature to reduce the cooling loss and improve the fuel efficiency. In comparison, a large amount of external EGR gas is supplied to the internal combustion engine 1.

このような図2に示す制御状態を実現するため、内燃機関1の運転状態に応じて、吸気弁バルブ作用角可変機構8、吸気弁バルブタイミング可変機構9、及び外部EGR弁32を適宜制御するようにしている。   In order to realize such a control state shown in FIG. 2, the intake valve valve operating angle variable mechanism 8, the intake valve valve timing variable mechanism 9, and the external EGR valve 32 are appropriately controlled according to the operating state of the internal combustion engine 1. I am doing so.

ところで、内燃機関1の運転状態が低負荷領域側Lから高負荷領域側Hへ移行する際には、吸気弁バルブ作用角可変機構8を用いて吸気弁6のバルブ作用角を小作用角から大作用角へ切り替える。またこのとき、吸気弁6のバルブ作用角の切り替えと同時に、内燃機関1の運転状態が低負荷領域側Lにある場合よりも多くの外部EGRガスが大量に要求される。   By the way, when the operating state of the internal combustion engine 1 shifts from the low load region side L to the high load region side H, the valve operating angle of the intake valve 6 is changed from a small operating angle using the intake valve valve operating angle variable mechanism 8. Switch to large working angle. At this time, simultaneously with switching of the valve operating angle of the intake valve 6, a larger amount of external EGR gas is required than when the operating state of the internal combustion engine 1 is on the low load region side L.

図3は、従来において吸気弁6のバルブ作用角を小作用角から大作用角へ切り替える時の外部EGRガス量の時間変化を示す図である。図3中実細線が外部EGRガスの要求量(目標量)であり、実太線が実際の外部EGRガス量である。   FIG. 3 is a diagram showing a time change of the external EGR gas amount when the valve operating angle of the intake valve 6 is switched from a small operating angle to a large operating angle in the related art. In FIG. 3, the solid thin line is the required amount (target amount) of the external EGR gas, and the solid thick line is the actual external EGR gas amount.

図3に示すように、吸気弁6のバルブ作用角の切り替えと同時に、内燃機関1の運転状態が低負荷領域側Lにある場合よりも多くの要求量の外部EGRガスが要求される。しかし、外部EGRガスは内燃機関1に還流されるまでの還流経路が長いため、外部EGR弁32を開き側に制御して外部EGRガスを導入開始してからも実際に内燃機関1に外部EGRガスが到達するまでには時間がかかり、内燃機関1の運転状態が高負荷領域側Hにある場合に要求される要求量の外部EGRガスが内燃機関1に供給されるまでに還流遅れが
生じている。このため、図3に示すように、吸気弁6のバルブ作用角の切り替え時点以後に徐々に外部EGRガス量が要求量に向けて増加することになる。
As shown in FIG. 3, simultaneously with the switching of the valve operating angle of the intake valve 6, a larger amount of external EGR gas is required than when the operating state of the internal combustion engine 1 is on the low load region side L. However, since the external EGR gas has a long recirculation path until it is recirculated to the internal combustion engine 1, the external EGR gas is actually supplied to the internal combustion engine 1 even after the external EGR valve 32 is controlled to open and the introduction of the external EGR gas is started. It takes time for the gas to reach, and a recirculation delay occurs until the required amount of external EGR gas is supplied to the internal combustion engine 1 when the operating state of the internal combustion engine 1 is on the high load region side H. ing. For this reason, as shown in FIG. 3, the external EGR gas amount gradually increases toward the required amount after the switching time of the valve operating angle of the intake valve 6.

よって、内燃機関1の運転状態が高負荷領域側Hへ移行した直後、すなわち吸気弁6のバルブ作用角を小作用角から大作用角へ切り替えた直後は、外部EGRガスが不足してしまう。すると、外部EGRガスの不足に起因して内燃機関1の筒内ガスの熱容量が大きくならず、燃焼温度が低下せず、冷却損失が低下しない。このため、冷却損失が低下することで得られる燃費の向上の効果が得られなくなる。また、内燃機関1の運転状態が高負荷領域側Hにある場合に要求される要求量の外部EGRガスが内燃機関1に供給されるまでの還流遅れが生じている間は、吸入空気量の制御が変動する外部EGRガスの導入量に対応しなければならないことから制御が困難になり、これによっても燃費悪化が改善できなくなる。加えて、外部EGRガスの不足に起因してトルクショックが生じることも懸念される。   Therefore, immediately after the operating state of the internal combustion engine 1 shifts to the high load region side H, that is, immediately after the valve operating angle of the intake valve 6 is switched from the small operating angle to the large operating angle, the external EGR gas becomes insufficient. Then, due to the shortage of external EGR gas, the heat capacity of the in-cylinder gas of the internal combustion engine 1 does not increase, the combustion temperature does not decrease, and the cooling loss does not decrease. For this reason, the effect of the improvement of the fuel consumption obtained when cooling loss falls cannot be acquired. In addition, while there is a recirculation delay until the required amount of external EGR gas is supplied to the internal combustion engine 1 when the operating state of the internal combustion engine 1 is on the high load region side H, the intake air amount Since it is necessary to cope with the amount of external EGR gas introduced that fluctuates, the control becomes difficult, and this also makes it impossible to improve the fuel consumption. In addition, there is a concern that torque shock may occur due to a shortage of external EGR gas.

これに対し、内燃機関1の運転状態が低負荷領域側Lにある時から少しずつ外部EGRガスを導入し、吸気弁6のバルブ作用角を小作用角から大作用角へ切り替えた時に内燃機関1の運転状態が高負荷領域側Hにある場合に要求される要求量の外部EGRガスが内燃機関1に供給できるようにしておくことも考えられる。しかし、内燃機関1の運転状態が低負荷領域側Lにある場合には、吸気弁6のバルブ作用角が小作用角であり、早期に吸気流動がなくなるので、内燃機関1の筒内ガスの乱れが少ししか形成できない。このため、燃焼悪化要因に対する耐性が低い。外部EGRガスの導入は燃焼悪化要因であるため、燃焼悪化要因に対する耐性が低い状態では大量に外部EGRガスを導入することはできない。これにもかかわらず燃焼悪化要因に対する耐性が低い状態で外部EGRガスを大量に導入すれば、燃焼変動が大きくなり、最悪の場合には失火し機関停止に至ってしまうおそれもある。したがって、吸気弁6のバルブ作用角が小作用角である場合には、内燃機関1の運転状態が高負荷領域側Hにある場合に要求される要求量の外部EGRガスを導入することは困難と考えられていた。   On the other hand, when the operating state of the internal combustion engine 1 is on the low load region side L, external EGR gas is gradually introduced, and the internal combustion engine is switched when the valve operating angle of the intake valve 6 is switched from a small operating angle to a large operating angle. It is also conceivable to allow the required amount of external EGR gas to be supplied to the internal combustion engine 1 when the operating state of 1 is on the high load region side H. However, when the operating state of the internal combustion engine 1 is on the low load region side L, the valve operating angle of the intake valve 6 is a small operating angle, and the intake air flow disappears at an early stage. Only a little turbulence can be formed. For this reason, the tolerance with respect to a combustion deterioration factor is low. Since the introduction of the external EGR gas is a combustion deterioration factor, a large amount of the external EGR gas cannot be introduced in a state where resistance to the combustion deterioration factor is low. Nevertheless, if a large amount of external EGR gas is introduced in a state where the resistance to the deterioration factor of the combustion is low, the fluctuation of combustion becomes large, and in the worst case, there is a possibility that the engine may be misfired and the engine is stopped. Therefore, when the valve operating angle of the intake valve 6 is a small operating angle, it is difficult to introduce the required amount of external EGR gas required when the operating state of the internal combustion engine 1 is on the high load region side H. It was thought.

そこで、本実施例では、内燃機関1の運転状態が低負荷領域側L内で高負荷領域側H手前の所定領域Pに移行した場合に、吸気弁バルブタイミング可変機構9を用いて吸気弁6のバルブタイミングを吸気弁6の開弁時期が内燃機関1の運転状態が低負荷領域側Lにある場合よりも遅い遅開き且つ吸気弁6の閉弁時期が内燃機関1の運転状態が低負荷領域側Lにある場合よりも遅い下死点近傍で閉じるタイミングとするようにした。またこれと同時に、外部EGR弁32を開き側に制御して外部EGRガスを内燃機関1の運転状態が高負荷領域側Hにある場合に要求される要求量へ向けて導入開始するようにした。   Therefore, in this embodiment, when the operating state of the internal combustion engine 1 shifts to the predetermined region P before the high load region side H within the low load region side L, the intake valve 6 is changed using the intake valve valve timing variable mechanism 9. When the opening timing of the intake valve 6 is later than when the operating state of the internal combustion engine 1 is in the low load region L, the closing timing of the intake valve 6 is low when the operating state of the internal combustion engine 1 is low. The closing timing is close to the bottom dead center, which is later than that in the region L. At the same time, the external EGR valve 32 is controlled to open to start introducing the external EGR gas toward the required amount when the operating state of the internal combustion engine 1 is on the high load region side H. .

具体的な本実施例における内燃機関1の運転状態に応じた制御について説明する。図4は、本実施例における内燃機関1の運転状態に応じた制御状態を例示した概略図である。図4の横軸は内燃機関1の機関回転数を表し、縦軸は内燃機関1の機関負荷を表している。   A specific control according to the operating state of the internal combustion engine 1 in this embodiment will be described. FIG. 4 is a schematic view illustrating a control state according to the operation state of the internal combustion engine 1 in the present embodiment. The horizontal axis of FIG. 4 represents the engine speed of the internal combustion engine 1, and the vertical axis represents the engine load of the internal combustion engine 1.

所定領域Pは、図4に示すように、内燃機関1の運転状態が低負荷領域側L内にあるものであって、運転状態がそれよりも高負荷方向へ移行すると、運転状態が高負荷領域側Hへ移行する高負荷領域側H手前の領域である。   As shown in FIG. 4, the predetermined region P is one in which the operation state of the internal combustion engine 1 is in the low load region side L, and when the operation state shifts to a higher load direction than that, the operation state becomes high load. This is a region before the high load region side H that shifts to the region side H.

図4において、内燃機関1の運転状態が所定領域Pよりも低負荷側である低負荷領域側Lでは、従来と同様に、吸入空気量が少なくてすむので、吸気弁6のバルブ作用角に小作用角が選択される。またこれと共に、ポンプ損失を低減して燃費を向上するために、吸気弁6のバルブタイミングを吸気弁6の閉弁時期が下死点よりも早い早閉じのタイミングに設定される。さらに燃費を向上するために、外部EGRガスを内燃機関1に供給する場合
がある。
In FIG. 4, when the operating state of the internal combustion engine 1 is on the low load region side L, which is on the low load side than the predetermined region P, the amount of intake air can be reduced as in the conventional case. A small working angle is selected. At the same time, in order to reduce pump loss and improve fuel efficiency, the valve timing of the intake valve 6 is set to an early closing timing at which the intake valve 6 is closed earlier than the bottom dead center. In order to further improve fuel efficiency, external EGR gas may be supplied to the internal combustion engine 1 in some cases.

一方、内燃機関1の運転状態が高負荷領域側Hでは、従来と同様に、吸入空気量が多く必要なので、吸気弁6のバルブ作用角に大作用角が選択される。またこれと共に、内燃機関1の筒内ガスの熱容量を大きくし燃焼温度を低下させて冷却損失を低下させ燃費を向上するために、内燃機関1の運転状態が低負荷領域側Lにある場合に比して大量の外部EGRガスを内燃機関1に供給する。   On the other hand, when the operating state of the internal combustion engine 1 is in the high load region side H, a large amount of intake air is required as in the conventional case, so a large operating angle is selected as the valve operating angle of the intake valve 6. At the same time, when the operating state of the internal combustion engine 1 is on the low load region side L in order to increase the heat capacity of the in-cylinder gas of the internal combustion engine 1 and lower the combustion temperature to reduce the cooling loss and improve the fuel efficiency. In comparison, a large amount of external EGR gas is supplied to the internal combustion engine 1.

そして、本実施例では、内燃機関1の運転状態が低負荷領域側L内で所定領域Pに移行した場合に、吸気弁6のバルブ作用角に小作用角が選択されたまま、吸気弁6のバルブタイミングを吸気弁6の開弁時期が内燃機関1の運転状態が低負荷領域側Lにある場合よりも遅い遅開き且つ吸気弁6の閉弁時期が内燃機関1の運転状態が低負荷領域側Lにある場合よりも遅い下死点近傍で閉じるタイミングに設定される。またこれと同時に、外部EGRガスを内燃機関1の運転状態が高負荷領域側Hにある場合に要求される要求量へ向けて導入開始する。   In the present embodiment, when the operating state of the internal combustion engine 1 shifts to the predetermined region P in the low load region L, the intake valve 6 remains selected with the small operation angle selected as the valve operation angle of the intake valve 6. When the opening timing of the intake valve 6 is later than when the operating state of the internal combustion engine 1 is in the low load region L, the closing timing of the intake valve 6 is low when the operating state of the internal combustion engine 1 is low. The timing is set to close in the vicinity of the bottom dead center, which is later than that in the region side L. At the same time, introduction of the external EGR gas toward the required amount required when the operating state of the internal combustion engine 1 is on the high load region side H is started.

図5は、内燃機関1の運転状態が低負荷領域側L内で所定領域Pに移行した場合に吸気弁6のバルブタイミングを変更する様子を説明する図である。本実施例では、図5に示すように、内燃機関1の運転状態が低負荷領域側L内で所定領域Pに移行した場合に、吸気弁バルブタイミング可変機構9により、吸気弁6のバルブタイミングを、移行前の吸気弁6の閉弁時期(IVC)が下死点よりも早い早閉じから、移行後の吸気弁6の開弁時期(IVO)を遅開き且つ吸気弁6の閉弁時期(IVC)を下死点近傍閉じにするバルブタイミングに制御する。   FIG. 5 is a diagram for explaining how the valve timing of the intake valve 6 is changed when the operating state of the internal combustion engine 1 shifts to the predetermined region P within the low load region L. In this embodiment, as shown in FIG. 5, when the operating state of the internal combustion engine 1 shifts to the predetermined region P in the low load region side L, the valve timing of the intake valve 6 is controlled by the intake valve valve timing variable mechanism 9. From the early closing of the valve closing timing (IVC) of the intake valve 6 before the transition earlier than the bottom dead center, the valve opening timing (IVO) of the intake valve 6 after the transition is delayed and the valve closing timing of the intake valve 6 is closed. The valve timing is controlled so that (IVC) is closed near the bottom dead center.

つまり、内燃機関1の運転状態が低負荷領域側L内で所定領域Pに移行した場合に、吸気弁6の開弁時期が遅開き且つ吸気弁6の閉弁時期が下死点近傍閉じとなる。これにより、吸気弁6の開弁時期を遅開きにすることによって、吸気弁開弁時に吸気弁6を通過する吸気による摩擦損失が温度に変換され内燃機関1の筒内温度が上昇する。また、吸気弁6の閉弁時期を下死点近傍閉じにすることによって、実圧縮比が上がり内燃機関1の筒内温度が上昇する。このような2つの要因によって内燃機関1の筒内温度が上昇することによって、燃焼が良化し、燃焼悪化要因に対して耐性が高くなる。   That is, when the operating state of the internal combustion engine 1 shifts to the predetermined region P in the low load region L, the opening timing of the intake valve 6 is delayed and the closing timing of the intake valve 6 is closed near the bottom dead center. Become. Thus, by delaying the opening timing of the intake valve 6, the friction loss due to the intake air passing through the intake valve 6 when the intake valve is opened is converted to temperature, and the in-cylinder temperature of the internal combustion engine 1 is increased. Further, by closing the intake valve 6 close to the bottom dead center, the actual compression ratio is increased and the in-cylinder temperature of the internal combustion engine 1 is increased. By increasing the in-cylinder temperature of the internal combustion engine 1 due to these two factors, the combustion is improved and the resistance to the combustion deterioration factor is increased.

図6は、吸気弁6の閉弁時期(IVC)を下死点よりも早い早閉じの場合と、本実施例のように吸気弁6の開弁時期(IVO)を遅開き且つ吸気弁6の閉弁時期(IVC)を下死点近傍閉じにする場合とにおける、燃焼変動が大きくなるまでの外部EGRガス量を示す図である。図6中破線が吸気弁6の閉弁時期を下死点よりも早い早閉じの場合の特性を示し、実線が吸気弁6の開弁時期を遅開き且つ吸気弁6の閉弁時期を下死点近傍閉じにする場合の特性を示す。   FIG. 6 shows the case where the closing timing (IVC) of the intake valve 6 is closed earlier than the bottom dead center, and the opening timing (IVO) of the intake valve 6 is delayed and the intake valve 6 is opened as in this embodiment. It is a figure which shows the external EGR gas amount until the combustion fluctuation | variation becomes large in the case where the valve closing time (IVC) of this is made close to a bottom dead center. The broken line in FIG. 6 indicates the characteristics when the closing timing of the intake valve 6 is early closed earlier than the bottom dead center, and the solid line delays the opening timing of the intake valve 6 and lowers the closing timing of the intake valve 6. The characteristics when closing near the dead center are shown.

図6に示すように、吸気弁6の開弁時期を遅開き且つ吸気弁6の閉弁時期を下死点近傍閉じにすると、吸気弁6の閉弁時期を下死点よりも早い早閉じにする場合に比して燃焼悪化要因である外部EGRガスを大幅に増量しても燃焼変動が大きくなり難い。このように吸気弁6の開弁時期を遅開き且つ吸気弁6の閉弁時期を下死点近傍閉じとする場合には、燃焼悪化要因に対して耐性が高いため、要求量近くの大量の外部EGRガスを導入できる。   As shown in FIG. 6, when the opening timing of the intake valve 6 is delayed and the closing timing of the intake valve 6 is closed near the bottom dead center, the closing timing of the intake valve 6 is closed earlier than the bottom dead center. Compared with the case of making it, even if the external EGR gas, which is a cause of deterioration of combustion, is greatly increased, the fluctuation of combustion is hardly increased. In this way, when the opening timing of the intake valve 6 is delayed and the closing timing of the intake valve 6 is closed near the bottom dead center, since the resistance to combustion deterioration is high, a large amount near the required amount is required. External EGR gas can be introduced.

以上のように要求量近くの大量の外部EGRガスを導入できるので、本実施例では、内燃機関1の運転状態が低負荷領域側L内の所定領域Pにある場合に、外部EGRガスを内燃機関1の運転状態が高負荷領域側Hにある場合に要求される要求量へ向けて導入開始する。   Since a large amount of external EGR gas close to the required amount can be introduced as described above, in this embodiment, when the operating state of the internal combustion engine 1 is in the predetermined region P in the low load region side L, the external EGR gas is The introduction starts toward the required amount required when the operating state of the engine 1 is on the high load region side H.

図7は、本実施例において吸気弁6のバルブ作用角を小作用角から大作用角へ切り替える時の外部EGRガス量の時間変化を示す図である。図7中実細線が外部EGRガスの要求量(目標量)であり、実太線が実際の外部EGRガス量である。   FIG. 7 is a diagram showing the time change of the external EGR gas amount when the valve operating angle of the intake valve 6 is switched from the small operating angle to the large operating angle in the present embodiment. In FIG. 7, the solid thin line is the required amount (target amount) of the external EGR gas, and the solid thick line is the actual external EGR gas amount.

図7に示すように、本実施例では、内燃機関1の運転状態が所定領域Pにある場合、すなわち内燃機関1の運転状態が高負荷領域側Hに移行する前に、外部EGRガスが増量される。このため、内燃機関1の運転状態が所定領域Pから実際に高負荷領域側Hに移行する時には、内燃機関1の運転状態が高負荷領域側Hにある場合に要求される要求量に近い量の外部EGRガスが導入済みとなる。よって、内燃機関1の運転状態が高負荷領域側Hへ移行する時点、すなわち吸気弁のバルブ作用角を小作用角から大作用角へ切り替える時点では、要求量と実際の外部EGRガス量とのずれがほとんどない。したがって、内燃機関1の運転状態が高負荷領域側Hへ移行した直後、すなわち吸気弁のバルブ作用角を小作用角から大作用角へ切り替えた直後には、外部EGRガスの不足が生じない。よって、十分な外部EGRガスが導入されて内燃機関1の筒内ガスの熱容量が大きくなり、燃焼温度が低下し、冷却損失が低下する。このため、冷却損失が低下することで燃費が向上できる。また、内燃機関1の運転状態が高負荷領域側Hにある場合に要求される要求量の外部EGRガスが内燃機関1に供給されるまでに還流遅れが生じないので、吸入空気量の制御が容易になり、これによっても燃費悪化を改善できる。加えて、外部EGRガスの不足に起因したトルクショックが生じる懸念もなくなる。   As shown in FIG. 7, in this embodiment, when the operating state of the internal combustion engine 1 is in the predetermined region P, that is, before the operating state of the internal combustion engine 1 shifts to the high load region side H, the amount of external EGR gas is increased. Is done. Therefore, when the operating state of the internal combustion engine 1 actually shifts from the predetermined region P to the high load region side H, an amount close to the required amount required when the operating state of the internal combustion engine 1 is on the high load region side H. The external EGR gas is already introduced. Therefore, when the operating state of the internal combustion engine 1 shifts to the high load region side H, that is, when the valve operating angle of the intake valve is switched from the small operating angle to the large operating angle, the required amount and the actual external EGR gas amount There is almost no deviation. Therefore, immediately after the operating state of the internal combustion engine 1 shifts to the high load region side H, that is, immediately after the valve operating angle of the intake valve is switched from the small operating angle to the large operating angle, there is no shortage of external EGR gas. Therefore, sufficient external EGR gas is introduced, the heat capacity of the in-cylinder gas of the internal combustion engine 1 is increased, the combustion temperature is lowered, and the cooling loss is lowered. For this reason, a fuel consumption can be improved because cooling loss falls. In addition, since there is no reflux delay until the required amount of external EGR gas is supplied to the internal combustion engine 1 when the operating state of the internal combustion engine 1 is on the high load region side H, control of the intake air amount can be performed. This also makes it possible to improve fuel consumption. In addition, there is no concern about torque shock due to the lack of external EGR gas.

次に、本実施例による内燃機関1の運転状態が低負荷領域側Lから高負荷領域側Hに移行する際の制御ルーチンについて説明する。図8は、本実施例による内燃機関1の運転状態が低負荷領域側Lから高負荷領域側Hに移行する際の制御ルーチンを示したフローチャートである。本ルーチンは、所定の時間毎に繰り返し実行される。   Next, a control routine when the operating state of the internal combustion engine 1 according to this embodiment shifts from the low load region side L to the high load region side H will be described. FIG. 8 is a flowchart showing a control routine when the operating state of the internal combustion engine 1 according to this embodiment shifts from the low load region side L to the high load region side H. This routine is repeatedly executed every predetermined time.

ステップS101では、ECU15は、内燃機関1の運転状態が所定領域Pを含まない低負荷領域側Lに存在するか否か判別する。   In step S101, the ECU 15 determines whether or not the operating state of the internal combustion engine 1 exists on the low load region side L that does not include the predetermined region P.

具体的には、内燃機関1の運転状態を予め実験などから求めた図4のマップに当てはめ、内燃機関1の運転状態が所定領域Pを含まない低負荷領域側Lに存在するか判断する。   Specifically, the operating state of the internal combustion engine 1 is applied to the map of FIG. 4 obtained in advance by experiments or the like, and it is determined whether the operating state of the internal combustion engine 1 exists on the low load region side L not including the predetermined region P.

ステップS101において内燃機関1の運転状態が所定領域Pを含まない低負荷領域側Lに存在すると肯定判定された場合には、ステップS102へ移行する。ステップS101において内燃機関1の運転状態が所定領域Pを含まない低負荷領域側Lに存在しないと否定判定された場合には、本ルーチンを一旦終了する。   If it is determined in step S101 that the operating state of the internal combustion engine 1 is in the low load region side L not including the predetermined region P, the process proceeds to step S102. If it is determined in step S101 that the operating state of the internal combustion engine 1 does not exist on the low load region side L that does not include the predetermined region P, this routine is temporarily terminated.

ステップS102では、ECU15は、内燃機関1の運転状態が所定領域Pを含まない低負荷領域側Lである場合における低負荷領域側モードの制御を実施する。   In step S102, the ECU 15 performs the control in the low load region side mode when the operating state of the internal combustion engine 1 is the low load region side L not including the predetermined region P.

低負荷領域側モードは、吸気弁バルブ作用角可変機構8を用いて吸気弁6のバルブ作用角を小作用角にする。またこれと共に、吸気弁バルブタイミング可変機構9を用いて吸気弁6のバルブタイミングを吸気弁6の閉弁時期が下死点よりも早い早閉じのタイミングとする。なお、低負荷領域側モードであっても、外部EGR弁32を幾分開き側に制御して燃費向上のために内燃機関1の運転状態に応じて要求される要求量の外部EGRガスを内燃機関1に供給する場合がある。   In the low load region side mode, the valve operating angle of the intake valve 6 is set to a small operating angle using the intake valve valve operating angle variable mechanism 8. Along with this, the intake valve valve timing variable mechanism 9 is used to set the valve timing of the intake valve 6 to the timing of early closing when the intake valve 6 is closed earlier than the bottom dead center. Even in the low load region side mode, the external EGR valve 32 is controlled to be slightly opened so that the required amount of external EGR gas required in accordance with the operating state of the internal combustion engine 1 is increased. The engine 1 may be supplied.

ステップS103では、ECU15は、内燃機関1の運転状態が低負荷領域側L内で所定領域Pに移行したか否か判別する。   In step S103, the ECU 15 determines whether or not the operating state of the internal combustion engine 1 has shifted to the predetermined region P within the low load region L.

具体的には、内燃機関1の運転状態を予め実験などから求めた図4のマップに当てはめ、内燃機関1の運転状態が低負荷領域側L内で所定領域Pに移行したか判断する。   Specifically, the operating state of the internal combustion engine 1 is applied to the map of FIG. 4 obtained in advance by experiments or the like, and it is determined whether the operating state of the internal combustion engine 1 has shifted to the predetermined region P within the low load region L.

ステップS103において内燃機関1の運転状態が所定領域Pに移行したと肯定判定された場合には、ステップS104へ移行する。ステップS103において内燃機関1の運転状態が所定領域Pに移行しないと否定判定された場合には、ステップS102へ戻る。   If it is determined in step S103 that the operating state of the internal combustion engine 1 has shifted to the predetermined region P, the process proceeds to step S104. If it is determined in step S103 that the operating state of the internal combustion engine 1 does not shift to the predetermined region P, the process returns to step S102.

ステップS104では、ECU15は、内燃機関1の運転状態が所定領域Pである場合における所定領域モードの制御を実施する。   In step S104, the ECU 15 performs control in a predetermined region mode when the operating state of the internal combustion engine 1 is the predetermined region P.

所定領域モードは、吸気弁バルブタイミング可変機構9を用いて吸気弁6のバルブタイミングを吸気弁6の開弁時期が遅開き且つ吸気弁6の閉弁時期が下死点近傍で閉じるタイミングとする。またこれと共に、外部EGR弁32を開き側に制御して内燃機関1の運転状態が低負荷領域側Lにある場合に比して大量の外部EGRガスであって内燃機関1の運転状態が高負荷領域側Hにある場合に要求される要求量の外部EGRガスを導入開始する。所定領域モードでは、吸気弁6のバルブ作用角は小作用角に維持したままである。   In the predetermined area mode, the intake valve valve timing variable mechanism 9 is used to set the valve timing of the intake valve 6 to a timing at which the opening timing of the intake valve 6 is delayed and the closing timing of the intake valve 6 is closed near the bottom dead center. . At the same time, the external EGR valve 32 is controlled to the open side so that the operation state of the internal combustion engine 1 is higher than that in the case where the operation state of the internal combustion engine 1 is on the low load region side L. The introduction of the required amount of external EGR gas required when it is on the load region side H is started. In the predetermined region mode, the valve operating angle of the intake valve 6 is maintained at a small operating angle.

ステップS105では、ECU15は、内燃機関1の運転状態が所定領域Pよりも高負荷側の高負荷領域側Hに移行したか否か判別する。   In step S105, the ECU 15 determines whether or not the operating state of the internal combustion engine 1 has shifted to a high load region side H that is higher than the predetermined region P.

具体的には、内燃機関1の運転状態を予め実験などから求めた図4のマップに当てはめ、内燃機関1の運転状態が所定領域Pよりも高負荷側の高負荷領域側Hに移行したか判断する。   Specifically, the operating state of the internal combustion engine 1 is applied to the map of FIG. 4 obtained in advance through experiments or the like, and whether the operating state of the internal combustion engine 1 has shifted to the high load region side H that is higher than the predetermined region P. to decide.

ステップS105において内燃機関1の運転状態が高負荷領域側Hに移行したと肯定判定された場合には、ステップS106へ移行する。ステップS105において内燃機関1の運転状態が高負荷領域側Hに移行しないと否定判定された場合には、本ルーチンを一旦終了する。   If it is determined in step S105 that the operating state of the internal combustion engine 1 has shifted to the high load region side H, the process proceeds to step S106. If it is determined in step S105 that the operating state of the internal combustion engine 1 does not shift to the high load region side H, this routine is temporarily terminated.

ステップS106では、ECU15は、内燃機関1の運転状態が高負荷領域側Hである場合における高負荷領域側モードの制御を行う。   In step S106, the ECU 15 controls the high load region side mode when the operating state of the internal combustion engine 1 is the high load region side H.

高負荷領域側モードは、吸気弁バルブ作用角可変機構8を用いて吸気弁6のバルブ作用角を大作用角にする。またこれと共に、外部EGR弁32を開き側に制御して内燃機関1の運転状態が低負荷領域側Lにある場合に比して大量の外部EGRガスであって内燃機関1の運転状態に応じて要求される要求量の外部EGRガスを内燃機関1に供給する。なお、外部EGRガスは、内燃機関1の運転状態が所定領域Pにあるときから外部EGR弁32が開き側に制御されて導入開始されているため、高負荷領域側モード移行直後から十分な外部EGRガス量が内燃機関に供給されている。本ステップの処理の後、本ルーチンを一旦終了する。   In the high load region side mode, the valve operating angle of the intake valve 6 is set to a large operating angle by using the intake valve valve operating angle variable mechanism 8. At the same time, the external EGR valve 32 is controlled to the open side so that the amount of external EGR gas is larger than that in the case where the operating state of the internal combustion engine 1 is on the low load region side L and the internal E1 is in response to the operating state of the internal combustion engine 1. The required amount of external EGR gas is supplied to the internal combustion engine 1. The external EGR gas is introduced from the time when the operating state of the internal combustion engine 1 is in the predetermined region P and the external EGR valve 32 is controlled to be opened, so that the external EGR gas is sufficiently external immediately after the mode transition to the high load region side. An amount of EGR gas is supplied to the internal combustion engine. After the processing of this step, this routine is once ended.

以上の制御ルーチンを実行することにより、吸気弁6のバルブ作用角を小作用角から大作用角へ切り替える時に外部EGRガス量を急激に変化させず、スムースに大量の外部EGRガスを導入でき、吸気弁6のバルブ作用角を大作用角へ切り替え直後の燃費の向上を図ることができる。   By executing the above control routine, when the valve operating angle of the intake valve 6 is switched from the small operating angle to the large operating angle, the amount of external EGR gas can be smoothly introduced without abruptly changing the amount of external EGR gas, It is possible to improve fuel efficiency immediately after switching the valve operating angle of the intake valve 6 to a large operating angle.

なお、本実施例では、内燃機関1の運転状態が低負荷領域側L内で高負荷領域側H手前の所定領域Pに移行した場合に、吸気弁バルブタイミング可変機構9を用いて吸気弁6のバルブタイミングを吸気弁6の開弁時期が内燃機関1の運転状態が低負荷領域側Lにある場合よりも遅い遅開き且つ吸気弁6の閉弁時期が内燃機関1の運転状態が低負荷領域側L
にある場合よりも遅い下死点近傍で閉じるタイミングとするようにした。しかし、これに限られず、外部EGRガスを大量に導入可能なように燃焼悪化要因に対する耐性を高めることができれば、吸気弁6のバルブタイミングは吸気弁6の開閉時期が内燃機関1の運転状態が低負荷領域側Lにある場合よりも遅角するタイミングであればよい。
In this embodiment, when the operating state of the internal combustion engine 1 shifts to the predetermined region P before the high load region side H within the low load region side L, the intake valve 6 is changed using the intake valve valve timing variable mechanism 9. When the opening timing of the intake valve 6 is later than when the operating state of the internal combustion engine 1 is in the low load region L, the closing timing of the intake valve 6 is low when the operating state of the internal combustion engine 1 is low. Region side L
The timing of closing near the bottom dead center is slower than in the case of. However, the present invention is not limited to this, and if resistance to combustion deterioration factors can be increased so that a large amount of external EGR gas can be introduced, the valve timing of the intake valve 6 depends on the opening / closing timing of the intake valve 6. Any timing may be used as long as the timing is retarded as compared with the case of the low load region L.

<実施例2>
次に、実施例2について説明する。ここでは、上述した実施例と異なる構成について説明し、同様の構成については説明を省略する。
<Example 2>
Next, Example 2 will be described. Here, a configuration different from the above-described embodiment will be described, and description of the same configuration will be omitted.

内燃機関1の運転状態が低負荷領域側Lにある場合には、可能であれば吸気弁6の閉弁時期を下死点よりも早い早閉じとし、ポンプ損失を低減して燃費を向上したい。しかし、実施例1では、内燃機関1の運転状態が低負荷領域側L内で所定領域Pに移行した場合には、燃焼悪化要因に対する耐性を高めるため、吸気弁6の開弁時期を遅開き且つ吸気弁の閉弁時期を下死点近傍閉じにする。このため、実施例1では、ポンプ損失を低減できず、一律に燃費向上の効果が得られなくなってしまう。   When the operating state of the internal combustion engine 1 is in the low load region side L, if possible, the closing timing of the intake valve 6 should be closed earlier than the bottom dead center to reduce pump loss and improve fuel efficiency. . However, in the first embodiment, when the operating state of the internal combustion engine 1 shifts to the predetermined region P in the low load region side L, the valve opening timing of the intake valve 6 is delayed to increase the resistance against combustion deterioration factors. In addition, the closing timing of the intake valve is closed near the bottom dead center. For this reason, in Example 1, pump loss cannot be reduced and the effect of improving fuel consumption cannot be obtained uniformly.

しかし、内燃機関1の運転状態が低負荷領域側L内で所定領域Pに移行した場合において、内燃機関1の機関回転数が高いときには、内燃機関1の筒内ガスの乱れが発生し易く、燃焼悪化要因に対する耐性が高い。このため、この場合には、燃焼悪化要因に対する耐性を高めるための吸気弁6の開閉時期の遅角量を減少させて、吸気弁6の閉弁時期をできるだけ早閉じ側とすることで、ポンプ損失を低減し、できるだけ燃費の低下を抑制したい。   However, when the operating state of the internal combustion engine 1 shifts to the predetermined region P in the low load region side L, when the engine speed of the internal combustion engine 1 is high, turbulence of the in-cylinder gas of the internal combustion engine 1 is likely to occur, High resistance to burning deterioration factors. For this reason, in this case, the retard amount of the opening / closing timing of the intake valve 6 for enhancing the resistance against the deterioration factor of combustion is decreased, and the closing timing of the intake valve 6 is set to the closing side as soon as possible, whereby the pump I want to reduce the loss and suppress the reduction in fuel consumption as much as possible.

一方、内燃機関1の低負荷領域側L内で運転状態が所定領域Pに移行した場合において、内燃機関1の機関回転数が低いときには、内燃機関1の筒内ガスの乱れが発生し難く、燃焼悪化要因に対する耐性が低い。また、内燃機関1の運転状態がこの場合から高負荷領域側Hに移行すると、移行直後に内燃機関1の運転状態が低回転高負荷のノックが発生し易い状態となるので、ノックの発生を抑制するためより大量の外部EGRガスが要求される。このため、この場合には、燃焼悪化要因に対する耐性を最大限高めるために、吸気弁6の開閉時期の遅角量を、吸気弁6の開弁時期を遅開き且つ吸気弁6の閉弁時期を下死点近傍閉じにできるだけ近づけるよう増加させたい。   On the other hand, when the operating state shifts to the predetermined region P in the low load region side L of the internal combustion engine 1, when the engine speed of the internal combustion engine 1 is low, turbulence of the in-cylinder gas of the internal combustion engine 1 is difficult to occur. Low resistance to deterioration factors. Further, when the operating state of the internal combustion engine 1 shifts to the high load region side H from this case, the operating state of the internal combustion engine 1 becomes a state in which knocking at a low rotation and high load is likely to occur immediately after the transition. A greater amount of external EGR gas is required to suppress. Therefore, in this case, in order to maximize the resistance to the combustion deterioration factor, the retard amount of the opening / closing timing of the intake valve 6 is delayed, the opening timing of the intake valve 6 is delayed, and the closing timing of the intake valve 6 is closed. I want to increase as close as possible to close near the bottom dead center.

そこで、本実施例では、内燃機関1の運転状態が低負荷領域側L内で所定領域Pに移行した場合に、吸気弁バルブタイミング可変機構9を用いて吸気弁6のバルブタイミングを吸気弁6の開閉時期が内燃機関1の運転状態が低負荷領域側Lにある場合よりも遅角されるタイミングとするときの吸気弁6の開閉時期の遅角量を、内燃機関1の機関回転数が低くなる程増加させるようにした。   Therefore, in this embodiment, when the operating state of the internal combustion engine 1 shifts to the predetermined region P in the low load region side L, the intake valve valve timing variable mechanism 9 is used to change the valve timing of the intake valve 6 to the intake valve 6. The amount of retardation of the opening / closing timing of the intake valve 6 when the opening / closing timing of the internal combustion engine 1 is retarded from the timing when the operating state of the internal combustion engine 1 is in the low load region side L is the engine rotational speed of the internal combustion engine 1. The lower the value, the higher the value.

本実施例によると、内燃機関1の運転状態が低負荷領域側L内で所定領域に移行した場合において、内燃機関1の機関回転数が高いときには、内燃機関1の筒内ガスの乱れが発生し易く、燃焼悪化要因に対する耐性が高い。このため、この場合には、燃焼悪化要因に対する耐性を高めるための吸気弁6の開閉時期の遅角量を減少させて、吸気弁6の閉弁時期をできるだけ早閉じ側とすることで、ポンプ損失を低減し、燃費の低下を抑制できる。   According to the present embodiment, when the operating state of the internal combustion engine 1 shifts to a predetermined region in the low load region side L, the turbulence of the in-cylinder gas of the internal combustion engine 1 occurs when the engine speed of the internal combustion engine 1 is high. It is easy to do and has high resistance to the cause of deterioration of combustion. For this reason, in this case, the retard amount of the opening / closing timing of the intake valve 6 for enhancing the resistance against the deterioration factor of combustion is decreased, and the closing timing of the intake valve 6 is set to the closing side as soon as possible, whereby the pump Loss can be reduced and reduction in fuel consumption can be suppressed.

一方、本実施例によると、内燃機関1の運転状態が低負荷領域側L内で所定領域Pに移行した場合において、内燃機関1の機関回転数が低いときには、内燃機関1の筒内ガスの乱れが発生し難く、燃焼悪化要因に対する耐性が低い。また、内燃機関1の運転状態がこの場合から高負荷領域側Hに移行すると、移行直後に内燃機関1の運転状態が低回転高負荷のノックが発生し易い状態となるので、ノックの発生を抑制するためより大量の外部EGRガスが要求される。このため、この場合には、燃焼悪化要因に対する耐性を最大限高
めるために、吸気弁6の開閉時期の遅角量を増加させて、吸気弁6の開弁時期を遅開き且つ吸気弁6の閉弁時期を下死点近傍閉じにできるだけ近づけることで、燃焼悪化要因に対する耐性をより高めることができる。
On the other hand, according to the present embodiment, when the operating state of the internal combustion engine 1 shifts to the predetermined region P in the low load region L, when the engine speed of the internal combustion engine 1 is low, the in-cylinder gas of the internal combustion engine 1 is reduced. Disturbance hardly occurs and resistance to combustion deterioration factors is low. Further, when the operating state of the internal combustion engine 1 shifts to the high load region side H from this case, the operating state of the internal combustion engine 1 becomes a state in which knocking at a low rotation and high load is likely to occur immediately after the transition. A greater amount of external EGR gas is required to suppress. Therefore, in this case, in order to maximize the resistance against the combustion deterioration factor, the retard amount of the opening / closing timing of the intake valve 6 is increased, the opening timing of the intake valve 6 is delayed and the intake valve 6 is opened. By making the valve closing timing as close as possible to closing near the bottom dead center, it is possible to further enhance the resistance against the cause of combustion deterioration.

次に、本実施例による内燃機関1の運転状態が低負荷領域側Lから高負荷領域側Hに移行する際の制御ルーチンについて説明する。本実施例による内燃機関1の運転状態が低負荷領域側Lから高負荷領域側Hに移行する際の制御ルーチンは、実施例1の図8と同様なものである。以下の説明では、実施例1と異なるステップS104についてのみ説明する。   Next, a control routine when the operating state of the internal combustion engine 1 according to this embodiment shifts from the low load region side L to the high load region side H will be described. The control routine when the operating state of the internal combustion engine 1 according to the present embodiment shifts from the low load region side L to the high load region side H is the same as that in FIG. 8 of the first embodiment. In the following description, only step S104 different from the first embodiment will be described.

ステップS104では、ECU15は、内燃機関1の運転状態が所定領域Pである場合における所定領域モードの制御を行う。   In step S104, the ECU 15 controls the predetermined region mode when the operating state of the internal combustion engine 1 is the predetermined region P.

本実施例における所定領域モードは、吸気弁バルブタイミング可変機構9を用いて吸気弁6のバルブタイミングを吸気弁6の開閉時期が内燃機関1の運転状態が低負荷領域側Lにある場合よりも遅角され且つその遅角量が内燃機関1の機関回転数が低くなる程増加するタイミングとする。ここで、吸気弁6の開閉時期の遅角量は、予め実験などで求めておいた図9に示すような内燃機関1の機関回転数と吸気弁6の開閉時期の遅角量との相関関係を表すマップに内燃機関1の機関回転数を取り込むことで求めることができる。またこれと共に、外部EGR弁32を開き側に制御して内燃機関1の運転状態が低負荷領域側Lにある場合に比して大量の外部EGRガスであって内燃機関1の運転状態が高負荷領域側Hにある場合に要求される要求量の外部EGRガスを導入開始する。所定領域モードでは、吸気弁6のバルブ作用角は小作用角に維持したままである。   The predetermined region mode in the present embodiment uses the variable valve timing mechanism 9 of the intake valve 6 to set the valve timing of the intake valve 6 as compared with the case where the opening / closing timing of the intake valve 6 is in the low load region side L. The timing is retarded and the amount of retardation increases as the engine speed of the internal combustion engine 1 decreases. Here, the retard amount of the opening / closing timing of the intake valve 6 is a correlation between the engine speed of the internal combustion engine 1 and the retard amount of the opening / closing timing of the intake valve 6 as shown in FIG. It can be obtained by incorporating the engine speed of the internal combustion engine 1 into a map representing the relationship. At the same time, the external EGR valve 32 is controlled to the open side so that the operation state of the internal combustion engine 1 is higher than that in the case where the operation state of the internal combustion engine 1 is on the low load region side L. The introduction of the required amount of external EGR gas required when it is on the load region side H is started. In the predetermined region mode, the valve operating angle of the intake valve 6 is maintained at a small operating angle.

以上のように、本実施例によると、内燃機関1の機関回転数が高いときには若干でも燃費低下を抑制できると共に、外部EGRガスを導入するための燃焼悪化要因に対する耐性を高めた状態に維持することができる。   As described above, according to this embodiment, when the engine speed of the internal combustion engine 1 is high, it is possible to suppress a slight decrease in fuel consumption, and to maintain a state in which the resistance to the combustion deterioration factor for introducing the external EGR gas is enhanced. be able to.

<実施例3>
次に、実施例3について説明する。ここでは、上述した実施例と異なる構成について説明し、同様の構成については説明を省略する。
<Example 3>
Next, Example 3 will be described. Here, a configuration different from the above-described embodiment will be described, and description of the same configuration will be omitted.

内燃機関1の運転状態が低負荷領域側Lにある場合には、可能であれば吸気弁6の閉弁時期を下死点よりも早い早閉じとし、ポンプ損失を低減して燃費を向上したい。しかし、実施例1では、内燃機関1の運転状態が低負荷領域側L内で所定領域Pに移行した場合には、燃焼悪化要因に対する耐性を高めるため、吸気弁6の開弁時期を遅開き且つ吸気弁6の閉弁時期を下死点近傍閉じにする。このため、実施例1では、ポンプ損失を低減できず、一律に燃費向上の効果が得られなくなってしまう。   When the operating state of the internal combustion engine 1 is in the low load region side L, if possible, the closing timing of the intake valve 6 should be closed earlier than the bottom dead center to reduce pump loss and improve fuel efficiency. . However, in the first embodiment, when the operating state of the internal combustion engine 1 shifts to the predetermined region P in the low load region side L, the valve opening timing of the intake valve 6 is delayed to increase the resistance against combustion deterioration factors. In addition, the closing timing of the intake valve 6 is closed near the bottom dead center. For this reason, in Example 1, pump loss cannot be reduced and the effect of improving fuel consumption cannot be obtained uniformly.

ここで、内燃機関1の運転状態が低負荷領域側L内で所定領域Pに移行した場合において、その所定領域Pから移行する高負荷領域側Hで要求される外部EGRガスの要求量は変動する。そして、外部EGRガスの要求量が少ないときには、燃焼悪化要因である外部EGRガスの増加量は少なく、燃焼悪化要因に対する耐性が比較的低くてもよい。このため、この場合には、燃焼悪化要因に対する耐性を高めるための吸気弁6の開閉時期の遅角量を減少させて、吸気弁6の閉弁時期をできるだけ早閉じ側とすることで、ポンプ損失を低減し、できるだけ燃費の低下を抑制したい。   Here, when the operating state of the internal combustion engine 1 shifts to the predetermined region P in the low load region side L, the required amount of external EGR gas required on the high load region side H that shifts from the predetermined region P varies. To do. And when the request | requirement amount of external EGR gas is small, the increase amount of external EGR gas which is a combustion deterioration factor is small, and tolerance with respect to a combustion deterioration factor may be comparatively low. For this reason, in this case, the retard amount of the opening / closing timing of the intake valve 6 for enhancing the resistance against the deterioration factor of combustion is decreased, and the closing timing of the intake valve 6 is set to the closing side as soon as possible, whereby the pump I want to reduce the loss and suppress the reduction in fuel consumption as much as possible.

一方、外部EGRガスの要求量が多いときには、燃焼悪化要因である外部EGRガスの増加量は多く、燃焼悪化要因に対する耐性ができるだけ高い方がよい。このため、この場合には、燃焼悪化要因に対する耐性を最大限高めるために、吸気弁6の開閉時期の遅角量
を、吸気弁6の開弁時期を遅開き且つ吸気弁6の閉弁時期を下死点近傍閉じにできるだけ近づけるよう増加させたい。
On the other hand, when the required amount of external EGR gas is large, the amount of increase in external EGR gas, which is a cause of combustion deterioration, is large, and it is preferable that resistance to the deterioration factor of combustion is as high as possible. Therefore, in this case, in order to maximize the resistance to the combustion deterioration factor, the retard amount of the opening / closing timing of the intake valve 6 is delayed, the opening timing of the intake valve 6 is delayed, and the closing timing of the intake valve 6 is closed. I want to increase as close as possible to close near the bottom dead center.

そこで、本実施例では、内燃機関1の運転状態が低負荷領域側L内で所定領域Pに移行した場合に、吸気弁バルブタイミング可変機構9を用いて吸気弁6のバルブタイミングを吸気弁6の開閉時期が内燃機関1の運転状態が低負荷領域側Lにある場合よりも遅角されるタイミングとするときの吸気弁6の開閉時期の遅角量を、所定領域Pからさらに高負荷方向に移行した場合の高負荷領域側Hで要求される外部EGRガスの要求量が多くなる程増加させるようにした。   Therefore, in this embodiment, when the operating state of the internal combustion engine 1 shifts to the predetermined region P in the low load region side L, the intake valve valve timing variable mechanism 9 is used to change the valve timing of the intake valve 6 to the intake valve 6. The amount of delay of the opening / closing timing of the intake valve 6 when the opening / closing timing of the engine is set to be delayed more than when the operating state of the internal combustion engine 1 is in the low load region L is further increased from the predetermined region P to the higher load direction. When the required amount of external EGR gas required on the high load region side H when shifting to is increased, it is increased.

本実施例によると、内燃機関1の運転状態が低負荷領域側L内で所定領域Pに移行した場合において、外部EGRガスの要求量が少ないときには、燃焼悪化要因である外部EGRガスの増加量は少なく、燃焼悪化要因に対する耐性が比較的低くてもよい。このため、この場合には、燃焼悪化要因に対する耐性を高めるための吸気弁6の開閉時期の遅角量を減少させて、吸気弁6の閉弁時期をできるだけ早閉じ側とすることで、ポンプ損失を低減し、燃費の低下を抑制できる。   According to this embodiment, when the operating state of the internal combustion engine 1 shifts to the predetermined region P within the low load region L, when the required amount of external EGR gas is small, the amount of increase in external EGR gas that is a cause of deterioration in combustion. The resistance to combustion deterioration factors may be relatively low. For this reason, in this case, the retard amount of the opening / closing timing of the intake valve 6 for enhancing the resistance against the deterioration factor of combustion is decreased, and the closing timing of the intake valve 6 is set to the closing side as soon as possible, whereby the pump Loss can be reduced and reduction in fuel consumption can be suppressed.

一方、本実施例によると、内燃機関1の運転状態が低負荷領域側L内で所定領域Pに移行した場合において、外部EGRガスの要求量が多いときには、燃焼悪化要因である外部EGRガスの増加量は多く、燃焼悪化要因に対する耐性ができるだけ高い方がよい。このため、この場合には、燃焼悪化要因に対する耐性を最大限高めるために、吸気弁6の開閉時期の遅角量を増加させて、吸気弁6の開弁時期を遅開き且つ吸気弁6の閉弁時期を下死点近傍閉じにできるだけ近づけることで、燃焼悪化要因に対する耐性をより高めることができる。   On the other hand, according to the present embodiment, when the operating state of the internal combustion engine 1 shifts to the predetermined region P within the low load region L, when the required amount of external EGR gas is large, the external EGR gas that is a cause of combustion deterioration The amount of increase is large, and it is better that the resistance to combustion deterioration factors is as high as possible. Therefore, in this case, in order to maximize the resistance against the combustion deterioration factor, the retard amount of the opening / closing timing of the intake valve 6 is increased, the opening timing of the intake valve 6 is delayed and the intake valve 6 is opened. By making the valve closing timing as close as possible to closing near the bottom dead center, it is possible to further enhance the resistance against the cause of combustion deterioration.

次に、本実施例による内燃機関1の運転状態が低負荷領域側Lから高負荷領域側Hに移行する際の制御ルーチンについて説明する。本実施例による内燃機関1の運転状態が低負荷領域側Lから高負荷領域側Hに移行する際の制御ルーチンは、実施例1の図8と同様なものである。以下の説明では、実施例1と異なるステップS104についてのみ説明する。   Next, a control routine when the operating state of the internal combustion engine 1 according to this embodiment shifts from the low load region side L to the high load region side H will be described. The control routine when the operating state of the internal combustion engine 1 according to the present embodiment shifts from the low load region side L to the high load region side H is the same as that in FIG. 8 of the first embodiment. In the following description, only step S104 different from the first embodiment will be described.

ステップS104では、ECU15は、内燃機関1の運転状態が所定領域Pである場合における所定領域モードの制御を行う。   In step S104, the ECU 15 controls the predetermined region mode when the operating state of the internal combustion engine 1 is the predetermined region P.

本実施例における所定領域モードは、吸気弁バルブタイミング可変機構9を用いて吸気弁6のバルブタイミングを吸気弁6の開閉時期が内燃機関1の運転状態が低負荷領域側Lにある場合よりも遅角され且つその遅角量が所定領域Pからさらに高負荷方向に移行いた場合の高負荷領域側Hで要求される外部EGRガスの要求量が多くなる程増加するタイミングとする。ここで、吸気弁6の開閉時期の遅角量は、予め実験などで求めておいた図10に示すような外部EGRガスの要求量と吸気弁6の開閉時期の遅角量との相関関係を表すマップに外部EGRガスの要求量を取り込むことで求めることができる。またこれと共に、外部EGR弁32を開き側に制御して当該要求量の外部EGRガスを導入開始する。所定領域モードでは、吸気弁6のバルブ作用角は小作用角に維持したままである。   The predetermined region mode in the present embodiment uses the variable valve timing mechanism 9 of the intake valve 6 to set the valve timing of the intake valve 6 as compared with the case where the opening / closing timing of the intake valve 6 is in the low load region side L. The timing is set so as to increase as the required amount of external EGR gas required on the high load region side H increases when the retarded amount and the amount of retardation shift from the predetermined region P to the higher load direction. Here, the retard amount of the opening / closing timing of the intake valve 6 is a correlation between the required amount of external EGR gas and the retard amount of the opening / closing timing of the intake valve 6 as shown in FIG. Can be obtained by taking the required amount of the external EGR gas into the map representing. At the same time, the external EGR valve 32 is controlled to open, and the required amount of external EGR gas is started to be introduced. In the predetermined region mode, the valve operating angle of the intake valve 6 is maintained at a small operating angle.

以上のように、本実施例によると、外部EGRガスの要求量が少ないときには若干でも燃費低下を抑制できる。   As described above, according to the present embodiment, when the required amount of external EGR gas is small, it is possible to suppress a slight decrease in fuel consumption.

<実施例4>
次に、実施例4について説明する。ここでは、上述した実施例と異なる構成について説明し、同様の構成については説明を省略する。
<Example 4>
Next, Example 4 will be described. Here, a configuration different from the above-described embodiment will be described, and description of the same configuration will be omitted.

図11は、本実施例に係る内燃機関の制御装置を適用する内燃機関の概略構成を示す図である。   FIG. 11 is a diagram illustrating a schematic configuration of an internal combustion engine to which the control device for an internal combustion engine according to the present embodiment is applied.

本実施例では、外部EGR装置30に、外部EGR装置30内を流通する外部EGRガスに外部EGRクーラ33を迂回させるバイパス通路34と、バイパス通路34を開閉するバイパス弁35と、を有している。   In the present embodiment, the external EGR device 30 includes a bypass passage 34 that bypasses the external EGR cooler 33 by the external EGR gas that circulates in the external EGR device 30, and a bypass valve 35 that opens and closes the bypass passage 34. Yes.

バイパス通路34は、外部EGRクーラ33の直上流側及び直下流側の外部EGR通路31に接続されており、外部EGRガスに外部EGRクーラ33を迂回させることができる。   The bypass passage 34 is connected to the external EGR passage 31 directly upstream and downstream of the external EGR cooler 33, and can bypass the external EGR cooler 33 by the external EGR gas.

バイパス弁35は、バイパス通路34内に配置され、バイパス通路34に外部EGRガスを流通させるために開弁し、バイパス通路34における外部EGRガスの流通を阻止するために閉弁する。ECU15は、各種センサの出力信号に基づいて、バイパス弁35を電気的に制御することが可能になっている。   The bypass valve 35 is disposed in the bypass passage 34, opens to allow the external EGR gas to flow through the bypass passage 34, and closes to prevent the flow of the external EGR gas in the bypass passage 34. The ECU 15 can electrically control the bypass valve 35 based on output signals from various sensors.

ところで、内燃機関1の運転状態が低負荷領域側Lにある場合には、可能であれば吸気弁の閉弁時期を下死点よりも早い早閉じとし、ポンプ損失を低減して燃費を向上したい。しかし、実施例1では、内燃機関1の運転状態が低負荷領域側L内で所定領域Pに移行した場合には、燃焼悪化要因に対する耐性を高めるため、吸気弁6の開弁時期を遅開き且つ吸気弁6の閉弁時期を下死点近傍閉じにする。このため、実施例1では、ポンプ損失を低減できず、一律に燃費向上の効果が得られなくなってしまう。   By the way, when the operating state of the internal combustion engine 1 is in the low load region side L, if possible, the closing timing of the intake valve is closed earlier than the bottom dead center to reduce pump loss and improve fuel efficiency. Want to. However, in the first embodiment, when the operating state of the internal combustion engine 1 shifts to the predetermined region P in the low load region side L, the valve opening timing of the intake valve 6 is delayed to increase the resistance against combustion deterioration factors. In addition, the closing timing of the intake valve 6 is closed near the bottom dead center. For this reason, in Example 1, pump loss cannot be reduced and the effect of improving fuel consumption cannot be obtained uniformly.

ここで、内燃機関1に還流される外部EGRガスの温度が高温であると、高温の外部EGRガスの熱容量が小さいので、内燃機関1の筒内温度が上昇する。これによって内燃機関1の筒内温度が上昇することによって、燃焼が良化し、燃焼悪化要因に対して耐性が高くなる。このため、外部EGRガスの温度が高温であれば、燃焼悪化要因に対する耐性を高めるために吸気弁6の開弁時期を遅開き且つ吸気弁6の閉弁時期を下死点近傍閉じにする必要が無くなる。   Here, if the temperature of the external EGR gas recirculated to the internal combustion engine 1 is high, the in-cylinder temperature of the internal combustion engine 1 increases because the heat capacity of the high-temperature external EGR gas is small. As a result, the in-cylinder temperature of the internal combustion engine 1 rises, so that combustion is improved and resistance to combustion deterioration factors is increased. For this reason, if the temperature of the external EGR gas is high, it is necessary to delay the opening timing of the intake valve 6 and close the closing timing of the intake valve 6 in the vicinity of the bottom dead center in order to increase the resistance to the combustion deterioration factor. Disappears.

そこで、本実施例では、内燃機関1の運転状態が低負荷領域側L内で所定領域Pに移行した場合に、外部EGRガスを内燃機関1の運転状態が高負荷領域側Hにある場合に要求される要求量へ向けて導入開始し、導入された外部EGRガス量が内燃機関1の燃焼状態を悪化させないために外部EGRガスの温度を上昇させる必要が生じる閾値となる所定量に達すると、バイパス弁35を開弁するようにした。   Therefore, in this embodiment, when the operating state of the internal combustion engine 1 shifts to the predetermined region P in the low load region side L, the external EGR gas is used when the operating state of the internal combustion engine 1 is on the high load region side H. When the introduction starts toward the required amount and the introduced external EGR gas amount reaches a predetermined amount that is a threshold value that requires the temperature of the external EGR gas to be increased so as not to deteriorate the combustion state of the internal combustion engine 1. The bypass valve 35 is opened.

ここで、所定量とは、それ以上の外部EGRガス量が導入されると、導入された外部EGRガス量が内燃機関1の燃焼状態を悪化させないために外部EGRガスの温度を上昇させる必要が生じる閾値となる外部EGRガス量である。   Here, the predetermined amount means that when an external EGR gas amount larger than that is introduced, the introduced external EGR gas amount does not deteriorate the combustion state of the internal combustion engine 1, so that the temperature of the external EGR gas needs to be raised. This is the amount of external EGR gas that is the threshold value that occurs.

本実施例によると、導入された外部EGRガス量が所定量に達すると、バイパス弁35を開弁する。これによると、外部EGRガスに外部EGRクーラ33を迂回させ、外部EGRガスはバイパス通路34を通過する。このように外部EGRクーラ33を迂回した外部EGRガスはEGRクーラ33で冷却されないため高温である。よって、高温の外部EGRガスが内燃機関1に導入されることになる。高温の外部EGRガスが導入されると、高温の外部EGRガスの熱容量が小さいので、内燃機関1の筒内温度が上昇する。これによって内燃機関1の筒内温度が上昇することによって、燃焼が良化し、燃焼悪化要因に対して耐性が高くなる。   According to the present embodiment, when the introduced external EGR gas amount reaches a predetermined amount, the bypass valve 35 is opened. According to this, the external EGR gas bypasses the external EGR cooler 33, and the external EGR gas passes through the bypass passage 34. Thus, the external EGR gas that bypasses the external EGR cooler 33 is not cooled by the EGR cooler 33 and thus has a high temperature. Therefore, high temperature external EGR gas is introduced into the internal combustion engine 1. When the high-temperature external EGR gas is introduced, the in-cylinder temperature of the internal combustion engine 1 increases because the heat capacity of the high-temperature external EGR gas is small. As a result, the in-cylinder temperature of the internal combustion engine 1 rises, so that combustion is improved and resistance to combustion deterioration factors is increased.

図12は、外部EGRガスが外部EGRクーラ33を通過する外部EGRガスの温度が低温の場合と、本実施例のように外部EGRガスがバイパス通路34を通過する外部EGRガスが高温の場合とにおける、燃焼変動が大きくなるまでの外部EGRガス量を示す図である。図12中破線が外部EGRガスが外部EGRクーラ33を通過する外部EGRガスの温度が低温の場合の特性を示し、実線が外部EGRガスがバイパス通路34を通過する外部EGRガスが高温の場合の特性を示す。   FIG. 12 shows a case where the temperature of the external EGR gas through which the external EGR gas passes through the external EGR cooler 33 is low, and a case where the external EGR gas through which the external EGR gas passes through the bypass passage 34 is high as in this embodiment. It is a figure which shows the external EGR gas amount until combustion fluctuation | variation becomes large. The broken line in FIG. 12 indicates the characteristics when the temperature of the external EGR gas through which the external EGR gas passes through the external EGR cooler 33 is low, and the solid line indicates the case when the external EGR gas through which the external EGR gas passes through the bypass passage 34 is hot. Show the characteristics.

図12に示すように、外部EGRガスが高温の場合には、外部EGRガスが低温の場合に比して燃焼悪化要因である外部EGRガスを大幅に増量しても燃焼が悪化し難い。本実施例では、外部EGRガス量が所定量に達すると、破線のA位置から実線のB位置へ遷移し特性が変わり、燃焼悪化要因に対して耐性が高くなるので、燃焼悪化要因である外部EGRガスを増量しても燃焼が悪化せず、要求量近くの大量の外部EGRガスを導入できる。   As shown in FIG. 12, when the external EGR gas is high in temperature, combustion is unlikely to deteriorate even when the amount of external EGR gas, which is a cause of combustion deterioration, is significantly increased compared to when the external EGR gas is low in temperature. In the present embodiment, when the external EGR gas amount reaches a predetermined amount, the characteristic changes due to the transition from the broken line A position to the solid B position, and the resistance to the combustion deterioration factor increases. Even if the amount of EGR gas is increased, combustion does not deteriorate, and a large amount of external EGR gas close to the required amount can be introduced.

以上のように要求量近くの大量の外部EGRガスを導入できるので、本実施例では、内燃機関1の運転状態が低負荷領域側L内の所定領域Pにある場合に、外部EGRガスを内燃機関1の運転状態が高負荷領域側Hにある場合に要求される要求量へ向けて導入開始する。   Since a large amount of external EGR gas close to the required amount can be introduced as described above, in this embodiment, when the operating state of the internal combustion engine 1 is in the predetermined region P in the low load region side L, the external EGR gas is The introduction starts toward the required amount required when the operating state of the engine 1 is on the high load region side H.

すると、本実施例では、内燃機関1の運転状態が所定領域Pにある場合、すなわち内燃機関1の運転状態が高負荷領域側Hに移行する前に、外部EGRガスが増量される。このため、内燃機関1の運転状態が所定領域Pから実際に高負荷領域側Hに移行する時には、内燃機関1の運転状態が高負荷領域側Hにある場合に要求される要求量に近い量の外部EGRガスが導入済みとなる。よって、内燃機関1の運転状態が高負荷領域側Hへ移行する時点、すなわち吸気弁のバルブ作用角を小作用角から大作用角へ切り替える時点では、要求量と実際の外部EGRガス量とのずれがほとんどない。したがって、内燃機関1の運転状態が高負荷領域側Hへ移行した直後、すなわち吸気弁のバルブ作用角を小作用角から大作用角へ切り替えた直後には、外部EGRガスの不足が生じない。よって、十分な外部EGRガスが導入されて内燃機関1の筒内ガスの熱容量が大きくなり、燃焼温度が低下し、冷却損失が低下する。このため、冷却損失が低下することで燃費が向上できる。また、内燃機関1の運転状態が高負荷領域側Hにある場合に要求される要求量の外部EGRガスが内燃機関1に供給されるまでに還流遅れが生じないので、吸入空気量の制御が容易になり、これによっても燃費悪化を改善できる。加えて、外部EGRガスの不足に起因したトルクショックが生じる懸念もなくなる。   Then, in the present embodiment, the external EGR gas is increased when the operating state of the internal combustion engine 1 is in the predetermined region P, that is, before the operating state of the internal combustion engine 1 is shifted to the high load region side H. Therefore, when the operating state of the internal combustion engine 1 actually shifts from the predetermined region P to the high load region side H, an amount close to the required amount required when the operating state of the internal combustion engine 1 is on the high load region side H. The external EGR gas is already introduced. Therefore, when the operating state of the internal combustion engine 1 shifts to the high load region side H, that is, when the valve operating angle of the intake valve is switched from the small operating angle to the large operating angle, the required amount and the actual external EGR gas amount There is almost no deviation. Therefore, immediately after the operating state of the internal combustion engine 1 shifts to the high load region side H, that is, immediately after the valve operating angle of the intake valve is switched from the small operating angle to the large operating angle, there is no shortage of external EGR gas. Therefore, sufficient external EGR gas is introduced, the heat capacity of the in-cylinder gas of the internal combustion engine 1 is increased, the combustion temperature is lowered, and the cooling loss is lowered. For this reason, a fuel consumption can be improved because cooling loss falls. In addition, since there is no reflux delay until the required amount of external EGR gas is supplied to the internal combustion engine 1 when the operating state of the internal combustion engine 1 is on the high load region side H, control of the intake air amount can be performed. This also makes it possible to improve fuel consumption. In addition, there is no concern about torque shock due to the lack of external EGR gas.

ここで、本実施例では、内燃機関1の運転状態が低負荷領域側L内で所定領域Pに移行した場合に、吸気弁6のバルブタイミングを吸気弁6の閉弁時期が下死点よりも早い早閉じのタイミングに維持したままである。このため、内燃機関1の運転状態が低負荷領域側L内で所定領域Pに移行した場合であっても、吸気弁6の閉弁時期を下死点よりも早い早閉じとすることで、ポンプ損失を低減し、燃費の向上を図ることができる。   Here, in the present embodiment, when the operating state of the internal combustion engine 1 shifts to the predetermined region P in the low load region side L, the valve timing of the intake valve 6 is set to the closing timing of the intake valve 6 from the bottom dead center. It is maintained at the timing of early closing. For this reason, even when the operating state of the internal combustion engine 1 shifts to the predetermined region P in the low load region side L, the closing timing of the intake valve 6 is set earlier than the bottom dead center, Pump loss can be reduced and fuel consumption can be improved.

次に、本実施例による内燃機関1の運転状態が低負荷領域側Lから高負荷領域側Hに移行する際の制御ルーチンについて説明する。図13は、本実施例による内燃機関1の運転状態が低負荷領域側Lから高負荷領域側Hに移行する際の制御ルーチンを示したフローチャートである。本ルーチンは、所定の時間毎に繰り返し実行される。なお、本ルーチンにおいて、ステップS101〜S106(S104はなし)については図8の制御ルーチンと同一であるので説明を省略し、ステップS201〜S203について説明する。   Next, a control routine when the operating state of the internal combustion engine 1 according to this embodiment shifts from the low load region side L to the high load region side H will be described. FIG. 13 is a flowchart showing a control routine when the operating state of the internal combustion engine 1 according to this embodiment shifts from the low load region side L to the high load region side H. This routine is repeatedly executed every predetermined time. In this routine, steps S101 to S106 (no S104) are the same as those in the control routine of FIG. 8, and thus description thereof will be omitted, and steps S201 to S203 will be described.

ステップS103において内燃機関1の運転状態が所定領域Pに移行したと肯定判定された場合には、ステップS201へ移行する。ステップS103において内燃機関1の運
転状態が所定領域Pに移行しないと否定判定された場合には、ステップS102へ戻る。
If it is determined in step S103 that the operating state of the internal combustion engine 1 has shifted to the predetermined region P, the process proceeds to step S201. If it is determined in step S103 that the operating state of the internal combustion engine 1 does not shift to the predetermined region P, the process returns to step S102.

ステップS201では、ECU15は、内燃機関1の運転状態が所定領域Pである場合における第2所定領域モードの制御を行う。   In step S201, the ECU 15 controls the second predetermined region mode when the operating state of the internal combustion engine 1 is the predetermined region P.

第2所定領域モードは、外部EGR弁32を開き側に制御して内燃機関1の運転状態が低負荷領域側Lにある場合に比して大量の外部EGRガスであって内燃機関1の運転状態が高負荷領域側Hにある場合に要求される要求量の外部EGRガスを導入開始する。第2所定領域モードでは、吸気弁6のバルブ作用角は小作用角に維持したままであると共に、吸気弁6のバルブタイミングは吸気弁6の閉弁時期が下死点よりも早い早閉じのタイミングに維持したままである。   In the second predetermined region mode, the external EGR valve 32 is controlled to the open side so that the amount of external EGR gas is larger than that in the case where the operation state of the internal combustion engine 1 is on the low load region side L, and the operation of the internal combustion engine 1 is performed. The introduction of the required amount of external EGR gas required when the state is on the high load region side H is started. In the second predetermined region mode, the valve operating angle of the intake valve 6 is maintained at a small operating angle, and the valve timing of the intake valve 6 is that the valve closing timing of the intake valve 6 is closed earlier than the bottom dead center. Stays in timing.

ステップS202では、ECU15は、導入されている外部EGRガス量が所定量に達したか否か判別する。   In step S202, the ECU 15 determines whether or not the introduced external EGR gas amount has reached a predetermined amount.

具体的には、内燃機関1の運転状態を予め実験などから求めた不図示のマップに当てはめ、導入されている外部EGRガス量が所定量に達したか判断する。   Specifically, the operating state of the internal combustion engine 1 is applied to a map (not shown) obtained beforehand through experiments or the like, and it is determined whether the amount of introduced external EGR gas has reached a predetermined amount.

ステップS202において導入されている外部EGRガス量が所定量に達したと肯定判定された場合には、ステップS203へ移行する。ステップS202において導入されている外部EGRガス量が所定量に達しないと否定判定された場合には、ステップS201へ戻る。   When it is determined positive in step S202 that the amount of external EGR gas introduced has reached a predetermined amount, the process proceeds to step S203. When it is determined negative in step S202 that the amount of external EGR gas introduced does not reach the predetermined amount, the process returns to step S201.

ステップS203では、ECU15は、バイパス弁35を開弁する。   In step S203, the ECU 15 opens the bypass valve 35.

このようにバイパス弁35を開弁することにより、外部EGR装置30内で外部EGRガスに外部EGRクーラ33を迂回させ、外部EGRガスはバイパス通路34を流通し、外部EGRガスの温度が高温になる。   Opening the bypass valve 35 in this manner causes the external EGR gas to bypass the external EGR cooler 33 in the external EGR device 30, and the external EGR gas flows through the bypass passage 34, and the temperature of the external EGR gas becomes high. Become.

ステップS203の処理の後、ステップS105に移行する。   After step S203, the process proceeds to step S105.

以上の制御ルーチンを実行することにより、吸気弁6のバルブ作用角を小作用角から大作用角へ切り替える時に外部EGRガス量を急激に変化させず、スムースに大量の外部EGRガスを導入でき、吸気弁6のバルブ作用角を大作用角へ切り替え前後の燃費の向上を図ることができる。   By executing the above control routine, when the valve operating angle of the intake valve 6 is switched from the small operating angle to the large operating angle, the amount of external EGR gas can be smoothly introduced without abruptly changing the amount of external EGR gas, It is possible to improve the fuel consumption before and after switching the valve operating angle of the intake valve 6 to a large operating angle.

本発明に係る内燃機関の制御装置は、上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加えてもよい。   The control device for an internal combustion engine according to the present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the gist of the present invention.

実施例1に係る内燃機関の概略構成を示す図である。1 is a diagram illustrating a schematic configuration of an internal combustion engine according to a first embodiment. 従来における内燃機関の運転状態に応じた制御状態を示す概略図である。It is the schematic which shows the control state according to the driving | running state of the conventional internal combustion engine. 従来における吸気弁のバルブ作用角を小作用角から大作用角へ切り替える時の外部EGRガス量の時間変化を示す図である。It is a figure which shows the time change of the external EGR gas amount at the time of switching the valve working angle of the conventional intake valve from a small working angle to a large working angle. 実施例1に係る内燃機関1の運転状態に応じた制御状態を示す概略図である。1 is a schematic diagram illustrating a control state according to an operating state of an internal combustion engine 1 according to a first embodiment. 実施例1に係る内燃機関の運転状態が低負荷領域側内で所定領域に移行した場合に吸気弁のバルブタイミングを変更する様子を説明する図である。It is a figure explaining a mode that the valve timing of an intake valve is changed when the driving | running state of the internal combustion engine which concerns on Example 1 transfers to the predetermined area | region within the low load area | region side. 吸気弁の開閉時期が異なる場合の燃焼変動が大きくなるまでの外部EGRガス量を示す図である。It is a figure which shows the amount of external EGR gas until combustion fluctuation | variation becomes large when the opening / closing timing of an intake valve differs. 実施例1に係る吸気弁のバルブ作用角を小作用角から大作用角へ切り替える時の外部EGRガス量の時間変化を示す図である。It is a figure which shows the time change of the external EGR gas amount at the time of switching the valve working angle of the intake valve which concerns on Example 1 from a small working angle to a large working angle. 実施例1に係る内燃機関の運転状態が低負荷領域側から高負荷領域側に移行する際の制御ルーチンを示したフローチャートである。3 is a flowchart illustrating a control routine when the operating state of the internal combustion engine according to the first embodiment shifts from a low load region side to a high load region side. 実施例2に係る内燃機関の機関回転数と吸気弁の開閉時期の遅角量との相関関係を表すマップである。7 is a map showing a correlation between an engine speed of an internal combustion engine according to a second embodiment and a retard amount of the opening / closing timing of the intake valve. 実施例3に係る外部EGRガスの要求量と吸気弁の開閉時期の遅角量との相関関係を表すマップである。10 is a map showing a correlation between a required amount of external EGR gas according to a third embodiment and a retard amount of the opening / closing timing of the intake valve. 実施例4に係る内燃機関の概略構成を示す図である。FIG. 6 is a diagram illustrating a schematic configuration of an internal combustion engine according to a fourth embodiment. 外部EGRガスの温度が異なる場合の燃焼変動が大きくなるまでの外部EGRガス量を示す図である。It is a figure which shows the amount of external EGR gas until combustion fluctuation | variation becomes large when the temperature of external EGR gas differs. 実施例4に係る内燃機関の運転状態が低負荷領域側から高負荷領域側に移行する際の制御ルーチンを示したフローチャートである。12 is a flowchart illustrating a control routine when an operating state of an internal combustion engine according to a fourth embodiment shifts from a low load region side to a high load region side.

符号の説明Explanation of symbols

1 内燃機関
2 シリンダヘッド
3 燃焼室
4 吸気ポート
5 排気ポート
6 吸気弁
7 排気弁
8 吸気弁バルブ作用角可変機構
9 吸気弁バルブタイミング可変機構
10 点火プラグ
11 吸気管
12 排気管
13 燃料噴射弁
14 エアフローメータ
15 ECU
16 水温センサ
17 クランクポジションセンサ
30 外部EGR装置
31 外部EGR通路
32 外部EGR弁
33 外部EGRクーラ
34 バイパス通路
35 バイパス弁
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Cylinder head 3 Combustion chamber 4 Intake port 5 Exhaust port 6 Intake valve 7 Exhaust valve 8 Intake valve valve working angle variable mechanism 9 Intake valve valve timing variable mechanism 10 Spark plug 11 Intake pipe 12 Exhaust pipe 13 Fuel injection valve 14 Air flow meter 15 ECU
16 Water temperature sensor 17 Crank position sensor 30 External EGR device 31 External EGR passage 32 External EGR valve 33 External EGR cooler 34 Bypass passage 35 Bypass valve

Claims (7)

吸気弁のバルブ作用角を少なくとも2段階に切り替え可能な吸気弁バルブ作用角可変機構と、
前記吸気弁のバルブタイミングを変更可能な吸気弁バルブタイミング可変機構と、
内燃機関の排気通路から排気の一部を外部EGRガスとして取り込み、前記内燃機関の吸気通路へ当該外部EGRガスを還流させる外部EGR装置と、
を備え、
前記内燃機関の運転状態が低負荷領域側にある場合には、前記吸気弁のバルブ作用角を小作用角とすると共に前記吸気弁のバルブタイミングを前記吸気弁の閉弁時期が下死点よりも早い早閉じのタイミングとし、
前記内燃機関の運転状態が高負荷領域側にある場合には、前記吸気弁のバルブ作用角を大作用角とすると共に前記外部EGRガスを前記内燃機関の運転状態が前記低負荷領域側にある場合よりも多く還流させる内燃機関の制御装置であって、
前記内燃機関の運転状態が前記低負荷領域側内で前記高負荷領域側手前の所定領域に移行した場合に、前記吸気弁のバルブタイミングを前記吸気弁の開閉時期が前記内燃機関の運転状態が前記低負荷領域側にある場合よりも遅角されるタイミングとすると共に前記外部EGRガスを前記内燃機関の運転状態が前記高負荷領域側にある場合に要求される要求量へ向けて導入開始することを特徴とする内燃機関の制御装置。
An intake valve valve operating angle variable mechanism capable of switching the valve operating angle of the intake valve in at least two stages;
An intake valve valve timing variable mechanism capable of changing the valve timing of the intake valve;
An external EGR device that takes in a part of the exhaust gas from the exhaust passage of the internal combustion engine as an external EGR gas and recirculates the external EGR gas to the intake passage of the internal combustion engine;
With
When the operating state of the internal combustion engine is on the low load region side, the valve operating angle of the intake valve is set to a small operating angle, and the valve timing of the intake valve is set to the closing timing of the intake valve from the bottom dead center. As soon as possible the timing of early closing,
When the operating state of the internal combustion engine is on the high load region side, the valve operating angle of the intake valve is set to a large operating angle and the operating state of the internal combustion engine is on the low load region side. A control device for an internal combustion engine that recirculates more than the case,
When the operating state of the internal combustion engine shifts to a predetermined region within the low load region side and before the high load region side, the valve timing of the intake valve is determined according to the opening / closing timing of the intake valve. At a timing that is retarded from the case of being on the low load region side, introduction of the external EGR gas toward the required amount required when the operating state of the internal combustion engine is on the high load region side is started. A control device for an internal combustion engine.
前記内燃機関の運転状態が前記低負荷領域側内で前記高負荷領域側手前の所定領域に移行した場合に、前記吸気弁のバルブタイミングを前記吸気弁の開弁時期が前記内燃機関の運転状態が前記低負荷領域側にある場合よりも遅い遅開き且つ前記吸気弁の閉弁時期が前記内燃機関の運転状態が前記低負荷領域側にある場合よりも遅い下死点近傍で閉じるタイミングとすることを特徴とする請求項1に記載の内燃機関の制御装置。   When the operating state of the internal combustion engine shifts to a predetermined region before the high load region within the low load region side, the valve timing of the intake valve is determined based on the valve opening timing of the intake valve. Is delayed later than when the engine is on the low load region side, and the closing timing of the intake valve is set to close near the bottom dead center later than when the operating state of the internal combustion engine is on the low load region side. The control apparatus for an internal combustion engine according to claim 1. 前記内燃機関の運転状態が前記低負荷領域側内で前記高負荷領域側手前の所定領域に移行した場合に、前記吸気弁のバルブタイミングを前記吸気弁の開閉時期が前記内燃機関の運転状態が前記低負荷領域側にある場合よりも遅角されるタイミングとするときの前記吸気弁の開閉時期の遅角量は、前記内燃機関の機関回転数に応じて変更されることを特徴とする請求項1に記載の内燃機関の制御装置。   When the operating state of the internal combustion engine shifts to a predetermined region within the low load region side and before the high load region side, the valve timing of the intake valve is determined according to the opening / closing timing of the intake valve. The retard amount of the opening / closing timing of the intake valve when the timing is retarded from that in the low load region side is changed according to the engine speed of the internal combustion engine. Item 2. A control device for an internal combustion engine according to Item 1. 前記遅角量は、前記内燃機関の機関回転数が低くなる程増加することを特徴とする請求項3に記載の内燃機関の制御装置。   The control apparatus for an internal combustion engine according to claim 3, wherein the retard amount increases as the engine speed of the internal combustion engine decreases. 前記内燃機関の運転状態が前記低負荷領域側内で前記高負荷領域側手前の所定領域に移行した場合に、前記吸気弁のバルブタイミングを前記吸気弁の開閉時期が前記内燃機関の運転状態が前記低負荷領域側にある場合よりも遅角されるタイミングとするときの前記吸気弁の開閉時期の遅角量は、外部EGRガスの前記要求量に応じて変更されることを特徴とする請求項1に記載の内燃機関の制御装置。   When the operating state of the internal combustion engine shifts to a predetermined region within the low load region side and before the high load region side, the valve timing of the intake valve is determined according to the opening / closing timing of the intake valve. The retard amount of the opening / closing timing of the intake valve when the timing is retarded from that in the low load region side is changed according to the required amount of external EGR gas. Item 2. A control device for an internal combustion engine according to Item 1. 前記遅角量は、外部EGRガスの前記要求量が多くなる程増加することを特徴とする請求項5に記載の内燃機関の制御装置。   6. The control apparatus for an internal combustion engine according to claim 5, wherein the retard amount increases as the required amount of external EGR gas increases. 吸気弁のバルブ作用角を少なくとも2段階に切り替え可能な吸気弁バルブ作用角可変機構と、
前記吸気弁のバルブタイミングを変更可能な吸気弁バルブタイミング可変機構と、
内燃機関の排気通路から排気の一部を外部EGRガスとして取り込み、前記内燃機関の吸気通路へ当該外部EGRガスを還流させる外部EGR装置と、
を備え、
前記内燃機関の運転状態が低負荷領域側にある場合には、前記吸気弁のバルブ作用角を小作用角とすると共に前記吸気弁のバルブタイミングを前記吸気弁の閉弁時期が下死点よりも早い早閉じのタイミングとし、
前記内燃機関の運転状態が高負荷領域側にある場合には、前記吸気弁のバルブ作用角を大作用角とすると共に前記外部EGRガスを前記内燃機関の運転状態が前記低負荷領域側にある場合よりも多く還流させる内燃機関の制御装置であって、
前記外部EGR装置は、当該外部EGR装置内を流通する前記外部EGRガスを冷却するEGRクーラと、当該外部EGR装置内を流通する前記外部EGRガスに前記EGRクーラを迂回させるバイパス通路と、前記バイパス通路を開閉するバイパス弁と、を有し、
前記内燃機関の運転状態が前記低負荷領域側内で前記高負荷領域側手前の所定領域に移行した場合に、前記外部EGRガスを前記内燃機関の運転状態が前記高負荷領域側にある場合に要求される要求量へ向けて導入開始し、導入された外部EGRガス量が前記内燃機関の燃焼状態を悪化させないために前記外部EGRガスの温度を上昇させる必要が生じる閾値となる所定量に達すると、前記バイパス弁を開弁することを特徴とする内燃機関の制御装置。
An intake valve valve operating angle variable mechanism capable of switching the valve operating angle of the intake valve in at least two stages;
An intake valve valve timing variable mechanism capable of changing the valve timing of the intake valve;
An external EGR device that takes in a part of the exhaust gas from the exhaust passage of the internal combustion engine as an external EGR gas and recirculates the external EGR gas to the intake passage of the internal combustion engine;
With
When the operating state of the internal combustion engine is on the low load region side, the valve operating angle of the intake valve is set to a small operating angle, and the valve timing of the intake valve is set to the closing timing of the intake valve from the bottom dead center. As soon as possible the timing of early closing,
When the operating state of the internal combustion engine is on the high load region side, the valve operating angle of the intake valve is set to a large operating angle and the operating state of the internal combustion engine is on the low load region side. A control device for an internal combustion engine that recirculates more than the case,
The external EGR device includes an EGR cooler that cools the external EGR gas that circulates in the external EGR device, a bypass passage that bypasses the EGR cooler to the external EGR gas that circulates in the external EGR device, and the bypass A bypass valve for opening and closing the passage,
When the operating state of the internal combustion engine is shifted to a predetermined region within the low load region side and before the high load region side, the external EGR gas is used when the operating state of the internal combustion engine is on the high load region side. The introduction starts toward the required amount, and the amount of the introduced external EGR gas reaches a predetermined amount that becomes a threshold value that requires the temperature of the external EGR gas to be raised so as not to deteriorate the combustion state of the internal combustion engine. Then, the control device for the internal combustion engine, wherein the bypass valve is opened.
JP2007288105A 2007-11-06 2007-11-06 Control device for internal combustion engine Expired - Fee Related JP4930332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007288105A JP4930332B2 (en) 2007-11-06 2007-11-06 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007288105A JP4930332B2 (en) 2007-11-06 2007-11-06 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2009114931A JP2009114931A (en) 2009-05-28
JP4930332B2 true JP4930332B2 (en) 2012-05-16

Family

ID=40782352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007288105A Expired - Fee Related JP4930332B2 (en) 2007-11-06 2007-11-06 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4930332B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5278604B2 (en) * 2010-05-11 2013-09-04 トヨタ自動車株式会社 Control device for internal combustion engine
JP2013044309A (en) * 2011-08-26 2013-03-04 Denso Corp Control device of internal combustion engine
CN106194513B (en) * 2016-09-12 2018-08-14 奇瑞汽车股份有限公司 A kind of petrol engine of non-air throttle control, purposes and its control method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3075126B2 (en) * 1995-03-10 2000-08-07 トヨタ自動車株式会社 Valve timing control device for internal combustion engine
JPH11200955A (en) * 1998-01-06 1999-07-27 Mitsubishi Motors Corp Exhaust gas reflux device
JP2002089341A (en) * 2000-09-11 2002-03-27 Nissan Motor Co Ltd Control device for internal combustion engine in vehicle
JP4458036B2 (en) * 2005-12-15 2010-04-28 日産自動車株式会社 Sub-chamber engine

Also Published As

Publication number Publication date
JP2009114931A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
JP5939263B2 (en) Control device for internal combustion engine
JP4816785B2 (en) Control method and control device for engine with turbocharger
JP4798091B2 (en) Control device for internal combustion engine
JP5979030B2 (en) Variable cylinder engine
JP6020218B2 (en) Variable cylinder engine
JPWO2011125208A1 (en) Combustion control device for internal combustion engine
JP6648719B2 (en) Control device for internal combustion engine
JP4930332B2 (en) Control device for internal combustion engine
WO2017150076A1 (en) Engine control device
JP2011140902A (en) Control device of internal combustion engine
JP6225969B2 (en) Control device and control method for internal combustion engine with supercharger
JP6296430B2 (en) Engine control device
JP2008297929A (en) Internal combustion engine controlling device
JP6056519B2 (en) Control device for spark ignition engine
JP2009150320A (en) Variable valve system for internal combustion engine
JP5880325B2 (en) Control device for internal combustion engine
JP5994450B2 (en) Control device for variable flow pump
JP2009216035A (en) Control device of internal combustion engine
JP5948897B2 (en) Internal combustion engine
JP2010138730A (en) Engine
JP4924559B2 (en) EGR device for internal combustion engine
JP2005214115A (en) Egr system for diesel engine
JP2010230044A (en) Controller of internal combustion engine with supercharger
JP2008297930A (en) Internal combustion engine controlling device
JP6923005B2 (en) Internal combustion engine control method and internal combustion engine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

R151 Written notification of patent or utility model registration

Ref document number: 4930332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees