JP4924819B2 - Evaluation method for bearing capacity of direct foundation on slope - Google Patents

Evaluation method for bearing capacity of direct foundation on slope Download PDF

Info

Publication number
JP4924819B2
JP4924819B2 JP2007059413A JP2007059413A JP4924819B2 JP 4924819 B2 JP4924819 B2 JP 4924819B2 JP 2007059413 A JP2007059413 A JP 2007059413A JP 2007059413 A JP2007059413 A JP 2007059413A JP 4924819 B2 JP4924819 B2 JP 4924819B2
Authority
JP
Japan
Prior art keywords
model
slope
ground
direct foundation
horizontal ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007059413A
Other languages
Japanese (ja)
Other versions
JP2008223251A (en
Inventor
博 佐藤
直明 河村
秀明 高橋
美香 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2007059413A priority Critical patent/JP4924819B2/en
Publication of JP2008223251A publication Critical patent/JP2008223251A/en
Application granted granted Critical
Publication of JP4924819B2 publication Critical patent/JP4924819B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)

Description

本発明は、切土などの斜面近傍に設置された直接基礎の圧縮支持力を、速度場法を基本として、三次元的効果を考慮しながら評価する方法に関する。   The present invention relates to a method for evaluating the compressive bearing force of a direct foundation installed in the vicinity of a slope such as cut soil, taking a three-dimensional effect into consideration, based on a velocity field method.

切土などの斜面近傍に設置される直接基礎の支持力は、斜面の影響により水平地盤に設置される直接基礎の支持力と比較して大幅に低下することが分かっている。斜面の影響は、斜面の傾斜角、法肩までの距離、斜面高さなどであるが、これらのパラメータの影響を評価する手法としては、従来より(1)極限釣り合い法、(2)すべり解析法、(3)極限解析法などの解析手法が用いられている。前記極限釣り合い法は、剛体すべりを仮定した静的な力の釣り合い問題として定式化し、すべり形状と位置を変化させて、最小となる支持力値を求める方法であり、後述のBishop法はこれに属する。前記すべり解析法は、連続体力学で定義する力の釣り合いと破壊基準式の両者を満たす塑性平衡応力を、すべり線に沿う連立常微分方程式から、与えられた境界条件で解く方法であり、後述のMeyerhof法はこれに属する。前記極限解析法は連続体力学で破壊問題を扱う上で正解との関係を明確にし得る方法であり、力の釣り合い、ひずみの適合、および剛塑性体を仮定しかつ関連流れ則に従う構成関係の3つを満たす正解値に対して、可容速度場を設定してひずみの適合と構成関係のみを満たす上界値、可容速度場を設定して力の釣り合いと構成関係を満たす下界値を求めるものである。   It has been found that the bearing capacity of the direct foundation installed in the vicinity of the slope, such as cut, is significantly lower than the bearing capacity of the direct foundation installed on the horizontal ground due to the influence of the slope. The influence of the slope is the slope angle, the distance to the shoulder, the height of the slope, etc. The conventional methods for evaluating the influence of these parameters are (1) limit balance method, (2) slip analysis. And (3) analysis methods such as limit analysis are used. The limit balance method is a method of formulating as a static force balance problem assuming a rigid body slip, changing the slip shape and position, and obtaining the minimum support force value. Belongs. The slip analysis method is a method of solving the plastic equilibrium stress satisfying both the force balance and the fracture criterion defined by continuum mechanics from the simultaneous ordinary differential equations along the slip line under given boundary conditions. The Meyerhof method belongs to this. The limit analysis method is a method that can clarify the relationship with the correct answer in handling fracture problems in continuum mechanics. For the correct values satisfying the three, set the allowable velocity field to set the upper bound value that satisfies only the strain fit and the compositional relationship, and set the allowable velocity field to set the lower bound value that satisfies the force balance and the constituent relationship. It is what you want.

上記上界値を求める方法は「速度場法」と呼ばれる方法であり、下記非特許文献1では、図1に示されるように、速度場法の破壊メカニズムを、△ABEが主働くさび、CBはEを極とする対数らせん、CDは斜面法面に達する直線とし、これを速度の不連続場と仮定し、上界値計算を行うことによって、傾斜地盤上の基礎の支持力を計算することが提案されている。同文献では、速度場法の計算結果を水平地盤の支持力に対する低減率μとしてまとめ、傾斜地盤における直接基礎の支持力は、水平地盤での支持力qを算出したなら、これに低減率μを乗じることにより求める手法が提案されている。   The above-described method for obtaining the upper bound value is a method called “velocity field method”. In Non-Patent Document 1 below, as shown in FIG. Is a logarithmic spiral with E as the pole, CD is a straight line that reaches the slope slope, and this is assumed to be a discontinuous field of velocity. It has been proposed. In this document, the calculation result of the velocity field method is summarized as a reduction rate μ with respect to the support force of the horizontal ground, and the support force of the direct foundation on the inclined ground is calculated by calculating the reduction rate μ on the horizontal ground A method for obtaining by multiplying by is proposed.

一方、前記低減率μに関して、法肩までの距離をパラメータとして水平地盤に対する支持力低下率のグラフが下記非特許文献2に示されている。同グラフは、図12に示されるように、横軸を法肩までの距離比α(法肩までの離隔距離/基礎幅)とし、縦軸を水平地盤に対する支持力低下率ζS0としたもので、速度場法による解析結果とともに、他の解析方法及び実験値が掲載されている。
日下部治、”斜面上直接基礎の支持力評価に関する計算”、「土と基礎」、vol33,No2,1985,p.7〜12 日本建築学会、”建築基礎構造設計指針”、2001、p119
On the other hand, with respect to the reduction rate μ, a graph of the reduction rate of the supporting force with respect to the horizontal ground with the distance to the shoulder as a parameter is shown in Non-Patent Document 2 below. In this graph, as shown in FIG. 12, the horizontal axis is the distance ratio α S to the shoulder (separation distance to the shoulder / base width), and the vertical axis is the bearing capacity decrease rate ζ S0 with respect to the horizontal ground. In addition to the analysis results by the velocity field method, other analysis methods and experimental values are listed.
Osamu Kusakabe, “Calculation on bearing capacity evaluation of direct foundation on slope”, “Soil and foundation”, vol33, No2,1985, p.7-12 Architectural Institute of Japan, “Basic Design Guidelines for Architectural Buildings”, 2001, p119

図12に示される、法肩までの距離比α(法肩までの離隔距離/基礎幅)−水平地盤に対する支持力低下率ζS0のグラフから、速度場法による解析結果は、他の解析手法(Meyerhof法、Bishop法、Gemperline式)や実験値よりも下限側の低下率を示しており、斜面による影響を過大に評価していることが分かる。 From the graph of the distance ratio α S (separation distance to the shoulder / base width) -bearing force decrease rate ζ S0 to the horizontal ground shown in FIG. 12, the analysis result by the velocity field method is the other analysis. The rate of decrease is lower than the method (Meyerhof method, Bishop method, Gemperline equation) and experimental values, indicating that the influence of the slope is overestimated.

これは、前記速度場法による解析は、2次元平面ひずみモデルとして取り扱っているためであり、所謂三次元効果による支持力の増加分が考慮されていない。前記三次元効果による支持力増大は、二次元モデルで描かれる地盤の破壊面の他に、側面抵抗を考慮した支持力の増分などが挙げられる。更には、基礎の根入れ抵抗などが考慮されていないことも原因として挙げられる。   This is because the analysis by the velocity field method is handled as a two-dimensional plane strain model, and the increase in bearing force due to the so-called three-dimensional effect is not taken into consideration. The increase in the bearing force due to the three-dimensional effect includes an increase in bearing force in consideration of the side resistance in addition to the fracture surface of the ground drawn by a two-dimensional model. Furthermore, it is mentioned as a cause that the foundation penetration resistance etc. are not considered.

そこで本発明の主たる課題は、斜面の影響による支持力低下率を速度場法によって求めることを基本とし、これに三次元効果を考慮して斜面上直接基礎の支持力を評価する方法を提供することにある。   Accordingly, the main problem of the present invention is to provide a method for evaluating the support force of a foundation directly on a slope, considering the three-dimensional effect based on the fact that the support force decrease rate due to the influence of the slope is obtained by the velocity field method. There is.

前記課題を解決するために請求項1に係る本発明として、斜面近傍に設置される直接基礎の圧縮支持力を評価するための方法であって、
速度場法に基づき、前記直接基礎の水平地盤に対する支持力比(ζ)を算定するステップと、
前記直接基礎を二次元モデルとし、周辺地盤を水平地盤とする条件で作製した水平地盤模型と、前記斜面を再現した地盤条件で作製した斜面地盤模型とについて夫々、遠心模型実験を行い、二次元モデルにおける水平地盤に対する支持力比(ζ)を求めるステップと、
前記直接基礎を三次元モデルとし、周辺地盤を水平地盤とする条件で作製した水平地盤模型と、前記斜面を再現した地盤条件で作製した斜面地盤模型とについて夫々、遠心模型実験を行い、三次元モデルにおける水平地盤に対する支持力比(ζ)を求めるステップと、
前記二次元モデルにおける水平地盤に対する支持力比ζと、三次元モデルにおける水平地盤に対する支持力比ζとの比率(ζ/ζ)を求め、この比率(ζ/ζ)を三次元補正係数(β)として設定し、前記速度場法によって求めた直接基礎の水平地盤に対する支持力比ζに乗算することによって三次元効果を考慮した直接基礎の水平地盤に対する支持力比(β・ζ)を求めるステップと、を有することを特徴とする斜面上直接基礎の支持力評価方法が提供される。
In order to solve the above-mentioned problem, the present invention according to claim 1 is a method for evaluating the compression support force of a direct foundation installed in the vicinity of a slope,
Calculating a bearing force ratio (ζ 1 ) to the horizontal ground of the direct foundation based on a velocity field method;
Using the direct foundation as a two-dimensional model, the horizontal ground model produced under the condition that the surrounding ground is horizontal ground, and the slope ground model produced under the ground conditions reproducing the slope, respectively, were subjected to a centrifugal model experiment, respectively. Determining a bearing capacity ratio (ζ 2 ) for the horizontal ground in the model;
Using the 3D model for the direct foundation and the horizontal ground model with the surrounding ground as the horizontal ground, and the slope ground model manufactured with the ground conditions reproducing the slope, respectively, we performed a centrifugal model experiment, Determining a bearing capacity ratio (ζ 3 ) for the horizontal ground in the model;
A ratio (ζ 3 / ζ 2 ) between the bearing force ratio ζ 2 for the horizontal ground in the two-dimensional model and the bearing force ratio ζ 3 for the horizontal ground in the three-dimensional model is obtained, and this ratio (ζ 3 / ζ 2 ) is obtained. Bearing capacity ratio for direct foundation horizontal ground taking into account the three-dimensional effect by setting as a three-dimensional correction coefficient (β C ) and multiplying the bearing capacity ratio ζ 1 for the direct foundation horizontal ground obtained by the velocity field method There is provided a method for evaluating a bearing capacity of a foundation directly on a slope, comprising the step of obtaining (β C · ζ 1 ).

上記請求項1記載の発明は、速度場法で求めた直接基礎の水平地盤に対する支持力比(ζ)は、二次元平面ひずみ問題として取り扱ったモデルで支持力を求めるものであり、二次元の支持力問題に対しては良く整合することが既往の模型実験等から確認されている。従って、斜面の影響による支持力低下率を速度場法によって求めることを基本とした上で、三次元効果を適性に評価するため、遠心模型実験に基づいて三次元効果による補正係数(β)を求め、これを前記速度場法で求めた直接基礎の水平地盤に対する支持力比(ζ)に乗算することによって、斜面上直接基礎の支持力を適性に評価するものである。 In the first aspect of the present invention, the bearing force ratio (ζ 1 ) for the horizontal foundation of the direct foundation obtained by the velocity field method is to obtain the bearing force using a model treated as a two-dimensional plane strain problem. It has been confirmed from previous model experiments that it matches well with the bearing capacity problem. Therefore, in order to evaluate the three-dimensional effect appropriately based on the determination of the bearing force decrease rate due to the influence of the slope by the velocity field method, a correction coefficient (β C ) based on the centrifugal model experiment is used. Is multiplied by the bearing capacity ratio (ζ 1 ) of the direct foundation with respect to the horizontal ground obtained by the velocity field method, thereby appropriately evaluating the bearing capacity of the foundation directly on the slope.

前記三次元補正係数(β)の算出は、対象の直接基礎を二次元モデルとし、周辺地盤を水平地盤とする条件で作製した水平地盤模型と、前記斜面を再現した地盤条件で作製した斜面地盤模型とについて夫々、遠心模型実験を行い、二次元モデルにおける水平地盤に対する支持力比(ζ)を求め、かつ前記直接基礎を三次元モデルとし、周辺地盤を水平地盤とする条件で作製した水平地盤模型と、前記斜面を再現した地盤条件で作製した斜面地盤模型とについて夫々、遠心模型実験を行い、三次元モデルにおける水平地盤に対する支持力比(ζ)を求め、両者の比率(ζ/ζ)を求めれば、現実に近い形で三次元効果による割増率を適性に評価することができる。 The calculation of the three-dimensional correction coefficient (β C ) is based on a two-dimensional model based on the direct basis of the object and a horizontal ground model prepared on the condition that the surrounding ground is a horizontal ground, and a slope prepared on the ground conditions reproducing the slope. A centrifugal model experiment was conducted for each of the ground models, and the bearing force ratio (ζ 2 ) for the horizontal ground in the two-dimensional model was determined, and the direct foundation was used as the three-dimensional model, and the surrounding ground was prepared under the conditions of the horizontal ground. Centrifugal model experiments were performed on the horizontal ground model and the slope ground model produced under the ground conditions that reproduced the slope, respectively, and the bearing force ratio (ζ 3 ) to the horizontal ground in the three-dimensional model was obtained, and the ratio between the two (ζ If 3 / ζ 2 ) is obtained, the rate of increase due to the three-dimensional effect can be evaluated appropriately in a form close to reality.

請求項2に係る本発明として、前記直接基礎の二次元モデルは、直接基礎の奥行き幅を模型幅として作製したモデルである請求項1記載の斜面上直接基礎の支持力評価方法が提供される。   As a second aspect of the present invention according to claim 2, there is provided a method for evaluating a bearing capacity of a direct foundation on a slope according to claim 1, wherein the two-dimensional model of the direct foundation is a model produced by using a depth width of the direct foundation as a model width. .

請求項3に係る本発明として、前記直接基礎の三次元モデルは、直接基礎の奥行き幅を前記斜面近傍に設置される直接基礎を再現した相似モデルである請求項1記載の斜面上直接基礎の支持力評価方法が提供される。   As a third aspect of the present invention according to claim 3, the three-dimensional model of the direct foundation is a similar model that reproduces the direct foundation installed in the vicinity of the slope in the depth width of the direct foundation. A bearing capacity evaluation method is provided.

以上詳説のとおり本発明によれば、斜面の影響による支持力低下率を速度場法によって求めることを基本とした上で、これに三次元効果を適性に考慮することが可能となる。   As described above in detail, according to the present invention, it is possible to appropriately consider the three-dimensional effect on the basis of obtaining the rate of decrease in bearing force due to the influence of the slope by the velocity field method.

以下、本発明の実施の形態について図面を参照しながら詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

〔速度場法による支持力算定〕
以下、上記非特許文献1において提案されている、速度場法によって斜面直接基礎の支持力を算定する手順について述べる。
[Calculation of bearing capacity by speed field method]
The procedure for calculating the bearing capacity of the slope direct foundation by the velocity field method proposed in Non-Patent Document 1 will be described below.

1.水平地盤の支持力
基礎幅(B)に作用する外力(q)の成す仕事は、単位体積重量(γ)の土塊に運動を与え、その土塊が地球の重力に対してなす仕事の成分と、運動する土塊各要素間の相対的速度差とそこでの粘着力(c)とによって土塊内部で消散される内部消散の成分との和に等しい。すなわち、L、M、Nを係数として式に表現すれば下式(1)のようになる。

Figure 0004924819
1. Horizontal ground bearing capacity
The work formed by the external force (q) acting on the foundation width (B) gives motion to a mass of unit volume weight (γ), the work component that the mass makes against the earth's gravity, and each element of the mass that moves Is equal to the sum of the components of the internal dissipation dissipated inside the mass by the relative speed difference between them and the adhesive force (c) there. That is, if L, M, and N are expressed as equations, the following equation (1) is obtained.
Figure 0004924819

上式(1)を外力qについて整理すれば、下式(2)となる。

Figure 0004924819
If the above equation (1) is arranged for the external force q, the following equation (2) is obtained.
Figure 0004924819

上式(2)は一般良く知られたテルツァーギの支持力公式である。上式(2)中、Nc、Nγは、破壊のメカニズムを数学的に表現する幾何学的パラメータと、土の材料物性値φを含んだ関数として表現されるもので下式(3)、(4)によって求めることができる。

Figure 0004924819
The above formula (2) is a well-known formula for supporting Tertzagi. In the above equation (2), Nc and Nγ are expressed as a function including a geometric parameter that mathematically expresses the mechanism of the fracture and the material property value φ of the soil, and the following equations (3), ( It can be obtained by 4).
Figure 0004924819

Figure 0004924819
Figure 0004924819

2.速度場法による支持力算定
上界定理に従い、最小のqが正解値に最も近いことが保証されているので、qを幾何学的パラメータに関して最小化を行えばよいことになる。速度場法による破壊メカニズムの模式図を図1に示す。三角形ABEは主働くさび、BCはEを極とする対数らせん、CDは斜面法面に達する直線である。主働くさび底角ωを45°+π/2と仮定すると、支持力qは、過渡領域の角度θをパラメータとして、斜面勾配β、法肩までの距離(α・B)と、基礎幅(B)との比α(以下、離隔距離比という。)を含め次式(5)で示される。

Figure 0004924819
2. Bearing capacity calculation by the velocity field method According to the upper bound theorem, since it is guaranteed that the minimum q is closest to the correct value, q should be minimized with respect to the geometric parameter. A schematic diagram of the destruction mechanism by the velocity field method is shown in FIG. Triangle ABE is the main working rust, BC is a logarithmic spiral with E as the pole, and CD is a straight line reaching the slope slope. Assuming that the main working rust base angle ω is 45 ° + π / 2, the bearing force q is the slope θ, the distance to the shoulder (α · B), and the foundation width (B ) And the ratio α (hereinafter referred to as the separation distance ratio), and is expressed by the following equation (5).
Figure 0004924819

ここで、 lCD:直線CDの長さ
CDEF:四辺形CDEFの面積
以上より、速度場法に基づき、前記直接基礎の水平地盤に対する支持力比(ζ)を算定するには、斜面上の基礎について、水平地盤と仮定した場合の支持力qを求め、速度場法によって斜面地盤とした場合の支持力qsを求め、両者の比率を下式(6)によって求めればよい。

Figure 0004924819
Where l CD : Length of straight line CD
S CDEF : The area of quadrilateral CDEF From the above, to calculate the bearing capacity ratio (ζ 1 ) of the direct foundation to the horizontal ground based on the velocity field method, the foundation on the slope is assumed to be horizontal ground. The support force q is obtained, the support force qs in the case of the slope ground is obtained by the velocity field method, and the ratio of both is obtained by the following equation (6).
Figure 0004924819

仮に、基礎条件を基礎幅B:2.4m、基礎の根入れ深さDf:3.7mとし、地盤条件をc=0、φ=40.6度、γ=15.7kN/m3とし、斜面角度は35°とする条件の下で、上式(5)に基礎の根入れ深さの効果を考慮して、速度場法による解析によって、横軸を離隔距離比α、縦軸を水平地盤に対する支持力比ζとしたグラフを描けば、図2のようになる。 Assuming that the foundation conditions are foundation width B: 2.4 m, foundation penetration depth Df: 3.7 m, ground conditions are c = 0, φ = 40.6 degrees, γ = 15.7 kN / m 3 , Under the condition that the slope angle is 35 °, the horizontal axis is the separation distance ratio α and the vertical axis is Drawing a graph with the bearing force ratio ζ 1 against the ground gives the result shown in FIG.

〔遠心模型実験〕
遠心模型実験は、遠心力載荷装置によって、重力加速度(1G)のN倍の遠心加速度((1×N)G)を作用させた1/N模型を用いて行われる模型実験で、遠心加速度を模型に作用させることで、模型内に生じる応力状態を実物と等価な状態とするものである。
[Centrifuge model experiment]
Centrifugal model experiment is a model experiment conducted using a 1 / N model in which centrifugal acceleration ((1 × N) G) N times the gravitational acceleration (1G) is applied by a centrifugal loading device. By acting on the model, the stress state generated in the model is equivalent to the actual state.

前記遠心模型実験では、前記直接基礎を直接基礎の奥行き幅を模型幅として作製することにより二次元モデルとし、周辺地盤を水平地盤とする条件で作製した水平地盤模型と、前記斜面を再現した地盤条件で作製した斜面地盤模型とについて夫々、遠心模型実験を行い、二次元モデルにおける水平地盤に対する支持力比(ζ)を求める。 In the centrifuge model experiment, the direct foundation is made as a two-dimensional model by making the depth width of the direct foundation as a model width, and the horizontal ground model produced under the condition that the surrounding ground is horizontal ground, and the ground reproducing the slope. Centrifugal model experiments are performed on the slope ground model produced under the conditions, and the bearing force ratio (ζ 2 ) for the horizontal ground in the two-dimensional model is obtained.

また、前記直接基礎の奥行き幅を前記斜面近傍に設置される直接基礎を再現した相似モデルとすることにより三次元モデルとし、周辺地盤を水平地盤とする条件で作製した水平地盤模型と、前記斜面を再現した地盤条件で作製した斜面地盤模型とについて夫々、遠心模型実験を行い、三次元モデルにおける水平地盤に対する支持力比(ζ)を求める。 Further, the depth width of the direct foundation is a three-dimensional model by reproducing the direct foundation installed in the vicinity of the slope, and a horizontal ground model produced on the condition that the surrounding ground is horizontal ground, and the slope A centrifugal model experiment is performed for each of the slope ground models produced under the ground conditions that reproduce the above, and the bearing force ratio (ζ 3 ) to the horizontal ground in the three-dimensional model is obtained.

〔三次元効果を考慮した支持力算定〕
上記遠心模型実験により、前記二次元モデルにおける水平地盤に対する支持力比ζと、三次元モデルにおける水平地盤に対する支持力比ζとの比率(ζ/ζ)を求めたならば、この比率(ζ/ζ)を三次元補正係数(β)として設定し、前記速度場法によって求めた直接基礎の水平地盤に対する支持力比ζに乗算することによって三次元効果を考慮した直接基礎の水平地盤に対する支持力比(β・ζ)を求めるようにする。
[Calculation of bearing capacity considering three-dimensional effects]
If the ratio (ζ 3 / ζ 2 ) between the bearing force ratio ζ 2 for the horizontal ground in the two-dimensional model and the bearing force ratio ζ 3 for the horizontal ground in the three-dimensional model is obtained by the centrifugal model experiment, The ratio (ζ 3 / ζ 2 ) was set as a three-dimensional correction coefficient (β C ), and the three-dimensional effect was taken into account by multiplying the bearing capacity ratio ζ 1 for the direct horizontal ground obtained by the velocity field method. The bearing force ratio (β C · ζ 1 ) for the horizontal ground of the direct foundation is obtained.

1.二次元の遠心模型モデル
図2に示される、速度場法により水平地盤に対する支持力比ζを求めた基礎条件(基礎幅B:2.4m、基礎の根入れ深さDf:3.7m)、地盤条件(c=0、φ=40.6度、γ=15.7kN/m3)及び斜面条件(斜面角度=35°)の下で、二次元の遠心模型モデルを作製した。遠心模型モデルの縮尺は1/40モデルとし、二次元モデルとするために直接基礎の奥行き幅を模型幅とし、図3に示されるように、周辺地盤を水平地盤とする条件で作製した水平地盤モデル(Case-1)と、図4に示されるように、斜面条件を法肩までの距離bを180mmとして離隔距離比αがα=3(b/B=180mm/60mm))となるようにした斜面地盤モデル(Case-2)との2つの遠心模型モデルを作製した(下表1参照)。

Figure 0004924819
1. Two-dimensional centrifugal model model The basic conditions (foundation width B: 2.4 m, foundation penetration depth Df: 3.7 m) for determining the bearing capacity ratio ζ 1 for horizontal ground by the velocity field method shown in Fig. 2 A two-dimensional centrifuge model was prepared under ground conditions (c = 0, φ = 40.6 degrees, γ = 15.7 kN / m 3 ) and slope conditions (slope angle = 35 °). The scale of the centrifuge model is a 1/40 model, and the depth of the foundation is directly used as the model width in order to obtain a two-dimensional model. As shown in FIG. As shown in the model (Case-1) and Fig. 4, the distance b to the shoulder is 180mm as the slope condition and the separation ratio α is α = 3 (b / B = 180mm / 60mm)) Two centrifugal model models with the slope model (Case-2) were prepared (see Table 1 below).
Figure 0004924819

2.三次元の遠心模型モデル
同じく図2に示される、速度場法により水平地盤に対する支持力比ζを求めた基礎条件(基礎幅B:2.4m、基礎の根入れ深さDf:3.7m)、地盤条件(c=0、φ=40.6度、γ=15.7kN/m3)及び斜面条件(斜面角度=35°)の下で、三次元の遠心模型モデルを作製した。遠心模型モデルの縮尺は1/40モデルとし、三次元モデルとするために直接基礎の奥行き幅を実際に設置される直接基礎を再現した半断面の相似モデルとし、図5に示されるように、周辺地盤を水平地盤とする条件で作製した水平地盤モデル(Case-3)と、図6に示されるように、斜面条件を法肩までの距離bを90mmとして離隔距離比αがα=1.5(b/B=90mm/60mm))となるようにした斜面地盤モデル(Case-4)と、図7に示されるように、斜面条件を法肩までの距離bを180mmとして離隔距離比αがα=3.0(b/B=180mm/60mm))となるようにした斜面地盤モデル(Case-5)と、図8に示されるように、斜面条件を法肩までの距離bを270mmとして離隔距離比αがα=4.5(b/B=270mm/60mm))となるようにした斜面地盤モデル(Case-6)との4つの遠心模型モデルを作製した(下表2参照)。

Figure 0004924819
2. Three-dimensional Centrifuge Model model also shown in FIG. 2, basal conditions (basal width determined bearing capacity ratio zeta 1 relative to the horizontal ground the speed field method B: 2.4 m, embedment depth of the foundation Df: 3.7 m ), Ground conditions (c = 0, φ = 40.6 degrees, γ = 15.7 kN / m 3 ) and slope conditions (slope angle = 35 °), a three-dimensional centrifuge model was prepared. The scale of the centrifuge model is a 1/40 model, and in order to make a three-dimensional model, the depth width of the direct foundation is a half-section similar model that reproduces the direct foundation, and as shown in FIG. As shown in FIG. 6, the horizontal ground model (Case-3) produced on the condition that the surrounding ground is horizontal ground, and as shown in FIG. 6, the distance b to the shoulder is 90 mm and the separation distance ratio α is α = 1. 5 (b / B = 90mm / 60mm)) and the slope condition model (Case-4), and as shown in Fig. 7, the distance b to the shoulder is 180mm and the separation ratio α Is a slope ground model (Case-5) in which α = 3.0 (b / B = 180mm / 60mm)), and as shown in Fig. 8, the distance b to the shoulder is 270mm as the slope condition. Four centrifugal model models with a slope ground model (Case-6) with a separation distance ratio α = 4.5 (b / B = 270mm / 60mm)) (See Table 2 below).
Figure 0004924819

3.遠心模型実験の結果
(1)二次元モデル
図9に二次元モデルの遠心模型実験の結果を示す。二次元モデルの場合は、模型を観察すると、すべり線がはっきりと形成され、全般破壊に近い破壊モードを示している。図9のグラフでも変曲点が明確に現れており、水平地盤に対する支持力比ζは、ζ=0.65(26.0kN/40.0kN)であった。なお、歪みレベルは変曲点(破壊点)がみられる範囲で約12〜17%である。
3. Results of centrifugal model experiment
(1) Two-dimensional model Fig. 9 shows the results of a two-dimensional model centrifuge model experiment. In the case of a two-dimensional model, when the model is observed, slip lines are clearly formed, indicating a failure mode close to general failure. The inflection point appears clearly also in the graph of FIG. 9, and the bearing force ratio ζ 2 with respect to the horizontal ground was ζ 2 = 0.65 (26.0 kN / 40.0 kN). The strain level is about 12 to 17% within a range where an inflection point (break point) is observed.

(2)三次元モデル
図10に三次元モデルの遠心模型実験の結果を示す。三次元モデルの場合は、荷重変位の明確な変曲点は現れず緩やかに上昇する曲線を描いている。つまり、三次元モードの場合は、局所的に破壊が進展する局所破壊モードを示しているため変曲点が現れなかったと推察される。
(2) Three-dimensional model Fig. 10 shows the results of a three-dimensional model centrifuge model experiment. In the case of a three-dimensional model, a clear inflection point of load displacement does not appear and a curve that rises slowly is drawn. That is, in the case of the three-dimensional mode, it is presumed that the inflection point did not appear because the local fracture mode in which the fracture progresses locally is shown.

二次元モードとの対比が可能な離隔距離比(b/B)が3.0のCase-5について支持力比ζを求める。三次元モードでは、変曲点が現れていないため、支持力比ζは、歪みレベル10%の位置と、30%の位置とについて求める。歪みレベル10%における水平地盤に対する支持力比ζ3(10)は、ζ3(10)=0.85(7.0kN/8.2kN)であり、歪みレベル30%における水平地盤に対する支持力比ζ3(30)は、ζ3(30)=0.75(12.2kN/16.2kN)であった。 The support force ratio ζ 3 is obtained for Case-5 having a separation distance ratio (b / B) of 3.0 that can be compared with the two-dimensional mode. In the three-dimensional mode, since the inflection point does not appear, the bearing force ratio ζ 3 is obtained for the position of the strain level 10% and the position of 30%. The bearing force ratio ζ 3 (10) for the horizontal ground at a strain level of 10% is ζ 3 (10) = 0.85 (7.0 kN / 8.2 kN), and the bearing force ratio ζ 3 for the horizontal ground at a strain level of 30%. (30) was ζ 3 (30) = 0.75 (12.2 kN / 16.2 kN).

4.三次元効果の補正係数の算出
上記二次元モデルにおける水平地盤に対する支持力比ζと、三次元モデルにおける水平地盤に対する支持力比ζとの比率(ζ/ζ)(三次元補正係数β)をまとめると下表3のようになる。

Figure 0004924819
4). Calculation of correction coefficient for three-dimensional effect Ratio (ζ 3 / ζ 2 ) (bearing force ratio ζ 2 for horizontal ground in the two-dimensional model and bearing force ratio ζ 3 for horizontal ground in the three-dimensional model (three-dimensional correction coefficient) β C ) is summarized as shown in Table 3 below.
Figure 0004924819

上表3のとおり、三次元モデルの歪みレベル10%では、三次元補正係数βは、β=1.30となり、三次元モデルの歪みレベル30%では、三次元補正係数βは、β=1.15となる。本実施例では、歪みレベル10%と30%について三次元補正係数βを算出したが、歪みレベルは、対象とする構造物の重要度や許容変位量などを考慮して、設計者が適切な歪みレベルを設定すればよい。 As shown in Table 3 above, when the distortion level of the three-dimensional model is 10%, the three-dimensional correction coefficient β C is β C = 1.30, and when the distortion level of the three-dimensional model is 30%, the three-dimensional correction coefficient β C is β C = 1.15. In this embodiment, the three-dimensional correction coefficient β C is calculated for the strain levels of 10% and 30%, but the strain level is determined appropriately by the designer in consideration of the importance of the target structure and the allowable displacement amount. A proper distortion level may be set.

5.速度場法に対する適用
三次元補正係数βを算出したならば、速度場法によって求めた直接基礎の水平地盤に対する支持力比ζに乗算することによって三次元効果を考慮した直接基礎の水平地盤に対する支持力比(β・ζ)を求めることができる。具体的には、図11に示されるように、速度場法によって求めた水平地盤に対する支持力比ζの直線勾配を1.30倍、1.15倍した直線を描けば、三次元効果を考慮した支持力比の直線勾配となる。
5. Application to the velocity field method Once the three-dimensional correction coefficient β C is calculated, the horizontal ground of the direct foundation considering the three-dimensional effect by multiplying the bearing capacity ratio ζ 1 for the horizontal ground of the direct foundation obtained by the velocity field method. The bearing force ratio (β C · ζ 1 ) can be obtained. Specifically, as shown in FIG. 11, if a straight line obtained by multiplying the linear gradient of the bearing force ratio ζ 1 with respect to the horizontal ground obtained by the velocity field method 1.30 times and 1.15 times is drawn, the three-dimensional effect is obtained. It becomes a linear gradient of the bearing capacity ratio considered.

〔他の形態例〕
(1)上記形態例では、速度場法によって求めた直接基礎の水平地盤に対する支持力比ζに乗算することによって三次元効果を考慮した直接基礎の水平地盤に対する支持力比(β・ζ)を求めるようにしたが、速度場法による解析によって直接的に求めた支持力に対して、前記三次元補正係数βを乗じて、斜面上基礎における支持力を求めるようにしてもよい。
[Other examples]
(1) In the above embodiment, the bearing capacity ratio (β C · ζ for the direct foundation horizontal ground considering the three-dimensional effect by multiplying the bearing capacity ratio ζ 1 for the foundation foundation horizontal ground obtained by the velocity field method. 1 ). However, the support force directly obtained by the analysis by the velocity field method may be multiplied by the three-dimensional correction coefficient β C to obtain the support force on the slope base. .

速度場法による破壊メカニズムの模式図である。It is a schematic diagram of the destruction mechanism by a velocity field method. 速度場法によって求めた、離隔距離比−水平地盤に対する支持力比ζのグラフである。It is the graph of the bearing force ratio (zeta) 1 calculated | required by the velocity field method with respect to a separation distance ratio-horizontal ground. 二次元モデル条件で作製した水平地盤モデル(Case-1)を示す、(A)は模型平面図、(B)は模型側面図である。A horizontal ground model (Case-1) produced under the two-dimensional model condition is shown, (A) is a model plan view, and (B) is a model side view. 二次元モデル条件で作製した斜面地盤モデル(Case-2)を示す、(A)は模型平面図、(B)は模型側面図である。A slope ground model (Case-2) produced under the two-dimensional model conditions is shown, (A) is a model plan view, and (B) is a model side view. 三次元モデル条件で作製した水平地盤モデル(Case-3)を示す、(A)は模型平面図、(B)は模型側面図である。A horizontal ground model (Case-3) produced under three-dimensional model conditions is shown, (A) is a model plan view, and (B) is a model side view. 三次元モデル条件で作製した斜面地盤モデル(Case-4)を示す、(A)は模型平面図、(B)は模型側面図である。A slope ground model (Case-4) produced under three-dimensional model conditions is shown, (A) is a model plan view, and (B) is a model side view. 三次元モデル条件で作製した斜面地盤モデル(Case-5)を示す、(A)は模型平面図、(B)は模型側面図である。A slope ground model (Case-5) produced under three-dimensional model conditions is shown, (A) is a model plan view, and (B) is a model side view. 三次元モデル条件で作製した斜面地盤モデル(Case-6)を示す、(A)は模型平面図、(B)は模型側面図である。A slope ground model (Case-6) produced under three-dimensional model conditions is shown, (A) is a model plan view, and (B) is a model side view. 二次元モデルの遠心模型実験結果を示すグラフである。It is a graph which shows the centrifuge model experiment result of a two-dimensional model. 三次元モデルの遠心模型実験結果を示すグラフである。It is a graph which shows the centrifuge model experiment result of a three-dimensional model. 速度場法による水平地盤に対する支持力比ζを三次元効果を考慮して補正したグラフである。It is the graph which correct | amended the bearing force ratio (zeta) 1 with respect to the horizontal ground by the speed field method in consideration of the three-dimensional effect. 速度場法による解法結果と、他の解析方法等とを対比した水平地盤に対する支持力低下率グラフである。It is a bearing capacity fall rate graph with respect to the horizontal ground which contrasted the solution result by the speed field method, and other analysis methods.

Claims (3)

斜面近傍に設置される直接基礎の圧縮支持力を評価するための方法であって、
速度場法に基づき、前記直接基礎の水平地盤に対する支持力比(ζ)を算定するステップと、
前記直接基礎を二次元モデルとし、周辺地盤を水平地盤とする条件で作製した水平地盤模型と、前記斜面を再現した地盤条件で作製した斜面地盤模型とについて夫々、遠心模型実験を行い、二次元モデルにおける水平地盤に対する支持力比(ζ)を求めるステップと、
前記直接基礎を三次元モデルとし、周辺地盤を水平地盤とする条件で作製した水平地盤模型と、前記斜面を再現した地盤条件で作製した斜面地盤模型とについて夫々、遠心模型実験を行い、三次元モデルにおける水平地盤に対する支持力比(ζ)を求めるステップと、
前記二次元モデルにおける水平地盤に対する支持力比ζと、三次元モデルにおける水平地盤に対する支持力比ζとの比率(ζ/ζ)を求め、この比率(ζ/ζ)を三次元補正係数(β)として設定し、前記速度場法によって求めた直接基礎の水平地盤に対する支持力比ζに乗算することによって三次元効果を考慮した直接基礎の水平地盤に対する支持力比(β・ζ)を求めるステップと、を有することを特徴とする斜面上直接基礎の支持力評価方法。
A method for evaluating the compressive bearing capacity of a direct foundation installed near a slope,
Calculating a bearing force ratio (ζ 1 ) to the horizontal ground of the direct foundation based on a velocity field method;
Using the direct foundation as a two-dimensional model, the horizontal ground model produced under the condition that the surrounding ground is horizontal ground, and the slope ground model produced under the ground conditions reproducing the slope, respectively, were subjected to a centrifugal model experiment, respectively. Determining a bearing capacity ratio (ζ 2 ) for the horizontal ground in the model;
Using the 3D model for the direct foundation and the horizontal ground model with the surrounding ground as the horizontal ground, and the slope ground model manufactured with the ground conditions reproducing the slope, respectively, we performed a centrifugal model experiment, Determining a bearing capacity ratio (ζ 3 ) for the horizontal ground in the model;
A ratio (ζ 3 / ζ 2 ) between the bearing force ratio ζ 2 for the horizontal ground in the two-dimensional model and the bearing force ratio ζ 3 for the horizontal ground in the three-dimensional model is obtained, and this ratio (ζ 3 / ζ 2 ) is obtained. Bearing capacity ratio for direct foundation horizontal ground taking into account the three-dimensional effect by setting as a three-dimensional correction coefficient (β C ) and multiplying the bearing capacity ratio ζ 1 for the direct foundation horizontal ground obtained by the velocity field method And (β C · ζ 1 ). A method for evaluating a bearing capacity of a direct foundation on a slope.
前記直接基礎の二次元モデルは、直接基礎の奥行き幅を模型幅として作製したモデルである請求項1記載の斜面上直接基礎の支持力評価方法。   2. The method for evaluating the bearing capacity of a direct foundation on a slope according to claim 1, wherein the two-dimensional model of the direct foundation is a model produced by using the depth width of the direct foundation as a model width. 前記直接基礎の三次元モデルは、直接基礎の奥行き幅を前記斜面近傍に設置される直接基礎を再現した相似モデルである請求項1記載の斜面上直接基礎の支持力評価方法。   The method for evaluating the bearing capacity of a direct foundation on a slope according to claim 1, wherein the three-dimensional model of the direct foundation is a similar model that reproduces the direct foundation installed in the vicinity of the slope with the depth width of the direct foundation.
JP2007059413A 2007-03-09 2007-03-09 Evaluation method for bearing capacity of direct foundation on slope Active JP4924819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007059413A JP4924819B2 (en) 2007-03-09 2007-03-09 Evaluation method for bearing capacity of direct foundation on slope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007059413A JP4924819B2 (en) 2007-03-09 2007-03-09 Evaluation method for bearing capacity of direct foundation on slope

Publications (2)

Publication Number Publication Date
JP2008223251A JP2008223251A (en) 2008-09-25
JP4924819B2 true JP4924819B2 (en) 2012-04-25

Family

ID=39842184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007059413A Active JP4924819B2 (en) 2007-03-09 2007-03-09 Evaluation method for bearing capacity of direct foundation on slope

Country Status (1)

Country Link
JP (1) JP4924819B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106836321B (en) * 2017-03-22 2022-03-22 长江水利委员会长江科学院 Slope geotechnical centrifugal model test surface unloading device

Also Published As

Publication number Publication date
JP2008223251A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
Geraili Mikola et al. Seismic earth pressures on retaining structures and basement walls in cohesionless soils
Hashash et al. Influence of tall buildings on seismic response of shallow underground structures
Muthukkumaran Effect of slope and loading direction on laterally loaded piles in cohesionless soil
Liyanapathirana et al. Pseudostatic approach for seismic analysis of piles in liquefying soil
Geshi et al. Geometric difference between non-feeder and feeder dikes
Jo et al. Seismic behavior of an inverted T-shape flexible retaining wall via dynamic centrifuge tests
Ghosh et al. Seismic passive earth pressure behind non vertical wall with composite failure mechanism: Pseudo-dynamic approach
Vivek et al. Influence of SSI on period and damping of buildings supported by shallow foundations on cohesionless soil
JP4924819B2 (en) Evaluation method for bearing capacity of direct foundation on slope
Nandi et al. Determination of critical slope face in c–ϕ soil under seismic condition using method of stress characteristics
Zhang et al. Limit analysis of anchor trapdoor embedded in nonhomogeneous and nonlinear soils
Zhu et al. Analytical and experimental study of wave setup over permeable coral reef
Hasani et al. Seismic performance evaluation of jacket-type offshore platforms using endurance time method considering soil-pile-superstructure interaction
JP6238043B2 (en) Simple calculation method of residual deformation during liquefaction of soil-structure system
Shiau et al. Application of pseudo-static limit analysis in geotechnical earthquake design
Garala et al. Influence of phase difference between kinematic and inertial loads on seismic behaviour of pile foundations in layered soils
Li et al. Seismic behavior of rectangular closed diaphragm walls in gently sloping liquefiable deposit: dynamic centrifuge testing
Hasheminejad et al. Coupled hydroelastic vibrations of an elliptical cylindrical tank with an elastic bottom
Choudhury et al. Seismic behaviour of retaining structures, design issues and requalification techniques
Garala et al. Kinematic and inertial seismic load effects on pile foundations in stratified soil
JP6474753B2 (en) Construction method of ground vibration prevention structure
JP6804728B2 (en) Liquefaction countermeasure structure design method for structures
Shahmardani et al. Dynamic response of submerged vertical cylinder with lumped mass under seismic excitation
Nadukuru et al. 3D analysis of steep slopes subjected to seismic excitation
Salgado et al. Foundation failure case histories reexamined using modern geomechanics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4924819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350