JP4921813B2 - Tape-like oxide superconducting wire manufacturing method and intermediate layer heat treatment apparatus - Google Patents

Tape-like oxide superconducting wire manufacturing method and intermediate layer heat treatment apparatus Download PDF

Info

Publication number
JP4921813B2
JP4921813B2 JP2006057906A JP2006057906A JP4921813B2 JP 4921813 B2 JP4921813 B2 JP 4921813B2 JP 2006057906 A JP2006057906 A JP 2006057906A JP 2006057906 A JP2006057906 A JP 2006057906A JP 4921813 B2 JP4921813 B2 JP 4921813B2
Authority
JP
Japan
Prior art keywords
tape
intermediate layer
heat treatment
superconducting wire
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006057906A
Other languages
Japanese (ja)
Other versions
JP2007234531A (en
Inventor
裕治 青木
保夫 高橋
隆代 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Superconductivity Technology Center
SWCC Showa Cable Systems Co Ltd
Original Assignee
International Superconductivity Technology Center
SWCC Showa Cable Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Superconductivity Technology Center, SWCC Showa Cable Systems Co Ltd filed Critical International Superconductivity Technology Center
Priority to JP2006057906A priority Critical patent/JP4921813B2/en
Publication of JP2007234531A publication Critical patent/JP2007234531A/en
Application granted granted Critical
Publication of JP4921813B2 publication Critical patent/JP4921813B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、超電導線材の製造方法およびそれに用いる熱処理装置に係り、特に超電導ケーブルや超電導電力貯蔵のような電力機器及びモーターなどの動力機器への使用に適したテープ状の希土類系酸化物超電導線材の製造に適した酸化物超電導線材の製造方法およびその中間層熱処理装置に関する。   The present invention relates to a method of manufacturing a superconducting wire and a heat treatment apparatus used therefor, and particularly a tape-like rare earth oxide superconducting wire suitable for use in power equipment such as superconducting cables and superconducting power storage and power equipment such as a motor. The present invention relates to a method for manufacturing an oxide superconducting wire suitable for manufacturing the same and an intermediate layer heat treatment apparatus thereof.

酸化物超電導線材のうち、YBaCu7−x(YBCO)超電導体に代表される希土類(RE)123系酸化物超電導体は、通常、テープ状に形成されており、このテープ状超電導線材は、金属基板上に2軸配向した無機材料薄膜を1層あるいは複数層形成し、その上に超電導膜および安定化層を順次形成した構造を有している。この線材は結晶が2軸配向しているため、ビスマス系の銀シース線材に比べて臨界電流(Ic)値が高く、液体窒素温度での磁場特性がBi系超電導体に比べて優れているため、実用上高い臨界電流密度(Jc)を高磁場中において維持することが可能となる。 Among oxide superconducting wires, rare earth (RE) 123-based oxide superconductors typified by YBa 2 Cu 3 O 7-x (YBCO) superconductors are usually formed in a tape shape. The wire has a structure in which one or more biaxially oriented inorganic material thin films are formed on a metal substrate, and a superconducting film and a stabilizing layer are sequentially formed thereon. Since this wire has biaxial crystal orientation, its critical current (Ic) value is higher than that of bismuth-based silver sheathed wire, and its magnetic field characteristics at liquid nitrogen temperature are superior to those of Bi-based superconductors. Thus, a practically high critical current density (Jc) can be maintained in a high magnetic field.

この線材の実用化に成功すれば、貴金属である銀を使用しないこと、および冷媒に液体窒素を使用できる点から冷却効率が数十〜数百倍に向上することから、従来経済性の面から適用されなかった低温で使用される超電導機器に対しても超電導線材を適用することが可能になる。   If this wire is successfully put into practical use, it will not use silver, which is a noble metal, and the cooling efficiency will improve by several tens to several hundreds of times from the point that liquid nitrogen can be used as a refrigerant. It becomes possible to apply a superconducting wire to a superconducting device used at a low temperature that has not been applied.

このYBCO超電導体の特性は、その結晶の配向性に大きく影響され、従って、この下層を構成する基板および中間層の結晶の配向性に大きく影響される。   The characteristics of this YBCO superconductor are greatly influenced by the orientation of the crystal, and therefore are greatly influenced by the orientation of the crystals of the substrate and the intermediate layer constituting this lower layer.

即ち、YBCO超電導体の結晶系は斜方晶であり、このため、通電特性において材料の特性を発揮させるためには、結晶のCuO面を揃えるだけでなく、面内の結晶方位をも揃えることが要求される。その理由は、僅かな方位のずれが双晶粒界を発生させ、通電特性を低下させることによる。   In other words, the crystal system of the YBCO superconductor is orthorhombic. Therefore, in order to bring out the characteristics of the material in terms of current-carrying characteristics, not only align the CuO plane of the crystal but also align the in-plane crystal orientation. Is required. The reason for this is that a slight misalignment generates twin grain boundaries and deteriorates the current-carrying characteristics.

一般的にRE123系超電導体(特にYBCO超電導体)の線材の製造方法は、IBAD(Ion Beam Assisted Deposition)法やISD(Inclined substrate deposition)法などのレーザアブレーション法を基本としたものに加え、真空蒸着法や化学蒸着法(CVD)などを含めた気相法というカテゴリとその対極にある非真空プロセスとして、有機金属塩塗布熱分解法(Metal Organic Deposition Processes:MOD法)に代表される液相法、即ち、液体を基材表面に塗布して焼結することによって結晶化した薄膜を形成する方法の2つに分類することができる。 In general, RE123-based superconductors (especially YBCO superconductors) are manufactured by using a vacuum ablation method based on laser ablation methods such as IBAD (Ion Beam Assisted Deposition ) and ISD (Inclined substrate deposition). As a non-vacuum process at the opposite end of the category of vapor phase including vapor deposition and chemical vapor deposition (CVD), the liquid phase represented by the metal organic salt coating pyrolysis method (Metal Organic Deposition Processes: MOD method) It can be classified into two methods, that is, a method of forming a crystallized thin film by applying a liquid to a substrate surface and sintering.

これらのプロセスにおいては、上述のように、高いJc値を達成するために、多結晶のテープ状金属基板の表面に高い面内配向性を有する超電導層を形成することが要求されるため、テンプレートとして機能する超電導体に類似した面内配向性を有する中間層膜を金属基板上に形成することが必要となる。   In these processes, as described above, in order to achieve a high Jc value, it is required to form a superconducting layer having a high in-plane orientation on the surface of a polycrystalline tape-shaped metal substrate. It is necessary to form an intermediate layer film having in-plane orientation similar to a superconductor functioning as a metal substrate on a metal substrate.

アシストイオンビームによって面内配向性を制御できるIBAD法を除き、他のプロセスでは、高い面内配向性を有する中間層を得るために、RABiTS(商標:Rolling-Assisted Biaxially Textured-Substrates)に代表される2軸配向した集合化組織を持つ金属基板を使用して、中間層のテンプレートとして機能させることが必要である。 Except for the IBAD method in which the in-plane orientation can be controlled by the assisted ion beam, other processes are represented by RABiTS (trademark: Rolling-Assisted Biaxially Textured-Substrates) in order to obtain an intermediate layer having a high in-plane orientation. It is necessary to use a metal substrate having a biaxially oriented texture as a template for the intermediate layer.

このRABiTSによる2軸配向集合化組織を有する金属基板は、面心立方、体心立方あるいは稠密6方晶の金属に強圧延加工と焼鈍を施すことにより形成するものであるが、結晶の配向性は機械的な歪や熱的な歪に対して影響を受け易く、容易に配向性を失う傾向がある。   A metal substrate having a biaxially oriented texture by RABiTS is formed by subjecting a face-centered cubic, body-centered cubic, or dense hexagonal metal to strong rolling and annealing. Is susceptible to mechanical strain and thermal strain and tends to lose orientation easily.

MOD法を酸化物超電導線材の製造コストの観点から見た場合、低コスト線材の製造方法として非常に有利になると考えられている。即ち、IBAD基板を用いた方法は高特性が得られるが、この方法は、全ての層が気相法による真空プロセスで作られるため、緻密で平滑な中間層膜を得ることができるという利点を有する反面、成膜速度が遅く、また設備コストがかかり、線材価格が上がるなどの問題点があり、一方、CVD法は、他の気相プロセスに比べて製造速度が速いが、高いIc値を得るために膜厚を増加させることが困難であるという問題がある。
これらの方法に比較して、MOD法は、真空プロセスを使用しないため、設備コストおよびメンテナンスコストがかからないという利点を有しており、低価格の超電導体を提供できることが期待されているプロセスである。この場合、中間層もMOD法で成膜することができれば、更にコストを下げることが可能である。
When the MOD method is viewed from the viewpoint of the manufacturing cost of the oxide superconducting wire, it is considered to be very advantageous as a manufacturing method of the low cost wire. That is, the method using the IBAD substrate can obtain high characteristics, but this method has an advantage that a dense and smooth intermediate layer film can be obtained because all layers are formed by a vacuum process by a vapor phase method. On the other hand, there is a problem that the film formation rate is slow, the equipment cost is increased, and the wire price is increased. On the other hand, the CVD method has a higher production speed than other vapor phase processes, but has a high Ic value. There is a problem that it is difficult to increase the film thickness in order to obtain it.
Compared with these methods, the MOD method does not use a vacuum process, and therefore has the advantage of not incurring equipment costs and maintenance costs, and is expected to be able to provide a low-cost superconductor. . In this case, if the intermediate layer can also be formed by the MOD method, the cost can be further reduced.

その一方で、MOD法は熱平衡プロセスであることから、結晶化に要する温度が真空中の非平衡状態で結晶化を図るプロセスと比較すると高くなるという欠点がある。この結晶化温度の高さが、上述したように集合化組織金属基板を利用する上での唯一大きな欠点となる。   On the other hand, since the MOD method is a thermal equilibrium process, there is a disadvantage that the temperature required for crystallization is higher than that in a process for crystallization in a non-equilibrium state in vacuum. This high crystallization temperature is the only major drawback in using the textured metal substrate as described above.

従来、MOD法における中間層の加熱方法としては、バッチ式電気炉による抵抗加熱方式が一般的に採用されている。この方式では、超電導前駆体を塗布した基板をソレノイド状に巻回したドラムを、バッチ式電気炉内に載置して熱処理が行われている。このバッチ式電気炉による抵抗加熱方式は、抵抗発熱体で発生した熱によって炉体を加熱し、炉体周囲の断熱材によって保温するものであり、線材への熱の伝わり方は、熱源である炉体からの伝導と輻射、そして熱源である炉体によって温められた雰囲気ガスの対流の3つによって定まる。この方式の場合、始めに熱容量の大きな炉体を加熱する必要があり、更に熱処理の終了後は炉体の冷却速度によって試料の冷却速度も律速される。従って、本来必要とする熱処理時間より長い時間試料を炉体内部に滞留させることになる。 Conventionally, as a heating method of the intermediate layer in the MOD method, a resistance heating method using a batch type electric furnace is generally adopted. In this method, a drum on which a substrate coated with a superconducting precursor is wound in a solenoid shape is placed in a batch type electric furnace and heat treatment is performed. In this resistance heating system using a batch electric furnace, the furnace body is heated by the heat generated by the resistance heating element, and is kept warm by the heat insulating material around the furnace body , and the way heat is transmitted to the wire is a heat source. It is determined by the conduction and radiation from the furnace body, and the convection of the atmospheric gas heated by the furnace body as the heat source. In the case of this method, it is necessary to first heat the furnace body having a large heat capacity. Further, after the heat treatment is completed, the cooling rate of the sample is limited by the cooling rate of the furnace body. Therefore, the sample is retained in the furnace body for a time longer than the heat treatment time originally required.

従って、この場合には、線材が長尺化するにつれて電気炉が大型化しコストが上昇する上、製造効率が低くなるという難点がある。さらに、中間層を形成する際の集合化組織金属基板を利用する上で、基板を高温領域に長時間滞留させることは基板の面内配向性を維持する点において好ましくない。基板の面内配向性の乱れは中間層の面内配向性の乱れに繋がり、結果として中間層上に形成される超電導膜の面内配向性を劣化させ、超電導特性を低下させることになる。 Therefore, in this case, as the wire becomes longer, the electric furnace becomes larger and the cost increases, and the manufacturing efficiency is lowered. Furthermore, in using the textured metal substrate for forming the intermediate layer, it is not preferable to retain the substrate in a high temperature region for a long time in terms of maintaining the in- plane orientation of the substrate. The disorder of the in-plane orientation of the substrate leads to the disorder of the in-plane orientation of the intermediate layer. As a result, the in- plane orientation of the superconducting film formed on the intermediate layer is deteriorated and the superconducting characteristics are deteriorated.

一方、バッチ式加熱方式に対して、長尺の線材を連続して加熱する方式も検討されている。例えば、加熱手段と、該加熱手段の温度を制御する制御機構とを有し、加熱手段の内部に、熱処理によって酸化物超電導体となる超電導体形成部を有する長尺の線材の一条以上を走行させることにより、線材を加熱して長尺の酸化物超電導線とする熱処理ユニットが、長尺の線材の走行方向に2台以上備えられてなる酸化物超電導線材の連続熱処理装置が知られている(例えば、特許文献1参照。)。   On the other hand, a method in which a long wire is continuously heated as compared to the batch heating method has been studied. For example, it has a heating means and a control mechanism for controlling the temperature of the heating means, and runs on one or more strips of a long wire having a superconductor forming portion that becomes an oxide superconductor by heat treatment inside the heating means. There is known a continuous heat treatment apparatus for an oxide superconducting wire in which two or more heat treatment units are provided in the running direction of the long wire by heating the wire to form a long oxide superconducting wire. (For example, refer to Patent Document 1).

この連続熱処理装置は、中間層の形成に用いられるものではないが、加熱手段としては、管状のヒータや、耐熱ガラス管の外周面に高周波誘導加熱コイルを巻回してなる加熱管等が用いられ、線材を連続して加熱することが可能である。   This continuous heat treatment apparatus is not used for forming the intermediate layer, but as a heating means, a tubular heater, a heating tube formed by winding a high-frequency induction heating coil around the outer peripheral surface of a heat-resistant glass tube, or the like is used. It is possible to heat the wire continuously.

特開平9−147647号公報JP-A-9-147647

以上のように、従来、中間層の加熱方法として採用されているバッチ式加熱方式においては、線材が長尺化するにつれて電気炉が大型化しコストが上昇する上、製造効率が低くなるという難点があり、さらに、集合化組織金属基板の面内配向性を低下させ、中間層および超電導膜の面内配向性を劣化させることにより超電導特性を低下させるという問題があり、一方、管状のヒータや、耐熱ガラス管の外周面に高周波誘導加熱コイルを巻回した加熱管等を用いた連続熱処理装置においては、これを中間層の形成に用いた場合、基板も同様に加熱されるため、やはり、集合化組織金属基板の面内配向性を低下させ、中間層および超電導膜の面内配向性を劣化させることにより超電導特性を低下させるという問題を生ずる。 As described above, in the batch-type heating method conventionally employed as a method for heating the intermediate layer, the electric furnace becomes larger and costs increase as the wire becomes longer, and the manufacturing efficiency is lowered. There, furthermore, reduces the plane orientation of the aggregation structure metal substrate has a problem of lowering the superconducting properties by degrading the plane orientation of the intermediate layer and superconducting film, whereas, or tubular heater, In a continuous heat treatment apparatus using a heating tube with a high-frequency induction heating coil wound around the outer peripheral surface of a heat-resistant glass tube, if this is used for the formation of an intermediate layer, the substrate is heated in the same way. of lowering the plane orientation of the tissue metal substrate, resulting in a problem of lowering the superconducting properties by degrading the plane orientation of the intermediate layer and superconducting film.

本発明は、以上の問題を解決するためになされたもので、基板の配向性に影響を与えることなく、中間層を形成する仮焼膜を効率よく加熱することのできるテープ状酸化物超電導線材の製造方法およびその中間層熱処理装置を提供することをその目的とする。   The present invention has been made to solve the above problems, and is a tape-shaped oxide superconducting wire capable of efficiently heating the calcined film forming the intermediate layer without affecting the orientation of the substrate. It is an object of the present invention to provide a manufacturing method of the above and an intermediate layer heat treatment apparatus thereof.

また、本発明は、高いIc値を達成するために必要な急速加熱および急速冷却を可能とし、高い面内配向性を有する中間層の結晶化に必要最小限の時間で熱処理を施すことのできるテープ状酸化物超電導線材の製造方法およびその中間層熱処理装置を提供することをその目的としている。   Further, the present invention enables rapid heating and rapid cooling necessary to achieve a high Ic value, and allows heat treatment to be performed in a minimum time necessary for crystallization of an intermediate layer having high in-plane orientation. It is an object of the present invention to provide a method for producing a tape-shaped oxide superconducting wire and an intermediate layer heat treatment apparatus.

以上の目的を達成するために、本発明のテープ状酸化物超電導線材の製造方法は、配向性を有する金属基板上に、中間層の仮焼膜を形成したテープ状線材を、加熱及び冷却して金属基板上に中間層を形成し、次いで、中間層の上に超電導層を形成する方法において、仮焼膜に輻射加熱を施すことにより、仮焼膜のみを急速加熱した後、仮焼膜の結晶化温度に保持し、次いで、急速冷却を施して高配向性の中間層を形成するようにしたものである。 In order to achieve the above object, the method for producing a tape-shaped oxide superconducting wire of the present invention comprises heating and cooling a tape-shaped wire formed with a calcined film of an intermediate layer on a metal substrate having orientation. In the method of forming the intermediate layer on the metal substrate and then forming the superconducting layer on the intermediate layer , the calcined film is rapidly heated only by subjecting the calcined film to radiant heating, and then the calcined film The crystallization temperature is maintained, and then rapid cooling is performed to form a highly oriented intermediate layer.

また、本発明のテープ状酸化物超電導線材の中間層熱処理装置は、配向性を有する金属基板上に、中間層の仮焼膜を形成したテープ状線材を、加熱及び冷却して金属基板上に中間層を形成するための熱処理装置であって、この熱処理装置は、テープ状線材の送出し装置及び巻取り装置と、送出し装置及び巻取り装置の間に配置された熱処理炉とを備え、かつ熱処理炉が仮焼膜のみを輻射加熱により急速加熱する急速加熱領域及び結晶化温度領域からなるように構成したものである。 Moreover, the intermediate | middle layer heat processing apparatus of the tape-shaped oxide superconducting wire of this invention heats and cools the tape-shaped wire which formed the calcined film of the intermediate | middle layer on the metal substrate which has orientation, on a metal substrate. A heat treatment apparatus for forming an intermediate layer, the heat treatment apparatus comprising a tape wire feeding device and a winding device, and a heat treatment furnace disposed between the feeding device and the winding device, In addition, the heat treatment furnace is configured to include a rapid heating region in which only the calcined film is rapidly heated by radiation heating and a crystallization temperature region.

本発明の方法および装置によれば、仮焼膜を輻射加熱により急速加熱した後、仮焼膜の結晶化温度に保持し、次いで、急速冷却することができるため、基板の配向性を維持して高い面内配向性を有する中間層および超電導層を形成することができ、高いIc値を有するテープ状酸化物超電導線材を低コストで製造することができる。   According to the method and apparatus of the present invention, the calcined film can be rapidly heated by radiant heating, then maintained at the crystallization temperature of the calcined film, and then rapidly cooled, so that the orientation of the substrate is maintained. In addition, an intermediate layer and a superconducting layer having high in-plane orientation can be formed, and a tape-shaped oxide superconducting wire having a high Ic value can be produced at low cost.

本発明のテープ状酸化物超電導線材の製造方法においては、配向性を有する金属基板上の中間層の仮焼膜を輻射加熱により急速加熱した後、前記仮焼膜の結晶化温度に保持し、次いで、急速冷却を施して高配向性の中間層を形成するものであるが、この場合の仮焼膜は、MOD法により中間層を構成する金属元素を含む金属有機酸塩または有機金属化合物を有機溶媒中に溶解した混合溶液を塗布後仮焼したものであることが好ましい。   In the method for producing a tape-shaped oxide superconducting wire of the present invention, after rapidly heating the calcined film of the intermediate layer on the metal substrate having orientation by radiation heating, the crystallization temperature of the calcined film is maintained, Next, rapid cooling is performed to form a highly oriented intermediate layer. In this case, the calcined film is made of a metal organic acid salt or an organic metal compound containing a metal element constituting the intermediate layer by the MOD method. It is preferable that the mixed solution dissolved in the organic solvent is calcined after coating.

また、中間層の仮焼膜の輻射加熱による急速加熱後の結晶化温度の保持も、急速加熱と同様に輻射加熱により保持される。 Further, the crystallization temperature after the rapid heating by the radiant heating of the calcined film of the intermediate layer is also maintained by the radiant heating similarly to the rapid heating .

上記の急速加熱および結晶化温度の保持のための輻射加熱は、仮焼膜の表面に対して輻射線が集中するように施されることが好ましい。これにより基板への熱影響を小さくし、基板の配向性を維持することができる。   The rapid heating and the radiant heating for maintaining the crystallization temperature are preferably performed so that the radiant rays are concentrated on the surface of the calcined film. As a result, the thermal effect on the substrate can be reduced and the orientation of the substrate can be maintained.

一方、本発明のテープ状酸化物超電導線材の中間層熱処理装置は、熱処理炉を仮焼膜を輻射加熱により急速加熱する急速加熱領域及び結晶化温度領域からなるように構成したことを特徴とするものであるが、この場合の仮焼膜は、MOD法により中間層を構成する金属元素を含む金属有機酸塩または有機金属化合物を有機溶媒中に溶解した混合溶液を塗布後仮焼したものであることが好ましい。 On the other hand, the intermediate layer a heat treatment apparatus of the tape-shaped oxide superconducting wire of the present invention, said the heat treatment furnace, to constitute a calcined film to consist of rapid heating region and the crystallization temperature region rapidly heated by radiation heating In this case, the calcined film is obtained by applying a mixed solution prepared by dissolving a metal organic acid salt or an organic metal compound containing a metal element constituting an intermediate layer in an organic solvent by MOD method and calcining. It is preferable that

また、熱処理炉の結晶化温度領域は、急速加熱領域と同様に輻射加熱による加熱手段により構成される。 In addition, the crystallization temperature region of the heat treatment furnace is configured by a heating means by radiant heating as in the rapid heating region .

この場合の急速加熱領域及び結晶化温度領域は、仮焼膜の表面に対して輻射線が集中するように形成された輻射加熱手段により構成することが好ましい。   In this case, the rapid heating region and the crystallization temperature region are preferably constituted by radiation heating means formed so that the radiation rays are concentrated on the surface of the calcined film.

送出し装置と巻取り装置の間に配置された熱処理炉内のテープ状線材の搬送路は、透明な炉心管で構成し、送出し装置、巻取り装置およびテープ状線材の搬送路は雰囲気制御が可能に密閉構造に構成することが好ましい。   The tape-shaped wire conveyance path in the heat treatment furnace arranged between the feeding device and the winding device is composed of a transparent core tube, and the feeding device, the winding device and the tape-shaped wire conveyance path are controlled in atmosphere. However, it is preferable to form a sealed structure.

以上のテープ状酸化物超電導線材の製造方法およびその中間層熱処理装置は、テープ状酸化物超電導線材がY系(123)超電導線材の場合に好適する。   The above method for producing a tape-shaped oxide superconducting wire and its intermediate layer heat treatment apparatus are suitable when the tape-shaped oxide superconducting wire is a Y-based (123) superconducting wire.

図1は、テープ状酸化物超電導線材の中間層熱処理装置1の概略を示したもので、2はテープ状線材の送出し装置、3はテープ状線材の巻取り装置、4は炉心管、5は熱処理炉である。   FIG. 1 shows an outline of an intermediate layer heat treatment apparatus 1 for a tape-shaped oxide superconducting wire, in which 2 is a tape-shaped wire feeding device, 3 is a tape-shaped wire winding device, 4 is a core tube, 5 Is a heat treatment furnace.

以上の装置において、送出し装置2および巻取り装置3は、それぞれ筐体2aおよび3a内部に配置され、筐体2aおよび3aはテープ状線材の搬送路を形成する熱処理炉5内の炉心管4と結合されて密閉構造に形成されている。これにより密閉空間に接続された雰囲気ガス供給装置または真空排気装置(図示せず)により、送出し装置2および巻取り装置3間を走行するテープ状線材に所定の雰囲気あるいは減圧下で熱処理を施すことができる。   In the above apparatus, the feeding device 2 and the winding device 3 are disposed inside the housings 2a and 3a, respectively, and the housings 2a and 3a form the core tube 4 in the heat treatment furnace 5 that forms a transport path for the tape-shaped wire. And is formed in a sealed structure. As a result, the tape-like wire running between the feeding device 2 and the winding device 3 is heat-treated in a predetermined atmosphere or under reduced pressure by an atmospheric gas supply device or an evacuation device (not shown) connected to the sealed space. be able to.

送出し装置2および巻取り装置3は、巻取りモータと送出しモータのバランスをとることにより張力の制御を行うことができる。一例として送出し側モータに接続したクラッチの空転による張力制御が挙げられる。   The feeding device 2 and the winding device 3 can control the tension by balancing the winding motor and the feeding motor. As an example, tension control by idling of a clutch connected to a delivery motor can be mentioned.

熱処理炉5は、炉心管4の上部に輻射加熱器6a、6b、6cおよび6dが配設されており、輻射加熱器6aは急速加熱領域Aを、輻射加熱器6b、6cおよび6dは結晶化温度領域Bを構成する。尚、これらの急速加熱領域Aおよび結晶化温度領域Bを構成する輻射加熱器の個数は任意に配設することができる。   In the heat treatment furnace 5, radiant heaters 6a, 6b, 6c and 6d are arranged on the upper portion of the furnace core tube 4, the radiant heater 6a is in the rapid heating region A, and the radiant heaters 6b, 6c and 6d are crystallized. A temperature region B is formed. The number of radiant heaters constituting the rapid heating region A and the crystallization temperature region B can be arbitrarily arranged.

輻射加熱器6a、6b、6cおよび6dの熱源は、基本的にガラス管内部にフィラメントを真空封入したランプにより構成され、その形状は任意であるが、ランプより発生する光を仮焼膜表面に集光させることを考慮すると、直線状または円形状の形状とすることが適当である。ランプより発光する光の波長は、可視光、近赤外、遠赤外まで連続的にカバーしており、集光ミラー光学系と組み合わせることにより照射領域を特定し、仮焼膜表面のみを集中加熱する。ミラー光学系は放物面鏡を一対とした形式あるいは楕円面鏡を一対とした形式により構成される。   The heat source of the radiant heaters 6a, 6b, 6c and 6d is basically composed of a lamp in which a filament is vacuum-sealed inside a glass tube, and its shape is arbitrary, but the light generated from the lamp is applied to the surface of the calcined film. In consideration of collecting light, it is appropriate to use a linear or circular shape. The wavelength of light emitted from the lamp covers continuously from visible light, near infrared, and far infrared. By combining with the condensing mirror optical system, the irradiation area is specified and only the calcined film surface is concentrated. Heat. The mirror optical system is configured by a pair of parabolic mirrors or a pair of elliptical mirrors.

ランプ加熱の熱源は、一対で可能な加熱面積は25〜600mmであるため、熱源をテープ状線材の走行方向に組みあわせることによって、均熱領域を面状に形成する。ランプの照射領域にテープ状線材を一定速度で通過させることによって昇温、温度保持、冷却の熱処理をパターン構成する。従って、昇温と冷却は照射領域への入出した瞬間から始まるため急速加熱と急速冷却が可能となる。この場合、輻射加熱器6a、6b、6cおよび6dの熱源は、必ずしも同一形状とする必要はなく、急速加熱領域Aおよび結晶化温度領域Bで異なる形状とすることもできる。 Since the heating area of the lamp heating source that can be paired is 25 to 600 mm 2 , the soaking area is formed in a planar shape by combining the heat sources in the running direction of the tape-shaped wire. By passing the tape-shaped wire through the irradiation area of the lamp at a constant speed, a heat treatment for temperature rising, temperature holding, and cooling is formed in a pattern. Accordingly, since the temperature rise and cooling start from the moment of entering and exiting the irradiation region, rapid heating and rapid cooling are possible. In this case, the heat sources of the radiant heaters 6a, 6b, 6c and 6d do not necessarily have the same shape, and may have different shapes in the rapid heating region A and the crystallization temperature region B.

以上のテープ状酸化物超電導線材の中間層熱処理装置1において、送出し装置2のドラム上に巻回されたテープ状線材7は所定の張力で引き出され、熱処理炉5内の炉心管4内を走行し巻取り装置3のドラムに巻き取られる。炉心管4内を走行するテープ状線材7は、熱処理炉5内の急速加熱領域Aを通過する際に輻射加熱器6aにより基板上の中間層の仮焼膜が急速加熱され、結晶化温度領域Bを通過する際に輻射加熱器6b、6cおよび6dにより基板上の中間層が結晶化される。急速加熱領域Aおよび結晶化温度領域Bにおいて、基板上の中間層の仮焼膜のみが急速加熱および結晶化温度に保持され、結晶化後の中間層は、結晶化温度領域B通過後に急速冷却される。   In the tape-shaped oxide superconducting wire intermediate layer heat treatment apparatus 1 described above, the tape-shaped wire 7 wound on the drum of the delivery apparatus 2 is drawn out with a predetermined tension, and the inside of the core tube 4 in the heat treatment furnace 5 is drawn. It travels and is wound on the drum of the winding device 3. When the tape-shaped wire 7 traveling in the furnace core tube 4 passes through the rapid heating region A in the heat treatment furnace 5, the calcined film of the intermediate layer on the substrate is rapidly heated by the radiant heater 6a, and the crystallization temperature region When passing through B, the intermediate layer on the substrate is crystallized by the radiation heaters 6b, 6c and 6d. In the rapid heating region A and the crystallization temperature region B, only the calcined film of the intermediate layer on the substrate is held at the rapid heating and crystallization temperature, and the intermediate layer after crystallization is rapidly cooled after passing through the crystallization temperature region B. Is done.

テープ状線材7は、NiまたはNi基合金テープ状基材あるいはNiまたはNi基合金と他の金属との複合基材によって形成される集合化組織金属基板の表面に中間層の仮焼膜を形成したもので、この中間層の仮焼膜は、中間層を構成する金属元素を含む金属有機酸塩または有機金属化合物、例えば、オクチル酸塩、ナフテン酸塩、ネオデカン酸塩等を1あるいは2種類以上の有機溶媒中に溶解した混合溶液を塗布後仮焼したものが用いられる。
Tape-like wire 7 forms a calcined film of an intermediate layer on the surface of a textured metal substrate formed by a Ni- or Ni-base alloy tape-like base material or a composite base material of Ni or Ni-base alloy and another metal The intermediate layer calcined film is composed of one or two kinds of metal organic acid salt or organic metal compound containing a metal element constituting the intermediate layer, for example, octylate, naphthenate, neodecanoate, etc. What applied and calcined the mixed solution melt | dissolved in the above organic solvent is used.

以下、本発明の具体例について説明する。   Hereinafter, specific examples of the present invention will be described.

2軸配向性を有するNi基板上に、Ce、NbおよびGdの金属有機酸塩をCe:Nb:Gd=90:5:5のモル比で有機溶媒中に溶解した混合溶液を塗布後仮焼してテープ状線材を作成した。このテープ状線材に、図1に示す中間層熱処理装置1を用いて連続熱処理を施し、Ni基板上にCe―Nb―Gd―O中間層膜を形成した。このときの熱処理条件は、1000℃×1時間とした。この中間層膜をX線回折により半値幅(△φ)を測定した。その結果を図2(A)および図3(A)に示す。   A mixed solution prepared by dissolving a metal organic acid salt of Ce, Nb, and Gd in an organic solvent at a molar ratio of Ce: Nb: Gd = 90: 5: 5 on a Ni substrate having biaxial orientation is calcined after application. Thus, a tape-shaped wire was created. The tape-shaped wire was subjected to continuous heat treatment using the intermediate layer heat treatment apparatus 1 shown in FIG. 1 to form a Ce—Nb—Gd—O intermediate layer film on the Ni substrate. The heat treatment conditions at this time were 1000 ° C. × 1 hour. The half width (Δφ) of this intermediate layer film was measured by X-ray diffraction. The results are shown in FIGS. 2 (A) and 3 (A).

一方、比較例として、上記と同一のテープ状線材に抵抗加熱方式のバッチ式電気炉を用いて熱処理を施し、Ni基板上にCe―Nb―Gd―O中間層膜を形成した。このときの熱処理条件は、1000℃×1時間とした。この中間層膜をX線回折によりを測定した。その結果を図2(B)および図3(B)に示した。   On the other hand, as a comparative example, the same tape-shaped wire as described above was subjected to heat treatment using a resistance heating batch electric furnace to form a Ce—Nb—Gd—O intermediate layer film on a Ni substrate. The heat treatment conditions at this time were 1000 ° C. × 1 hour. This intermediate layer film was measured by X-ray diffraction. The results are shown in FIG. 2 (B) and FIG. 3 (B).

以上の結果から、中間層熱処理装置1を用いてNi基板上に形成したCe―Nb―Gd―O中間層膜の半値幅は△φ=7.5°であるのに対し、抵抗加熱方式のバッチ式電気炉を用いてNi基板上に形成したCe―Nb―Gd―O中間層膜の半値幅は△φ=8.5°を示し、輻射加熱により仮焼膜を急速加熱後、結晶化温度に保持し、次いで、急速冷却を施した場合には高配向性の中間層を形成することができることが明らかである。   From the above results, the half-value width of the Ce—Nb—Gd—O intermediate layer film formed on the Ni substrate using the intermediate layer heat treatment apparatus 1 is Δφ = 7.5 °, whereas the resistance heating method The half-value width of the Ce-Nb-Gd-O intermediate layer film formed on the Ni substrate using a batch-type electric furnace is Δφ = 8.5 °, and the calcined film is rapidly heated by radiant heating and then crystallized. It is clear that a highly oriented intermediate layer can be formed when held at temperature and then subjected to rapid cooling.

本発明によるできるテープ状酸化物超電導線材の製造方法およびその中間層熱処理装置は、ケーブル、電力機器及び動力機器への利用が可能な希土類系テープ状酸化物超電導線材の製造に適用することができる。   The method for producing a tape-like oxide superconducting wire and the intermediate layer heat treatment apparatus that can be produced according to the present invention can be applied to the production of a rare earth-based tape-like oxide superconducting wire that can be used in cables, power equipment and power equipment. .

本発明のテープ状酸化物超電導線材の中間層熱処理装置1の一実施例を示す概略断面図である。It is a schematic sectional drawing which shows one Example of the intermediate | middle layer heat processing apparatus 1 of the tape-shaped oxide superconducting wire of this invention. 本発明の装置及び従来の装置により製造された中間層膜のX線回折による測定結果を示すグラフである。It is a graph which shows the measurement result by the X-ray diffraction of the intermediate | middle layer film manufactured with the apparatus of this invention, and the conventional apparatus. 本発明の装置及び従来の装置により製造された中間層膜のX線回折による測定結果を示すグラフである。It is a graph which shows the measurement result by the X-ray diffraction of the intermediate | middle layer film manufactured with the apparatus of this invention, and the conventional apparatus.

符号の説明Explanation of symbols

1 中間層熱処理装置
2 テープ状線材の送出し装置
3 テープ状線材の巻取り装置
4 炉心管
5 熱処理炉
6a、6b、6c、6d 輻射加熱器
7 テープ状線材
A 急速加熱領域
B 結晶化温度領域
DESCRIPTION OF SYMBOLS 1 Intermediate layer heat processing apparatus 2 Tape-shaped wire feeding apparatus 3 Tape-shaped wire winding apparatus 4 Core tube 5 Heat treatment furnace 6a, 6b, 6c, 6d Radiation heater 7 Tape-shaped wire A Rapid heating area B Crystallizing temperature area

Claims (9)

配向性を有する金属基板上に、中間層の仮焼膜を形成したテープ状線材を、加熱及び冷却して前記金属基板上に中間層を形成し、次いで、前記中間層の上に超電導層を形成するテープ状酸化物超電導線材の製造方法において、前記仮焼膜に輻射加熱を施すことにより、前記仮焼膜のみを急速加熱した後、前記仮焼膜の結晶化温度に保持し、次いで、急速冷却を施して高配向性の中間層を形成することを特徴とするテープ状酸化物超電導線材の製造方法。 A tape-shaped wire having an intermediate layer calcined film formed on a metal substrate having orientation is heated and cooled to form an intermediate layer on the metal substrate, and then a superconducting layer is formed on the intermediate layer. In the manufacturing method of the tape-shaped oxide superconducting wire to be formed, by rapidly heating only the calcined film by subjecting the calcined film to radiation heating, the calcination film is maintained at the crystallization temperature, and then, A method for producing a tape-like oxide superconducting wire, characterized by forming a highly oriented intermediate layer by rapid cooling. 配向性を有する金属基板上に、中間層の仮焼膜を形成したテープ状線材を、加熱及び冷却して前記金属基板上に中間層を形成し、次いで、前記中間層の上に超電導層を形成するテープ状酸化物超電導線材の製造方法において、前記仮焼膜の表面に対して輻射線が集中するように輻射加熱を施すことにより、前記仮焼膜を急速加熱した後、前記仮焼膜の結晶化温度に保持し、次いで、急速冷却を施して高配向性の中間層を形成することを特徴とするテープ状酸化物超電導線材の製造方法。 A tape-shaped wire having an intermediate layer calcined film formed on a metal substrate having orientation is heated and cooled to form an intermediate layer on the metal substrate, and then a superconducting layer is formed on the intermediate layer. In the manufacturing method of the tape-shaped oxide superconducting wire to be formed, the calcined film is rapidly heated by subjecting the calcined film to rapid heating by subjecting the surface of the calcined film to radiation so that the radiation is concentrated. A method for producing a tape-shaped oxide superconducting wire, characterized in that a highly oriented intermediate layer is formed by maintaining a crystallization temperature of 中間層の仮焼膜は、中間層を構成する金属元素を含む金属有機酸塩または有機金属化合物を有機溶媒中に溶解した混合溶液を塗布後仮焼してなることを特徴とする請求項1又は2記載のテープ状酸化物超電導線材の製造方法。 2. The calcined film of the intermediate layer is formed by applying a mixed solution in which a metal organic acid salt or an organic metal compound containing a metal element constituting the intermediate layer is dissolved in an organic solvent and calcining. Or the manufacturing method of the tape-shaped oxide superconducting wire of 2 . テープ状酸化物超電導線材は、Y系(123)超電導線材であることを特徴とする請求項1乃至いずれか1項記載のテープ状酸化物超電導線材の製造方法。 The method for producing a tape-shaped oxide superconducting wire according to any one of claims 1 to 3 , wherein the tape-shaped oxide superconducting wire is a Y-based (123) superconducting wire. 配向性を有する金属基板上に、中間層の仮焼膜を形成したテープ状線材を、加熱及び冷却して前記金属基板上に中間層を形成するための熱処理装置であって、前記熱処理装置は、前記テープ状線材の送出し装置及び巻取り装置と、前記送出し装置及び巻取り装置の間に配置された熱処理炉とを備え、前記熱処理炉は、前記仮焼膜のみを輻射加熱により急速加熱する急速加熱領域及び結晶化温度領域からなることを特徴とするテープ状酸化物超電導線材の中間層熱処理装置。 A heat treatment apparatus for forming an intermediate layer on the metal substrate by heating and cooling a tape-shaped wire material on which an intermediate layer calcined film is formed on a metal substrate having orientation, wherein the heat treatment apparatus The tape-shaped wire feeding device and winding device, and a heat treatment furnace disposed between the feeding device and winding device, wherein the heat treatment furnace rapidly radiates only the calcined film. An intermediate layer heat treatment apparatus for a tape-shaped oxide superconducting wire comprising a rapid heating region and a crystallization temperature region for heating. 向性を有する金属基板上に、中間層の仮焼膜を形成したテープ状線材を、加熱及び冷却して前記金属基板上に中間層を形成するための熱処理装置であって、前記熱処理装置は、前記テープ状線材の送出し装置及び巻取り装置と、前記送出し装置及び巻取り装置の間に配置された熱処理炉とを備え、前記熱処理炉は、前記仮焼膜を急速加熱する急速加熱領域及び結晶化温度領域からなり、前記急速加熱領域及び結晶化温度領域は、前記仮焼膜の表面に対して輻射線が集中するように形成された輻射加熱手段により構成されることを特徴とするテープ状酸化物超電導線材の中間層熱処理装置。 On a metal substrate having a distribution tropism, the intermediate layer tape-shaped wire to form a calcined film of a heat treatment apparatus for heating and cooling to form an intermediate layer on the metal substrate, the heat treatment apparatus Comprises a feeding device and a winding device for the tape-like wire, and a heat treatment furnace disposed between the feeding device and the winding device, and the heat treatment furnace rapidly heats the calcined film. It comprises a heating region and a crystallization temperature region, and the rapid heating region and the crystallization temperature region are configured by radiation heating means formed so that radiation rays are concentrated on the surface of the calcined film. An intermediate layer heat treatment apparatus for a tape-shaped oxide superconducting wire. 中間層の仮焼膜は、中間層を構成する金属元素を含む金属有機酸塩または有機金属化合物を有機溶媒中に溶解した混合溶液を塗布後仮焼してなることを特徴とする請求項5又は6記載のテープ状酸化物超電導線材の中間層熱処理装置。 Calcined film of the intermediate layer, claim, characterized by comprising a mixed solution of a metal organic acid salt or organometallic compound containing a metal element constituting the intermediate layer in an organic solvent calcined after application 5 Or an intermediate layer heat treatment apparatus for a tape-shaped oxide superconducting wire according to 6 . 送出し装置と巻取り装置の間に配置された熱処理炉内のテープ状線材の搬送路は、透明な炉心管により構成され、前記送出し装置、前記巻取り装置および前記テープ状線材の搬送路は雰囲気制御が可能に密閉構造に構成されていることを特徴とする請求項5乃至7いずれか1項記載のテープ状酸化物超電導線材の中間層熱処理装置。 The transport path for the tape-shaped wire rod in the heat treatment furnace disposed between the feeding device and the winding device is constituted by a transparent furnace core tube, and the feeding device, the winding device, and the transport path for the tape-shaped wire rod. The intermediate heat treatment apparatus for a tape-shaped oxide superconducting wire according to any one of claims 5 to 7 , characterized in that is configured in a sealed structure so that the atmosphere can be controlled. テープ状酸化物超電導線材は、Y系(123)超電導線材であることを特徴とする請求項5乃至8いずれか1項記載のテープ状酸化物超電導線材の中間層熱処理装置。 9. The intermediate heat treatment apparatus for a tape-shaped oxide superconducting wire according to any one of claims 5 to 8 , wherein the tape-shaped oxide superconducting wire is a Y-based (123) superconducting wire.
JP2006057906A 2006-03-03 2006-03-03 Tape-like oxide superconducting wire manufacturing method and intermediate layer heat treatment apparatus Expired - Fee Related JP4921813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006057906A JP4921813B2 (en) 2006-03-03 2006-03-03 Tape-like oxide superconducting wire manufacturing method and intermediate layer heat treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006057906A JP4921813B2 (en) 2006-03-03 2006-03-03 Tape-like oxide superconducting wire manufacturing method and intermediate layer heat treatment apparatus

Publications (2)

Publication Number Publication Date
JP2007234531A JP2007234531A (en) 2007-09-13
JP4921813B2 true JP4921813B2 (en) 2012-04-25

Family

ID=38554895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006057906A Expired - Fee Related JP4921813B2 (en) 2006-03-03 2006-03-03 Tape-like oxide superconducting wire manufacturing method and intermediate layer heat treatment apparatus

Country Status (1)

Country Link
JP (1) JP4921813B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02102123A (en) * 1988-10-12 1990-04-13 Nippon Mining Co Ltd Production of superconductor
JP4433589B2 (en) * 2000-08-29 2010-03-17 住友電気工業株式会社 High temperature superconducting thick film member and manufacturing method thereof
JP4422959B2 (en) * 2002-11-18 2010-03-03 昭和電線ケーブルシステム株式会社 Method for producing Y-based tape-shaped oxide superconductor
WO2004100182A1 (en) * 2003-05-07 2004-11-18 International Superconductivity Technology Center, The Juridical Foundation Rare earth oxide superconductor and process for producing the same
JP4579909B2 (en) * 2004-03-12 2010-11-10 財団法人国際超電導産業技術研究センター Rare earth oxide superconductor and manufacturing method thereof
JP4208806B2 (en) * 2004-09-16 2009-01-14 株式会社東芝 Manufacturing method of oxide superconductor
JP5219109B2 (en) * 2005-08-10 2013-06-26 独立行政法人産業技術総合研究所 Manufacturing method of superconducting material
JP5172456B2 (en) * 2008-05-07 2013-03-27 株式会社東芝 Manufacturing method of oxide superconductor

Also Published As

Publication number Publication date
JP2007234531A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP3835685B2 (en) Superconductor magnesium diboride thin film, manufacturing method and manufacturing apparatus thereof
KR101429553B1 (en) Superconducting wire and method of forming the same
JP5671556B2 (en) Ceramic wire forming method and ceramic wire forming system
JP2009507358A (en) High temperature superconducting wire and coil
KR101664465B1 (en) Oxide superconductor cabling and method of manufacturing oxide superconductor cabling
CN112839742A (en) Superconductor flux pinning without columnar defects
JP4433589B2 (en) High temperature superconducting thick film member and manufacturing method thereof
JP4521693B2 (en) High temperature superconducting thick film member and manufacturing method thereof
JP5292054B2 (en) Thin film laminate and manufacturing method thereof, oxide superconducting conductor and manufacturing method thereof
JP4921813B2 (en) Tape-like oxide superconducting wire manufacturing method and intermediate layer heat treatment apparatus
US8026197B2 (en) Method and apparatus for manufacturing superconducting tape through integrated process
JP4071569B2 (en) Method and apparatus for forming stabilization layer
KR100834115B1 (en) Ibad system for fabricating metal wire article having biaxial-alignment property
KR100834114B1 (en) Ibad system for fabricating metal wire article having biaxial-alignment property
JP2011146234A (en) Method of manufacturing oxide superconducting film
JP3397474B2 (en) Superconducting wire
US20050039672A1 (en) Methods for surface-biaxially-texturing amorphous films
JP3428054B2 (en) Heater for producing oxide superconducting tape and method for producing oxide superconducting tape
JP5614831B2 (en) Oxide superconducting current lead
JP2013122065A (en) Method and apparatus for depositing functional thin film
JP5658891B2 (en) Manufacturing method of oxide superconducting film
JP3206924B2 (en) Method and apparatus for producing oxide superconducting wire
JP5492681B2 (en) Superconducting wire and manufacturing method thereof, superconducting coil and manufacturing method thereof
JP2001357739A (en) Manufacturing method and device of wire material of superconductive oxide
JP5624840B2 (en) Manufacturing method of oxide superconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees