JP4922208B2 - Neutron measuring apparatus and neutron measuring method - Google Patents

Neutron measuring apparatus and neutron measuring method Download PDF

Info

Publication number
JP4922208B2
JP4922208B2 JP2008049966A JP2008049966A JP4922208B2 JP 4922208 B2 JP4922208 B2 JP 4922208B2 JP 2008049966 A JP2008049966 A JP 2008049966A JP 2008049966 A JP2008049966 A JP 2008049966A JP 4922208 B2 JP4922208 B2 JP 4922208B2
Authority
JP
Japan
Prior art keywords
neutron
neutrons
moderator
hollow tube
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008049966A
Other languages
Japanese (ja)
Other versions
JP2009204581A (en
Inventor
真 竹村
晋 内藤
泰志 後藤
喜二 狩野
俊吾 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008049966A priority Critical patent/JP4922208B2/en
Publication of JP2009204581A publication Critical patent/JP2009204581A/en
Application granted granted Critical
Publication of JP4922208B2 publication Critical patent/JP4922208B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

中性子検出器は、中性子と物質との相互作用により中性子を測定するものであるが、その特性上、エネルギーの高い中性子に対しては検出感度が低下してしまう。そのため、中高エネルギーを持つ中性子を効率よく検出するために、中性子検出手段の周囲を減速材で覆うことにより、減速材と中性子を作用させ中性子エネルギーを低くし、熱中性子化された中性子を放射線検出手段により検出する(特許文献1参照)。   The neutron detector measures neutrons by the interaction between neutrons and matter, but due to its characteristics, the detection sensitivity decreases for neutrons with high energy. Therefore, in order to detect neutrons with medium and high energy efficiently, the moderator and neutrons are acted on to reduce the neutron energy by covering the neutron detection means with a moderator, and thermal neutrons are detected by radiation. It detects by a means (refer patent document 1).

一方、従来の原子炉核計装技術において、炉心内の中性子束は炉心内に挿入された可動式又は固定式の中性子検出器によって測定されている。これらの中性子検出器は原子炉容器外から炉心内に延びる案内管内を移動し所定の位置で炉心内の中性子強度を測定するものである。
特開2003−8240862号公報
On the other hand, in the conventional nuclear reactor instrumentation technique, the neutron flux in the core is measured by a movable or fixed neutron detector inserted in the core. These neutron detectors move in a guide tube extending from the outside of the reactor vessel into the core and measure the neutron intensity in the core at a predetermined position.
JP 2003-8240862 A

上述した従来の原子炉の中性子測定手段は、中性子検出器を直接炉内に挿入して中性子束を検出するものであるが、炉内に挿入される中性子検出器は強度の放射線にさらされるため、長期間使用していると、検出感度が変化し中性子を正確に測定することができなくなったり、検出器自体が放射線により劣化するという問題があった。   The conventional neutron measurement means of the above-mentioned nuclear reactor is to detect a neutron flux by inserting a neutron detector directly into the reactor, but the neutron detector inserted into the reactor is exposed to intense radiation. When used for a long period of time, the detection sensitivity changes, and neutrons cannot be measured accurately, or the detector itself is deteriorated by radiation.

また、中性子検出器は多数本炉心内に挿入されるが、そのため多数の検出器案内管が必要になり、それらが原子炉容器を貫通して設けられるため、原子炉容器の強度が低下したり、貫通部から炉水が漏洩する等の問題があった。   In addition, many neutron detectors are inserted into the reactor core, which requires a large number of detector guide tubes, which are provided through the reactor vessel, reducing the strength of the reactor vessel. There was a problem such as leakage of reactor water from the penetrating part.

一方、炉心内の中性子を原子炉容器の外部等、炉心から離れた位置で測定する場合、中性子を輸送する機能を持った中空管により、中性子を輸送して測定する必要がある。しかしながら、中空管によって輸送される中性子は、全体の一部に過ぎないため、中空管内を通過してきた中性子を高感度のセンサにより測定する必要がある。   On the other hand, when measuring the neutron in the core at a position away from the core, such as outside the reactor vessel, it is necessary to transport and measure the neutron using a hollow tube having a function of transporting neutrons. However, since the neutrons transported by the hollow tube are only a part of the whole, it is necessary to measure the neutrons that have passed through the hollow tube with a highly sensitive sensor.

しかし、中高エネルギーの中性子を測定可能なエネルギーまで低下させる過程において、減速材との相互作用の結果、中性子の進行方向が変化する。これにより、中性子検出器に入射した中性子が減速材中でその進行方向を変えてしまい、中性子検出器に中性子が到達せず検出されないものがある。このため、特許文献1に示されているような従来の中性子検出器を用いても中高エネルギーの中性子に対しては、検出効率が低いという課題があった。   However, in the process of reducing medium-high energy neutrons to measurable energy, the direction of neutron travel changes as a result of interaction with the moderator. As a result, the neutron incident on the neutron detector changes its traveling direction in the moderator, and some neutrons do not reach the neutron detector and are not detected. For this reason, even if the conventional neutron detector as shown in Patent Document 1 is used, there is a problem that the detection efficiency is low for medium-high energy neutrons.

本発明は、上記課題を解決するためになされたもので、中性子検出器を炉心内等の強放射線領域に配置することなく、中高エネルギーの中性子を効率よく測定できる中性子測定装置及びその方法を提供することにある。   The present invention has been made to solve the above problems, and provides a neutron measurement apparatus and method capable of efficiently measuring neutrons of medium to high energy without arranging a neutron detector in a strong radiation region such as a reactor core. There is to do.

本発明に係る中性子測定装置は、上記課題を解決するために、中性子を輸送する中空管と、前記中空管内を輸送されてきた中性子を検出する中性子検出部からなる中性子測定装置であって、前記中性子検出部は、前記中空管の延長上に設けられた中空孔を有する減速材と、前記減速材の内部に設けられ前記中空孔の周囲に配置された少なくとも1以上の中性子検出器と、を有することを特徴とする。   A neutron measurement apparatus according to the present invention is a neutron measurement apparatus comprising a hollow tube for transporting neutrons and a neutron detection unit for detecting neutrons transported in the hollow tube in order to solve the above-mentioned problems, The neutron detector includes a moderator having a hollow hole provided on an extension of the hollow tube, and at least one or more neutron detectors provided inside the moderator and disposed around the hollow hole. It is characterized by having.

また、本発明に係る中性子測定方法は、中性子を輸送する機能を持った中空管をとおして、中性子を前記中空管の延長上に配置された中空孔に導き、前記中空孔に導かれた中性子を前記中空孔の周囲に配置された減速材により減速し、前記減速された中性子を前記減速材の内部に配置された中性子検出器により測定することを特徴とする。   The neutron measurement method according to the present invention guides neutrons to a hollow hole disposed on an extension of the hollow tube through a hollow tube having a function of transporting neutrons, and is guided to the hollow hole. The decelerated neutron is decelerated by a moderator disposed around the hollow hole, and the decelerated neutron is measured by a neutron detector disposed in the moderator.

本発明の中性子検出装置及び中性子検出方法によれば、中空管及び中空孔を通り減速材中に入った中性子のほとんどが中性子検出器で検出されるため、中性子検出装置の検出効率を飛躍的に向上させることができる。   According to the neutron detection apparatus and neutron detection method of the present invention, since most of the neutrons that have entered the moderator through the hollow tube and the hollow hole are detected by the neutron detector, the detection efficiency of the neutron detection apparatus is dramatically improved. Can be improved.

(第1の実施形態)
本発明の第1の実施形態に係る中性子検出装置を、図1乃至図3を参照して説明する。
図1において、中性子検出装置10は、中性子を輸送する機能を持った中空管1と、中性子検出部11からなり、中性子検出部11は、中空管1の延長上に設けられた所定長さの中空孔3をほぼ中央に有する減速材2と、減速材2の内部に中空管を取り囲むように設けられた中性子検出器4と、から構成される。
(First embodiment)
A neutron detection apparatus according to a first embodiment of the present invention will be described with reference to FIGS.
In FIG. 1, a neutron detection device 10 includes a hollow tube 1 having a function of transporting neutrons and a neutron detection unit 11, and the neutron detection unit 11 has a predetermined length provided on an extension of the hollow tube 1. A moderator 2 having a hollow hole 3 at the center and a neutron detector 4 provided inside the moderator 2 so as to surround the hollow tube.

次に、上記構成の中性子検出装置の検出機能について説明する。
一般に、中性子のエネルギーが低いほど中性子検出器4内の物質と中性子5が作用する確率は高いので、中性子を効率よく検出するためには、減速材2でエネルギーを失った中性子5の大部分を中性子検出部4に導くことが重要となる。
Next, the detection function of the neutron detection apparatus having the above configuration will be described.
In general, the lower the neutron energy, the higher the probability that the neutron detector 4 and the substance in the neutron detector 4 will act. Therefore, in order to detect neutrons efficiently, most of the neutrons 5 that have lost energy with the moderator 2 are removed. It is important to guide to the neutron detector 4.

また、中性子5は減速材2と作用すると、その進行方向がほぼ等方的に変化することが知られている。このため、減速材中に中空孔3がない場合には、減速材2中で進行方向が変化した中性子5のうち半数は中性子検出部4以外の方向に進んでしまい検出できない。   Further, it is known that when the neutron 5 acts with the moderator 2, its traveling direction changes substantially isotropically. For this reason, when there is no hollow hole 3 in the moderator, half of the neutrons 5 whose traveling direction has changed in the moderator 2 travels in a direction other than the neutron detector 4 and cannot be detected.

本第1の実施形態に係る中性子検出装置では、中空管1を通り、中空孔3中に導かれた中性子5のうち、減速材2と作用しエネルギーを失い中性子検出器4に入った中性子5は、中性子検出器4により検出される。   In the neutron detection apparatus according to the first embodiment, among the neutrons 5 that have passed through the hollow tube 1 and led into the hollow hole 3, the neutrons that acted with the moderator 2 and lost energy and entered the neutron detector 4. 5 is detected by the neutron detector 4.

すなわち、中性子を輸送する機能を持った中空管1を通った中性子5は、中空管1がコリメータの役割を果たすため、ほぼ平行なビームとなる。このため、ほとんどの中性子5は中空管の延長上にある中空孔3に導かれ、中空孔3の底部において周囲が減速材2及び中性子検出器4に囲まれた状態で減速材2と効率よく相互作用する。   That is, the neutron 5 that has passed through the hollow tube 1 having a function of transporting neutrons becomes a substantially parallel beam because the hollow tube 1 serves as a collimator. For this reason, most of the neutrons 5 are guided to the hollow hole 3 on the extension of the hollow tube, and the efficiency of the moderator 2 and the efficiency is reduced with the periphery surrounded by the moderator 2 and the neutron detector 4 at the bottom of the hollow hole 3. Interacts well.

中性子5と減速材2の相互作用により、中性子5の進行方向は変化し、エネルギーを失った中性子5が中性子検出器4に入ると、所定の確率に従い中性子検出器4内の物質と作用して、中性子5が検出される。   Due to the interaction between the neutron 5 and the moderator 2, the traveling direction of the neutron 5 changes, and when the lost neutron 5 enters the neutron detector 4, it acts on the substance in the neutron detector 4 according to a predetermined probability. The neutron 5 is detected.

このように、本第1の実施形態に係る発明では、減速材中に中空孔3を設けたので、中空孔3を通過し減速材2と作用して進行方向が変化した中性子5は周囲のほとんどを減速材2で囲まれているため、減速材2と複数回作用して進行方向が変化し、結果的に中性子検出部4に入る中性子数が増加する。   As described above, in the invention according to the first embodiment, since the hollow hole 3 is provided in the moderator, the neutron 5 that has passed through the hollow hole 3 and has acted with the moderator 2 to change the traveling direction is surrounded by Since most of them are surrounded by the moderator 2, the traveling direction is changed by acting with the moderator 2 a plurality of times, and as a result, the number of neutrons entering the neutron detector 4 increases.

次に、中空孔3による検出効率の向上の計算例を図2に示す。図2は、中空孔3がある中性子センサの検出効率を、中性子のエネルギーを関数として、モンテカルロ中性子輸送計算コードで計算した例である。また、中空孔3がない中性子センサの計算結果も図2に示した。いずれのエネルギーでも中空孔3を持つ中性子センサの検出効率は向上する。   Next, FIG. 2 shows a calculation example for improving the detection efficiency by the hollow hole 3. FIG. 2 is an example in which the detection efficiency of a neutron sensor having a hollow hole 3 is calculated using a Monte Carlo neutron transport calculation code as a function of neutron energy. Moreover, the calculation result of the neutron sensor without the hollow hole 3 is also shown in FIG. In any energy, the detection efficiency of the neutron sensor having the hollow hole 3 is improved.

中性子5が漏れにくくするためには、中空孔3が長いほうが良いが、長すぎると検出器が大きくなってしまう。図3に中空孔の長さを変化させたときの計算例を示す。このとき、中空孔3の直径は2.54cmであり、中空管1の直径とほぼ同じ径にしている。図3から、中空孔3の長さを変化させても、検出効率の変化は小さいため、13cm以上長くする必要はないことがわかる。   In order to make the neutron 5 difficult to leak, it is better that the hollow hole 3 is long, but if it is too long, the detector becomes large. FIG. 3 shows a calculation example when the length of the hollow hole is changed. At this time, the diameter of the hollow hole 3 is 2.54 cm, which is substantially the same as the diameter of the hollow tube 1. FIG. 3 shows that even if the length of the hollow hole 3 is changed, the change in detection efficiency is small, so that it is not necessary to increase the length by 13 cm or more.

本第1の実施形態では、中空孔3周囲の側部及び底部に中性子検出器4を複数配置することにより、熱中性子化された中性子5をもれなく検出する。
また、図1の例では中性子検出器4は減速材2の中に設けられているが、図4に示すように、減速材2の外にあってもよい。このとき、中性子検出器4を分割せず、減速材2を中性子検出器4の中に設置してもよい。
In the first embodiment, a plurality of neutron detectors 4 are arranged on the side and bottom around the hollow hole 3 to detect all neutrons 5 converted into thermal neutrons.
In the example of FIG. 1, the neutron detector 4 is provided in the moderator 2, but may be outside the moderator 2 as shown in FIG. 4. At this time, the moderator 2 may be installed in the neutron detector 4 without dividing the neutron detector 4.

また、中高エネルギーの中性子を対象とした場合、周囲の熱中性子を検出してしまうと正確な測定ができないため、熱中性子を除く必要がある。そのため減速材2の周囲に熱中性子吸収層を設置することにより、周囲の熱中性子からの影響を低減してもよい。   In addition, when medium and high energy neutrons are targeted, it is necessary to exclude thermal neutrons because accurate measurement cannot be performed if surrounding thermal neutrons are detected. Therefore, by installing a thermal neutron absorption layer around the moderator 2, the influence from the surrounding thermal neutrons may be reduced.

また、周囲からの熱中性子を遮蔽するとともに、減速材2によって減速された中性子5を中性子センサ内にとどめるため、減速材2の周囲に中性子反射材を設置してもよい。さらに、γ線による影響を低減するために、減速材2の周囲にγ線遮蔽層を設置してもよい。   Further, a neutron reflector may be provided around the moderator 2 in order to shield thermal neutrons from the surroundings and keep the neutron 5 decelerated by the moderator 2 in the neutron sensor. Furthermore, in order to reduce the influence of γ rays, a γ ray shielding layer may be provided around the moderator 2.

このように、本第1の実施形態の中性子検出装置によれば、中性子を輸送する中空管1とその延長上に中空孔3を有する減速材及び中性子検出器を備えることにより、中空管1及び中空孔3を通り減速材2中に入った中性子5のほとんどが中性子検出器4で検出されるため、中性子検出装置の検出効率を飛躍的に向上させることができる。   Thus, according to the neutron detection apparatus of the first embodiment, the hollow tube 1 for transporting neutrons and the moderator and the neutron detector having the hollow hole 3 on the extension thereof are provided. Since most of the neutrons 5 that have entered the moderator 2 through 1 and the hollow hole 3 are detected by the neutron detector 4, the detection efficiency of the neutron detector can be dramatically improved.

また、中空管及び中空孔を設けたことにより中性子を効率よく測定できるために、中性子検出部を強放射線領域に配置する必要がないので、中性子検出器の高信頼化、高寿命化、低コスト化及びメンテナンスの簡素化を図ることができる。   In addition, since the neutron can be efficiently measured by providing the hollow tube and the hollow hole, it is not necessary to arrange the neutron detector in the strong radiation region, so the neutron detector has high reliability, long life, low Cost reduction and simplification of maintenance can be achieved.

(第2の実施形態)
本発明の第2の実施形態に係る中性子測定装置を図5を参照して説明する。
なお、第1の実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。
(Second Embodiment)
A neutron measurement apparatus according to a second embodiment of the present invention will be described with reference to FIG.
In addition, the same code | symbol is attached | subjected to the structure same as 1st Embodiment, and the overlapping description is abbreviate | omitted.

図5において、中性子を輸送する機能を持った中空管1は原子炉容器6内に配置され、中性子検出部11は原子炉容器6外に配置されている。中性子検出部11の構成は第1の実施形態のものと同じである。   In FIG. 5, the hollow tube 1 having a function of transporting neutrons is arranged in the reactor vessel 6, and the neutron detector 11 is arranged outside the reactor vessel 6. The configuration of the neutron detector 11 is the same as that of the first embodiment.

上記構成の中性子測定装置において、中性子5は中空管1を通り、原子炉容器6を透過した後、中空孔3中に入り、減速材2と作用しエネルギーを失い、中性子検出手段4で検出される。   In the neutron measuring apparatus having the above configuration, the neutron 5 passes through the hollow tube 1 and passes through the reactor vessel 6, then enters the hollow hole 3, loses energy by acting with the moderator 2, and is detected by the neutron detection means 4. Is done.

炉心で発生した中性子5は、原子炉容器6内にある中空管1により、コリメートされ、平行なビームとなる。原子炉容器6は低エネルギーの中性子は遮蔽してしまうが、中高エネルギーの中性子5は透過する。この、中高エネルギーの中性子5はコリメートされているため、その多くが中空管の延長上に配置された減速材2の中空孔3に導かれる。   Neutrons 5 generated in the reactor core are collimated by the hollow tube 1 in the reactor vessel 6 to become parallel beams. The reactor vessel 6 shields low-energy neutrons, but transmits medium-high energy neutrons 5. Since these medium-high energy neutrons 5 are collimated, most of them are guided to the hollow holes 3 of the moderator 2 disposed on the extension of the hollow tube.

このように、本第2の実施形態の中性子検出装置によれば、炉心内の中性子を中空管1をとおして原子炉容器6外に配置された中性子検出部11で測定するために、中性子検出器4を強放射線領域に配置する必要がなく、また、中空管1からの中性子を減速材2に囲まれた中空孔3に導くことにより、中性子5を高効率で測定できるので、中性子検出器4の高信頼化、高寿命化、低コスト化及びメンテナンスの簡素化を図ることができる。   Thus, according to the neutron detection apparatus of the second embodiment, in order to measure the neutron in the core with the neutron detection unit 11 arranged outside the reactor vessel 6 through the hollow tube 1, It is not necessary to arrange the detector 4 in the strong radiation region, and the neutron 5 can be measured with high efficiency by guiding the neutron from the hollow tube 1 to the hollow hole 3 surrounded by the moderator 2. The detector 4 can be highly reliable, have a long service life, can be reduced in cost, and can be simplified in maintenance.

(第3の実施形態)
本発明の第3の実施形態に係る中性子測定装置を図6を参照して説明する。
なお、第1及び第2の実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。
(Third embodiment)
A neutron measurement apparatus according to a third embodiment of the present invention will be described with reference to FIG.
In addition, the same code | symbol is attached | subjected to the structure same as 1st and 2nd embodiment, and the overlapping description is abbreviate | omitted.

図6において、中性子を輸送する機能を持った中空管1を原子炉炉心7内に中空管1の1部又は全部を挿入し、中性子検出部11を原子炉容器6内でかつ炉心7外に配置する。   In FIG. 6, a hollow tube 1 having a function of transporting neutrons is inserted into a nuclear reactor core 7 with one or all of the hollow tubes 1, and a neutron detector 11 is placed in the nuclear reactor vessel 6 and the core 7. Place outside.

上記構成の中性子測定装置10において、炉心7で発生した中性子5は、中空管1を通り、中性子検出部11の中空孔3に導かれ、減速材2と作用しエネルギーを失い、中性子検出部4で検出される。   In the neutron measuring apparatus 10 having the above-described configuration, the neutron 5 generated in the reactor core 7 passes through the hollow tube 1 and is guided to the hollow hole 3 of the neutron detection unit 11, acts with the moderator 2 and loses energy, and the neutron detection unit. 4 is detected.

本第3の実施形態に係る中性子センサは、減速材2及び中性子検出器4からなる中性子検出部11が原子炉容器6内に配置されているため、原子炉容器6による散乱や熱中性子の遮蔽を考慮に入れる必要がない。   In the neutron sensor according to the third embodiment, since the neutron detection unit 11 including the moderator 2 and the neutron detector 4 is disposed in the reactor vessel 6, scattering by the reactor vessel 6 and shielding of thermal neutrons. There is no need to take into account.

このため、中性子検出としては有利な熱中性子を検出することも可能となる。このとき、中空孔3とその延長上にある中性子検出部4の間にある減速材2の厚さを変えることなどにより、熱中性子に対する検出効率を上げてもよい。   For this reason, thermal neutrons that are advantageous for neutron detection can be detected. At this time, the detection efficiency for thermal neutrons may be increased by changing the thickness of the moderator 2 between the hollow hole 3 and the neutron detection unit 4 on the extension.

また、中空管1によってコリメートされた中性子5が原子炉容器6で散乱されないため、中空管1を通った中性子5のほぼ全てを中空孔3へ導くことができるので、検出効率をさらに高めることができる。   Further, since the neutron 5 collimated by the hollow tube 1 is not scattered by the reactor vessel 6, almost all of the neutron 5 that has passed through the hollow tube 1 can be guided to the hollow hole 3, thereby further improving the detection efficiency. be able to.

本第3の実施形態によれば、中性子測定装置を原子炉容器内に配置することにより、中空管1を通った中性子5のうち中性子検出部4に入る中性子数はさらに増加するため、中性子センサの検出効率を向上することができる。   According to the third embodiment, the number of neutrons entering the neutron detection unit 4 among the neutrons 5 passing through the hollow tube 1 is further increased by arranging the neutron measurement device in the reactor vessel. The detection efficiency of the sensor can be improved.

また、単に、中空管を炉心に配置するだけで、放射線検出器を炉心内の強放射線領域に配置する必要がないので、中性子検出器の高信頼化、高寿命化、及び低コスト化を図ることができる。   In addition, simply placing the hollow tube in the core and eliminating the need to place the radiation detector in the strong radiation region in the core makes it possible to improve the reliability, life and cost of the neutron detector. I can plan.

本発明の第1の実施形態に係る放射線測定装置の構成図。The lineblock diagram of the radiation measuring device concerning a 1st embodiment of the present invention. 本発明に係る中性子検出器の中空孔の有無による検出効率を示す図。The figure which shows the detection efficiency by the presence or absence of the hollow hole of the neutron detector which concerns on this invention. 本発明に係る中性子検出器の中空孔長さによる検出効率を示す図。The figure which shows the detection efficiency by the hollow hole length of the neutron detector which concerns on this invention. 本発明の第1の実施形態に係る第2の放射線測定装置の構成図。The lineblock diagram of the 2nd radiation measuring device concerning a 1st embodiment of the present invention. 本発明の第2の実施形態に係る放射線測定装置の構成図。The block diagram of the radiation measuring device which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る放射線測定装置の構成図。The block diagram of the radiation measuring device which concerns on the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1…中空管、2…減速材、3…中空孔、4…中性子検出器、5…中性子、6…原子炉容器、7…炉心、10…中性子測定装置、11…中性子検出部。 DESCRIPTION OF SYMBOLS 1 ... Hollow tube, 2 ... Moderator, 3 ... Hollow hole, 4 ... Neutron detector, 5 ... Neutron, 6 ... Reactor container, 7 ... Core, 10 ... Neutron measuring apparatus, 11 ... Neutron detection part.

Claims (6)

中性子を輸送する中空管と、前記中空管内を輸送されてきた中性子を検出する中性子検出部からなる中性子測定装置であって、
前記中性子検出部は、前記中空管の延長上に設けられた中空孔を有する減速材と、前記減速材の内部に設けられ前記中空孔の周囲に配置された少なくとも1以上の中性子検出器と、を有することを特徴とする中性子測定装置。
A neutron measuring device comprising a hollow tube for transporting neutrons and a neutron detector for detecting neutrons transported in the hollow tube,
The neutron detector includes a moderator having a hollow hole provided on an extension of the hollow tube, and at least one or more neutron detectors provided inside the moderator and disposed around the hollow hole. And a neutron measuring apparatus.
前記中空管が原子炉容器内に設置され、前記中性子検出部は原子炉容器外に配置されたことを特徴とする請求項1記載の中性子測定装置。   The neutron measurement apparatus according to claim 1, wherein the hollow tube is installed in a nuclear reactor vessel, and the neutron detector is arranged outside the nuclear reactor vessel. 前記中空管の一部又は全部が炉心内に設置され、前記中性子検出部が原子炉容器内でかつ炉心外に配置されたことを特徴とする請求項1記載の中性子測定装置。   2. The neutron measurement apparatus according to claim 1, wherein a part or all of the hollow tube is installed in a reactor core, and the neutron detector is disposed in a reactor vessel and outside the reactor core. 前記中空孔の長さが13cm以下であることを特徴とする請求項1乃至3いずれか1項に記載の中性子測定装置。   The neutron measurement apparatus according to any one of claims 1 to 3, wherein the hollow hole has a length of 13 cm or less. 前記減速材の周囲に中性子反射材を配置したことを特徴とする請求項1乃至4いずれか1項に記載の中性子測定装置。   The neutron measuring device according to claim 1, wherein a neutron reflector is disposed around the moderator. 中性子を輸送する機能を持った中空管をとおして、中性子を前記中空管の延長上に配置された中空孔に導き、前記中空孔に導かれた中性子を前記中空孔の周囲に配置された減速材により減速し、前記減速された中性子を前記減速材の内部に配置された中性子検出器により測定することを特徴とする中性子測定方法。   Through a hollow tube having a function of transporting neutrons, neutrons are guided to a hollow hole disposed on the extension of the hollow tube, and neutrons guided to the hollow hole are disposed around the hollow hole. A neutron measurement method comprising: decelerating with a moderator, and measuring the decelerated neutron with a neutron detector disposed inside the moderator.
JP2008049966A 2008-02-29 2008-02-29 Neutron measuring apparatus and neutron measuring method Expired - Fee Related JP4922208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008049966A JP4922208B2 (en) 2008-02-29 2008-02-29 Neutron measuring apparatus and neutron measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008049966A JP4922208B2 (en) 2008-02-29 2008-02-29 Neutron measuring apparatus and neutron measuring method

Publications (2)

Publication Number Publication Date
JP2009204581A JP2009204581A (en) 2009-09-10
JP4922208B2 true JP4922208B2 (en) 2012-04-25

Family

ID=41146992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008049966A Expired - Fee Related JP4922208B2 (en) 2008-02-29 2008-02-29 Neutron measuring apparatus and neutron measuring method

Country Status (1)

Country Link
JP (1) JP4922208B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5398670B2 (en) * 2010-08-31 2014-01-29 株式会社東芝 Neutron measuring device
US10466367B1 (en) 2013-12-26 2019-11-05 Nuscale Power, Llc Neutron path enhancement
KR102082729B1 (en) * 2018-07-23 2020-04-23 한국표준과학연구원 Apparatus for measuring neutron ambient dose equivalent and the Method for measuring neutron ambient dose equivalent using thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS571993A (en) * 1980-06-06 1982-01-07 Tokyo Shibaura Electric Co Shielding device of fast reactor core
JP3041058B2 (en) * 1991-02-01 2000-05-15 株式会社東芝 Tank type fast breeder reactor
JPH05134049A (en) * 1991-11-13 1993-05-28 Aloka Co Ltd Neutron dose equivalent detector
JP2001042048A (en) * 1999-07-27 2001-02-16 Toshiba Corp Neutron detector and detecting method
JP2001343464A (en) * 2000-05-31 2001-12-14 Toshiba Corp Method and jig for measurement of neutron
JP4670068B2 (en) * 2001-08-24 2011-04-13 独立行政法人 日本原子力研究開発機構 Moderator structure of moderator neutron spectrometer
DE102004020979A1 (en) * 2004-04-22 2005-11-17 GSI Gesellschaft für Schwerionenforschung mbH Dosimeter for detecting neutron radiation
JP4690923B2 (en) * 2006-03-29 2011-06-01 株式会社東芝 Neutron flux measuring device, neutron flux measuring method, and nuclear reactor

Also Published As

Publication number Publication date
JP2009204581A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
JP4576368B2 (en) Neutron moderator, neutron irradiation method, and hazardous substance detection apparatus
US20200025955A1 (en) Integrated Primary and Special Nuclear Material Alarm Resolution
US8946645B2 (en) Radiation-monitoring diagnostic hodoscope system for nuclear-power reactors
US8993977B2 (en) Detector and a method for simultaneously detecting both gamma rays and neutron using the same
US9099211B2 (en) Prompt gamma-ray detection apparatus for analyzing chemical materials using femtosecond pulse laser-induced neutrons
JP2007064635A (en) Monitoring device and monitoring method for nuclear reactor state
JP4922208B2 (en) Neutron measuring apparatus and neutron measuring method
JP5022886B2 (en) Moisture detection method, moisture detection device and pipe inspection device
KR100988574B1 (en) Fuel rod scanner using the pulsed neutron generator
JP2008175732A (en) Neutron measurement device
KR101750284B1 (en) Inspection System of Spent Fuel combustion using CZT Detector
KR20230004587A (en) Fixed in-core detector design using axial and radial high-density sensors and SIC Schottky diodes with improved fragmentation gamma measurement sensitivity
JP5245173B2 (en) Radioactive gas measuring device and damaged fuel inspection device
JP6523877B2 (en) Reactor instrumentation system and reactor
JP4690923B2 (en) Neutron flux measuring device, neutron flux measuring method, and nuclear reactor
JP5443901B2 (en) Nuclear instrumentation system
JPH10123070A (en) Hydrogen content analyzer
JP6638065B2 (en) Reactor power monitoring device
JP4763632B2 (en) Moisture measuring method and moisture measuring device
JP2009198469A (en) Nuclear material detecting device, nuclear material inspection system, and clearance system
KR20230001804A (en) A movable radiation detector having dual type detection modules
JP2013130418A (en) Nuclear material detection device and nuclear material detection method
JP2000221293A (en) Device and method for measuring burnup of fuel for nuclear reactor
KR20220069952A (en) Apparatus, system, and method for detecting radiation with improved in-core measurement Schottky diodes
JPH04269697A (en) Non-destructive inspection device for reactor fuel rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120203

R151 Written notification of patent or utility model registration

Ref document number: 4922208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees