JP6804728B2 - Liquefaction countermeasure structure design method for structures - Google Patents

Liquefaction countermeasure structure design method for structures Download PDF

Info

Publication number
JP6804728B2
JP6804728B2 JP2016084553A JP2016084553A JP6804728B2 JP 6804728 B2 JP6804728 B2 JP 6804728B2 JP 2016084553 A JP2016084553 A JP 2016084553A JP 2016084553 A JP2016084553 A JP 2016084553A JP 6804728 B2 JP6804728 B2 JP 6804728B2
Authority
JP
Japan
Prior art keywords
cutting member
edge cutting
ground
liquefaction
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016084553A
Other languages
Japanese (ja)
Other versions
JP2017193867A (en
Inventor
英之 眞野
英之 眞野
友昊 周
友昊 周
毅芳 福武
毅芳 福武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2016084553A priority Critical patent/JP6804728B2/en
Publication of JP2017193867A publication Critical patent/JP2017193867A/en
Application granted granted Critical
Publication of JP6804728B2 publication Critical patent/JP6804728B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)

Description

本発明は、杭基礎を備えた構造物の液状化による被害を軽減させるための構造物の液状化対策構造の設計方法に関する。 The present invention relates to a method for the design of liquefaction countermeasure structure structure creation for reducing damage due to liquefaction of a structure having a pile foundation.

液状化層1の上に非液状化層2がある地盤Gは、地震時に液状化が生じると、例えば図13に示すように液状化層1より上の地盤G(上層の非液状化層2)が大きく変位する。そして、例えば図14に示すように、このような地盤Gに杭基礎(杭)3を備えた構造物(建物)4を構築した場合には、地震時に液状化が生じるとともに、地盤変位が急変する液状化層1と上層の非液状化層2、及び液状化層1とこの液状化層1よりも下層の非液状化層5の境界部分で杭3が損傷するおそれがある。 When liquefaction occurs in the ground G having the non-liquefaction layer 2 on the liquefaction layer 1, for example, as shown in FIG. 13, the ground G above the liquefaction layer 1 (the upper non-liquefaction layer 2) ) Is greatly displaced. Then, for example, as shown in FIG. 14, when a structure (building) 4 having a pile foundation (pile) 3 is constructed on such a ground G, liquefaction occurs during an earthquake and the ground displacement suddenly changes. There is a risk that the pile 3 will be damaged at the boundary between the liquefied layer 1 and the upper non-liquefied layer 2, and the liquefied layer 1 and the non-liquefied layer 5 below the liquefied layer 1.

従来、この地盤Gの液状化に伴う杭3の損傷(構造物4の被害)を防止するために、地盤Gを液状化させないように地盤改良を行ったり、杭3を補強して液状化時に発生する荷重Fにも耐えられるようにする対策が多用されていた。しかしながら、地盤改良による対策では、特に液状化層1が深部まで連続的に存在する場合や非液状化層を間に挟んで複数の液状化層1が存在し、最下層の液状化層1が深部に存在する場合などに、莫大なボリュームの地盤Gを改良することが必要になるため、対策費用が非常に高額になるという問題があった。また、地盤改良による対策や杭3を補強する対策は、既存の杭基礎構造物4に採用することが難しいという問題があった。 Conventionally, in order to prevent damage to the pile 3 (damage to the structure 4) due to the liquefaction of the ground G, the ground is improved so as not to liquefy the ground G, or the pile 3 is reinforced during liquefaction. Measures were often used to withstand the generated load F. However, as a countermeasure by ground improvement, especially when the liquefied layer 1 is continuously present in the deep part or a plurality of liquefied layers 1 are present with the non-liquefied layer in between, the liquefied layer 1 of the lowest layer is present. There is a problem that the cost of countermeasures becomes very high because it is necessary to improve the ground G having an enormous volume when it exists in a deep part. Further, there is a problem that it is difficult to adopt the measures for ground improvement and the measures for reinforcing the pile 3 for the existing pile foundation structure 4.

これに対し、例えば図15に示すように、構造物4(上部構造4a)の根入れ部4bに、液状化層1より軟質な材料(軟質材6)を充填する液状化対策が提案されている(例えば、特許文献1参照)。この対策では、液状化時に構造物4に作用する力Fを軟質材6で吸収することにより、構造物4に与える影響を軽減させるようにしている。 On the other hand, as shown in FIG. 15, for example, a liquefaction countermeasure has been proposed in which the rooting portion 4b of the structure 4 (superstructure 4a) is filled with a material (soft material 6) softer than the liquefaction layer 1. (See, for example, Patent Document 1). In this measure, the soft material 6 absorbs the force F acting on the structure 4 at the time of liquefaction to reduce the influence on the structure 4.

また、例えば図16に示すように、構造物4(上部構造4a)の周りに軽量材7を埋設する液状化対策も提案されている。この対策では、液状化時の地盤変位による受動抵抗を小さくすることにより、構造物4に与える影響を軽減させるようにしている。 Further, for example, as shown in FIG. 16, a liquefaction countermeasure in which a lightweight material 7 is embedded around the structure 4 (superstructure 4a) has also been proposed. In this measure, the influence on the structure 4 is reduced by reducing the passive resistance due to the ground displacement during liquefaction.

さらに、例えば図17(図17(a):断面図、図17(b):平面図)に示すように、構造物4(上部構造4a)の周囲の地盤Gを壁状の砂8で置換する液状化対策も提案されている。この対策では、置換した壁状の砂8を液状化させることにより、液状化時の地盤変位を抑制して構造物4に与える影響を軽減させるようにしている。 Further, for example, as shown in FIG. 17 (FIG. 17 (a): cross-sectional view, FIG. 17 (b): plan view), the ground G around the structure 4 (superstructure 4a) is replaced with wall-shaped sand 8. Liquefaction countermeasures have also been proposed. In this measure, the replaced wall-shaped sand 8 is liquefied to suppress the ground displacement during liquefaction and reduce the influence on the structure 4.

さらに、構造物4の外周に沿って壁を設ける対策、いわゆるスカートウォール工法と称する対策もあり、このスカートウォール工法では、例えば図18に示すように、構造物4の外周に沿って基礎4cと連結した剛な壁(スカートウォール10)を設けて杭3の水平荷重を低減させるようにしている(例えば、特許文献2参照)。 Further, there is also a measure to provide a wall along the outer periphery of the structure 4, a measure called a so-called skirt wall method. In this skirt wall method, for example, as shown in FIG. 18, a foundation 4c is provided along the outer periphery of the structure 4. A connected rigid wall (skirt wall 10) is provided to reduce the horizontal load of the pile 3 (see, for example, Patent Document 2).

特開2000−178997号公報Japanese Unexamined Patent Publication No. 2000-178997 特開昭57−9925号公報Japanese Unexamined Patent Publication No. 57-9925

しかしながら、軟質材6を構造物4の根入れ部4bに充填する対策では、根入れ部4b周辺の地盤Gが軟らかくなることにより、構造物4(上部構造4a)の揺れを根入れ部4bで抑制する効果が小さくなってしまう。このため、液状化を生じることがない中小地震時には、逆に構造物4の揺れによって杭3の応力が増大して損傷が生じるおそれがある。 However, in the measure of filling the rooting portion 4b of the structure 4 with the soft material 6, the ground G around the rooting portion 4b becomes soft, so that the shaking of the structure 4 (superstructure 4a) is caused by the rooting portion 4b. The effect of suppressing is reduced. Therefore, in the case of a small and medium-sized earthquake that does not cause liquefaction, on the contrary, the stress of the pile 3 may increase due to the shaking of the structure 4 and damage may occur.

また、構造物4の周りに軽量材7を埋設する対策では、液状化時の地盤変位による受動抵抗を確実に小さくするために、軽量材7を大きな面積で埋設することが必要になるという問題があった。 Further, in the measure of burying the lightweight material 7 around the structure 4, there is a problem that it is necessary to bury the lightweight material 7 in a large area in order to surely reduce the passive resistance due to the ground displacement during liquefaction. was there.

構造物4の周囲の地盤Gを砂8で置換する対策においても、確実に壁状の砂8を液状化させるために、地下水位Tが地表面付近にあることが必要で、どのような条件下の構造物4であっても適用できる訳ではなく、その採用に大きな制限があるという問題があった。 Even in the measures to replace the ground G around the structure 4 with sand 8, it is necessary that the groundwater level T is near the ground surface in order to ensure that the wall-shaped sand 8 is liquefied. Even the structure 4 below cannot be applied, and there is a problem that its adoption is greatly restricted.

また、スカートウォール工法においては、基礎4cと連結した剛な壁(スカートウォール10)が水平力を負担して杭3の水平荷重を低減させるためのものであり、地盤Gの液状化時に構造物4や杭3に作用する水平力を軽減させるためのものではない。すなわち、スカートウォール10は、構造物4の基礎4cと杭3の接合部分に作用するせん断力を減少させて、この接合部分の被害を軽減させるために設けられるのであって、液状化とは無関係なものである(液状化対策として設けられるものではない)。また、このようなスカートウォール10が液状化層1の上の非液状化層2内にあると、液状化時にかえって構造物4に作用する荷重(水平力)を増大させるおそれがある。また、スカートウォール10の下端より深い位置にある液状化層と下部非液状化層との境界で生じる杭応力は低減できないおそれがある。 Further, in the skirt wall construction method, a rigid wall (skirt wall 10) connected to the foundation 4c bears a horizontal force to reduce the horizontal load of the pile 3, and is a structure when the ground G is liquefied. It is not intended to reduce the horizontal force acting on the 4 or the pile 3. That is, the skirt wall 10 is provided to reduce the shearing force acting on the joint portion between the foundation 4c of the structure 4 and the pile 3 and reduce the damage to the joint portion, and is irrelevant to liquefaction. (It is not provided as a measure against liquefaction). Further, if such a skirt wall 10 is located in the non-liquefied layer 2 above the liquefied layer 1, the load (horizontal force) acting on the structure 4 at the time of liquefaction may be increased. Further, the pile stress generated at the boundary between the liquefied layer and the lower non-liquefied layer located deeper than the lower end of the skirt wall 10 may not be reduced.

本発明は、上記事情に鑑み、大きな面積、ボリュームを要することなく、効果的に液状化による損傷を防止(軽減)することを可能にする構造物の液状化対策構造の設計方法を提供することを目的とする。 In view of the above circumstances, a large area, without requiring the volume, to effectively provide a method of designing a liquefaction countermeasure structure to that structure creation allows damage liquefaction prevent (reduce) The purpose is.

上記の目的を達するために、この発明は以下の手段を提供している。 In order to achieve the above object, the present invention provides the following means.

本発明の構造物の液状化対策構造の設計方法は、液状化層の上に非液状化層がある地盤に杭基礎を備えて構築される構造物の液状化による被害を軽減させるための構造物の液状化対策構造の設計方法であって、前記杭基礎を囲繞するように設けられるとともに、上端部側を前記液状化層の上の非液状化層に配し、下端部側を前記液状化層の下の非液状化層に配して設けられ、前記杭基礎側の液状化層とその外側の液状化層を縁切りする縁切り部材を備え、前記縁切り部材の上端部は、前記構造物の下端よりも上方に配されており、前記構造物の諸元を設定する構造物諸元設定工程と、前記杭基礎、前記縁切り部材、および前記構造物の根入れ部のそれぞれの地盤ばねを算出する地盤ばね設定工程と、前記縁切り部材がない場合の地震時の地盤変位を一般地盤変位として算出する一般地盤変位算出工程と、前記杭基礎の前記縁切り部材内に位置する部分の地盤変位を基準にしつつ、前記一般地盤変位を前記地盤ばねを介して梁ばねモデルからなる構造物モデルに与えて前記縁切り部材の変位を算出し、該縁切り部材の変位を地震時の前記縁切り部材の内側の地盤変位として求める縁切り部材内地盤変位算出工程と、前記一般地盤変位を前記縁切り部材、前記構造物の根入れ部、および前記縁切り部材の下端より深い位置にある杭基礎に与え、且つ前記縁切り部材の内側の地盤変位を前記杭基礎に与えて、新たな前記縁切り部材の内側の地盤変位を求める縁切り部材内地盤変位更新工程と、前記縁切り部材内地盤変位更新工程を前記縁切り部材の変位の差が収束するまで繰り返し行い、前記縁切り部材の変位の差が収束した段階の前記縁切り部材の変位を前記縁切り部材の内側の地盤変位として決定する縁切り部材内地盤変位決定工程と、前記縁切り部材内地盤変位決定工程で決定した前記縁切り部材の内側の地盤変位を基にして前記杭基礎の地震時の応力を算定する杭応力算出工程と、を備えていることを特徴とする。 The method for designing a liquefaction countermeasure structure for a structure of the present invention is a structure for reducing damage caused by liquefaction of a structure constructed by providing a pile foundation on a ground having a non-liquefied layer on the liquefied layer. It is a design method of a structure for preventing liquefaction of an object, which is provided so as to surround the pile foundation, the upper end side is arranged in a non-liquefied layer above the liquefied layer, and the lower end side is the liquid. It is provided in a non-liquefied layer under the liquefied layer, and includes an edge cutting member that cuts the liquefied layer on the pile foundation side and the liquefied layer on the outside thereof, and the upper end portion of the edge cutting member is the structure. The structure specification setting step of setting the specifications of the structure and the ground springs of the pile foundation, the edge cutting member, and the rooting portion of the structure are arranged above the lower end of the structure. The ground spring setting step to be calculated, the general ground displacement calculation step to calculate the ground displacement at the time of an earthquake without the edge cutting member as the general ground displacement, and the ground displacement of the portion of the pile foundation located in the edge cutting member. Using the reference, the general ground displacement is given to the structure model composed of the beam spring model via the ground spring to calculate the displacement of the edge cutting member, and the displacement of the edge cutting member is the inside of the edge cutting member at the time of an earthquake. The step of calculating the ground displacement in the edge cutting member obtained as the ground displacement and the general ground displacement are given to the edge cutting member, the rooting portion of the structure, and the pile foundation located deeper than the lower end of the edge cutting member, and the edge cutting member. The difference between the displacement of the edge cutting member and the ground displacement updating step of the edge cutting member in which the ground displacement of the inside of the edge cutting member is given to the pile foundation to obtain the ground displacement of the inside of the new edge cutting member. The ground displacement determination step inside the edge cutting member and the ground inside the edge cutting member are determined by repeating the process until the edges converge, and the displacement of the edge cutting member at the stage where the difference in displacement of the edge cutting member converges is determined as the ground displacement inside the edge cutting member. It is characterized by including a pile stress calculation step of calculating the stress of the pile foundation at the time of an earthquake based on the ground displacement inside the edge cutting member determined in the displacement determination step.

本発明の構造物の液状化対策構造の設計方法によれば、液状化時の地震時地盤変位が大きく、液状化層と非液状化層との境界で杭応力が著しく大きくなる建物などの構造物に対しても、縁切り部材を設けることによって杭応力を大幅に低減させることが可能になる。
According to the design method of liquefaction countermeasure structure structure creation of the present invention, a large seismic ground displacement during liquefaction, structures such as buildings pile stress becomes considerably large at the boundary between the liquid layer and the non-liquefied layer It is possible to significantly reduce the pile stress even for an object by providing an edge cutting member.

本発明の一実施形態に係る構造物の液状化対策構造を示す断面図である。It is sectional drawing which shows the liquefaction countermeasure structure of the structure which concerns on one Embodiment of this invention. 本発明の一実施形態に係る構造物の液状化対策構造の設計方法を示すフロー図である。It is a flow chart which shows the design method of the liquefaction countermeasure structure of the structure which concerns on one Embodiment of this invention. 本発明の一実施形態に係る構造物の液状化対策構造の設計方法において、一般地盤変位を算出する際の説明に用いた図である。It is a figure used for the explanation at the time of calculating the general ground displacement in the design method of the liquefaction countermeasure structure of the structure which concerns on one Embodiment of this invention. 本発明の一実施形態に係る構造物の液状化対策構造の設計方法において、縁切り部材の内側の地盤変位を算出する際の説明に用いた図である。It is a figure used for explanation at the time of calculating the ground displacement inside the edge cutting member in the design method of the liquefaction countermeasure structure of the structure which concerns on one Embodiment of this invention. 本発明の一実施形態に係る構造物の液状化対策構造の設計方法において、縁切り部材の内側の地盤変位を算出する際の説明に用いた図である。It is a figure used for explanation at the time of calculating the ground displacement inside the edge cutting member in the design method of the liquefaction countermeasure structure of the structure which concerns on one Embodiment of this invention. 本発明の一実施形態に係る構造物の液状化対策構造の設計方法において、縁切り部材の内側の地盤変位を算出する際の説明に用いた図である。It is a figure used for explanation at the time of calculating the ground displacement inside the edge cutting member in the design method of the liquefaction countermeasure structure of the structure which concerns on one Embodiment of this invention. 本発明の一実施形態に係る構造物の液状化対策構造の設計方法において、縁切り部材の内側の地盤変位を算出する際の説明に用いた図である。It is a figure used for explanation at the time of calculating the ground displacement inside the edge cutting member in the design method of the liquefaction countermeasure structure of the structure which concerns on one Embodiment of this invention. 本発明の一実施形態に係る構造物の液状化対策構造の設計方法において、縁切り部材の内側の地盤変位を算出する際の説明に用いた図である。It is a figure used for explanation at the time of calculating the ground displacement inside the edge cutting member in the design method of the liquefaction countermeasure structure of the structure which concerns on one Embodiment of this invention. 本発明の一実施形態に係る構造物の液状化対策構造の設計方法において、縁切り部材の内側の地盤変位を算出する際の説明に用いた図である。It is a figure used for explanation at the time of calculating the ground displacement inside the edge cutting member in the design method of the liquefaction countermeasure structure of the structure which concerns on one Embodiment of this invention. 実証実験で用いた模型を示す図である。It is a figure which shows the model used in the demonstration experiment. 実証実験で用いた模型の絶縁部材(壁材)の納まり状態を示す図である。It is a figure which shows the fitting state of the insulating member (wall material) of the model used in the demonstration experiment. 実証実験の結果を示す図であり、(a)が杭基礎に生じる曲げモーメント、(b)が杭基礎に生じるせん断力を示す図である。It is a figure which shows the result of the demonstration experiment, (a) is the bending moment generated in the pile foundation, (b) is the figure which shows the shearing force generated in the pile foundation. 液状化層の上に非液状化層がある地盤の液状化時の変位を示す図である。It is a figure which shows the displacement at the time of liquefaction of the ground which has a non-liquefaction layer on the liquefaction layer. 液状化による構造物の損傷に関する説明に用いた図である。It is a figure used for the explanation about the damage of a structure by liquefaction. 従来の構造物の液状化対策を示す断面図である。It is sectional drawing which shows the liquefaction measures of the conventional structure. 従来の構造物の液状化対策を示す断面図である。It is sectional drawing which shows the liquefaction measures of the conventional structure. 従来の構造物の液状化対策を示す断面図及び平面図である。It is sectional drawing and plan view which show the liquefaction measures of the conventional structure. 従来の構造物の液状化対策を示す断面図である。It is sectional drawing which shows the liquefaction measures of the conventional structure.

以下、図1から図13を参照し、本発明の一実施形態に係る構造物の液状化対策構造及び構造物の液状化対策構造の設計方法について説明する。本実施形態は、液状化時の構造物(杭基礎構造物)の被害を防止あるいは軽減させるための構造、及び該構造の設計方法に関するものである。 Hereinafter, with reference to FIGS. 1 to 13, a method for designing a liquefaction countermeasure structure for a structure and a liquefaction countermeasure structure for a structure according to an embodiment of the present invention will be described. The present embodiment relates to a structure for preventing or reducing damage to a structure (pile foundation structure) during liquefaction, and a method for designing the structure.

はじめに、本実施形態の構造物4は、図1に示すように、液状化層1の上に非液状化層(上層の非液状化層)2がある地盤Gに構築され、地盤G内に打設した複数の杭(杭基礎3)で上部構造4aを支持して構築されている。また、上部構造4aは、下端部側(根入れ部4b)を上層の非液状化層2に根入れして構築されている。 First, as shown in FIG. 1, the structure 4 of the present embodiment is constructed on the ground G having a non-liquefied layer (upper non-liquefied layer) 2 on the liquefied layer 1, and is built in the ground G. It is constructed by supporting the superstructure 4a with a plurality of piles (pile foundations 3) cast. Further, the superstructure 4a is constructed by rooting the lower end side (rooting portion 4b) into the upper non-liquefied layer 2.

そして、本実施形態の構造物の液状化対策構造15は、複数の杭3側の液状化層1(本実施形態では構造物4の直下の液状化層1)とその外側の液状化層1とを縁切りさせるように縁切り部材16を構造物4の水平方向外側の地盤G内に設けて構成されている。また、本実施形態の縁切り部材16は、構造物4の外周に沿って連続的に設けられ、液状化層1に下端部16a側を根入れして設けられている。 The liquefaction countermeasure structure 15 of the structure of the present embodiment includes the liquefaction layer 1 on the side of the plurality of piles 3 (the liquefaction layer 1 immediately below the structure 4 in the present embodiment) and the liquefaction layer 1 outside the liquefaction layer 1. The edge cutting member 16 is provided in the ground G on the outer side in the horizontal direction of the structure 4 so as to cut off the edges. Further, the edge cutting member 16 of the present embodiment is continuously provided along the outer periphery of the structure 4, and is provided with the lower end portion 16a side embedded in the liquefaction layer 1.

さらに、縁切り部材16は、その上端部16bを上層の非液状化層2内に配し、下端部16a側を液状化層1の下の非液状化層(下層の非液状化層)5に根入れして設けられている。 Further, the edge cutting member 16 has an upper end portion 16b arranged in the upper non-liquefied layer 2 and a lower end portion 16a side in the non-liquefied layer (lower non-liquefied layer) 5 under the liquefied layer 1. It is provided with rooting.

なお、縁切り部材16は、その剛性、材質、厚さ等を特に限定する必要はない。また、杭3が設けられた液状化層1を囲繞するように配設されていれば、部分的に不連続であったり、部分的に切り欠き、孔などがあっても構わない。縁切り部材16は、地盤の液状化時に水は通しても極力土を透過させないものであればよい。
また、本実施形態では、縁切り部材16がその上端部16b側を構造物4の根入れ部4bに接するようにして設けられている。これに対し、縁切り部材16はその上端部を上層の非液状化層2内に配して設けられていてもよい。このとき、縁切り部材16の上端部が構造物4の下端よりも上方に配されていることがより好ましい。また、縁切り部材16は、根入れ部4bから離間して設けたり、根入れ部4bとの間を地盤改良するなどし、根入れ部4bとの間に介在層を設けて配設されていてもよい。
The rigidity, material, thickness, etc. of the edge cutting member 16 need not be particularly limited. Further, as long as the liquefaction layer 1 provided with the pile 3 is arranged so as to surround the liquefaction layer 1, it may be partially discontinuous, partially notched, or having holes. The edge cutting member 16 may be a member that does not allow soil to permeate as much as possible even if water passes through it when the ground is liquefied.
Further, in the present embodiment, the edge cutting member 16 is provided so that the upper end portion 16b side thereof is in contact with the rooting portion 4b of the structure 4. On the other hand, the edge cutting member 16 may be provided with its upper end arranged in the upper non-liquefied layer 2. At this time, it is more preferable that the upper end portion of the edge cutting member 16 is arranged above the lower end portion of the structure 4. Further, the edge cutting member 16 is provided so as to be separated from the rooting portion 4b, or the ground is improved between the edge cutting member 16 and the rooting portion 4b, and an intervening layer is provided between the edge cutting member 16 and the rooting portion 4b. May be good.

さらに、本実施形態の構造物4は、上記のような縁切り部材16(構造物の液状化対策構造15)を備えることにより、地震時に液状化層1の液状化に伴い杭基礎3に作用する応力を図2に示すように求め、求めた応力に基づいて杭基礎3が構築されている(杭基礎3の形状、耐力、剛性等の諸元が設定されている)。 Further, the structure 4 of the present embodiment is provided with the edge cutting member 16 (liquefaction countermeasure structure 15 of the structure) as described above, and thus acts on the pile foundation 3 with the liquefaction of the liquefaction layer 1 at the time of an earthquake. The stress is obtained as shown in FIG. 2, and the pile foundation 3 is constructed based on the obtained stress (specifications such as the shape, strength, and rigidity of the pile foundation 3 are set).

まず、図2(及び図1)に示すように、杭3や縁切り部材16などの形状、各部材(や全体として)の耐力、剛性等の諸元を設定する(Step1:構造物諸元設定工程)。また、杭ばね、縁切り部材ばね(壁ばね)、根入ればね、すなわち、杭3、縁切り部材16、構造物4の根入れ部の地盤ばねを算定/設定する(Step2:地盤ばね設定工程)。 First, as shown in FIG. 2 (and FIG. 1), specifications such as the shape of the pile 3 and the edge cutting member 16 and the proof stress and rigidity of each member (or as a whole) are set (Step 1: Structure specification setting). Process). Further, the pile spring, the edge cutting member spring (wall spring), and the rooting spring, that is, the ground spring of the rooting portion of the pile 3, the edge cutting member 16, and the structure 4 are calculated / set (Step 2: Ground spring setting step).

さらに、図2、図3(及び図1)に示すように、縁切り部材16(液状化対策構造15)がない場合の地震時地盤変位(以下、一般地盤変位という)を算出する(Step3:一般地盤変位算出工程)。 Further, as shown in FIGS. 2 and 3 (and FIG. 1), the ground displacement during an earthquake (hereinafter referred to as general ground displacement) in the absence of the edge cutting member 16 (liquefaction countermeasure structure 15) is calculated (Step 3: general). Ground displacement calculation process).

そして、図2、図4、図5、図6(及び図1)に示すように、杭3の縁切り部材16内に位置する部分の地盤変位を0とし(基準にし)、一般地盤変位を地盤ばねを介して構造物モデルに与えて縁切り部材16の変位を算出し、得られた縁切り部材16の変位を縁切り部材16で囲まれた内部の地盤変位とする(Step4、Step5:縁切り部材内地盤変位算出工程)。 Then, as shown in FIGS. 2, 4, 5, 6 (and 1), the ground displacement of the portion of the pile 3 located in the edge cutting member 16 is set to 0 (based on), and the general ground displacement is set to the ground. The displacement of the edge cutting member 16 is calculated by giving it to the structure model via a spring, and the displacement of the obtained edge cutting member 16 is defined as the internal ground displacement surrounded by the edge cutting member 16 (Step 4, Step 5: Ground inside the edge cutting member). Displacement calculation process).

さらに、本実施形態では、図2、図4、図5、図6、図7、図8、図9(及び図1)に示すように、一般地盤変位を縁切り部材16と根入れ4bに与え、且つ縁切り部材内地盤変位を杭3に与えて、新たな縁切り部材16内の地盤変位を算定する(Step6:縁切り部材内地盤変位更新工程)。この操作を縁切り部材16の変位の差が収束するまで繰り返し行う。そして、縁切り部材16の変位の差が収束した段階の縁切り部材変位を縁切り部材内地盤変位とする(Step7、Step8:縁切り部材内地盤変位決定工程)。 Further, in the present embodiment, as shown in FIGS. 2, 4, 5, 6, 7, 8, 9 (and 1), general ground displacement is applied to the edge cutting member 16 and the rooting 4b. In addition, the ground displacement in the edge cutting member is given to the pile 3 to calculate the ground displacement in the new edge cutting member 16 (Step 6: ground displacement updating step in the edge cutting member). This operation is repeated until the difference in displacement of the edge cutting member 16 converges. Then, the displacement of the edge cutting member at the stage where the difference in displacement of the edge cutting member 16 has converged is defined as the ground displacement in the edge cutting member (Step 7, Step 8: ground displacement determination step in the edge cutting member).

すなわち、縁切り部材16の変形は初期には未定であるため、本実施形態では、繰り返し計算などによって縁切り部材16の変形と杭に与える地盤変形が等しくなるようにし、このときの変位を縁切り部材内地盤変位として決定する。 That is, since the deformation of the edge cutting member 16 is undecided at the initial stage, in the present embodiment, the deformation of the edge cutting member 16 is made equal to the ground deformation given to the pile by repeated calculation or the like, and the displacement at this time is set in the edge cutting member. Determined as ground displacement.

さらに、本実施形態では、安全側に評価するため、地震力の方向に直交する面(面外変形を生じる縁切り部材16)の剛性のみを考慮して縁切り部材16の剛性を設定する。 Further, in the present embodiment, in order to evaluate on the safe side, the rigidity of the edge cutting member 16 is set in consideration of only the rigidity of the surface (edge cutting member 16 that causes out-of-plane deformation) orthogonal to the direction of the seismic force.

次に、決定した縁切り部材内地盤変位を基に、慣性力と地盤変位を考慮した杭応力を算定する(Step9:杭応力算出工程)。このとき、例えば、建物慣性力による杭応力と地盤変位による杭応力の単純和あるいは自乗和平方で杭応力を求めたり、慣性力と地盤変位を同時に載荷して杭応力を算出して求める。 Next, the pile stress in consideration of the inertial force and the ground displacement is calculated based on the determined ground displacement in the edge cutting member (Step 9: pile stress calculation step). At this time, for example, the pile stress is obtained by the simple sum or the square of the sum of squares of the pile stress due to the building inertial force and the ground displacement, or the pile stress is calculated by simultaneously loading the inertial force and the ground displacement.

ここで、実換算で周期1秒、定常30波、最大加速度100cm/sの正弦波を地震動の入力波として行った実証実験について説明する。 Here, a demonstration experiment in which a sine wave having a period of 1 second, a steady wave of 30 waves, and a maximum acceleration of 100 cm / s 2 is used as an input wave of seismic motion will be described.

この実証実験では、図10に示す実験模型を用いた。
土槽は800mm×400mm×325mmのせん断土層を用いた。地盤Gの下部非液状化層5は相対密度約100%の3号珪砂層を厚さ100mm(実換算3m)とし、液状化層1及び上部非液状化層2は相対密度50%の7号珪砂層を空中落下法で作成した。間隙流体は比重が1で粘性が30csのシリコンオイルとし、地下水位は地表から70mm(実換算2.1m)とした。
In this demonstration experiment, the experimental model shown in FIG. 10 was used.
A shear soil layer of 800 mm × 400 mm × 325 mm was used as the soil tank. The lower non-liquefied layer 5 of the ground G has a thickness of No. 3 silica sand layer having a relative density of about 100% of 100 mm (actual conversion 3 m), and the liquefied layer 1 and the upper non-liquefied layer 2 have a relative density of No. 7 having a relative density of 50%. A silica sand layer was created by the aerial drop method. The pore fluid was silicon oil having a specific gravity of 1 and a viscosity of 30 cs, and the groundwater level was 70 mm from the ground surface (actual conversion 2.1 m).

杭3は、直径12mm、肉厚0.5mm、長さ252mmの真鍮パイプ4本(杭間隔96mm)とした。杭先端はベアリングを用いてピン状態とした。杭頭はほぼ剛接合と見なせる。 The pile 3 has four brass pipes (pile spacing 96 mm) having a diameter of 12 mm, a wall thickness of 0.5 mm, and a length of 252 mm. The tip of the pile was pinned using a bearing. The pile head can be regarded as a rigid joint.

基礎は平面が150mm×164mm、厚さが40mmのアルミ製とした。構造物慣性力が卓越しないように、構造物は基礎部分のみとし、構造物の比重は周囲の地盤とほぼ等しい程度に抑えるよう軽量化を図った。 The foundation was made of aluminum with a flat surface of 150 mm × 164 mm and a thickness of 40 mm. In order to prevent the structural inertial force from prevailing, the structure is made only of the foundation part, and the weight of the structure is reduced so that it is suppressed to almost the same level as the surrounding ground.

縁切り部材(壁材)16は、厚さ0.3〜4.0のアルミ板とし、先端をウレタンに差し込むことで土槽底面からの振動が伝播しないようにした。また、縁切り部材16は、鉛直軸周りの曲げ剛性が結果に寄与しないように幅29〜36mmの板状の部材を各面5枚ずつ厚さ0.08mmのテフロン(登録商標)製のテープ(以下、テフロンテープという)で貼り合わせることにより作成した。また、側壁の面内剛性の影響を除くため、図11に示すように、側壁と前後面壁(隣り合う縁切り部材16)の間には1mmの隙間を空け、厚さ0.08mmのテフロンテープで留めるだけとした。杭3と縁切り部材(厚さ0.3mmを除く)16には7断面にひずみゲージを添付した。 The edge cutting member (wall material) 16 is an aluminum plate having a thickness of 0.3 to 4.0, and the tip is inserted into urethane so that vibration from the bottom surface of the soil tank is not propagated. Further, the edge cutting member 16 is made of Teflon (registered trademark) tape having a thickness of 0.08 mm and five plate-shaped members having a width of 29 to 36 mm on each side so that the bending rigidity around the vertical axis does not contribute to the result. Hereinafter, it was created by pasting with Teflon tape). Further, in order to eliminate the influence of the in-plane rigidity of the side wall, as shown in FIG. 11, a gap of 1 mm is left between the side wall and the front and rear surface walls (adjacent edge cutting members 16), and a 0.08 mm thick Teflon tape is used. I just fastened it. Strain gauges were attached to 7 cross sections of the pile 3 and the edge cutting member (excluding the thickness of 0.3 mm) 16.

主な模型諸元と相似則は表1に示す通りである。 The main model specifications and similarity rules are as shown in Table 1.

Figure 0006804728
Figure 0006804728

また、実験ケースは表2に示す通りであり、縁切り部材16を設けないC0、厚さを0.3〜4.0mmの範囲で変えたC0.3、C1.0、C2.0、C4.0の計5ケースとした。表2にはH400−200−8−13のH形鋼を900mmピッチで配置した山留め壁の曲げ剛性に対する縁切り部材16の曲げ剛性の比も併記している。すなわち、C0.3は、剛性比が山留め壁の1万分の1未満であり非常に小さい曲げ剛性の縁切り部材16を用いている。 The experimental cases are as shown in Table 2. C0 without the edge cutting member 16 and C0.3, C1.0, C2.0, and C4 with the thickness changed in the range of 0.3 to 4.0 mm. There were a total of 5 cases of 0. Table 2 also shows the ratio of the bending rigidity of the edge cutting member 16 to the bending rigidity of the retaining wall in which the H-shaped steels of H400-200-8-13 are arranged at a pitch of 900 mm. That is, C0.3 uses the edge cutting member 16 having a rigidity ratio of less than 1 / 10,000 of the retaining wall and having a very small bending rigidity.

Figure 0006804728
Figure 0006804728

図12は、実証実験結果であり、液状化直後に液状化層境界で最大曲げモーメントが発揮される時刻(約12.6s)における曲げモーメント分布(図12(a))とせん断力分布(図12(b))を示している。 FIG. 12 shows the results of the demonstration experiment, and the bending moment distribution (FIG. 12 (a)) and the shear force distribution (FIG. 12 (a)) at the time (about 12.6 s) when the maximum bending moment is exhibited at the liquefaction layer boundary immediately after liquefaction. 12 (b)) is shown.

これらの結果から、縁切り部材16があることによって杭頭や液状化層1の上下境界付近の曲げモーメント、せん断力がともに2/3〜1/2程度に減少することが確認された。また、縁切り部材16の厚さによる効果の違いはほとんどなく、ごく薄い縁切り部材16であっても地震時地盤変位による杭3の応力低減効果が大きいことが確認された。 From these results, it was confirmed that the presence of the edge cutting member 16 reduces both the bending moment and the shearing force near the upper and lower boundaries of the pile head and the liquefaction layer 1 to about 2/3 to 1/2. Further, it was confirmed that there was almost no difference in the effect depending on the thickness of the edge cutting member 16, and that even a very thin edge cutting member 16 had a large effect of reducing the stress of the pile 3 due to the ground displacement during an earthquake.

言い換えれば、縁切り部材16の機能/作用としては液状化した地盤のすり抜けを防止することが重要であり、その剛性の違いによる効果の差は小さいことが確認された。すなわち、縁切り部材16は液状化した地盤のすり抜けを防止することが可能であれば、非常に薄い部材、剛性が小さい部材でもよく、その剛性に関わりなく優れた杭応力低減効果を発揮できることが確認された。 In other words, it was confirmed that it is important to prevent the liquefied ground from slipping through as a function / action of the edge cutting member 16, and the difference in effect due to the difference in rigidity is small. That is, it has been confirmed that the edge cutting member 16 may be a very thin member or a member having low rigidity as long as it is possible to prevent the liquefied ground from slipping through, and can exhibit an excellent pile stress reducing effect regardless of the rigidity. Was done.

したがって、本実施形態の構造物の液状化対策構造15及び構造物の液状化対策構造15の設計方法においては、液状化時の地震時地盤変位が大きく、液状化層1と非液状化層2、5との境界で杭応力が著しく大きくなる建物などの構造物4に対しても、縁切り部材16を設けることによって杭応力を大幅に低減させることが可能になる。 Therefore, in the design method of the liquefaction countermeasure structure 15 of the structure and the liquefaction countermeasure structure 15 of the structure of the present embodiment, the ground displacement during an earthquake during liquefaction is large, and the liquefaction layer 1 and the non-liquefaction layer 2 are present. Even for a structure 4 such as a building in which the liquefaction stress becomes remarkably large at the boundary with 5 and 5, the liquefaction stress can be significantly reduced by providing the edge cutting member 16.

以上、本発明に係る構造物の液状化対策構造及び構造物の液状化対策構造の設計方法の一実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。 Although one embodiment of the liquefaction countermeasure structure of the structure and the design method of the liquefaction countermeasure structure of the structure according to the present invention has been described above, the present invention is not limited to the above one embodiment. It can be changed as appropriate without departing from the purpose.

例えば、構造物4の構築時に縁切り部材16を設置もよいし(例えば土留め壁を縁切り部材16としてもよいし)、縁切り部材16としてシートパイルを地盤Gに打ち込むなどし、既存の構造物4に対して縁切り部材16(液状化防止構造15)を付加するようにしてもよい。 For example, the edge cutting member 16 may be installed at the time of constructing the structure 4 (for example, the earth retaining wall may be used as the edge cutting member 16), or the sheet pile may be driven into the ground G as the edge cutting member 16 to drive the existing structure 4 into the ground G. The edge cutting member 16 (liquefaction prevention structure 15) may be added to the surface.

1 液状化層
2 上層の非液状化層
3 杭(杭基礎)
4 構造物
4a 上部構造
4b 根入れ部
4c 基礎
5 下層の非液状化層
6 軟質材
7 軽量材
8 砂
10 スカートウォール(壁、壁体)
15 構造物の液状化対策構造
16 縁切り部材
F 水平力(荷重)
G 地盤
T 地下水位
1 Liquefied layer 2 Upper non-liquefied layer 3 Pile (pile foundation)
4 Structure 4a Superstructure 4b Rooting part 4c Foundation 5 Lower non-liquefied layer 6 Soft material 7 Lightweight material 8 Sand 10 Skirt wall (wall, wall body)
15 Structure liquefaction countermeasure structure 16 Edge cutting member F Horizontal force (load)
G Ground T Groundwater level

Claims (1)

液状化層の上に非液状化層がある地盤に杭基礎を備えて構築される構造物の液状化による被害を軽減させるための構造物の液状化対策構造の設計方法であって、
前記杭基礎を囲繞するように設けられるとともに、上端部側を前記液状化層の上の非液状化層に配し、下端部側を前記液状化層の下の非液状化層に配して設けられ、前記杭基礎側の液状化層とその外側の液状化層を縁切りする縁切り部材を備え、
前記縁切り部材の上端部は、前記構造物の下端よりも上方に配されており、
前記構造物の諸元を設定する構造物諸元設定工程と、
前記杭基礎、前記縁切り部材、および前記構造物の根入れ部のそれぞれの地盤ばねを算出する地盤ばね設定工程と、
前記縁切り部材がない場合の地震時の地盤変位を一般地盤変位として算出する一般地盤変位算出工程と、
前記杭基礎の前記縁切り部材内に位置する部分の地盤変位を基準にしつつ、前記一般地盤変位を前記地盤ばねを介して梁ばねモデルからなる構造物モデルに与えて前記縁切り部材の変位を算出し、該縁切り部材の変位を地震時の前記縁切り部材の内側の地盤変位として求める縁切り部材内地盤変位算出工程と、
前記一般地盤変位を前記縁切り部材、前記構造物の根入れ部、および前記縁切り部材の下端より深い位置にある杭基礎に与え、且つ前記縁切り部材の内側の地盤変位を前記杭基礎に与えて、新たな前記縁切り部材の内側の地盤変位を求める縁切り部材内地盤変位更新工程と、
前記縁切り部材内地盤変位更新工程を前記縁切り部材の変位の差が収束するまで繰り返し行い、前記縁切り部材の変位の差が収束した段階の前記縁切り部材の変位を前記縁切り部材の内側の地盤変位として決定する縁切り部材内地盤変位決定工程と、
前記縁切り部材内地盤変位決定工程で決定した前記縁切り部材の内側の地盤変位を基にして前記杭基礎の地震時の応力を算定する杭応力算出工程と、を備えていることを特徴とする構造物の液状化対策構造の設計方法。
It is a design method for liquefaction countermeasure structures of structures to reduce damage caused by liquefaction of structures constructed with pile foundations on the ground where there is a non-liquefaction layer on top of the liquefaction layer.
It is provided so as to surround the pile foundation, and the upper end side is arranged in the non-liquefaction layer above the liquefaction layer, and the lower end side is arranged in the non-liquefaction layer under the liquefaction layer. Provided, the liquefaction layer on the pile foundation side and the liquefaction layer on the outside thereof are provided with an edge cutting member for edge cutting.
The upper end portion of the edge cutting member is arranged above the lower end portion of the structure.
The structure specification setting process for setting the specifications of the structure and
A ground spring setting step for calculating each ground spring of the pile foundation, the edge cutting member, and the rooting portion of the structure, and
A general ground displacement calculation process that calculates the ground displacement at the time of an earthquake when there is no edge cutting member as a general ground displacement, and
The displacement of the edge cutting member is calculated by giving the general ground displacement to the structure model composed of the beam spring model via the ground spring while referring to the ground displacement of the portion of the pile foundation located in the edge cutting member. The step of calculating the ground displacement inside the edge cutting member, which obtains the displacement of the edge cutting member as the ground displacement inside the edge cutting member at the time of an earthquake.
The general ground displacement is given to the edge cutting member, the rooting portion of the structure, and the pile foundation located deeper than the lower end of the edge cutting member, and the ground displacement inside the edge cutting member is given to the pile foundation. A step of updating the ground displacement inside the edge cutting member for obtaining the ground displacement inside the new edge cutting member, and
The ground displacement updating step inside the edge cutting member is repeated until the difference in displacement of the edge cutting member converges, and the displacement of the edge cutting member at the stage where the difference in displacement of the edge cutting member converges is used as the ground displacement inside the edge cutting member. The process of determining the ground displacement inside the edge cutting member to be determined, and
The structure is characterized by including a pile stress calculation step of calculating the stress of the pile foundation at the time of an earthquake based on the ground displacement inside the edge cutting member determined in the ground displacement determination step inside the edge cutting member. How to design a structure to prevent liquefaction of objects.
JP2016084553A 2016-04-20 2016-04-20 Liquefaction countermeasure structure design method for structures Active JP6804728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016084553A JP6804728B2 (en) 2016-04-20 2016-04-20 Liquefaction countermeasure structure design method for structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016084553A JP6804728B2 (en) 2016-04-20 2016-04-20 Liquefaction countermeasure structure design method for structures

Publications (2)

Publication Number Publication Date
JP2017193867A JP2017193867A (en) 2017-10-26
JP6804728B2 true JP6804728B2 (en) 2020-12-23

Family

ID=60155310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016084553A Active JP6804728B2 (en) 2016-04-20 2016-04-20 Liquefaction countermeasure structure design method for structures

Country Status (1)

Country Link
JP (1) JP6804728B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4273475A (en) * 1976-09-22 1981-06-16 Raymond International Inc. Load supporting structure
JPH11323993A (en) * 1998-05-12 1999-11-26 Shimizu Corp Disaster-suffering preventive structure of and disaster-suffering preventive method of foundation structure
JP2002227185A (en) * 2001-01-29 2002-08-14 Nkk Corp Method of preventing flotation of ground structure during ground liquefaction
JP2006029003A (en) * 2004-07-21 2006-02-02 Chugoku Electric Power Co Inc:The Floating preventive structure of structure and its construction method
JP2008280828A (en) * 2007-04-12 2008-11-20 Kinji Takeuchi Soil improvement body, foundation structure of building comprising mat foundation, and construction method of soil improvement mat foundation
JP2010163771A (en) * 2009-01-14 2010-07-29 Shimizu Corp Structure and construction method for coping with liquefaction of structure
JP5282963B2 (en) * 2009-05-11 2013-09-04 清水建設株式会社 Structure liquefaction countermeasure structure and structure liquefaction countermeasure construction method
JP5282965B2 (en) * 2009-05-25 2013-09-04 清水建設株式会社 Structure liquefaction countermeasure structure and structure liquefaction countermeasure construction method
JP5668971B2 (en) * 2010-10-29 2015-02-12 清水建設株式会社 Construction method for underground structures
JP6074158B2 (en) * 2012-04-27 2017-02-01 株式会社竹中工務店 Ground improvement body and ground improvement construction method

Also Published As

Publication number Publication date
JP2017193867A (en) 2017-10-26

Similar Documents

Publication Publication Date Title
US7896582B2 (en) Retaining wall
JP5471797B2 (en) Seismic reinforcement structure of revetment structure and existing revetment structure
CN108930285A (en) A kind of Optimal Design of Retaining Walls method considering geological process
JP6804728B2 (en) Liquefaction countermeasure structure design method for structures
JP5962580B2 (en) Steel sheet pile closing structure and its construction method
JP4987652B2 (en) Reinforcement structure and method of embankment and linear embankment
JP5480682B2 (en) Liquefaction countermeasure structure
JP6423628B2 (en) Building basic structure
Hamidi et al. The boundary between deep foundations and ground improvement
JP6206528B2 (en) Steel sheet pile closing structure and its construction method
CN115422631A (en) Bearing platform type slide-resistant pile structure bearing performance calculation method and device and storage medium
JP5282963B2 (en) Structure liquefaction countermeasure structure and structure liquefaction countermeasure construction method
JP6287358B2 (en) Embankment reinforcement structure
JP7093203B2 (en) Tower-shaped structure and its structural optimization method
JP2010275687A (en) Liquefaction countermeasure structure
JP2010163771A (en) Structure and construction method for coping with liquefaction of structure
JP6940092B2 (en) How to replace the seismic isolation support system and seismic isolation device
JP2011037233A (en) Insertion reinforcing member with partial flange and stress buffer layer structure
JP6347120B2 (en) Embankment reinforcement structure
JP7469608B2 (en) Support structure, gravity breakwater and construction method of gravity breakwater
JP7229498B1 (en) Diagonal support pile type sheet pile quay
JP5975892B2 (en) Ground liquefaction countermeasure structure by structure load and seismic isolation device
JP6287359B2 (en) Embankment reinforcement structure
RU2708330C1 (en) Piling wall
JP2009133162A (en) Unequal settling prevention structure of building in soft ground

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200928

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200928

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201006

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201119

R150 Certificate of patent or registration of utility model

Ref document number: 6804728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150