JP6238043B2 - Simple calculation method of residual deformation during liquefaction of soil-structure system - Google Patents

Simple calculation method of residual deformation during liquefaction of soil-structure system Download PDF

Info

Publication number
JP6238043B2
JP6238043B2 JP2013085650A JP2013085650A JP6238043B2 JP 6238043 B2 JP6238043 B2 JP 6238043B2 JP 2013085650 A JP2013085650 A JP 2013085650A JP 2013085650 A JP2013085650 A JP 2013085650A JP 6238043 B2 JP6238043 B2 JP 6238043B2
Authority
JP
Japan
Prior art keywords
ground
liquefaction
analysis
residual deformation
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013085650A
Other languages
Japanese (ja)
Other versions
JP2014206959A (en
Inventor
毅芳 福武
毅芳 福武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2013085650A priority Critical patent/JP6238043B2/en
Publication of JP2014206959A publication Critical patent/JP2014206959A/en
Application granted granted Critical
Publication of JP6238043B2 publication Critical patent/JP6238043B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は地盤−構造物系の液状化時の残留変形簡易算定方法に係り、適正入力値を設定するために、簡易なトライアル解析を行って、実際の現象に近い解析結果を得ることができるようにした地盤−構造物系の液状化時の残留変形簡易算定方法に関する。   The present invention relates to a simple method for calculating residual deformation during liquefaction of a ground-structure system. In order to set an appropriate input value, a simple trial analysis can be performed to obtain an analysis result close to an actual phenomenon. The present invention relates to a simple method for calculating residual deformation during liquefaction of a ground-structure system.

従来、有限要素法等の設計手法によって地盤と構造物とを一体とした解析モデルを作成し、地盤液状化による地盤、構造物の変形挙動を解析する耐震設計作業が行われている(特許文献1、非特許文献1、非特許文献2)。この解析モデルを用いた設計作業においては、解析モデルの作成に時間と手間がかかる上に、土質パラメータ等の入力データが不足していて、複雑な解析モデルによる高精度の解析が実施できない場合が多々ある。   Conventionally, a seismic design work has been performed to create an analysis model that integrates the ground and the structure by a design method such as the finite element method, and analyze the deformation behavior of the ground and the structure due to ground liquefaction (Patent Literature) 1, Non-Patent Document 1, Non-Patent Document 2). In the design work using this analysis model, it takes time and labor to create an analysis model, and input data such as soil parameters is insufficient, and it may not be possible to perform high-precision analysis using a complex analysis model. There are many.

特許文献1に記載の地盤・構造物変形量予測方法は、出願人が開発した、三次元解析モデルに所定の地震波入力データを入力し、地震発生経過に伴う地盤変形挙動を高精度に再現できる解析ソフトウエアの発明である。このような高精度の解析ソフトウエアを用いた設計手法に対して、実際の設計業務においては、液状化後の地盤の概略的な変形状態(残留変形)を得るためには、特許文献1に示したような大がかりで手間がかかる解析モデルでなく、簡易な解析モデルで、おおよその解析結果を得られるような解析手法も必要である。   The ground / structure deformation prediction method described in Patent Document 1 can input ground motion input data into a 3D analysis model developed by the applicant and reproduce ground deformation behavior associated with the occurrence of an earthquake with high accuracy. It is an invention of analysis software. In order to obtain a rough deformation state (residual deformation) of the ground after liquefaction in the actual design work, a design method using such high-precision analysis software is disclosed in Patent Document 1. There is also a need for an analysis method that can obtain an approximate analysis result with a simple analysis model rather than a large-scale and time-consuming analysis model as shown.

たとえば、液状化後の地盤や構造物の残留変形を、簡便に求める解析(たとえば2次元有限要素法解析)を行う際、液状化後の解析モデルとして、地盤要素を地盤剛性が低下した線形弾性体と仮定して静的自重解析を行い、地盤や構造物の残留変形を求める手法が行われている。このとき、液状化後の地盤特性を適正に設定するためには、地盤剛性とポアソン比の2つの入力値を適正に設定することが重要である。このときの剛性低下した状態の地盤剛性は、既往の設計指針(非特許文献2)や研究成果(非特許文献3、非特許文献4)に開示されたグラフ等(例えば図3、図4、図5)を参照して、所定の剛性低下率を考慮したり、FL値や最大せん断ひずみγmaxをもとに設定できることが知られている。なお、以下の実施形態の説明で、上述の各非特許文献(具体的には下記一覧)に開示されたグラフ等を引用して説明する場合、単に「文献1」等と記す。 For example, when performing analysis (for example, two-dimensional finite element method analysis) to easily determine the residual deformation of the ground or structure after liquefaction, as a model for analysis after liquefaction, the ground elasticity of the ground element is reduced. Assuming a body, static weight analysis is performed to obtain residual deformation of ground and structures. At this time, in order to properly set the ground characteristics after liquefaction, it is important to properly set two input values of ground rigidity and Poisson's ratio. The ground rigidity in a state where the rigidity is reduced at this time is a graph disclosed in the past design guidelines (Non-patent Document 2) and research results (Non-Patent Document 3, Non-Patent Document 4) (for example, FIG. 3, FIG. 4, Referring to FIG. 5), it is known that a predetermined rigidity reduction rate can be taken into account, or can be set based on the FL value and the maximum shear strain γ max . In the following description of the embodiments, when referring to the graphs disclosed in the above-mentioned non-patent documents (specifically, the following list), they are simply referred to as “Document 1”.

特許第4640671号公報Japanese Patent No. 4640671

安田進他、“ALID研究会”、[online]、2010年4月5日、2次元液状化流動解析プログラムALID/Winの紹介、[2013年4月1日検索]、インターネット<http://www.jibansoft.com/alid_lab.htm>Susumu Yasuda et al., “ALID Study Group”, [online], April 5, 2010, Introduction of 2D Liquefaction Flow Analysis Program ALID / Win, [Search April 1, 2013], Internet <http: // www.jibansoft.com/alid_lab.htm> 日本建築学会編、“建築基礎構造設計指針”、日本建築学会発行、2001年10月刊、pp.61−72Edited by Architectural Institute of Japan, “Guidelines for Basic Design of Architectural Architecture”, Published by Architectural Institute of Japan, October 2001, pp.61-72 規矩大義他3名、“繰返し載荷時のせん断履歴が液状化後の流動特性に与える影響”、地震時の地盤・土構造物の流動性と永久変形に関するシンポジウム、地盤工学会、1998年、pp.325、328、Taiyoshi Noriyoshi and three others, “Effects of shear history during repeated loading on flow characteristics after liquefaction”, Symposium on fluidity and permanent deformation of ground and soil structures during earthquake, Geotechnical Society, 1998, pp . 325, 328, Ishihara,K,andYoshimine.M.:“Evaluation of settlements in sand deposits following liquefaction during earthquakes, SOILS&FOUNDATIONS, Vol.32,No.1, pp.173-188, 1992(4)効果Ishihara, K, andYoshimine.M .: “Evaluation of settlements in sand deposits following liquefaction during earthquakes, SOILS & FOUNDATIONS, Vol.32, No.1, pp.173-188, 1992 (4)

ところが、他の入力値であるポアソン比νに関しては、従来、適切な設定方法がなく、経験的な入力値を用いていた。よって、解析結果として得られた地盤沈下量や構造物の傾斜量の信頼性は高いとは言えなかった。   However, with respect to the Poisson's ratio ν, which is another input value, there has conventionally been no appropriate setting method and an empirical input value has been used. Therefore, it cannot be said that the reliability of the ground subsidence amount and the inclination amount of the structure obtained as the analysis result is high.

液状化状態を現象面から考察すると、地震時に軟弱な砂質層が液状化すると過剰間隙水圧が上昇し、砂質層が液体状に近くなる。このような仮定ではポアソン比νの値は0.5にごく近い値(例えば0.499…)となると考えられる。このとき、砂質層の変形は非排水・等体積条件となる。この場合、図1に示した解析モデル(説明のためメッシュを省略表示している。)のように、解析対象の砂質層上に建物等の構造物や盛土などの土構造物が構築されている例では、その構造物は同図(2)に示したように、自重により沈下するが、このとき等体積条件での解析なので、沈下した地盤体積分だけ周辺の地盤が盛り上がってしまう変形モード結果となってしまう。この解析結果は、実際の構造物の沈下、地盤変形の実情と異なる。すなわち、構造物の周辺地盤も、実際には液状化後の過剰間隙水圧の消散に伴い、体積圧縮して沈下(圧密沈下に近い現象)するためである。   Considering the liquefaction state from the viewpoint of phenomenon, when a soft sandy layer liquefies during an earthquake, the excess pore water pressure increases and the sandy layer becomes nearly liquid. Under such an assumption, the Poisson's ratio ν is considered to be a value very close to 0.5 (for example, 0.499...). At this time, the deformation of the sandy layer is a non-drainage / equal volume condition. In this case, a structure such as a building or a soil structure such as embankment is constructed on the sandy layer to be analyzed, as in the analysis model shown in FIG. 1 (mesh is omitted for explanation). In this example, the structure sinks due to its own weight, as shown in Fig. 2 (2). At this time, since the analysis is performed under an equal volume condition, the surrounding ground is raised by the sinking ground volume integral. It will result in a mode. This analysis result is different from the actual structure subsidence and ground deformation. That is, the ground around the structure also actually subsides due to the dissipation of excess pore water pressure after liquefaction (similar to consolidation subsidence).

この解析結果と実情とを整合させるための対応策として、図1に示した解析モデルの各節点での解析結果に圧密解析による各節点位置での沈下量を重ね合わせる手法も行われる。しかし、この圧密解析は、地震時に発生する過剰間隙水圧量とその消散仮定とを合わせて時々刻々解析する必要があり、解析が複雑で手間がかかる。よって、上述したような簡易設計の実務の観点からは使いやすい設計手法とは言えない。また線形自重解析において、ポアソン比νとして根拠無く低減させた値を用いることは、その沈下量に物理的意味がなくなる。そこで、本発明の目的は上述した従来の技術が有する問題点を解消し、地盤液状化後の線形自重解析に用いるポアソン比νを、適切な方法で設定する設計手法を提案し、それにより地盤−構造物系の液状化時の残留変形を簡易に評価できる手法を構築することにある。   As a countermeasure for matching this analysis result with the actual situation, a method of superimposing the amount of settlement at each node position by consolidation analysis on the analysis result at each node of the analysis model shown in FIG. However, this consolidation analysis needs to be analyzed from moment to moment in combination with the amount of excess pore water pressure generated during an earthquake and the assumption of its dissipation, and the analysis is complicated and laborious. Therefore, it cannot be said that it is an easy-to-use design method from the viewpoint of the practice of simple design as described above. Also, in linear weight analysis, using a value that is reduced without ground as the Poisson's ratio ν has no physical meaning in the amount of settlement. Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art and propose a design method for setting the Poisson's ratio ν used for linear gravity analysis after ground liquefaction by an appropriate method. -To construct a method that can easily evaluate the residual deformation during liquefaction of a structural system.

本発明によれば、既往の設計指針をもとにした簡易な液状化判定の計算を経て、線形自重解析のみで、液状化による地盤剛性低下による変形と、過剰間隙水圧の消散による圧密変形の両方を考慮した残留変形を簡易に求めることができる。これにより、構造物を含む地盤沈下量や傾斜量が適切かつ簡便に評価できるという効果を奏する。   According to the present invention, through a simple liquefaction determination calculation based on the existing design guideline, deformation due to ground rigidity reduction due to liquefaction and consolidation deformation due to dissipation of excess pore water pressure can be performed only by linear weight analysis. Residual deformation considering both can be obtained easily. Thereby, there exists an effect that the amount of ground subsidence and inclination including a structure can be evaluated appropriately and simply.

上記目的を達成するために、本発明は解析対象とする地盤と構造物の地震時に発生した液状化後の残留変形を、コンピュータ有限要素法要素モデルによる線形自重解析によって求める簡易算定方法であって、地表面水平変位Dcy値をもとに液状化後の一次元水平地盤モデルの沈下量δvを算出するステップと、前記解析対象の地盤各層の要素における補正N値との関係から設定された最大せん断ひずみ値γmaxから液状化後の地盤剛性を算定し、該地盤剛性と初期ポアソン比νとを入力値として用いた前記地盤と構造物とを要素モデルとした有限要素法による線形自重解析における遠方地盤での沈下量δrを算定するステップと、前記δvとδrとを比較し、(ν+Δν)<0.5の条件の下で、
δv<δrの場合に、前記νを入力値(ν+Δν)
δv>δrの場合に、前記νを入力値(ν−Δν)
に再設定して前記線形自重解析をδvとδrとの差があらかじめ設定した閾値以下、すなわちδv≒δrとなるまで差分Δνを用いた繰り返し演算を行うステップと、前記繰り返し演算結果をもとに前記要素モデルにおける解析対象の地盤、構造物の残留変形を決定するステップを実行することを特徴とする。
To achieve the above object, the present invention is the residual deformation after liquefaction occurs during an earthquake of ground and structures to be analyzed, there a simple calculation method by a computer determined by linear self-weight analysis by the finite element method element model And calculating the settlement amount δv of the one-dimensional horizontal ground model after liquefaction based on the horizontal displacement Dcy value of the ground surface, and the relationship between the correction N value in the element of each ground layer to be analyzed. Calculates the ground stiffness after liquefaction from the maximum shear strain value γ max, and uses the ground stiffness and the initial Poisson's ratio ν as input values for the linear weight analysis by the finite element method using the ground and the structure as an element model A step of calculating the subsidence amount δr in the distant ground at, and comparing the δv and δr, under the condition of (ν + Δν) <0.5,
When δv <δr, ν is the input value (ν + Δν)
When δv> δr, ν is an input value (ν−Δν)
And the linear weight analysis is repeated until the difference between δv and δr is equal to or less than a preset threshold, that is, δv ≒ δr, and the difference Δν is used. The step of determining the residual deformation of the ground or structure to be analyzed in the element model is performed.

前記遠方地盤での沈下量δrは、前記解析モデルの前記構造物の挙動の影響を受けない側方境界節点での沈下量を用いることが好ましい。   As the settlement amount δr at the far ground, it is preferable to use the settlement amount at the side boundary node that is not affected by the behavior of the structure of the analysis model.

前記解析対象の各要素の最大せん断ひずみ値γmaxは、前記補正N値との関係から導くのでなく、有効応力解析結果から作用せん断応力を用いて算定してもよい。この場合、より高精度の値が得られる。 The maximum shear strain value γ max of each element to be analyzed may not be derived from the relationship with the corrected N value, but may be calculated from the effective stress analysis result using the applied shear stress. In this case, a more accurate value can be obtained.

本発明による地盤−構造物系の液状化時の残留変形簡易算定方法(線形自重解析)の手法について示した模式解析モデル図。The schematic analysis model figure shown about the method of the residual deformation | transformation simple calculation method (linear weight analysis) at the time of the liquefaction of the ground-structure system by this invention. 本発明による地盤−構造物系の液状化時の残留変形簡易算定方法における解析フローの一実施形態を示した解析フロー図。The analysis flow figure which showed one Embodiment of the analysis flow in the residual deformation | transformation simple calculation method at the time of the liquefaction of the ground-structure system by this invention. 本発明の解析過程において用いる限界残留せん断ひずみγmaxの算出グラフ(文献2掲載図表に加筆)。The calculation graph of the limit residual shear strain (gamma) max used in the analysis process of this invention (an addition to the table of literature 2 publication). 地震時の最大せん断ひずみと液状化後の剛性低下率との関係を示した文献3に掲載のグラフ。The graph published in the literature 3 which showed the relationship between the maximum shear strain at the time of an earthquake, and the rigidity fall rate after liquefaction. 地震時の最大せん断ひずみγmaxと液状化後の各要素の体積ひずみεvの関係を示した文献4に掲載のグラフ。The graph published in the literature 4 which showed the relationship between the maximum shear strain (gamma) max at the time of an earthquake, and the volume strain (epsilon) v of each element after liquefaction. FL値と液状化後の剛性低下率との関係を示した既往文献に記載のグラフ。The graph as described in the past literature which showed the relationship between FL value and the rigidity fall rate after liquefaction.

以下、本発明の地盤−構造物系の液状化時の残留変形簡易算定方法の実施するための形態として、以下の実施形態について、添付図面を参照して説明する。   Hereinafter, the following embodiment will be described with reference to the accompanying drawings as an embodiment for carrying out the method for easily calculating the residual deformation during liquefaction of the ground-structure system of the present invention.

[基本解析]
対象地盤に液状化が生じた後の変形状態の解析手法について説明する。解析手法はコンピュータが行う有限要素法(FEM)線形自重解析による。本発明の特徴は、解析入力値としての適正なポアソン比νの設定方法を提案するもので、その入力値をもとにして行う線形自重解析の解析フローについて、以下説明する。図2は、コンピュータが行う、各入力値の設定から残留変形を得るまでの一連の線形自重解析の概略手順を示した解析フロー図である。

[Basic analysis]
A method for analyzing the deformation state after liquefaction occurs in the target ground will be described. The analysis method is based on a finite element method (FEM) linear weight analysis performed by a computer. A feature of the present invention is to propose a method for setting an appropriate Poisson's ratio ν as an analysis input value. The analysis flow of linear weight analysis performed based on the input value will be described below. FIG. 2 is an analysis flow diagram showing a schematic procedure of a series of linear weight analysis from setting of each input value to obtaining residual deformation performed by the computer.

まず、対象地盤の地表面最大加速度αmaxを想定し、外力としての作用せん断応力と、対象地盤の密度、N値、粒度分布の入力データを設定する。これらをもとに図3のグラフ(文献2掲載図表に加筆)により、各層の最大せん断ひずみγmaxを求める。同様に繰り返しせん断ひずみγcyから、文献2の掲載図表を参照してDcy値(液状化に伴う水平変位量)を設定し、その値から対象地盤水平地盤の沈下量を求める。この沈下現象は過剰間隙水圧の消散による体積ひずみに対応する沈下と考えられ、圧密成分に相当する。 First, assuming the ground surface maximum acceleration α max of the target ground, input shear stress as an external force, input density of the target ground, N value, and particle size distribution are set. Based on these, the maximum shear strain γ max of each layer is obtained from the graph of FIG. 3 (added to the chart shown in Reference 2). Similarly, from the repeated shear strain γ cy , a D cy value (horizontal displacement amount due to liquefaction) is set with reference to the publication chart of Reference 2, and the settlement amount of the target ground horizontal ground is obtained from the value. This subsidence phenomenon is considered to be a subsidence corresponding to volumetric strain due to dissipation of excess pore water pressure, and corresponds to a consolidation component.

一方、γmaxから図4のグラフ(文献3記載図表)により、液状化後の剛性低下を考慮した地盤剛性を算定する。この地盤剛性値と初期に仮定したポアソン比ν(=0.490)を用いて、二次元または三次元のFEM線形自重解析を行う。このときの解析モデルの地盤側方境界は、構造物から十分遠くまで設定し、地表面の沈下分布が一様になる程度までの範囲を設定することが好ましい。この場合、解析結果の遠方地盤の解析結果は、構造物の影響を受けない自由地盤と見なせる。よって、遠方地盤の沈下量δrが水平自由地盤(一次元地盤)の沈下量δvと一致するように、ポアソン比νの値を決定する。このためにポアソン比νの値を変化させたトライアルによる線形自重解析を行う。すなわち、1回目の解析のνを0.490に設定し、解析モデルでの遠方地盤の沈下量δrと一次元(1D)水平地盤の沈下量δvとを比較し、δr>δvであれば、初期ポアソン比νを0.5に近い値に大きく(ν+Δν)し、小さければνを小さく(ν−Δν)する。そのときの差分Δνは0.001〜0.005程度に設定することが好ましい。遠方地盤の沈下量δrが水平自由地盤(一次元地盤)の沈下量δvと一致する条件としてはδrとδvとの差が所定の閾値未満となるように設定し、その結果が得られるまで繰り返し演算を行う。以上の一連のトライアル解析は線形自重解析なので、非常に簡便で演算時間も短かくてすむ。このため地盤−構造物系の一体的な沈下量、構造物の傾斜角等を容易に算出することができる。

On the other hand, the ground stiffness is calculated from the γ max according to the graph of FIG. Using this ground stiffness value and initially assumed Poisson's ratio ν (= 0.490), two-dimensional or three-dimensional FEM linear weight analysis is performed. The ground side boundary of the analysis model at this time is preferably set sufficiently far from the structure, and is set to a range up to the extent that the settlement distribution on the ground surface is uniform. In this case, the analysis result of the far ground as the analysis result can be regarded as free ground that is not affected by the structure. Therefore, the value of the Poisson's ratio ν is determined so that the subsidence amount Δr of the far ground matches the subsidence amount Δv of the horizontal free ground (one-dimensional ground). For this purpose, linear self-weight analysis is performed by a trial in which the value of Poisson's ratio ν is changed. That is, ν of the first analysis is set to 0.490, and the settlement amount δr of the far ground in the analysis model is compared with the settlement amount δv of the one-dimensional (1D) horizontal ground. If δr> δv, The initial Poisson's ratio ν is increased to a value close to 0.5 (ν + Δν), and if it is smaller, ν is decreased (ν−Δν). The difference Δν at that time is preferably set to about 0.001 to 0.005. The condition that the settlement amount δr of the distant ground matches the settlement amount δv of the horizontal free ground (one-dimensional ground) is set so that the difference between δr and δv is less than a predetermined threshold value, and is repeated until the result is obtained. Perform the operation. Since the series of trial analysis described above is linear weight analysis, it is very simple and requires a short calculation time. Therefore, it is possible to easily calculate the integrated settlement amount of the ground-structure system, the inclination angle of the structure, and the like.

以下、解析対象地盤において、他の解析結果があれば、その解析結果を援用してより精度の高い結果を得ることができるオプション解析も可能である。以下、その内容について簡単に説明する。   Hereinafter, if there is another analysis result in the analysis target ground, an optional analysis that can obtain a more accurate result by using the analysis result is also possible. The contents will be briefly described below.

[オプション解析(1)]
対象地盤の地盤応答解析結果があれば、上述の基本解析において想定した地表面加速αmaxに代えて、作用せん断応力τを利用し、また入力地震波形の相違による影響を考慮した残留変形の予測ができる。
[Option analysis (1)]
If there is a ground response analysis result of the target ground, it is possible to predict the residual deformation using the applied shear stress τ instead of the ground surface acceleration α max assumed in the basic analysis described above, and taking into account the effects of differences in the input seismic waveform Can do.

[オプション解析(2)]
対象地盤の一次元地盤モデルによる有効応力解析結果があれば、各要素のγmaxを利用し、さらに精度を向上させることもできる。例えば、図5のグラフ(文献4掲載図表)を用いて、有効応力解析結果の各要素の最大せん断ひずみγmaxから液状化後の各要素の体積ひずみεvを求めて圧密沈下量を算定することができる。
[Option analysis (2)]
If there is an effective stress analysis result based on a one-dimensional ground model of the target ground, the accuracy can be further improved by using γ max of each element. For example, by using the graph of FIG. 5 (table shown in Reference 4), the volumetric strain ε v of each element after liquefaction is obtained from the maximum shear strain γ max of each element of the effective stress analysis result to calculate the consolidation settlement amount. be able to.

[オプション解析(3)]
さらに、文献1において開示されている「2次元液状化流動解析プログラムALID/Win」において適用されている、FL値と液状化後の剛性低下率との関係を示すグラフ(図6)を用いて液状化後の地盤剛性の算定(地盤の剛性低下率)を求めることも可能である。
[Option analysis (3)]
Furthermore, using the graph (FIG. 6) showing the relationship between the FL value and the rigidity reduction rate after liquefaction, which is applied in the “two-dimensional liquefaction flow analysis program ALID / Win” disclosed in Document 1. It is also possible to calculate the ground stiffness after liquefaction (the rate of decrease in ground stiffness).

なお、本発明は上述した実施例に限定されるものではなく、各請求項に示した範囲内での種々の変更が可能である。すなわち、請求項に示した範囲内で適宜変更した技術的手段を組み合わせて得られる実施形態も、本発明の技術的範囲に含まれる。   In addition, this invention is not limited to the Example mentioned above, A various change within the range shown to each claim is possible. In other words, embodiments obtained by combining technical means appropriately changed within the scope of the claims are also included in the technical scope of the present invention.

δr 遠方地盤の沈下量
δv 水平地盤の沈下量
δr Subsidence amount of distant ground δv Subsidence amount of horizontal ground

Claims (3)

解析対象とする地盤と構造物の地震時に発生した液状化後の残留変形を、コンピュータ有限要素法要素モデルによる線形自重解析によって求める簡易算定方法であって、
地表面水平変位Dcy値をもとに液状化後の一次元水平地盤モデルの沈下量δvを算出するステップと、
前記解析対象の地盤各層の要素における補正N値との関係から設定された最大せん断ひずみ値γmaxから液状化後の地盤剛性を算定し、該地盤剛性と初期ポアソン比νとを入力値として用いた前記地盤と構造物とを要素モデルとした有限要素法による線形自重解析における遠方地盤での沈下量δrを算定するステップと、
前記δvとδrとを比較し、(ν+Δν)<0.5の条件の下で、
δv<δrの場合に、前記νを入力値(ν+Δν)
δv>δrの場合に、前記νを入力値(ν−Δν)
に再設定して前記線形自重解析をδvとδrとの差があらかじめ設定した閾値以下、すなわちδv≒δrとなるまで差分Δνを用いた繰り返し演算を行うステップと、
前記繰り返し演算結果をもとに前記要素モデルにおける解析対象の地盤、構造物の残留変形を決定するステップを実行する
ことを特徴とする地盤−構造物系の液状化時の残留変形簡易算定方法。
Residual deformation after liquefaction occurs during an earthquake of ground and structures to be analyzed, the computer is a simple calculation method for obtaining the linear self-weight analysis by the finite element method element model,
Calculating the settlement amount δv of the one-dimensional horizontal ground model after liquefaction based on the ground surface horizontal displacement Dcy value;
The ground stiffness after liquefaction is calculated from the maximum shear strain value γ max set based on the relationship with the corrected N value in the element of each ground layer to be analyzed, and the ground stiffness and the initial Poisson's ratio ν are used as input values. Calculating a subsidence amount δr in a distant ground in a linear weight analysis by a finite element method using the ground and structure as an element model;
Compare δv and δr, and under the condition of (ν + Δν) <0.5,
When δv <δr, ν is the input value (ν + Δν)
When δv> δr, ν is an input value (ν−Δν)
The linear weight analysis is repeated until the difference between δv and δr is equal to or less than a preset threshold, that is, δv ≒ δr,
A step of determining a residual deformation of a ground or a structure to be analyzed in the element model based on the result of the repeated calculation. A method for simply calculating a residual deformation during liquefaction of a ground-structure system.
前記遠方地盤での沈下量δrは、前記要素モデルの前記構造物の挙動の影響を受けない前記要素モデルの側方境界節点での沈下量を用いる、請求項1に記載の地盤−構造物系の液状化時の残留変形簡易算定方法。 Subsidence δr at the distant ground uses subsidence at the side boundary nodes of the element model that is not affected by the behavior of the structure of the element model, soil according to claim 1 - Structural System For simple calculation of residual deformation during liquefaction. 前記解析対象の各要素の最大せん断ひずみ値γmaxは、有効応力解析結果から作用せん断応力を用いて算定する、請求項1に記載の地盤−構造物系の液状化時の残留変形簡易算定方法。 The method for easily calculating a residual deformation at the time of liquefaction of a ground-structure system according to claim 1, wherein the maximum shear strain value γ max of each element to be analyzed is calculated from an effective stress analysis result using an acting shear stress. .
JP2013085650A 2013-04-16 2013-04-16 Simple calculation method of residual deformation during liquefaction of soil-structure system Active JP6238043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013085650A JP6238043B2 (en) 2013-04-16 2013-04-16 Simple calculation method of residual deformation during liquefaction of soil-structure system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013085650A JP6238043B2 (en) 2013-04-16 2013-04-16 Simple calculation method of residual deformation during liquefaction of soil-structure system

Publications (2)

Publication Number Publication Date
JP2014206959A JP2014206959A (en) 2014-10-30
JP6238043B2 true JP6238043B2 (en) 2017-11-29

Family

ID=52120434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013085650A Active JP6238043B2 (en) 2013-04-16 2013-04-16 Simple calculation method of residual deformation during liquefaction of soil-structure system

Country Status (1)

Country Link
JP (1) JP6238043B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106446402B (en) * 2016-09-22 2019-06-25 南京大学(苏州)高新技术研究院 A kind of soil body dehydration cracking multi- scenarios method discrete element Fast simulation modeling method
CN107679348B (en) * 2017-11-02 2020-06-09 西南科技大学 Soft soil foundation grid type underground diaphragm wall bridge foundation settlement calculation method
CN114936353B (en) * 2022-05-31 2024-04-02 中国矿业大学 Calculation method for residual deformation of underground coal gasification surface
CN114969938A (en) 2022-06-06 2022-08-30 浙大城市学院 Calculation method for predicting out-pit stratum settlement curve caused by foundation pit excavation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3692507B2 (en) * 2002-03-20 2005-09-07 株式会社東北テクノアーチ Liquefaction prediction system
JP4640671B2 (en) * 2005-04-11 2011-03-02 清水建設株式会社 Ground / structure deformation prediction method and program
JP4822098B2 (en) * 2005-06-30 2011-11-24 清水建設株式会社 Ground / structure settlement amount prediction method and program
JP5576066B2 (en) * 2009-07-06 2014-08-20 積水化学工業株式会社 Design method for composite ground

Also Published As

Publication number Publication date
JP2014206959A (en) 2014-10-30

Similar Documents

Publication Publication Date Title
Soga et al. Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method
Jeremić et al. Numerical simulation of fully saturated porous materials
Wang et al. Large deformation finite element analyses in geotechnical engineering
Amorosi et al. Parametric study on seismic ground response by finite element modelling
Ng et al. Three-dimensional centrifuge modelling of the effects of twin tunnelling on an existing pile
Hamann et al. Application of a Coupled Eulerian–Lagrangian approach on pile installation problems under partially drained conditions
Hleibieh et al. Numerical simulation of a tunnel surrounded by sand under earthquake using a hypoplastic model
Bui et al. A novel computational approach for large deformation and post‐failure analyses of segmental retaining wall systems
Higgins et al. A high strain‐rate constitutive model for sand and its application in finite‐element analysis of tunnels subjected to blast
JP4441693B2 (en) Water and soil skeleton coupling calculation device and water and soil skeleton coupling calculation method
Alkasawneh et al. A comparative study of various commercially available programs in slope stability analysis
Kelesoglu et al. Analytical and 3D numerical modelling of full-height bridge abutments constructed on pile foundations through soft soils
JP6238043B2 (en) Simple calculation method of residual deformation during liquefaction of soil-structure system
Mokhtar et al. Lateral displacement and pile instability due to soil liquefaction using numerical model
JP6512014B2 (en) Evaluation method of stability of excavated wall
CN104462641A (en) Bridge pile foundation anti-earthquake analysis simplified method considering whole soil liquefaction process
Bhattacharjee et al. Development of numerical model of wrap-faced walls subjected to seismic excitation
Hu et al. A coupled two‐phase fluid flow and elastoplastic deformation model for unsaturated soils: theory, implementation, and application
Hleibieh et al. The performance of a hypoplastic constitutive model in predictions of centrifuge experiments under earthquake conditions
Di et al. An operator‐split ALE model for large deformation analysis of geomaterials
Shahbodagh Khan et al. Dynamic analysis of strain localization in water‐saturated clay using a cyclic elasto‐viscoplastic model
González et al. Equivalent linear model for the lateral dynamic analysis of pile foundations considering pile-soil interface degradation
Tang et al. The boundary conditions for simulations of a shake-table experiment on the seismic response of 3D slope
Khosrojerdi et al. Numerical investigation on the behavior of the gravity waterfront structures under earthquake loading
Sabetamal Finite element algorithms for dynamic analysis of geotechnical problems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171018

R150 Certificate of patent or registration of utility model

Ref document number: 6238043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150