JP5245173B2 - Radioactive gas measuring device and damaged fuel inspection device - Google Patents

Radioactive gas measuring device and damaged fuel inspection device Download PDF

Info

Publication number
JP5245173B2
JP5245173B2 JP2008282407A JP2008282407A JP5245173B2 JP 5245173 B2 JP5245173 B2 JP 5245173B2 JP 2008282407 A JP2008282407 A JP 2008282407A JP 2008282407 A JP2008282407 A JP 2008282407A JP 5245173 B2 JP5245173 B2 JP 5245173B2
Authority
JP
Japan
Prior art keywords
radiation
measurement
cell
measurement cell
radioactive gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008282407A
Other languages
Japanese (ja)
Other versions
JP2010107483A (en
Inventor
博司 北口
孝広 田所
克宜 上野
均 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008282407A priority Critical patent/JP5245173B2/en
Publication of JP2010107483A publication Critical patent/JP2010107483A/en
Application granted granted Critical
Publication of JP5245173B2 publication Critical patent/JP5245173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

本発明は、放射性ガス測定装置に関し、特に、測定対象核種と陽電子放出核種を含む放射性ガスから、消滅γ線の影響を大幅に抑制することにより、測定対象核種から発生する放射線を測定する陽電子消滅γ線抑制型放射性ガス測定装置(以下、「放射性ガス測定装置」とも記す。)および破損燃料検査装置に関する。   The present invention relates to a radioactive gas measurement apparatus, and in particular, positron annihilation that measures radiation generated from a measurement target nuclide by significantly suppressing the influence of annihilation γ rays from a radio gas including the measurement target nuclide and a positron emission nuclide. The present invention relates to a γ-ray suppression type radioactive gas measuring device (hereinafter also referred to as “radioactive gas measuring device”) and a damaged fuel inspection device.

従来から原子力発電所では、原子炉燃料の健全性を確認する目的で原子炉冷却材(原子炉水)や主蒸気中に含まれる核分裂生成物の量を常に監視している。特に、原子炉水や主蒸気にはN−13(窒素−13)が多く含まれるケースが多い。このため、この燃料破損の健全性を監視する指標核種(I−131(ヨウ素−131)、Xe−133(キセノン−133))の測定では、N−13が放出する消滅γ線によって生じるバックグラウンド放射線の影響を抑制する測定技術が必須となっている。   Conventionally, nuclear power plants have always monitored the amount of fission products contained in reactor coolant (reactor water) and main steam for the purpose of confirming the soundness of reactor fuel. In particular, the reactor water and main steam often contain a lot of N-13 (nitrogen-13). For this reason, in the measurement of the index nuclides (I-131 (iodine-131), Xe-133 (xenon-133)) for monitoring the soundness of this fuel failure, the background generated by the annihilation gamma rays emitted by N-13 Measurement technology that suppresses the effects of radiation is essential.

従来の放射性ガス測定装置及び破損燃料検査装置について説明する。特許文献1(特開平7−218638号公報)は、従来技術の陽電子消滅γ線を抑制する測定方法を用いて、原子炉水中のI−131濃度を検出する破損燃料検査装置を開示する。特許文献1に記載される装置においては、2つの放射線検出器を用いて、陽電子消滅γ線について逆同時計数処理を行って炉水中に含まれる消滅γ線放出核種の影響を低減し、燃料破損検出の指標であるI−131を測定する。   A conventional radioactive gas measuring device and damaged fuel inspection device will be described. Patent Document 1 (Japanese Patent Laid-Open No. 7-218638) discloses a damaged fuel inspection apparatus that detects the concentration of I-131 in reactor water using a conventional measurement method for suppressing positron annihilation γ-rays. In the apparatus described in Patent Document 1, by using two radiation detectors, the reverse coincidence processing is performed on positron annihilation γ-rays to reduce the influence of annihilation γ-ray emitting nuclides contained in the reactor water, and fuel breakage I-131 which is an index of detection is measured.

また、特許文献2(特開2001−235546号公報)は、陽電子消滅γ線を抑制する測定方法を用いて、放射性ガス中の放射線濃度を検出する放射性ガス測定装置及び破損燃料検査装置を開示する。特許文献2に記載される装置においては、放射性ガスを対象として、2つの放射線検出器を用いて、陽電子消滅γ線について逆同時計数処理を行って放射性ガス中に含まれる消滅γ線放出核種の影響を低減し、燃料破損検出の指標であるXe−133を測定する。   Patent Document 2 (Japanese Patent Laid-Open No. 2001-235546) discloses a radioactive gas measuring device and a damaged fuel inspection device that detect a radiation concentration in a radioactive gas using a measurement method that suppresses positron annihilation γ-rays. . In the apparatus described in Patent Document 2, the annihilation γ-ray emission nuclide contained in the radioactive gas is obtained by performing reverse coincidence processing on the positron annihilation γ-ray using two radiation detectors for the radioactive gas. The influence is reduced, and Xe-133, which is an index for detecting fuel breakage, is measured.

図17は、従来の逆同時計数処理装置を備える放射性ガス測定装置の構成の1例を示す。図17に示される従来の放射性ガス測定装置において、放射性ガス(原子炉復水系の抽気ガスが主体で、オフガスと呼ばれる)の出入り口配管40a、40bに放射性ガス測定セル42を設け、遮蔽体41内に設けた主検出器43と副検出器44の二つの検出器で逆同時計数処理を行い、ガス中に含まれる消滅γ線放出核種(N−13)の影響を低減して、燃料破損検出の指標であるXe−133を効果的に測定する。   FIG. 17 shows an example of the configuration of a radioactive gas measuring apparatus provided with a conventional inverse coincidence processing apparatus. In the conventional radioactive gas measuring device shown in FIG. 17, a radioactive gas measuring cell 42 is provided in the inlet / outlet pipes 40a and 40b of the radioactive gas (mainly extracted from the reactor condensate system and called off-gas). Detect the fuel damage by performing the reverse coincidence processing with the two detectors of the main detector 43 and the sub-detector 44 provided in the gas detector to reduce the influence of the annihilation gamma ray emission nuclide (N-13) contained in the gas. Is effectively measured.

これらは、原子炉通常運転中の燃料破損検出の指標核種(I−131、Xe−133)の測定で、消滅γ線の影響を50%から20%程度低減して調べる事によって、燃料破損の有無を検知するものである。   These are measurements of the index nuclide (I-131, Xe-133) for detecting fuel breakage during normal operation of the reactor. By examining the effects of annihilation gamma rays reduced by about 50% to 20%, The presence or absence is detected.

特許文献3(特開2005−9890号公報)は、コリメータの位置を自動可変する機構を備える従来の放射性ガス測定装置を開示する。特許文献3に記載される気体放射能濃度測定装置は、放射性ガス測定容器(測定セル)と放射線検出器の間に、位置を自動的に可変にできるコリメータを備え、測定セル内の測定放射性ガス濃度が低レベルから高レベルまでの範囲に対応して放射線測定を可能としている。   Patent Document 3 (Japanese Patent Application Laid-Open No. 2005-9890) discloses a conventional radioactive gas measuring device having a mechanism for automatically changing the position of a collimator. The gas radioactivity concentration measuring apparatus described in Patent Document 3 includes a collimator capable of automatically changing the position between a radioactive gas measurement container (measurement cell) and a radiation detector, and the measurement radioactive gas in the measurement cell. Radiation measurement is possible corresponding to the concentration range from low to high.

さらに、特許文献4(特開2001−141829号公報)は、放射性流体が流れる配管にコリメータと放射線検出器が一体で移動する測定系を備える放射能測定装置を用いて、配管内流体及び配管内壁放射能の分布を計測する従来の分布計測方法を開示する。この特許文献4に記載される方法においては、測定流体が流れる配管に沿って配管内壁面積と配管内測定流体体積の測定範囲が異なる2箇所以上の測定値から、演算で配管内壁面積付着放射能量と測定流体放射能量を求める。   Furthermore, Patent Document 4 (Japanese Patent Application Laid-Open No. 2001-141829) discloses a fluid in a pipe and a pipe inner wall using a radioactivity measuring apparatus including a measurement system in which a collimator and a radiation detector move integrally with a pipe through which a radioactive fluid flows. A conventional distribution measuring method for measuring the distribution of radioactivity is disclosed. In the method described in Patent Document 4, the amount of radioactivity adhering to the pipe inner wall area is calculated from two or more measured values having different measurement ranges of the pipe inner wall area and the pipe measured fluid volume along the pipe through which the measurement fluid flows. Calculate the measured fluid radioactivity.

特開平7−218638号公報JP 7-218638 A 特開2001−235546号公報JP 2001-235546 A 特開2005−9890号公報Japanese Patent Laid-Open No. 2005-9890 特開2001−141829号公報JP 2001-141829 A

特許文献1(特開平7−218638号公報)及び特許文献2(特開2001−235546号公報)に記載される従来の放射線測定装置は、陽電子消滅γ線を抑制するために、いずれも2系統の放射線検出系とその逆同時計数処理回路を備える。しかしながら、特許文献1及び特許文献2に記載される従来の放射線測定装置は、2系統の放射線検出系とその逆同時計数処理回路を備えることにより、測定系が大掛かりで、かつ複雑となり、その遮蔽体系も含めると大型で、高価格になるという問題があった。   In order to suppress positron annihilation γ-rays, the conventional radiation measurement apparatuses described in Patent Document 1 (Japanese Patent Laid-Open No. 7-218638) and Patent Document 2 (Japanese Patent Laid-Open No. 2001-235546) both have two systems. Radiation detection system and its inverse coincidence processing circuit. However, the conventional radiation measurement apparatuses described in Patent Document 1 and Patent Document 2 are provided with two radiation detection systems and their inverse coincidence processing circuit, so that the measurement system is large and complicated, and the shielding thereof is performed. Including the system, there was a problem that it was large and expensive.

また、特許文献3(特開2005−9890号公報)及び特許文献4(特開2001−141829号公報)に記載される従来の放射線測定装置はいずれも、測定流体に混在する測定の妨害となる陽電子放出核種の影響を抑制するための装置を備えていない。このため、特許文献3及び特許文献4に記載される従来の放射線測定装置では、測定流体に混在する陽電子放出核種から放出される消滅γ線(511keV)を効果的に排除することが困難であるという問題があった。   In addition, any of the conventional radiation measurement devices described in Patent Document 3 (Japanese Patent Laid-Open No. 2005-9890) and Patent Document 4 (Japanese Patent Laid-Open No. 2001-141929) is an obstacle to measurement mixed in the measurement fluid. There is no device to suppress the influence of positron emitting nuclides. For this reason, in the conventional radiation measuring apparatus described in Patent Document 3 and Patent Document 4, it is difficult to effectively eliminate annihilation γ-rays (511 keV) emitted from positron emitting nuclides mixed in the measurement fluid. There was a problem.

本発明の目的は、簡単な構成により、小型で低コストの陽電子消滅γ線抑制型放射性ガス測定装置及び破損燃料検査装置を提供することである。   An object of the present invention is to provide a small-sized and low-cost positron annihilation γ-ray suppression type radioactive gas measuring device and damaged fuel inspection device with a simple configuration.

上記目的を達成するために、本発明の放射性ガス測定装置は、流入配管と排出配管とを備え、前記流入配管と前記排出配管とを通して、測定対象核種と陽電子放出核種を含む放射性ガスを流入及び排出する錐体形状の放射線測定セルと、前記放射性ガスから発生する放射線を測定する放射線検出器と、前記放射線測定セルと前記放射線検出器とを連通し、前記放射線測定セルと前記放射線検出器との間に所定の放射線計測幾何条件を設定する放射線コリメータとを備え、前記所定の放射線計測幾何条件として、前記放射線コリメータを介して前記放射線検出器が見込む前記放射線測定セルの内壁面積が、前記放射線測定セルの全内壁面積の1/2以下に設定され、前記放射線測定セルの側内壁を見込まない条件下で、前記放射線測定セルの長さ(h)と、前記放射線検出器が見込む前記放射線測定セルの最も遠い場所に存在する内壁面積の円換算直径(D)との比(h/D)が、1以上に設定され、前記測定対象核種として原子炉破損燃料検査の指標核種を測定し、燃料破損の有無を検知することを特徴とする。 In order to achieve the above object, a radioactive gas measurement device of the present invention includes an inflow pipe and an exhaust pipe, and flows in and through the inflow pipe and the exhaust pipe, a radioactive gas containing a measurement target nuclide and a positron emission nuclide. A cone-shaped radiation measurement cell to be discharged, a radiation detector for measuring radiation generated from the radioactive gas, the radiation measurement cell and the radiation detector are communicated, and the radiation measurement cell and the radiation detector A radiation collimator that sets a predetermined radiation measurement geometric condition between the radiation measurement cells, and an inner wall area of the radiation measurement cell that the radiation detector expects through the radiation collimator as the predetermined radiation measurement geometric condition is The length of the radiation measurement cell is set under 1/2 of the total inner wall area of the measurement cell and under the condition that the side inner wall of the radiation measurement cell is not expected. (H) and the ratio (h / D) between the circle-converted diameter (D) of the inner wall area existing at the farthest location of the radiation measurement cell expected by the radiation detector is set to 1 or more, and the measurement object An index nuclide for nuclear reactor damaged fuel inspection is measured as a nuclide, and the presence or absence of fuel breakage is detected.

また、本発明の破損燃料検査装置は、原子炉内に格納される原子炉燃料を通過した、測定対象核種と陽電子放出核種を含む放射性ガスを採取する採取部と、前記採取部により採取された前記放射性ガスから発生する放射線を測定する放射性ガス測定装置と、を備える破損燃料検査装置であって、前記放射性ガス測定装置が、前記採取部と接続される流入配管と、排出配管とを備え、前記流入配管と前記排出配管とを通して、測定対象核種と陽電子放出核種を含む前記放射性ガスを流入及び排出する錐体形状の放射線測定セルと、前記放射性ガスから発生する放射線を測定する放射線検出器と、前記放射線測定セルと前記放射線検出器とを連通し、前記放射線測定セルと前記放射線検出器との間に所定の放射線計測幾何条件を設定する放射線コリメータとを備え、前記所定の放射線計測幾何条件として、前記放射線コリメータを介して前記放射線検出器が見込む前記放射線測定セルの内壁面積が、前記放射線測定セルの全内壁面積の1/2以下に設定され、前記放射線測定セルの側内壁を見込まない条件下で、前記放射線測定セルの長さ(h)と、前記放射線検出器が見込む前記放射線測定セルの最も遠い場所に存在する内壁面積の円換算直径(D)との比(h/D)が、1以上に設定され、前記測定対象核種として原子炉破損燃料検査の指標核種を測定し、燃料破損の有無を検知することを特徴とする。 Further, the damaged fuel inspection apparatus of the present invention was collected by the sampling unit for sampling the radioactive gas containing the measurement target nuclide and the positron emitting nuclide that passed through the reactor fuel stored in the reactor, and the sampling unit A radioactive fuel measuring device that measures radiation generated from the radioactive gas, and a damaged fuel inspection device, the radioactive gas measuring device comprising an inflow pipe connected to the sampling unit, and an exhaust pipe, A cone-shaped radiation measurement cell that flows in and out the radioactive gas containing the measurement target nuclide and the positron emission nuclide through the inflow pipe and the discharge pipe, and a radiation detector that measures radiation generated from the radioactive gas. The radiation measurement cell and the radiation detector are connected to each other, and a radiation measurement geometrical condition is set between the radiation measurement cell and the radiation detector. An internal wall area of the radiation measurement cell expected by the radiation detector via the radiation collimator is set to ½ or less of a total internal wall area of the radiation measurement cell as the predetermined radiation measurement geometric condition The circular conversion of the length (h) of the radiation measurement cell and the inner wall area existing at the farthest location of the radiation measurement cell expected by the radiation detector under the condition that the side inner wall of the radiation measurement cell is not expected The ratio (h / D) with respect to the diameter (D) is set to 1 or more, an index nuclide for nuclear reactor damage fuel inspection is measured as the measurement target nuclide, and the presence or absence of fuel breakage is detected.

本発明によれば、逆同時計数処理等を行う複雑な放射線計測系を設けることなく、簡単な構成により、小型で低コストの陽電子消滅γ線抑制型放射性ガス測定装置及び破損燃料検査装置を提供することができる。   According to the present invention, there is provided a small-sized and low-cost positron annihilation γ-ray suppression type radioactive gas measuring device and damaged fuel inspection device with a simple configuration without providing a complicated radiation measurement system for performing reverse coincidence processing and the like. can do.

本発明の実施形態を、図面を用いて以下に説明する。なお、同一の構成要素には同一の参照符号を付して説明を省略する。   Embodiments of the present invention will be described below with reference to the drawings. In addition, the same referential mark is attached | subjected to the same component and description is abbreviate | omitted.

図1は、本発明の第1の実施形態の陽電子消滅γ線抑制型放射性ガス測定装置を示す図である。本実施形態の陽電子消滅γ線抑制型放射性ガス測定装置は、被測定ガスを導入する測定セル1と、測定セル1から放出される放射線を測定する放射線検出器2と、測定セル1と放射線検出器2とを内部に備え、測定セル1の外部から入射するバックグラウンド放射線の入射を防止する遮蔽体3と、遮蔽体3の外部から測定セル1に被測定ガスを導入する被測定放射性ガス流入配管10aと、測定セル1から被測定ガスを排出する被測定放射性ガス排出配管10bと、測定セル1からの放射線を放射線検出器2に導くコリメータ11とを備える。   FIG. 1 is a diagram showing a positron annihilation γ-ray suppression type radioactive gas measuring apparatus according to a first embodiment of the present invention. The positron annihilation γ-ray suppression type radioactive gas measuring device of this embodiment includes a measurement cell 1 for introducing a measurement gas, a radiation detector 2 for measuring radiation emitted from the measurement cell 1, a measurement cell 1 and radiation detection. And a shield 3 for preventing background radiation incident from the outside of the measurement cell 1 and a measurement radioactive gas inflow for introducing the gas to be measured to the measurement cell 1 from the outside of the shield 3 A pipe 10a, a measurement radioactive gas discharge pipe 10b that discharges a measurement gas from the measurement cell 1, and a collimator 11 that guides radiation from the measurement cell 1 to the radiation detector 2 are provided.

また、本発明の第1の実施形態の陽電子消滅γ線抑制型放射性ガス測定装置は、放射線検出器2からの検出データを増幅器6a、波高分析器6bを用いて処理し、放射線を測定する測定装置7と、その測定値から燃料破損の有無等を解析判定するデータ処理装置8と、その結果を表示する監視表示装置9とを備える。   Moreover, the positron annihilation γ-ray suppression type radioactive gas measurement apparatus according to the first embodiment of the present invention processes the detection data from the radiation detector 2 using the amplifier 6a and the pulse height analyzer 6b, and measures the radiation. A device 7, a data processing device 8 that analyzes and determines the presence or absence of fuel damage from the measured value, and a monitor display device 9 that displays the result are provided.

本発明の第1の実施形態の放射性ガス測定装置において、遮蔽体3は、一般に、鉛(Pb)又はタングステン(W)により形成される。遮蔽体3は、使用条件によっては、コストを低減するために鉄によって形成される。また、コリメータ11は、放射線検出器2から測定セル1内の測定対象を見込む視野(計測可能範囲)を定める。本発明は、コリメータ11、放射線検出器2及び測定セル1の間の計測幾何条件を定める。   In the radioactive gas measurement device according to the first embodiment of the present invention, the shield 3 is generally formed of lead (Pb) or tungsten (W). The shield 3 is made of iron in order to reduce costs depending on use conditions. Further, the collimator 11 determines a field of view (measurable range) in which a measurement target in the measurement cell 1 is expected from the radiation detector 2. The present invention defines the measurement geometric conditions between the collimator 11, the radiation detector 2 and the measurement cell 1.

図2は、本発明の第1の実施形態の陽電子消滅γ線抑制型放射性ガス測定装置を備える破損燃料検査装置を示す図である。本発明の破損燃料検査装置は、原子炉35に設置される。以下に、本発明の陽電子消滅γ線抑制型放射性ガス測定装置の動作を、本発明の破損燃料検査装置に適用する場合を例に以下に説明する。   FIG. 2 is a diagram showing a damaged fuel inspection apparatus including the positron annihilation γ-ray suppression type radioactive gas measurement apparatus according to the first embodiment of the present invention. The damaged fuel inspection device of the present invention is installed in the nuclear reactor 35. Hereinafter, the operation of the positron annihilation γ-ray suppression type radioactive gas measuring device of the present invention will be described as an example when applied to the damaged fuel inspection device of the present invention.

原子炉35内に、原子炉燃料36が格納され、原子炉燃料36を通過した測定対象ガスは、採取部37から採取される。採取部37から採取された測定対象ガスは、測定放射性ガス流入配管10aを通過して測定セル1を流れ、測定放射性ガス排出配管10bから排出される。測定ガスから放出する放射線は遮蔽体3の中に設けたコリメータ11を介して、放射線検出器2と測定装置7で測定する。その測定結果はデータ処理装置8に送られ、燃料破損の有無等を解析判定してその結果を監視表示装置9で表示する。   The reactor fuel 36 is stored in the nuclear reactor 35, and the measurement target gas that has passed through the nuclear reactor fuel 36 is collected from the collection unit 37. The measurement target gas collected from the collection unit 37 passes through the measurement radioactive gas inflow pipe 10a, flows through the measurement cell 1, and is discharged from the measurement radioactive gas discharge pipe 10b. The radiation emitted from the measurement gas is measured by the radiation detector 2 and the measuring device 7 through the collimator 11 provided in the shield 3. The measurement result is sent to the data processing device 8, and the presence or absence of fuel breakage is analyzed and determined, and the result is displayed on the monitor display device 9.

以下に本発明の原理をについて説明する。最初に、陽電子放出核種の消滅γ線の放出過程をN−13を例として説明する。N−13が放出する陽電子は、1.19 MeVのエネルギーを持つ。この陽電子が周りに存在する通常の負電子と結合して消滅するときに消滅γ線が放出される。このγ線は180度反対方向に2本のγ線(511keV)を同時に発生する。このγ線を消滅γ線と呼んでいる。測定対象試料にN−13等の陽電子放出核種が多量に含まれる状況の下では、この消滅γ線のエネルギー(511keV)より小さいエネルギーを有する測定対象核種のγ線測定が、消滅γ線のコンプトン散乱によって生じるバックグラウンド放射線によって困難になる。   The principle of the present invention will be described below. First, the annihilation γ-ray emission process of the positron emitting nuclide will be described with N-13 as an example. The positron emitted by N-13 has an energy of 1.19 MeV. When these positrons annihilate by combining with normal negative electrons existing around them, annihilation γ rays are emitted. This γ ray simultaneously generates two γ rays (511 keV) in the opposite direction of 180 degrees. This gamma ray is called annihilation gamma ray. Under the condition that the sample to be measured contains a large amount of positron emitting nuclides such as N-13, the γ-ray measurement of the target nuclides having an energy smaller than the energy of the annihilation γ-ray (511 keV) is performed. Background radiation caused by scattering makes it difficult.

本発明では陽電子放出核種の陽電子の放出過程に着目した。陽電子の飛程は、その放出エネルギーに依存する。そして、陽電子の飛程は、N−13(1.19MeV)の場合、ガス中では数mの飛程となり、固体中では数mmの飛程となる。つまり、ガス中で放出された陽電子は数m離れた場所で負の電子と結合して消滅ガンマ線を放出する場合がほとんどとなる。   In the present invention, attention is paid to the positron emission process of the positron emitting nuclide. The range of positron depends on its emission energy. In the case of N-13 (1.19 MeV), the range of positrons is a range of several meters in gas, and a range of several mm in solids. In other words, the positrons emitted in the gas are mostly combined with negative electrons at a distance of several meters to emit annihilation gamma rays.

一方、一般の放射線検出器は直径5cmから10cm程度以下であり、これらの検出器寸法に合わせて測定セル(測定ガスが入る容器)が設けられる。従って、通常の測定セルは直径が5cmから10cm程度である。この測定セルの寸法は陽電子の飛程に比べて2桁程度小さく、測定セル内で放出された陽電子は即時に測定セルの内壁に到達し、その内壁で消滅γ線を放出することになる。   On the other hand, a general radiation detector has a diameter of about 5 cm to 10 cm or less, and a measurement cell (container for measurement gas) is provided in accordance with these detector dimensions. Therefore, a normal measurement cell has a diameter of about 5 cm to 10 cm. The dimension of the measurement cell is about two orders of magnitude smaller than the range of positrons, and the positrons emitted in the measurement cell immediately reach the inner wall of the measurement cell and emit annihilation γ rays at the inner wall.

図3は、本発明の測定原理を説明する図である。図3に示される測定装置は、本発明の測定原理を説明するのに適するように構成される。すなわち、図3に示される測定装置は、遮蔽体3内に設けた測定セル1から放出する放射線を放射線検出器2、増幅器6a、波高分析器6bで測定し、その測定値をデータ処理装置8で解析し、結果を監視表示装置9で表示する。   FIG. 3 is a diagram for explaining the measurement principle of the present invention. The measuring device shown in FIG. 3 is configured to be suitable for explaining the measurement principle of the present invention. That is, the measuring apparatus shown in FIG. 3 measures the radiation emitted from the measuring cell 1 provided in the shield 3 by the radiation detector 2, the amplifier 6a, and the wave height analyzer 6b, and the measured values are the data processing apparatus 8. And the result is displayed on the monitor display device 9.

測定ガス試料は、測定セル1の出入り口配管10a、10bを通って流れる。この遮蔽体3内に設けた測定セル1と放射線検出器2の設置関係は、測定セル1全体から放出する放射線を見込む計測幾何条件になっている。図3に示される測定装置において、放射線計測の見込み範囲を4、4’で示す。   The measurement gas sample flows through the inlet / outlet pipes 10 a and 10 b of the measurement cell 1. The installation relationship between the measurement cell 1 and the radiation detector 2 provided in the shield 3 is a measurement geometric condition for allowing radiation emitted from the entire measurement cell 1. In the measurement apparatus shown in FIG. 3, the expected range of radiation measurement is indicated by 4, 4 '.

図3に示される測定装置の構成においては、測定試料流体の放射線と測定セル1の内壁5(点線で示す)で発生する消滅γ線の多くが検出器2で測定されることになる。このため、従来装置では、図17に示されるような逆同時計数処理等の特殊で複雑な計測回路を採用して消滅γ線抑制処理を行わなければ、測定試料ガスの中から指標核種(Xe−133等)を良好な感度と精度で測定することができなかった。   In the configuration of the measurement apparatus shown in FIG. 3, most of the radiation of the measurement sample fluid and the annihilation γ rays generated on the inner wall 5 (shown by dotted lines) of the measurement cell 1 are measured by the detector 2. For this reason, in the conventional apparatus, if the special and complicated measurement circuit such as the reverse coincidence counting process as shown in FIG. 17 is employed and the annihilation γ-ray suppression process is not performed, the index nuclide (Xe) is detected from the measurement sample gas. -133 etc.) could not be measured with good sensitivity and accuracy.

本発明は、この陽電子消滅過程の物理現象に基づき、検出器が見込む測定セルの内壁を可能な限り小さくする手段を講じることによって、消滅γ線の寄与を低減できる新たな知見により創生されたものである。また、この知見は、放射線検出器と測定セル間に設けるコリメータで決まる放射線計測幾何条件を最適に設定することによって実現される。   Based on the physical phenomenon of the positron annihilation process, the present invention was created by new knowledge that can reduce the contribution of annihilation γ rays by taking measures to make the inner wall of the measurement cell that the detector expects as small as possible. Is. This knowledge is realized by optimally setting the radiation measurement geometric condition determined by the collimator provided between the radiation detector and the measurement cell.

この遮蔽体3内にコリメータ11を設けることによって、測定セル1から放出する放射線の計測見込み範囲12(放射線計測に有効となる範囲)は円錐形状になる。第1図は円筒測定セル1と検出器2の関係を平面的に示したものである。第4図は、円筒測定セル1と検出器2の配置を立体的に示す(遮蔽体3及びコリメータ11の図示は省略)。この計測幾何条件では測定セル1の内壁で発生する妨害消滅γ線が検出器2に入射する量は、検出器2と対向する測定セル1の一部の内壁13に限定される。図3に示される装置において、測定セル1の全体を測定対象とする場合に比べ、測定セル1の内壁を見込む割合に依存して、妨害消滅γ線の影響を大幅に低減できることになる。   By providing the collimator 11 in the shield 3, the expected measurement range 12 of radiation emitted from the measurement cell 1 (a range effective for radiation measurement) has a conical shape. FIG. 1 shows the relationship between the cylindrical measuring cell 1 and the detector 2 in a plan view. FIG. 4 shows a three-dimensional arrangement of the cylindrical measurement cell 1 and the detector 2 (illustration of the shield 3 and the collimator 11 is omitted). Under this measurement geometric condition, the amount of interference annihilation γ rays generated on the inner wall of the measurement cell 1 is limited to a part of the inner wall 13 of the measurement cell 1 facing the detector 2. In the apparatus shown in FIG. 3, the influence of the interference annihilation γ-ray can be greatly reduced depending on the ratio of the inner wall of the measurement cell 1 expected as compared with the case where the entire measurement cell 1 is a measurement target.

図5は、本発明により測定されるスペクトルと従来例により測定されるスペクトルを示す。従来の測定スペクトルに比べ、本発明の測定スペクトルはN−13(511keV)の検出量を大幅に低減でき、そのコンプトン散乱部分も大幅に低減することができ、消滅γ線が放出する511keVよりエネルギーが小さい測定対象核種Xe−133(81keV)を顕著に測定できることが分かる。   FIG. 5 shows the spectrum measured by the present invention and the spectrum measured by the conventional example. Compared with the conventional measurement spectrum, the measurement spectrum of the present invention can greatly reduce the detection amount of N-13 (511 keV), can also greatly reduce the Compton scattering portion, and has an energy higher than 511 keV emitted by annihilation gamma rays. It can be seen that the measurement target nuclide Xe-133 (81 keV) having a small value can be remarkably measured.

次に、コリメータ11と検出器2の最適な幾何配置に関して説明する。逆同時計数装置等を採用した従来装置の消滅γ線抑制効果は、50%から20%である。この抑制効果と同等の本発明の計測幾何条件を検討する。   Next, the optimal geometric arrangement of the collimator 11 and the detector 2 will be described. The annihilation γ-ray suppression effect of a conventional apparatus employing an inverse coincidence apparatus or the like is 50% to 20%. The measurement geometric condition of the present invention equivalent to this suppression effect is examined.

図6(a)〜図6(c)は、検出器2とコリメータ11の幾何配置を示す図である。図6(a)〜図6(c)において、検出器2がコリメータ11を通して円筒の測定セル1を見込む条件がそれぞれ異なる。図6(a)は、検出器2と対向する測定セル1の底部内壁13だけを見込む計測幾何条件と、その見込み範囲12を示す。検出器2と対向する測定セル1の底部内壁13の内壁面積は、放射線検出器2の見込み方向の最も遠い場所に存在する測定セルの内壁面積を示す。図6(b)は、測定セル1の見込み範囲12の切片20が、測定セル1の円柱体長さ寸法の1/2になる計測幾何条件とその見込み範囲12を示す。同様に、図6(c)は、見込み範囲12の切片20が測定セル1の円柱体長さ寸法の4/5になる計測幾何条件とその見込み範囲12を示す。   FIG. 6A to FIG. 6C are diagrams showing the geometric arrangement of the detector 2 and the collimator 11. 6A to 6C, the conditions under which the detector 2 expects the cylindrical measurement cell 1 through the collimator 11 are different. FIG. 6A shows a measurement geometric condition in which only the bottom inner wall 13 of the measurement cell 1 facing the detector 2 is expected, and a prospective range 12 thereof. The inner wall area of the bottom inner wall 13 of the measurement cell 1 facing the detector 2 indicates the inner wall area of the measurement cell present at the farthest place in the expected direction of the radiation detector 2. FIG. 6B shows a measurement geometric condition where the intercept 20 of the expected range 12 of the measurement cell 1 is ½ of the cylindrical body length of the measurement cell 1 and the expected range 12. Similarly, FIG. 6C shows a measurement geometric condition where the intercept 20 of the expected range 12 is 4/5 of the cylindrical body length dimension of the measurement cell 1 and the expected range 12.

図6(a)においては、検出器2の見込み範囲12である検出器2と対向する測定セル1の底部内壁13から放出する消滅γ線と測定試料ガスの放射線が測定される。図6(b)、図6(c)においては、検出器2の見込み範囲12の円錐形状切片20以下の内壁面積(図6(b)、図6(c)において矢印で示す)から放出する消滅γ線と測定試料ガスの放射線が測定される。図6(a)〜図6(c)から明らかなように、図6(b)の消滅γ線の低減割合は、1/2(50%)程度で、図6(c)の消滅γ線の低減割合は、4/5(80%)程度となる。図6(a)は、図6(b)よりその低減効果は大きくなる。これらの消滅γ線の低減割合の関係は、測定セル1の全内壁面積(ST)と放射線検出器2が見込む内壁面積(S)の比で決まる。   In FIG. 6A, the annihilation γ-rays emitted from the bottom inner wall 13 of the measurement cell 1 facing the detector 2 which is the expected range 12 of the detector 2 and the radiation of the measurement sample gas are measured. 6 (b) and 6 (c), emission is made from the inner wall area (indicated by arrows in FIGS. 6 (b) and 6 (c)) below the conical section 20 of the prospective range 12 of the detector 2. The annihilation gamma rays and the radiation of the measurement sample gas are measured. As is clear from FIGS. 6A to 6C, the reduction rate of the annihilation γ rays in FIG. 6B is about ½ (50%), and the annihilation γ rays in FIG. The reduction ratio is about 4/5 (80%). FIG. 6A is more effective than FIG. 6B. The relationship between the reduction rates of these annihilation γ rays is determined by the ratio of the total inner wall area (ST) of the measurement cell 1 to the inner wall area (S) expected by the radiation detector 2.

図7(a)〜図7(c)は、計測幾何条件とその見込み範囲12を示す(検出器、コリメータは図示せず)。図7(a)に示される円柱測定セルについて、図6(a)〜図6(c)に示される計測幾何条件とその見込み範囲12と消滅γ線の低減割合の間にある関係が成り立つ。また、図7(b)に示す角型測定セル(b)、図7(c)に示す六角測定セル(c)等、任意形状の垂直柱セルに関して同様の関係が成り立つ。更に、不定形の形状セルや球形、楕円形等セルについても、本発明は十分に適用可能である。   Fig.7 (a)-FIG.7 (c) show measurement geometric conditions and its prospective range 12 (a detector and a collimator are not shown in figure). For the cylindrical measurement cell shown in FIG. 7 (a), there is a relationship between the measurement geometric conditions shown in FIGS. 6 (a) to 6 (c), its expected range 12, and the reduction rate of annihilation γ rays. In addition, the same relationship is established with respect to a vertical column cell having an arbitrary shape, such as the rectangular measurement cell (b) shown in FIG. 7B and the hexagonal measurement cell (c) shown in FIG. 7C. Furthermore, the present invention is sufficiently applicable to an irregularly shaped cell, a spherical cell, an elliptical cell, and the like.

図8は、測定セル1の全内壁面積(ST)と放射線検出器2が見込む内壁面積(S)とそれらの比の間の関係を示す(検出器とコリメータは図示せず)。垂直円柱測定セルの直径Dについて検出器とコリメータの配置で決まる測定セル1の見込み範囲12の切片高さがh1の場合、検出器が見込む全内壁面積はSとなる(図8で塗色により示す)。ここで、SとSTの比(S/ST)が、消滅γ線を抑制する割合となる。これらの関係について以下に説明する。   FIG. 8 shows the relationship between the total inner wall area (ST) of the measurement cell 1 and the inner wall area (S) expected by the radiation detector 2 and their ratio (detector and collimator not shown). When the intercept height of the prospective range 12 of the measurement cell 1 determined by the arrangement of the detector and the collimator is h1 with respect to the diameter D of the vertical cylindrical measurement cell, the total inner wall area expected by the detector is S (depending on the paint color in FIG. 8) Show). Here, the ratio of S to ST (S / ST) is a ratio for suppressing annihilation γ-rays. These relationships will be described below.

図9は、測定セル1の直径Dが10cmで、測定セル1の見込み範囲12の切片(h)が2.5、5、7.5、10cmの計算パラメータの例を示す図である。また、図10は、垂直円柱測定セル1の長さ(高さh)を10cmにした場合の、検出見込み範囲の切片の高さ(h)と、測定セルの見込み内壁面積と全内壁面積の比(S/ST)を表した図である。さらに、図10は、測定セルの直径Dのパラメータを、10、5、2.5cmと変えた結果も示す。なお、結果を得る過程において、検出器が見込む測定セルの窓の面積(図9のW部分)は面積が小さいので無視している。   FIG. 9 is a diagram illustrating examples of calculation parameters in which the diameter D of the measurement cell 1 is 10 cm and the intercept (h) of the expected range 12 of the measurement cell 1 is 2.5, 5, 7.5, and 10 cm. FIG. 10 shows the height (h) of the intercept of the expected detection range, the expected inner wall area of the measurement cell, and the total inner wall area when the length (height h) of the vertical cylindrical measurement cell 1 is 10 cm. It is a figure showing ratio (S / ST). Furthermore, FIG. 10 also shows the result of changing the parameter of the measurement cell diameter D to 10, 5, and 2.5 cm. In the process of obtaining the results, the area of the measurement cell window (W portion in FIG. 9) expected by the detector is ignored because the area is small.

図10から明らかなように、垂直柱測定セルの高さがh=10cmで、検出器が垂直柱測定セルの長さ(10cm)の全体を見込む場合、S/ST比が1となる。S/ST比が1の条件は消滅γ線の抑制効果が全くない状態(性能)を示す。同様に、検出器が見込む垂直柱測定セルの長さが半分のとき(高さh=5cm)、S/ST比が0.5となる。これは消滅γ線を抑制する割合が50%であることを示す。また、垂直柱測定セルの高さhをさらに小さくしていくと、S/STも小さくなり、h=2.5cmでS/STは0.3程度となる。さらに、垂直柱測定セルの高さがh=0(測定セルの長さ方向の側内壁を全く見込まない状態)で、S/STは0.2以下となる。   As is apparent from FIG. 10, when the height of the vertical column measuring cell is h = 10 cm and the detector expects the entire length of the vertical column measuring cell (10 cm), the S / ST ratio is 1. A condition with an S / ST ratio of 1 indicates a state (performance) that has no effect of suppressing annihilation γ rays. Similarly, when the length of the vertical column measuring cell expected by the detector is half (height h = 5 cm), the S / ST ratio is 0.5. This indicates that the ratio of suppressing annihilation gamma rays is 50%. Further, when the height h of the vertical column measuring cell is further reduced, the S / ST is also reduced, and when h = 2.5 cm, the S / ST is about 0.3. Further, when the height of the vertical column measurement cell is h = 0 (a state in which no side inner wall in the length direction of the measurement cell is expected), S / ST is 0.2 or less.

以上、垂直柱測定セルの長さが10cmの場合について説明したが、測定セルの直径Dを変えても、同様のことが言える。すなわち、垂直柱測定セルの長さを変えても、検出器が見込む範囲の測定セル切片をセル長さの1/2以下に設計することによって、従来装置の消滅γ線抑制効果と同等の抑制割合である50%以下を達成できる。   Although the case where the length of the vertical column measurement cell is 10 cm has been described above, the same can be said even if the diameter D of the measurement cell is changed. In other words, even if the length of the vertical column measurement cell is changed, the measurement cell intercept in the range expected by the detector is designed to be ½ or less of the cell length, so that the suppression equivalent to the annihilation gamma ray suppression effect of the conventional device is achieved. A ratio of 50% or less can be achieved.

以上説明したように、本実施形態により、測定セルを見込む放射線検出器とコリメータで構成する放射線計測幾何条件において、検出器が測定セルを見込む範囲を測定セル長の半分以下に設定することによって、従来装置の逆同時計数処理を講じた複雑な測定系が不要となる。また、検出系全体を遮蔽する遮蔽体も1/2程度低減できる。これにより、簡素で小形・低コスト(約1/3)の実用的な消滅γ線抑制型測定装置を実現することができる。さらに、陽電子放出核種が混在する放射性ガス中の破損燃料検査指標核種を高感度・高精度で測定監視及び燃料破損を検知する高性能な破損燃料検査装置を実現することが可能となる。   As described above, according to the present embodiment, in the radiation measurement geometric condition configured by the radiation detector and the collimator that expects the measurement cell, by setting the range in which the detector expects the measurement cell to be half or less of the measurement cell length, A complicated measurement system using the reverse coincidence processing of the conventional apparatus is not required. In addition, the shielding body that shields the entire detection system can be reduced by about ½. Thereby, a simple, small and low cost (about 1/3) practical annihilation gamma ray suppression type measuring device can be realized. Furthermore, it is possible to realize a high-performance damaged fuel inspection apparatus that measures and monitors a damaged fuel inspection index nuclide in a radioactive gas mixed with positron emitting nuclides with high sensitivity and high accuracy and detects fuel damage.

本発明の第2の実施形態の陽電子消滅γ線抑制型放射性ガス測定装置について説明する。本発明の第1の実施形態として、垂直柱測定セルの側内壁を検出器が見込む条件に関する実施形態を示したが、本発明の第2の実施形態は、垂直柱測定セルの側内壁を見込まないケースの最適計測幾何条件に関する実施形態を示す。   A positron annihilation γ-ray suppression type radioactive gas measuring apparatus according to a second embodiment of the present invention will be described. As the first embodiment of the present invention, the embodiment related to the condition that the detector expects the side inner wall of the vertical column measuring cell is shown. However, the second embodiment of the present invention expects the side inner wall of the vertical column measuring cell. Fig. 6 illustrates an embodiment relating to an optimal measurement geometric condition for a case with no.

図11は、垂直柱測定セル1の側内壁(S’)を見込まないケースで、測定セル1の全内壁面積(ST)と放射線検出器2が見込む内壁面積(S)の関係を示す図である。ここで述べる内壁面積(S)は、上述したように放射線検出器2の見込み方向の最も遠い場所に存在する測定セル内壁面積を示す。なお、図11において、検出器とコリメータの図示は省略する。   FIG. 11 shows a relationship between the total inner wall area (ST) of the measurement cell 1 and the inner wall area (S) expected by the radiation detector 2 in a case where the side inner wall (S ′) of the vertical column measuring cell 1 is not expected. is there. The inner wall area (S) described here indicates the inner area of the measurement cell inner wall existing at the farthest place in the prospective direction of the radiation detector 2 as described above. In FIG. 11, the detector and the collimator are not shown.

直径Dの垂直柱測定セル1の長さ(高さh1、h2)が変わった場合、測定セルの見込み内壁面積(S)(このケースでは垂直柱測定セル1の底部面積S)と全内壁面積(ST)の比(S/ST)も大きく変わる。概念的には、垂直柱測定セル1の長さを長くするほどS/ST比が小さくなり、消滅γ線の抑制効果も大きくなる。   When the length (height h1, h2) of the vertical column measuring cell 1 with the diameter D changes, the expected inner wall area (S) of the measuring cell (in this case, the bottom area S of the vertical column measuring cell 1) and the total inner wall area The (ST) ratio (S / ST) also varies greatly. Conceptually, the longer the length of the vertical column measurement cell 1, the smaller the S / ST ratio and the greater the effect of suppressing annihilation γ rays.

図12は、垂直柱測定セル1の直径Dをパラメータにしたセルの長さとS/ST比の関係を示す図である。この結果からも分かるように、各直径Dにおいて、測定セルの長さ(h)を長くすると、S/ST比は小さくなる。また、従来装置の消滅γ線の抑制効果は50%から20%であり、従来装置の効果的な抑制効果20%以下(S/ST=0.2以下)を達成するには各セル直径Dにおいて、セル長さ(h)を10cm以上確保するように検出器見込み範囲を設計すれば良いことがわかる。   FIG. 12 is a diagram showing the relationship between the cell length and the S / ST ratio using the diameter D of the vertical column measuring cell 1 as a parameter. As can be seen from this result, for each diameter D, the S / ST ratio decreases as the length (h) of the measurement cell is increased. In addition, the suppression effect of annihilation γ rays of the conventional device is 50% to 20%, and each cell diameter D is required to achieve the effective suppression effect of 20% or less (S / ST = 0.2 or less) of the conventional device. Thus, it can be seen that the expected detector range should be designed so that the cell length (h) is 10 cm or more.

図13は、横軸に垂直柱測定セル1の長さ(h)と直径Dの比(h/D)を取り、図12の計算結果を示す図である。この結果から明らかなようにh/D比を1以上(図13で、実線の白抜き矢印で示す)に設計すれば、S/STが0.2以下(消滅γ線の抑制効果が20%以下)の値を得ることできることがわかる。また、この図中点線で検出器に見込まれる測定試料ガス容積(V)と各測定セルの直径D及びそのh/Dの関係を点線で示した。測定試料ガス容積(V)は、測定対象となる指標核種の測定感度に直接関係する。すなわち、検出器に見込まれる測定試料ガス容積(V)を考慮しつつ、S/STが0.2以下になる任意の測定幾何条件を選択することが重要となる。   FIG. 13 is a diagram illustrating the calculation result of FIG. 12 with the ratio (h / D) of the length (h) and the diameter D of the vertical column measuring cell 1 on the horizontal axis. As is apparent from this result, when the h / D ratio is designed to be 1 or more (indicated by a solid white arrow in FIG. 13), S / ST is 0.2 or less (the effect of suppressing annihilation γ rays is 20%. It can be seen that the following value can be obtained. In addition, the dotted line indicates the relationship between the measurement sample gas volume (V) expected in the detector, the diameter D of each measurement cell, and h / D thereof in the figure. The measurement sample gas volume (V) is directly related to the measurement sensitivity of the index nuclide to be measured. In other words, it is important to select an arbitrary measurement geometric condition in which S / ST is 0.2 or less, taking into account the measurement sample gas volume (V) expected in the detector.

図14は、h/Dが1の測定セル1とコリメータ11と放射線検出器2の平面構成例を示す図である。図14において、測定試料ガスと測定セル1の見込み内壁面積範囲12を実線で示す。図14に示される構成は、正方円柱測定セル1の直径Dが5cm、その長さが5cmの例であり、h/D=1の設計条件で、S/STは0.2以下となる。これは消滅γ線の抑制割合を20%以下にできることを示す。   FIG. 14 is a diagram illustrating a planar configuration example of the measurement cell 1, the collimator 11, and the radiation detector 2 with h / D = 1. In FIG. 14, the measurement sample gas and the expected inner wall area range 12 of the measurement cell 1 are indicated by solid lines. The configuration shown in FIG. 14 is an example in which the diameter D of the square cylindrical measurement cell 1 is 5 cm and the length thereof is 5 cm. Under the design condition of h / D = 1, S / ST is 0.2 or less. This indicates that the suppression rate of annihilation γ rays can be made 20% or less.

図15は、h/Dが1以上になる測定セル1とコリメータ11と放射線検出器2の平面構成例を示す図である。図15において、測定試料ガスと測定セル1の見込み内壁面積範囲12を実線で示した。図15に示される構成は、垂直長方測定セル1の直径Dが5cm、その長さが15cmの例であり、h/D=3の設計条件で、S/STは0.08以下となる。これは消滅γ線の抑制を8%以下にできることであり、従来装置の性能に比べて大幅な抑制効果を実現する。   FIG. 15 is a diagram illustrating a planar configuration example of the measurement cell 1, the collimator 11, and the radiation detector 2 in which h / D is 1 or more. In FIG. 15, the measurement sample gas and the expected inner wall area range 12 of the measurement cell 1 are indicated by solid lines. The configuration shown in FIG. 15 is an example in which the diameter D of the vertical rectangular measurement cell 1 is 5 cm and the length thereof is 15 cm. Under the design condition of h / D = 3, S / ST is 0.08 or less. . This means that the suppression of annihilation γ rays can be reduced to 8% or less, and a significant suppression effect is realized as compared with the performance of the conventional apparatus.

以上説明した本実施形態のように垂直柱測定セルの側内壁を見込まないケースでは、測定セルを見込む放射線検出器とコリメータで構成する放射線計測幾何条件において、垂直柱測定セルの直径D(円直径)と長さhの比(h/D)を1以上に設定することによって、従来装置の逆同時計数処理を講じた複雑な測定系を不要にし、検出系全体を遮蔽する遮蔽体も1/2程度低減でき、簡素で約1/3低コストの消滅γ線抑制型測定装置を実現することができる。   In the case where the side wall of the vertical column measurement cell is not expected as in the present embodiment described above, the diameter D (circular diameter) of the vertical column measurement cell is obtained in the radiation measurement geometric condition including the radiation detector and the collimator that anticipates the measurement cell. ) And the length h (h / D) is set to 1 or more, thereby eliminating the need for a complicated measurement system that employs the reverse coincidence processing of the conventional apparatus and shielding the entire detection system by 1 / An annihilation γ-ray suppression type measuring apparatus that can be reduced by about 2 and that is simple and low in cost by about 1/3 can be realized.

以上垂直柱測定セルについて説明したが、外形が任意の測定セルに対しても、検出器が見込む測定セルの長さhと検出器の見込み方向の最も遠い場所に存在する測定セルの内面積径Dから最適に設計できることになる。また、上記内面積径Dはコリメータのコリメーション形状を円として述べているが、楕円や正方形、六角形等の形状に対しても、その見込み内面積で決まる円形換算の直径D(円換算直径)として円形の形状と同等の最適設計が可能で、上述と同様の測定装置を実現することができる。なお、本願では、「円換算直径」を「円直径」を含む広義の意味で使用する。   Although the vertical column measurement cell has been described above, the measurement cell length h and the inner diameter of the measurement cell existing in the farthest position in the expected direction of the detector, even for a measurement cell having an arbitrary external shape D can be designed optimally. Moreover, although the said inner area diameter D describes the collimation shape of the collimator as a circle, the diameter D (circle equivalent diameter) determined by the estimated inner area for the shape of an ellipse, square, hexagon, etc. As described above, an optimum design equivalent to a circular shape is possible, and a measurement apparatus similar to the above can be realized. In the present application, “circle converted diameter” is used in a broad sense including “circle diameter”.

図16は、本発明の第3の実施形態の陽電子消滅γ線抑制型放射性ガス測定装置を示す図である。図16に示される第3の実施形態の放射性ガス測定装置は、本発明の第1の実施形態及び第2の実施形態実施の放射性ガス測定装置で使用される正方、垂直柱測定セルの代わりに、円錐体あるいは三角錐体、正方錐体の測定セルを使用する。   FIG. 16 is a diagram showing a positron annihilation γ-ray suppression type radioactive gas measuring apparatus according to a third embodiment of the present invention. The radioactive gas measuring device of the third embodiment shown in FIG. 16 is used instead of the square and vertical column measuring cell used in the radioactive gas measuring device of the first embodiment and the second embodiment of the present invention. Measurement cells of cones, triangle cones and square cones are used.

第3の実施形態の放射性ガス測定装置が備える検出器2、コリメータ11、測定セル1の設計幾何配置は、第1の実施形態及び第2の実施形態の放射性ガス測定装置の備えるそれらの装置の設計幾何配置同様である。図16に示される第3の実施形態では、測定試料ガスと測定セル1の見込み内壁面積範囲12を示す実線に沿った錐体形状を有する測定セル1を使用する。図16に示される第3の実施形態は、錐体測定セル1の底面積直径Dが10cm、その長さが20cmの例を示し、h/D=2の設計条件で、S/STは0.1となる。これは、消滅γ線の抑制を10%にできることであり、前述の第1の実施形態及び第2の実施形態と同様の消滅γ線の抑制効果を発揮することができる。   The design geometry of the detector 2, the collimator 11, and the measurement cell 1 included in the radioactive gas measurement device of the third embodiment is the same as those of the devices included in the radioactive gas measurement device of the first embodiment and the second embodiment. The design geometry is the same. In the third embodiment shown in FIG. 16, the measurement cell 1 having a cone shape along the solid line indicating the measurement sample gas and the expected inner wall area range 12 of the measurement cell 1 is used. The third embodiment shown in FIG. 16 shows an example in which the cone measurement cell 1 has a bottom area diameter D of 10 cm and a length of 20 cm. Under the design condition of h / D = 2, S / ST is 0. .1. This means that the suppression of annihilation γ rays can be reduced to 10%, and the effect of suppressing annihilation γ rays similar to those in the first and second embodiments described above can be exhibited.

この第3の実施形態では、垂直柱体の測定セルについて、第1の実施形態及び第2の実施形態で必要となる遮蔽体材料と比較して、図16の一点鎖線により示される領域部分に相当する遮蔽体材料を大幅に削減可能となる。以上説明したように、第3の実施形態の陽電子消滅γ線抑制型放射性ガス測定装置により、検出系の遮蔽体寸法をさらに小さくでき、装置全体をより小形・低コスト化を達成することができる。   In the third embodiment, the vertical column measuring cell is compared with the shielding material required in the first and second embodiments in the region indicated by the one-dot chain line in FIG. The corresponding shielding material can be greatly reduced. As described above, the positron annihilation γ-ray suppression type radioactive gas measuring device of the third embodiment can further reduce the size of the shielding body of the detection system, and can achieve a reduction in size and cost of the entire device. .

本発明の第1の実施形態の陽電子消滅γ線抑制型放射性ガス測定装置を示す図である。It is a figure which shows the positron annihilation gamma ray suppression type radioactive gas measuring apparatus of the 1st Embodiment of this invention. 本発明の第1の実施形態の陽電子消滅γ線抑制型放射性ガス測定装置を備える破損燃料検査装置を示す図である。It is a figure which shows the damaged fuel test | inspection apparatus provided with the positron annihilation gamma ray suppression type radioactive gas measuring apparatus of the 1st Embodiment of this invention. 本発明の測定原理を説明する図である。It is a figure explaining the measurement principle of this invention. 本発明の円筒測定セルと検出器の立体配置を示す図である。It is a figure which shows the three-dimensional arrangement | positioning of the cylindrical measurement cell and detector of this invention. 本発明により測定されるスペクトルと従来例により測定されるスペクトルを示す図である。It is a figure which shows the spectrum measured by this invention, and the spectrum measured by a prior art example. 本発明の第1の実施形態において、測定セルを見込む条件が異なる検出器とコリメータの幾何配置を示す図である。In the 1st Embodiment of this invention, it is a figure which shows the geometric arrangement of the detector and collimator from which the conditions which look at a measurement cell differ. 本発明の第1の実施形態の円柱測定セル、角型測定セル、六角測定セル例を示す図である。It is a figure which shows the cylindrical measurement cell of the 1st Embodiment of this invention, a square-shaped measurement cell, and a hexagonal measurement cell. 測定セルの全内壁面積と放射線検出器が見込む内壁面積の関係を示す図である。It is a figure which shows the relationship between the total inner wall area of a measurement cell, and the inner wall area which a radiation detector anticipates. 測定セルの内壁面積を計算するパラメータの例を示す図である。It is a figure which shows the example of the parameter which calculates the inner wall area of a measurement cell. 円柱測定セルの見込み内壁面積と全内壁面積の比を表した図である。It is a figure showing ratio of the prospective inner wall area of a cylindrical measurement cell, and the total inner wall area. 垂直柱測定セル1の側内壁を見込まないケースの全内壁面積と放射線検出器2が見込む内壁面積の関係を示す図である。It is a figure which shows the relationship between the total inner wall area of the case which does not anticipate the side inner wall of the vertical column measurement cell 1, and the inner wall area which the radiation detector 2 anticipates. 垂直柱測定セルの直径Dをパラメータとして、セルの長さとS/ST比の関係を示す図である。It is a figure which shows the relationship between the length of a cell, and S / ST ratio by using the diameter D of a vertical column measurement cell as a parameter. 横軸に垂直柱測定セル1の長さ(h)と直径Dの比(h/D)を取り、S/ST比を示す図である。It is a figure which takes the ratio (h / D) of the length (h) and the diameter D of the vertical column measurement cell 1 on a horizontal axis, and shows S / ST ratio. 垂直柱測定セル1の長さ(h)と直径Dの比(h/D)が1の場合の測定セルとコリメータと検出器の構成の1例を示す図である。It is a figure which shows an example of a structure of a measurement cell, a collimator, and a detector in case the ratio (h / D) of the length (h) of the vertical column measurement cell 1 and the diameter D is 1. FIG. 垂直柱測定セル1の長さ(h)と直径Dの比(h/D)が3の場合の測定セルとコリメータと検出器の構成の1例を示す図である。It is a figure which shows an example of a structure of a measurement cell, a collimator, and a detector in case the ratio (h / D) of the length (h) of the vertical column measurement cell 1 and the diameter D is 3. FIG. 本発明の第3の実施形態に係る測定セルとコリメータと検出器の構成の1例を示す図である。It is a figure which shows an example of a structure of the measurement cell, collimator, and detector which concern on the 3rd Embodiment of this invention. 従来の放射性ガス測定装置を示す図である。It is a figure which shows the conventional radioactive gas measuring apparatus.

符号の説明Explanation of symbols

1…測定セル、2…放射線検出器,3、遮蔽体、4、4’…放射線検出器の見込み範囲、5…測定セル内壁、6a…増幅器、6b…波高分析器、7…放射線測定装置、8…データ処理装置、9…監視表示装置、10a…放射性ガス流入配管、10b…放射性ガス排出配管、11…コリメータ、12…計測見込み範囲、13…測定セルの底部内壁、35…原子炉、36…原子炉燃料、37…採取部、38…破損燃料検査装置、40a…放射性ガス流入配管、40b…放射性ガス排出配管、41…遮蔽体、42…測定セル、43…主検出器、44…副検出器   DESCRIPTION OF SYMBOLS 1 ... Measurement cell, 2 ... Radiation detector, 3, Shield, 4, 4 '... Expected range of radiation detector, 5 ... Measurement cell inner wall, 6a ... Amplifier, 6b ... Wave height analyzer, 7 ... Radiation measurement apparatus, DESCRIPTION OF SYMBOLS 8 ... Data processing apparatus, 9 ... Monitoring display apparatus, 10a ... Radioactive gas inflow piping, 10b ... Radioactive gas discharge piping, 11 ... Collimator, 12 ... Measurement range, 13 ... Bottom inner wall of measurement cell, 35 ... Reactor, 36 ... Reactor fuel, 37 ... Sampling part, 38 ... Damaged fuel inspection device, 40a ... Radioactive gas inflow piping, 40b ... Radioactive gas exhaust piping, 41 ... Shield, 42 ... Measuring cell, 43 ... Main detector, 44 ... Sub Detector

Claims (2)

流入配管と排出配管とを備え、前記流入配管と前記排出配管とを通して、測定対象核種と陽電子放出核種を含む放射性ガスを流入及び排出する錐体形状の放射線測定セルと、
前記放射性ガスから発生する放射線を測定する放射線検出器と、
前記放射線測定セルと前記放射線検出器とを連通し、前記放射線測定セルと前記放射線検出器との間に所定の放射線計測幾何条件を設定する放射線コリメータとを備え、
前記所定の放射線計測幾何条件として、前記放射線コリメータを介して前記放射線検出器が見込む前記放射線測定セルの内壁面積が、前記放射線測定セルの全内壁面積の1/2以下に設定され、前記放射線測定セルの側内壁を見込まない条件下で、前記放射線測定セルの長さ(h)と、前記放射線検出器が見込む前記放射線測定セルの最も遠い場所に存在する内壁面積の円換算直径(D)との比(h/D)が、1以上に設定され、
前記測定対象核種として原子炉破損燃料検査の指標核種を測定し、燃料破損の有無を検知することを特徴とする放射性ガス測定装置。
A cone-shaped radiation measurement cell comprising an inflow pipe and an exhaust pipe, through which the radioactive gas containing the measurement target nuclide and the positron emission nuclide flows in and out through the inflow pipe and the exhaust pipe;
A radiation detector for measuring radiation generated from the radioactive gas;
A radiation collimator that communicates the radiation measurement cell and the radiation detector and sets a predetermined radiation measurement geometric condition between the radiation measurement cell and the radiation detector;
As the predetermined radiation measurement geometric condition, an inner wall area of the radiation measurement cell expected by the radiation detector via the radiation collimator is set to be equal to or less than ½ of a total inner wall area of the radiation measurement cell, and the radiation measurement The length (h) of the radiation measurement cell and the circular equivalent diameter (D) of the inner wall area existing at the farthest location of the radiation measurement cell expected by the radiation detector under the condition that the side inner wall of the cell is not expected Ratio (h / D) is set to 1 or more,
An apparatus for measuring a radioactive gas comprising measuring an index nuclide of a reactor damaged fuel inspection as the measurement target nuclide and detecting the presence or absence of fuel breakage.
原子炉内に格納される原子炉燃料を通過した、測定対象核種と陽電子放出核種を含む放射性ガスを採取する採取部と、A sampling unit for sampling a radioactive gas including a measurement target nuclide and a positron emitting nuclide that has passed through the reactor fuel stored in the reactor;
前記採取部により採取された前記放射性ガスから発生する放射線を測定する放射性ガス測定装置と、A radioactive gas measurement device for measuring radiation generated from the radioactive gas collected by the collection unit;
を備える破損燃料検査装置であって、A damaged fuel inspection device comprising:
前記放射性ガス測定装置が、The radioactive gas measuring device is
前記採取部と接続される流入配管と、排出配管とを備え、前記流入配管と前記排出配管とを通して、測定対象核種と陽電子放出核種を含む前記放射性ガスを流入及び排出する錐体形状の放射線測定セルと、A cone-shaped radiation measurement comprising an inflow pipe connected to the sampling unit and an exhaust pipe, and through which the radioactive gas containing a measurement target nuclide and a positron emission nuclide flows in and out through the inflow pipe and the exhaust pipe Cell,
前記放射性ガスから発生する放射線を測定する放射線検出器と、A radiation detector for measuring radiation generated from the radioactive gas;
前記放射線測定セルと前記放射線検出器とを連通し、前記放射線測定セルと前記放射線検出器との間に所定の放射線計測幾何条件を設定する放射線コリメータとを備え、A radiation collimator that communicates the radiation measurement cell and the radiation detector and sets a predetermined radiation measurement geometric condition between the radiation measurement cell and the radiation detector;
前記所定の放射線計測幾何条件として、前記放射線コリメータを介して前記放射線検出器が見込む前記放射線測定セルの内壁面積が、前記放射線測定セルの全内壁面積の1/2以下に設定され、前記放射線測定セルの側内壁を見込まない条件下で、前記放射線測定セルの長さ(h)と、前記放射線検出器が見込む前記放射線測定セルの最も遠い場所に存在する内壁面積の円換算直径(D)との比(h/D)が、1以上に設定され、As the predetermined radiation measurement geometric condition, an inner wall area of the radiation measurement cell expected by the radiation detector via the radiation collimator is set to be equal to or less than ½ of a total inner wall area of the radiation measurement cell, and the radiation measurement The length (h) of the radiation measurement cell and the circular equivalent diameter (D) of the inner wall area existing at the farthest location of the radiation measurement cell expected by the radiation detector under the condition that the side inner wall of the cell is not expected Ratio (h / D) is set to 1 or more,
前記測定対象核種として原子炉破損燃料検査の指標核種を測定し、燃料破損の有無を検知することを特徴とする破損燃料検査装置。A damaged fuel inspection apparatus for measuring an index nuclide for nuclear reactor damaged fuel inspection as the measurement target nuclide and detecting the presence or absence of fuel damage.
JP2008282407A 2008-10-31 2008-10-31 Radioactive gas measuring device and damaged fuel inspection device Active JP5245173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008282407A JP5245173B2 (en) 2008-10-31 2008-10-31 Radioactive gas measuring device and damaged fuel inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008282407A JP5245173B2 (en) 2008-10-31 2008-10-31 Radioactive gas measuring device and damaged fuel inspection device

Publications (2)

Publication Number Publication Date
JP2010107483A JP2010107483A (en) 2010-05-13
JP5245173B2 true JP5245173B2 (en) 2013-07-24

Family

ID=42297051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008282407A Active JP5245173B2 (en) 2008-10-31 2008-10-31 Radioactive gas measuring device and damaged fuel inspection device

Country Status (1)

Country Link
JP (1) JP5245173B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103163159A (en) * 2011-12-15 2013-06-19 中国核动力研究设计院 Sample analysis apparatus for efficiency test of iodine absorber in nuclear power station
JP6029054B2 (en) * 2012-07-30 2016-11-24 国立研究開発法人日本原子力研究開発機構 Radioactive cesium simple measuring method and portable radioactive cesium simple measuring device
JP6234299B2 (en) * 2014-03-28 2017-11-22 三菱電機株式会社 Radioactive gas monitor
CN105241909B (en) * 2015-10-08 2018-07-20 南京航空航天大学 From the device and method sought formula positive electron liquid and positioned to inner cavity of component and surface defect
CN110970144A (en) * 2019-12-03 2020-04-07 南华大学 Positron annihilation suppression type nuclear fuel element damage monitoring device and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11311677A (en) * 1998-04-28 1999-11-09 Aloka Co Ltd Radioactive gas monitor and fuel rod surveillance device
JP2001235546A (en) * 2000-02-23 2001-08-31 Hitachi Ltd Radioactive gas measuring device and fuel failure detecting system
JP2003004888A (en) * 2001-06-15 2003-01-08 Central Res Inst Of Electric Power Ind Spent fuel inspection device

Also Published As

Publication number Publication date
JP2010107483A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
JP4159052B2 (en) Radiation direction detector, radiation monitoring method and apparatus
US8993977B2 (en) Detector and a method for simultaneously detecting both gamma rays and neutron using the same
US8946645B2 (en) Radiation-monitoring diagnostic hodoscope system for nuclear-power reactors
JP2008096405A (en) Neutron moderator, neutron irradiation method, and hazardous substance detecting device
JP3418800B2 (en) How to reduce annihilation gamma rays in radiation measurement
JP5245173B2 (en) Radioactive gas measuring device and damaged fuel inspection device
JP5506549B2 (en) Dose rate monitoring method and dose rate monitoring device
JP5034101B2 (en) Radiation monitoring apparatus and radiation monitoring system
JP6075522B2 (en) Radiation monitor
JP4695640B2 (en) Method and apparatus for denying random coincidence in positron emission cross section
JP5421823B2 (en) Radioactive gas monitor
JP2008180700A (en) Moisture detection method, moisture detector, and pipe inspection device
JP6523877B2 (en) Reactor instrumentation system and reactor
CN203606501U (en) [Gamma] ray collimator and detection system thereof
US9519067B1 (en) Radioactive gas measurement apparatus and failed fuel inspection apparatus
JP2526392B2 (en) Nondestructive inspection system for fuel rods for nuclear reactors
JP4766263B2 (en) Radiation omnidirectional incidence direction detection apparatus, and radiation monitoring method and apparatus
Kobayashi et al. Characteristic X-ray detector: In-situ imaging of radioactive contaminant distributions
JP5450356B2 (en) Radiation detection method
JP2000221293A (en) Device and method for measuring burnup of fuel for nuclear reactor
JP2004514892A (en) Device for determining the nuclide content of radioactive fluids
JP3340949B2 (en) Collimator and gamma ray detector
JP2010256035A (en) Device for identifying position of inner wall of reactor primary system pipe
JP2001042039A (en) Radioactive gas monitor
JP2010048752A (en) Radiation monitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130322

R150 Certificate of patent or registration of utility model

Ref document number: 5245173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3