JP4921034B2 - Potential measurement device - Google Patents

Potential measurement device Download PDF

Info

Publication number
JP4921034B2
JP4921034B2 JP2006132012A JP2006132012A JP4921034B2 JP 4921034 B2 JP4921034 B2 JP 4921034B2 JP 2006132012 A JP2006132012 A JP 2006132012A JP 2006132012 A JP2006132012 A JP 2006132012A JP 4921034 B2 JP4921034 B2 JP 4921034B2
Authority
JP
Japan
Prior art keywords
detection electrode
potential measuring
detection
measuring device
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006132012A
Other languages
Japanese (ja)
Other versions
JP2007003512A5 (en
JP2007003512A (en
Inventor
隆志 牛島
好克 市村
篤史 香取
義貴 財津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006132012A priority Critical patent/JP4921034B2/en
Publication of JP2007003512A publication Critical patent/JP2007003512A/en
Publication of JP2007003512A5 publication Critical patent/JP2007003512A5/ja
Application granted granted Critical
Publication of JP4921034B2 publication Critical patent/JP4921034B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、検知電極に生じる電荷の量によって被検知物の電位を検知する電位測定装置に関するものである。また、この電位測定装置を備える画像形成装置に関するものである。 The present invention relates to a potential measuring device that detects the potential of an object to be detected based on the amount of electric charge generated in a detection electrode. The present invention also relates to an image forming apparatus including the potential measuring device.

従来、被検知物と検知電極との距離を変化させる方式の電位測定装置について、提案がある(特許文献1参照)。この電位測定装置は、圧電音叉、絶縁体、検知電極を有し、検知電極と圧電音叉との間には絶縁体が形成されていて、いわゆるコンデンサの構成となっている。この構成において、被検知物との間の距離を変化させる検知電極では、電荷が発生、増減し、これが検知電極からの交流の電気信号となる。 Conventionally, there has been a proposal for a potential measuring apparatus that changes the distance between a detection object and a detection electrode (see Patent Document 1). This potential measuring device has a piezoelectric tuning fork, an insulator, and a detection electrode, and an insulator is formed between the detection electrode and the piezoelectric tuning fork, and has a so-called capacitor configuration. In this configuration, electric charges are generated and increased / decreased in the detection electrode that changes the distance to the object to be detected, and this becomes an alternating electrical signal from the detection electrode.

また、被検知物から見える検知電極の面積を変化させる方式の電位測定装置についても、提案がある(特許文献2参照)。この電位測定装置は、MEMS技術(半導体プロセス技術の応用)により作製されている。半導体プロセスでは、一般に、基板材料にシリコンを用いる。シリコン上に検知電極を形成する場合、シリコンと検知電極との間に絶縁体を形成する。シリコンは電気を流す性質を有するので、いわゆるコンデンサの構成となる。この構成において、被検知物から見える面積が変化する検知電極では、電荷が発生、増減し、これが検知電極からの交流の電気信号となる。 There is also a proposal for a potential measuring device that changes the area of the detection electrode that can be seen from the object to be detected (see Patent Document 2). This potential measuring device is manufactured by MEMS technology (application of semiconductor process technology). In semiconductor processes, silicon is generally used as a substrate material. When forming the detection electrode on silicon, an insulator is formed between the silicon and the detection electrode. Since silicon has a property of flowing electricity, it has a so-called capacitor configuration. In this configuration, electric charges are generated and increased / decreased in the detection electrode whose area visible from the object to be detected changes, and this becomes an alternating electrical signal from the detection electrode.

ここで、上記背景技術の電位測定装置及び本発明の電位測定装置が採用する方式である非接触式の電位測定装置が出力信号を発生する原理を説明する。 Here, the principle of generating an output signal by the non-contact potential measuring device which is a method adopted by the potential measuring device of the background art and the potential measuring device of the present invention will be described.

被検知物と検知電極との距離(g)が変化するか、若しくは、被検知物と検知電極との間の誘電率(ε)が変化するか、若しくは、被検知物から見える検知電極の面積(s)が変化すると、被検知物と検知電極間に誘起される電気(結合)容量(C)は変化する。
電気容量(C)は一般に式(1)で表すことができる。
C=(ε・s)/g (1)
ここで、ε[F・m−1]は被検知物と検知電極間の誘電率、g[m]は被検知物と検知電極間の距離、s[m]は被検知物から見える検知電極の面積である。
The distance (g) between the object to be detected and the detection electrode changes, or the dielectric constant (ε) between the object to be detected and the detection electrode changes, or the area of the detection electrode visible from the object to be detected When (s) changes, the electric (coupling) capacitance (C) induced between the detection object and the detection electrode changes.
The electric capacity (C) can be generally expressed by the formula (1).
C = (ε · s) / g (1)
Here, ε [F · m −1 ] is the dielectric constant between the detected object and the detection electrode, g [m] is the distance between the detected object and the detection electrode, and s [m 2 ] is the detection visible from the detected object. The area of the electrode.

また、電気容量(C)は式(2)で表すことができる。
Q=C×Vd (2)
ここで、Qは電荷の量、Vd[V]は被検知物の電位である。
式(1)を式(2)に代入すると、式(3)となる。
Q=(ε・s)/g×Vd (3)
The electric capacity (C) can be expressed by the formula (2).
Q = C × Vd (2)
Here, Q is the amount of charge, and Vd [V] is the potential of the object to be detected.
Substituting equation (1) into equation (2) yields equation (3).
Q = (ε · s) / g × Vd (3)

ここで、被検知物から見える検知電極の面積が時間(t)に伴って変化する場合、式(3)は式(4)で表すことができる。この変化は、例えば、被検知物と検知電極との間に導電性材料などで形成された遮断板を挿入、引出しすることで達成される。
Q(t)=(ε・s(t))/g×Vd (4)
Here, when the area of the detection electrode seen from the object to be detected changes with time (t), the expression (3) can be expressed by the expression (4). This change is achieved, for example, by inserting and pulling out a shielding plate made of a conductive material between the object to be detected and the detection electrode.
Q (t) = (ε · s (t)) / g × Vd (4)

式(4)を時間(t)で微分すると式(5)となる。ここで、時間あたりの面積変化ds(t)/dtは分かっている値である。
dQ(t)/dt=I(t)=(ε/g・ds(t)/dt)×Vd (5)
こうして、式(5)より検知電極からの電流信号I(t)が得られる。これを電流−電圧変換すれば、電圧出力信号V(t)を得ることができ、出力信号V(t)から被検知物の電位Vdが分かる。被検知物と検知電極との距離(g)が時間(t)に伴って変化する場合、被検知物と検知電極との間の誘電率(ε)が時間(t)に伴って変化する場合についても、同様の考え方で、検知電極からの電流信号I(t)が得られることが分かる。
特開2000−180490号公報 特開2000−147035号公報
Differentiating equation (4) with respect to time (t) yields equation (5). Here, the area change ds (t) / dt per time is a known value.
dQ (t) / dt = I (t) = (ε / g · ds (t) / dt) × Vd (5)
Thus, the current signal I (t) from the detection electrode is obtained from the equation (5). If this is subjected to current-voltage conversion, a voltage output signal V (t) can be obtained, and the potential Vd of the detected object can be obtained from the output signal V (t). When the distance (g) between the detected object and the detection electrode changes with time (t), and when the dielectric constant (ε) between the detected object and the detection electrode changes with time (t) With respect to, it can be seen that the current signal I (t) from the detection electrode can be obtained in the same way.
JP 2000-180490 A JP 2000-147035 A

しかしながら、非接触式の電位測定装置においては、検知電極とその近傍に存在する部材との間で電気容量(被検知物との間で発生する電気容量を除く電気容量で、以下では寄生容量とも言う)が発生する。この寄生容量によって検知電極で発生した電気信号の一部が、近傍に存在する部材に流出してしまうことがある。したがって、検知電極からの出力信号を低下させてしまうことがある。また、近傍に存在する部材にノイズ成分が存在すると、ノイズ成分が検知電極に流入して、シグナル/ノイズ比(以下、S/N比)を低下させてしまうことがある。上記の従来技術では、こうしたことが考慮されていなかった。 However, in the non-contact type potential measuring device, the capacitance between the sensing electrode and a member existing in the vicinity thereof (the capacitance excluding the capacitance generated between the sensing electrode and the object to be detected, hereinafter referred to as the parasitic capacitance). Say) occurs. Due to this parasitic capacitance, a part of the electric signal generated at the detection electrode may flow out to a nearby member. Therefore, the output signal from the detection electrode may be reduced. Further, when a noise component is present in a member present in the vicinity, the noise component may flow into the detection electrode, and the signal / noise ratio (hereinafter, S / N ratio) may be reduced. In the above prior art, this is not taken into consideration.

上記課題に鑑み、本発明の電位測定装置は、被検知物の電位に応じて電荷が誘起される検知電極と、該誘起される電荷の発生量を変化させるための変化手段(変調器)と、を有する電位測定装置であって、該検知電極は支持部材上に絶縁体を介して設けられ、かつ前記被検知物に対向する面に、少なくとも1つの部と複数のが形成されるように配置され、該凹部には前記検知電極が存在せずに前記絶縁体が露出、前記複数の凸部は前記支持部材上の絶縁体上において夫々電気的に接続されていることを特徴とする。ここにおいて、例えば、検知電極の凹部は、前記絶縁体が露出するよう前記検知電極に形成された、孔と溝のうち少なくとも一方である。こうした構成では、被検知物からの電気力線によって、凹部ないし孔または溝により生じる角部、側壁に有効に電荷を生じさせることができる。 In view of the above problems, the potential measuring device of the present invention includes a detection electrode in which charge is induced in accordance with the potential of an object to be detected, and change means (modulator) for changing the amount of generated charge. , a potential measuring device having, the sensing electrode provided via an insulator on the supporting member, and wherein on a surface facing the test object, at least one recess and a plurality of convex portions are formed The insulator is exposed without the detection electrode being present in the recess , and the plurality of protrusions are electrically connected to each other on the insulator on the support member. Features. Here, for example, the recess of the detection electrode is at least one of a hole and a groove formed in the detection electrode so that the insulator is exposed . In such a configuration, the electric lines of force from the object to be detected can effectively generate charges on the corners and side walls generated by the recesses, holes, or grooves.

すなわち、図1に示す様に、凹部ないし孔または溝を設けることで、検知電極に角部、側壁が生じる一方、検知電極と検知電極を支持する部材との対向する面積が低下する。被検知物から見える検知電極の面積は低下するが、角部、側壁があるため、被検知物と検知電極との間に電位が生じると、角部、側壁にも電気力線が集まるので、凹部ないし孔または溝が有る時と無い時とでの出力信号の差を殆どないし或る程度無くすことがきる。他方で、検知電極と検知電極を支持する部材との対向する面積は低下するので、そこで発生する寄生容量は低下させることができる。 That is, as shown in FIG. 1, by providing a recess or hole or groove, a corner or a side wall is generated in the detection electrode, while an area where the detection electrode and the member supporting the detection electrode are opposed to each other is reduced. Although the area of the detection electrode that can be seen from the object to be detected is reduced, there are corners and side walls, so when an electric potential is generated between the object to be detected and the detection electrode, electric lines of force also gather at the corners and side walls. The difference in output signal between when there is a concave portion or hole or groove and when there is no concave portion or hole or groove can be eliminated almost to some extent. On the other hand, since the opposing area between the detection electrode and the member supporting the detection electrode is reduced, the parasitic capacitance generated there can be reduced.

また、本発明の電位測定装置は、被検知物の電位に応じて電荷が誘起される検知電極と、該誘起される電荷の発生量を変化させるための変化手段(変調器)と、を有する電位測定装置であって、
該検知電極は、支持体上に絶縁体を介して設けられ、かつ分離配置された導電体部分を複数含み、更に該複数の導電体部分は電気的に繋がっていることを特徴とする。この構成の例としては、後述の実施例の検知電極を複数の導電体部分に分離して、これらの導電体部分を配線で繋げた構成がある。
The potential measuring device of the present invention includes a sensing electrode charge in accordance with the potential of the detection object is induced, the variation means for varying the generation amount of charge the induced (modulator), a An electric potential measuring device comprising:
The sensing electrode is provided through the insulation body on a support, and look plurality including a separate arranged electrical conductor portion, further electrical conductor portion of said plurality of features that are connected to the electrical . As an example of this configuration, there is a configuration in which a detection electrode of an example described later is separated into a plurality of conductor portions and these conductor portions are connected by wiring.

また、本発明の電位測定装置は、被検知物の電位に応じて電荷が誘起される検知電極と、該誘起される電荷の発生量を変化させるための変化手段(変調器)と、を有する電位測定装置であって、
該検知電極は支持体上に絶縁体を介して設けられ、かつ前記絶縁体からなる絶縁性表面を複数の領域で露出させる平面パターンを有する導電体を有することを特徴とする。
The potential measuring device of the present invention includes a sensing electrode charge in accordance with the potential of the detection object is induced, the variation means for varying the generation amount of charge the induced (modulator), a An electric potential measuring device comprising:
The sensing electrode is provided through the insulation body on a support, and is characterized by having a conductor having a flat pattern for exposing the insulating surface made of the insulating material in a plurality of regions.

また、上記課題に鑑み、本発明の画像形成装置は、上記の電位測定装置と、画像形成手段とを備え、電位測定装置より得られる出力信号を用いて画像形成手段による画像形成制御することを特徴とする。この画像形成装置は、本発明の電位測定装置を搭載することで、S/N比の比較的高い出力信号を得られ、被検知物の正確な電位を把握することが可能となる。これにより、被検知物への帯電処理、現像処理等を的確にできる。 In view of the problems, the image forming apparatus of the present invention is to control and the potential measuring apparatus, and an image forming unit, the image formation by the image forming means by using an output signal obtained from the potential measuring device It is characterized by. By mounting the potential measuring device of the present invention, this image forming apparatus can obtain an output signal having a relatively high S / N ratio, and can grasp the accurate potential of the object to be detected. As a result, it is possible to accurately perform the charging process, the developing process, and the like on the object to be detected.

以上に説明した本発明の電位測定装置によれば、上記の如き検知電極の独特の形態により、被検知物と検知電極間の電気容量の発生量を殆どないしあまり低下させることなく、寄生容量を低下させることが可能であり、S/N比を比較的高くできる。また、本発明の電位測定装置を搭載した画像形成装置は、本発明の電位測定装置より得られる被検知物の電位の比較的正確な情報をもとに、比較的高品位な画像形成が可能となる。 According to the electric potential measuring apparatus of the present invention described above, the parasitic capacitance can be reduced with little or no decrease in the amount of electric capacity generated between the object to be detected and the detection electrode by the unique form of the detection electrode as described above. The S / N ratio can be made relatively high. The image forming apparatus equipped with the potential measuring device of the present invention can form a relatively high-quality image based on relatively accurate information on the potential of the detected object obtained from the potential measuring device of the present invention. It becomes.

以下、本発明の実施の形態を図に沿って説明する。
図1は、通常の電位測定装置の検知電極と比較しつつ、本発明の電位測定装置の第1の実施形態の検知電極付近の構成を示す。図1(a)は、検知電極に孔または溝を形成する前の通常のものの断面と上面を示し、検知電極101、絶縁層102、支持部材103からなる。図1(b)は、平板状の検知電極101に複数の貫通孔104を形成した本実施形態のものの断面(支持部材103に垂直な面での断面)と上面(検知電極110を垂直方向真上から見た面)を示す。平板状の検知電極110に対してほぼ垂直な孔104を形成することにより、ほぼ直角な角部105とほぼ垂直に伸びる側壁106が有効に形成されている。そして、電極110を完全に貫いた孔104を形成することにより、支持部材103と絶縁層102を挟んで対向する検知電極110の面積が減少する。支持部材103と対向する検知電極110の面積が減少することで、図1(a)の構成と比較して、両者間で形成される寄生容量は低下する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows the configuration in the vicinity of the detection electrode of the first embodiment of the potential measurement device of the present invention while comparing with the detection electrode of a normal potential measurement device. FIG. 1A shows a cross-section and an upper surface of a normal one before forming a hole or groove in the detection electrode, and includes a detection electrode 101, an insulating layer 102, and a support member 103. FIG. 1B shows a cross-section (cross-section in a plane perpendicular to the support member 103) and an upper surface (detection electrode 110 in the vertical direction) of the present embodiment in which a plurality of through-holes 104 are formed in a flat detection electrode 101. The surface seen from above). By forming the hole 104 substantially perpendicular to the plate-like detection electrode 110, the substantially perpendicular corner 105 and the side wall 106 extending substantially perpendicularly are effectively formed. Then, by forming the hole 104 that completely penetrates the electrode 110, the area of the detection electrode 110 facing the support member 103 and the insulating layer 102 is reduced. Since the area of the detection electrode 110 facing the support member 103 is reduced, the parasitic capacitance formed between both is reduced as compared with the configuration of FIG.

図2(a)は、孔を形成する前の検知電極101と被検知物201の配置関係を示す断面図である。図2(b)は、孔104を形成した後の検知電極110と被検知物201の配置関係を示す断面図である。検知電極に対向する様に被検知物201が配置されていて、被検知物201と検知電極101または110との間に電位差が生じると、電気力線202が生じる。図2(b)の場合、被検知物201から見える検知電極110の面積は、図2(a)の場合に比べて少ない。しかし、電気力線202が検知電極110の角部105に集中すること、又は側壁106に達することで、図2(a)の場合とほぼ同じ出力信号を得ることができる。本実施形態においても、上記の原理に基づいて検知電極110からの出力信号を信号処理回路で処理して被検知物201の電位を検出する方法は、従来のやり方と同じである。 FIG. 2A is a cross-sectional view showing the positional relationship between the detection electrode 101 and the detected object 201 before forming a hole. FIG. 2B is a cross-sectional view showing the positional relationship between the detection electrode 110 and the detected object 201 after the hole 104 is formed. When the detected object 201 is arranged so as to face the detection electrode and a potential difference is generated between the detected object 201 and the detection electrode 101 or 110, an electric force line 202 is generated. In the case of FIG. 2B, the area of the detection electrode 110 that can be seen from the detection object 201 is smaller than that in the case of FIG. However, when the electric lines of force 202 concentrate on the corner portion 105 of the detection electrode 110 or reach the side wall 106, substantially the same output signal as in FIG. 2A can be obtained. Also in this embodiment, the method of detecting the potential of the detected object 201 by processing the output signal from the detection electrode 110 by the signal processing circuit based on the above principle is the same as the conventional method.

図3を用いて、本実施形態の電位測定装置の動作例について説明する。 An example of the operation of the potential measuring apparatus according to the present embodiment will be described with reference to FIG.

本発明の電位測定装置は、被検知物と検知電極とを対させて配置し、当該検知電極に誘起される電荷の発生量を変化させる変化手段(変調器ともいう)を有する。本発明における上記変化手段(変調器ともいう)は、検知電極に誘起される電荷の発生量を変化させるものであれば特に制限はない。代表的なものとしては、被検知物と検知電極との間の距離を変化させることによって前記電荷を変化させるものがある。また、被検知物と検知電極との間にシャッタ等を配し被検知物から検知電極への電気力線の到達量を変化させることによって前記電荷を変化させるものがある。 Potential measuring apparatus of the present invention has a place by pairs direction and a detection electrode and the detection object, the detection changing means for changing the generation amount of charge electrodes is induced (also referred to as a modulator). The changing means (also referred to as a modulator) in the present invention is not particularly limited as long as it changes the amount of charge generated in the detection electrode. As a typical one, there is one that changes the electric charge by changing a distance between an object to be detected and a detection electrode. In addition, there is a type in which a shutter or the like is disposed between the detection object and the detection electrode to change the electric charge by changing the amount of electric lines of force from the detection object to the detection electrode.

検知電極110と被検知物201間の距離を変化させることで被検知物の電位に応じた出力信号を得る場合、例えば、図3に示す様に、検知電極110の面に対してほぼ垂直方向に検知電極110を上下に動かす。これらの動きを得るには、例えば、支持部材103に梁を形成して梁や支持部材に圧電体素子を形成し、圧電体素子に電圧を印加して、その形状変化を利用する駆動手段ないし変化手段(変調器)を用いる。また、梁や支持部材の一部に、近傍の静電引力発生用の電極と向かい合う様に、移動電極を形成し、それらの電極間に電圧を印加して静電引力を発生させて動かしてもよい。また、梁や支持部材等にコイル(または磁石)を形成して、その近傍に磁石(またはコイル)を形成し、コイルに電流を流して磁力を発生させてコイルと磁石間に斥力または引力を発生させる駆動手段で動かしてもよい。 When an output signal corresponding to the potential of the detection object is obtained by changing the distance between the detection electrode 110 and the detection object 201, for example, as shown in FIG. The detection electrode 110 is moved up and down. In order to obtain these movements, for example, a driving unit or a driving unit that forms a beam on the support member 103, forms a piezoelectric element on the beam or the support member, applies a voltage to the piezoelectric element, and uses the shape change. Changing means (modulator) is used. In addition, a moving electrode is formed on a part of the beam or support member so as to face the nearby electrostatic attraction generating electrode, and a voltage is applied between these electrodes to generate electrostatic attraction and move it. Also good. In addition, a coil (or magnet) is formed on a beam, a support member, etc., a magnet (or coil) is formed in the vicinity thereof, a current is passed through the coil to generate a magnetic force, and a repulsive or attractive force is generated between the coil and the magnet. You may move by the drive means to generate.

上記駆動手段に限らず、モーター、振動、熱などを用いても構わない。 Not only the driving means but also a motor, vibration, heat or the like may be used.

また、図4に示す様に、検知電極110と被検知物201間の距離を変化させてもよい。ここでは、図4に示す様に検知電極110を傾けることにより、距離の変化とともに、被検知物201から見える検知電極110の面積を変化させられる。これにより、出力信号をより大きくできる。この動きを得るには、図3の説明の駆動手段によるものと同様の駆動方法を用いることができる。 Further, as shown in FIG. 4, the distance between the detection electrode 110 and the detected object 201 may be changed. Here, by tilting the detection electrode 110 as shown in FIG. 4, the area of the detection electrode 110 that can be seen from the detected object 201 can be changed with the change in distance. Thereby, an output signal can be made larger. In order to obtain this movement, a driving method similar to that by the driving means illustrated in FIG. 3 can be used.

この場合、図4(b)、(c)に示す様に、検知電極110を傾ける角度をθ、孔または溝104の幅をG、検知電極110の厚さをHとした場合、式(6)を満たすことで、図4(d)の如く、貫通孔または溝104の底は、被検知物201から見えない状態となる。即ち、孔または溝104がないのと同様に、被検知物201から検知電極110の最外周輪郭内に来る電気力線がほぼ全て検知電極110で受け取られる状態となる。この結果、孔または溝がない場合の検知電極を用いたときの出力信号と同等の出力信号を得ることができる。
tanθ≧G/H (6)
In this case, as shown in FIGS. 4B and 4C, when the angle at which the detection electrode 110 is inclined is θ, the width of the hole or groove 104 is G, and the thickness of the detection electrode 110 is H, the equation (6) ) Is satisfied, the bottom of the through-hole or groove 104 is not visible from the object 201 to be detected as shown in FIG. That is, as in the case where there is no hole or groove 104, almost all electric lines of force coming from the detected object 201 within the outermost contour of the detection electrode 110 are received by the detection electrode 110. As a result, it is possible to obtain an output signal equivalent to the output signal when using the detection electrode when there is no hole or groove.
tan θ ≧ G / H (6)

この場合、検知電極110の幅Wの値が小さいほど、支持部材103と絶縁層102を挟んで対向する検知電極110の面積は小さくできるので、寄生容量を小さくできる。勿論、図2(b)のところで説明した様に、検知電極110を傾ける角度が上記θより小さい状態においても、電気力線が検知電極110の角部105に集中する。さらに、側壁106に達する。従って、孔または溝がない検知電極を用いたときの出力信号に近い出力信号を得ることができる。 In this case, the smaller the value of the width W of the detection electrode 110, the smaller the area of the detection electrode 110 facing the support member 103 and the insulating layer 102, so that the parasitic capacitance can be reduced. Of course, as described with reference to FIG. 2B, the electric lines of force concentrate on the corner portion 105 of the detection electrode 110 even when the angle at which the detection electrode 110 is inclined is smaller than the above θ. Further, the side wall 106 is reached. Therefore, it is possible to obtain an output signal close to an output signal when using a detection electrode having no hole or groove.

図5の如く、被検知物201と検知電極110との間の誘電率を変化させることで、被検知物201の電位に応じた出力信号を得てもよい。これは、被検知物201と検知電極110との間に遮蔽板を挿入して、被検知物201から見える検知電極110の面積を変化させることとも捉えられる。この様に、誘電率(ε)若しくは面積(s)を変化させることで出力信号を得る場合、例えば、図5に示す様に、被検知物201と検知電極110との間において、周りと誘電率の異なる材料(誘電体501)の挿入、引出しする。若しくは導電体502挿入、引出しする。誘電体若しくは導電体の挿入、引出しをするにも、図3の説明の駆動手段によるものと同様の方法を用いることができる。被検知物201と検知電極110との間の誘電率を変化させるには、この方法の他に、例えば、被検知物と検知電極との間に設けた材料の誘電率を電気的制御で変化させてもよい。 As shown in FIG. 5, an output signal corresponding to the potential of the detected object 201 may be obtained by changing the dielectric constant between the detected object 201 and the detection electrode 110. This can also be understood as changing the area of the detection electrode 110 visible from the detection object 201 by inserting a shielding plate between the detection object 201 and the detection electrode 110. Thus, when obtaining an output signal by changing the dielectric constant (epsilon) or area (s), for example, as shown in FIG. 5, Oite between the detection electrode 110 and the detection object 201, around inserting and dielectric constant of different materials (dielectric 501), a drawer. Or insertion of the conductor 502, to the drawer. A method similar to that by the driving means described in FIG. 3 can be used to insert and pull out the dielectric or conductor. In order to change the dielectric constant between the detected object 201 and the detection electrode 110, in addition to this method, for example, the dielectric constant of the material provided between the detected object and the detection electrode is changed by electrical control. You may let them.

図5(b)の構成を、図5(c)、(d)の如く複数並べると(複数の検知電極110は電気的に繋がっている)、並べた分だけ大きな出力信号を得ることが可能となる。ここで、誘電体501若しくは導電体502が一部で繋がった構成とすれば、一つの駆動源で複数の誘電体若しくは導電体を一度に動かすことが可能となる。図5(c)は、支持部材103に垂直な面での断面を示し、図5(d)は、複数の検知電極110を垂直方向真上から見た上面を示す。 When a plurality of configurations shown in FIG. 5B are arranged as shown in FIGS. 5C and 5D (a plurality of detection electrodes 110 are electrically connected), a larger output signal can be obtained. It becomes. Here, if the dielectric 501 or the conductor 502 is partly connected, it is possible to move a plurality of dielectrics or conductors at a time with one driving source. FIG. 5C shows a cross section in a plane perpendicular to the support member 103, and FIG. 5D shows an upper surface of the plurality of detection electrodes 110 viewed from directly above in the vertical direction.

上記種々の出力信号を得るための方法は、種々に組み合わせて用いることが可能である。例えば、検知電極110を上下に動かしながら、誘電体若しくは導電体を被検知物201と検知電極110との間に挿入、引出しをしたりしてもよい。これにより、振幅の更に大きな出力信号を得ることが可能となる。 The methods for obtaining the various output signals can be used in various combinations. For example, while moving the detection electrode 110 up and down, a dielectric or a conductor may be inserted and pulled out between the detected object 201 and the detection electrode 110. As a result, an output signal having a larger amplitude can be obtained.

検知電極を垂直方向真上から見た上面を示す図6は、本発明の電位測定装置の他の実施形態の検知電極310、410、610、710の形状を示す。孔104の形状については、多角形状であっても、円形(楕円形)等であっても構わない。また、図6(a)の様に、孔104の一部が検知電極310の端部で途切れていても構わない。さらに、図6(b)の様に、一方向に長く、且つ検知電極410の端部で途切れている溝104を含む構造でも構わない。さらに、図6(c)又は図6(d)の様に一方向に長く伸びた溝に矩形の溝を組み合わせた構造とすることもできる。溝構造は、直線のみで構成されるだけでなく、曲線形状を用いても構わない。 FIG. 6 showing the top surface of the sensing electrode viewed from directly above in the vertical direction shows the shape of the sensing electrodes 310, 410, 610, and 710 of another embodiment of the potential measuring device of the present invention. The shape of the hole 104 may be polygonal, circular (elliptical), or the like. Further, as shown in FIG. 6A, a part of the hole 104 may be interrupted at the end of the detection electrode 310. Furthermore, as shown in FIG. 6B, a structure including a groove 104 that is long in one direction and is interrupted at the end of the detection electrode 410 may be used. Further, as shown in FIG. 6C or FIG. 6D, a structure in which a rectangular groove is combined with a groove extending in one direction may be employed. The groove structure is not limited to a straight line, but may be a curved shape.

さらには、検知電極に形成される凹部は、一部貫通しない孔や溝であってもよいし、規則的なパターンで形成されなくて、或る程度ランダムなパターンで形成されてもよい。上から見たパターンも、角形状に限らず曲線的等の形状でもよい。ただし、電気力線が集中しやすい性質を有するので、孔、溝の形状には角部が多いことが望ましい。 Furthermore, the concave portion formed in the detection electrode may be a hole or groove that does not partially penetrate, or may be formed in a somewhat random pattern without being formed in a regular pattern. The pattern seen from above is not limited to a square shape but may be a curved shape. However, since the lines of electric force tend to concentrate, it is desirable that the holes and grooves have many corners.

図7は、本発明の電位測定装置のさらに他の実施形態の検知電極の断面形状(支持部材103に垂直な面での断面形状)を示す。上記実施形態で示したように孔または溝104の壁面が、平板状の支持部材103に対して垂直である必要はない。好適には、図7に示すような逆テーパ形状となっていてもよい。逆テーパ形状とすることで、支持部材103と対向する検知電極510の面積をさらに減らしながら、被検知物から見える検知電極510の面積を大きく残すことが可能となる。よって、断面が逆テーパ形状の検知電極510を用いることにより、よりS/N比を大きくできる。この場合、図7に示す傾きと逆方向のテーパ(一般に順テーパと言う)であっても、本発明の効果を一定程度発揮することは、可能である。また、図1の角部105が、角形状でなく、曲面を含む形状であっても、本発明の効果を一定程度発揮することは、可能である。 FIG. 7 shows a cross-sectional shape (a cross-sectional shape in a plane perpendicular to the support member 103) of the detection electrode of still another embodiment of the potential measuring device of the present invention. As shown in the above embodiment, the wall surface of the hole or groove 104 does not need to be perpendicular to the flat support member 103. Preferably, it may have an inversely tapered shape as shown in FIG. By adopting the reverse taper shape, it is possible to leave a large area of the detection electrode 510 visible from the detection object while further reducing the area of the detection electrode 510 facing the support member 103. Therefore, the S / N ratio can be further increased by using the detection electrode 510 whose cross section is reversely tapered. In this case, the effect of the present invention can be exhibited to a certain extent even with a taper in the direction opposite to the inclination shown in FIG. 7 (generally referred to as a forward taper). Further, even if the corner portion 105 of FIG. 1 is not a square shape but a shape including a curved surface, the effect of the present invention can be exhibited to a certain extent.

次に、図4(c)の構成において、図示の各寸法の比と出力低下率との関係を示す表1について説明する。 Next, Table 1 showing the relationship between the ratio of each dimension shown in the figure and the output reduction rate in the configuration of FIG. 4C will be described.

上記関係を求めるにあたっては、ANSYS[電磁場解析ソフト:サイバネットシステム社]を用いている。検知電極に孔または溝が形成されていない場合に得られる出力信号の大きさを100%として、溝104を形成した場合の出力信号の低下率を示したものである。ここでの検知電極110の溝パターンは、図6(b)に示す様な所謂ラインアンドスペース状の溝形状を用いている。 In order to obtain the above relationship, ANSYS [electromagnetic field analysis software: Cybernet System] is used. The output signal reduction rate when the groove 104 is formed is shown with the magnitude of the output signal obtained when no hole or groove is formed in the detection electrode being 100%. The groove pattern of the detection electrode 110 here uses a so-called line-and-space groove shape as shown in FIG.

第1に、全てのタイプについて、電極幅Wが1に対して、溝幅Gが2の比の関係にあるので、支持部材103に対向する検知電極110の面積を約67%低下できていることが分かる。これにより、寄生容量もほぼ同様の%分低下できる。第2に、検知電極110の高さHが増大するほど、出力低下率が低くなっていることが分かる。例えば、タイプ(1)の形状比では、出力低下率を2%程度に止めることができている。 First, for all types, since the electrode width W is 1 and the groove width G is in a ratio of 2, the area of the detection electrode 110 facing the support member 103 can be reduced by about 67%. I understand that. As a result, the parasitic capacitance can be reduced by the same percentage. Second, it can be seen that the output decrease rate decreases as the height H of the detection electrode 110 increases. For example, in the shape ratio of type (1), the output reduction rate can be stopped at about 2%.

上記より、検知電極に、貫通した孔のいずれか一方若しくは両方を含む凹部を形成することで、出力信号を殆どないしあまり低下させることなく、寄生容量を比較的大きく低下できることが分かる。検知電極の高さHの絶対値をあまり高くできない場合(例えば、スパッタリングや、蒸着などの成膜方法で検知電極部を作製する場合)、電極幅W、孔または溝の幅Gを小さくすることで、相対的にタイプ(1)の構成にすることは可能である。この場合、検知電極の最外周のサイズ、形状等が一定ならば、孔または溝の数は多くなる。 From the above, the detection electrode, by forming a recess comprising either or both of the through-hole and the groove, without to little output signal is much reduced, it can be seen that it decreases relatively large parasitic capacitance. When the absolute value of the height H of the detection electrode cannot be increased very much (for example, when the detection electrode portion is formed by sputtering or vapor deposition), the electrode width W and the width G of the hole or groove should be reduced. Therefore, it is possible to make the configuration of type (1) relatively. In this case, if the size, shape, etc. of the outermost periphery of the detection electrode are constant, the number of holes or grooves increases.

表1では、電極幅Wと孔または溝幅Gとの比は1:2となっているが、例えば、1:(2より大きい値)の場合、出力低下率は増大することになる。これを防止するには、検知電極の高さHを高くすればよい。 In Table 1, the ratio between the electrode width W and the hole or groove width G is 1: 2, but for example, when the ratio is 1: (a value larger than 2), the output reduction rate increases. In order to prevent this, the height H of the detection electrode may be increased.

次に、図8は、本発明の電位測定装置が組み込まれた画像形成装置の模式的な構成の一例を示す図である。この画像形成装置は、本発明の電位測定装置801、帯電器802、信号処理装置803、高電圧発生器804、露光装置805、トナー供給系806、被転写物送りローラー807、感光性ドラム808、被転写物809の構成よりなる。 Next, FIG. 8 is a diagram showing an example of a schematic configuration of an image forming apparatus in which the potential measuring device of the present invention is incorporated. The image forming apparatus includes an electric potential measuring device 801, a charger 802, a signal processing device 803, a high voltage generator 804, an exposure device 805, a toner supply system 806, a transfer object feeding roller 807, a photosensitive drum 808, and the like. The transfer object 809 has a configuration.

動作は次の様に行われる。(1)帯電器802で、ドラム808を帯電する。(2)露光装置805で帯電部を露光し、潜像を得る。(3)トナー供給系806で潜像にトナーを付着させ、トナー像を得る。(4)トナー像を被転写物809に転写する。(5)被転写物809上のトナーを溶融して、固着させる。これらの工程を経て画像形成が達成される。この際、ドラム808の帯電状態を電位測定装置801で測定し、その結果を信号処理装置803で処理して、必要に応じて高電圧発生器804にフィードバックをかける。このことにより、安定したドラム帯電を実現し、安定した画像形成を実現できる。 The operation is performed as follows. (1) The drum 808 is charged by the charger 802. (2) The charging unit is exposed by the exposure device 805 to obtain a latent image. (3) Toner is attached to the latent image by the toner supply system 806 to obtain a toner image. (4) Transfer the toner image to the transfer object 809. (5) The toner on the transfer object 809 is melted and fixed. Image formation is achieved through these steps. At this time, the charged state of the drum 808 is measured by the potential measuring device 801, the result is processed by the signal processing device 803, and feedback is applied to the high voltage generator 804 as necessary. As a result, stable drum charging can be realized, and stable image formation can be realized.

本発明の電位測定装置の一実施形態の検知電極の構成を、従来のものと比較して示す図である。It is a figure which shows the structure of the detection electrode of one Embodiment of the electric potential measuring apparatus of this invention compared with the conventional one. 図1の検知電極の構成と電気力線の分布との関係を、従来のものと比較して示す断面図である。It is sectional drawing which shows the relationship between the structure of the detection electrode of FIG. 1, and distribution of an electric force line compared with the conventional one. 検知電極からの出力信号を発生させるための動作例を説明する断面図である。It is sectional drawing explaining the operation example for generating the output signal from a detection electrode. 検知電極からの出力信号を発生させるための別の動作例を説明する断面図である。It is sectional drawing explaining another operation example for generating the output signal from a detection electrode. 検知電極からの出力信号を発生させるための更に別の動作例を説明する図である。It is a figure explaining another example of operation for generating the output signal from a sensing electrode. 本発明の電位測定装置の他の実施形態の検知電極の構成を示す平面図である。It is a top view which shows the structure of the detection electrode of other embodiment of the electric potential measuring apparatus of this invention. 本発明の電位測定装置の更なる他の実施形態の検知電極の断面構成を示す断面図である。It is sectional drawing which shows the cross-sectional structure of the detection electrode of further another embodiment of the electric potential measuring apparatus of this invention. 本発明の電位測定装置を搭載する画像形成装置の一例を示す構成図である。It is a block diagram which shows an example of the image forming apparatus carrying the electric potential measuring apparatus of this invention.

符号の説明Explanation of symbols

102・・・絶縁体(絶縁層)
103・・・支持体(支持部材)
104・・・凹部(孔、溝)
105・・・角部
106・・・側壁
110、310、410、610、710・・・検知電極
201、808・・・被検知物(ドラム)
501、502・・・変化手段(変調器、誘電体、導電体)
801・・・電位測定装置
102 ... Insulator (insulating layer)
103 ... Support (support member)
104 .. recess (hole, groove)
105... Corner 106... Sidewalls 110, 310, 410, 610, 710... Detection electrodes 201 and 808.
501, 502... Changing means (modulator, dielectric, conductor)
801: Potential measuring device

Claims (8)

被検知物の電位に応じて電荷が誘起される検知電極と、該誘起される電荷の発生量を変化させるための変化手段と、を有する電位測定装置であって、
該検知電極は支持部材上に絶縁体を介して設けられ、かつ前記被検知物に対向する面に、少なくとも1つの部と複数のが形成されるように配置され、
該凹部には前記検知電極が存在せずに前記絶縁体が露出、前記複数の凸部は前記支持部材上の絶縁体上において夫々電気的に接続されていることを特徴とする電位測定装置。
A potential measuring device having a detection electrode in which a charge is induced in accordance with a potential of an object to be detected, and a changing means for changing the amount of generated charge.
The sensing electrode provided via an insulator on the supporting member, and wherein the surface opposite to the detection object, is arranged such that at least one recess and a plurality of convex portions are formed,
The potential measuring device is characterized in that the detection electrode is not present in the recess and the insulator is exposed, and the plurality of projections are electrically connected to each other on the insulator on the support member. .
記凹部は、前記絶縁体が露出するよう前記検知電極に形成された、孔と溝のうち少なくとも一方である請求項1記載の電位測定装置。 Before Ki凹 section, the insulator is formed on the detection electrode so as to expose the holes and the potential measuring apparatus according to claim 1, wherein at least one of the grooves. 記凸部は、被検知物に対向する面側の面積が、前記支持部材に対向する側の面積よりも大きくなるように構成される請求項1または2記載の電位測定装置。 Before Kitotsu unit area of the surface side that faces the detection object is, the support member potential measuring device Motomeko 1 or 2, wherein Ru is configured to be larger than the area of the side facing the. 前記変化手段は、被検知物と検知電極との距離を変化させることで、前記電荷の発生量を変化させる請求項1乃至3のいずれか1項に記載の電位測定装置。 The potential measuring apparatus according to claim 1, wherein the changing unit changes the amount of generated charge by changing a distance between the object to be detected and the detection electrode. 前記変化手段は、被検知物に対する検知電極の傾きを変化させることで、被検知物と検知電極との距離または被検知物から見える検知電極の面積を変化させる請求項1乃至のいずれか1項に記載の電位測定装置。 It said change means, by changing the inclination of the sensing electrode relative to the detection object, claim 1 to change the area of the detection electrode visible from a distance or the detection object of the detection electrode and the detection object 1 The potential measuring device according to item. 前記変化手段は、被検知物と検知電極との間の誘電率を変化させることで、前記電荷の発生量を変化させる請求項1乃至のいずれか1項に記載の電位測定装置。 Said change means, by changing the dielectric constant, the potential measuring apparatus according to any one of claims 1 to 3 to change the generated amount of the charge between the sensing electrode and the detection object. 前記変化手段は、被検知物と検知電極との間において遮蔽板の挿入、引出しをすることで、被検知物から見える検知電極の面積を変化させ、前記電荷の発生量を変化させる請求項1乃至のいずれか1項に記載の電位測定装置。 The change means changes the area of the detection electrode visible from the detection object and changes the generation amount of the electric charge by inserting and extracting a shielding plate between the detection object and the detection electrode. 4. The potential measuring device according to any one of items 1 to 3 . 請求項1乃至のいずれか1項に記載の電位測定装置と、画像形成手段とを備え、該電位測定装置より得られる出力信号を用いて画像形成手段による画像形成を制御することを特徴とする画像形成装置。 A potential measuring device according to any one of claims 1 to 7, and an image forming means, and control means controls the image formation by the image forming means by using an output signal obtained from said potential measuring device Image forming apparatus.
JP2006132012A 2005-05-27 2006-05-10 Potential measurement device Expired - Fee Related JP4921034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006132012A JP4921034B2 (en) 2005-05-27 2006-05-10 Potential measurement device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005156461 2005-05-27
JP2005156461 2005-05-27
JP2006132012A JP4921034B2 (en) 2005-05-27 2006-05-10 Potential measurement device

Publications (3)

Publication Number Publication Date
JP2007003512A JP2007003512A (en) 2007-01-11
JP2007003512A5 JP2007003512A5 (en) 2009-06-25
JP4921034B2 true JP4921034B2 (en) 2012-04-18

Family

ID=37689272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006132012A Expired - Fee Related JP4921034B2 (en) 2005-05-27 2006-05-10 Potential measurement device

Country Status (1)

Country Link
JP (1) JP4921034B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557616A (en) * 1978-06-30 1980-01-19 Ricoh Co Ltd Potentiometer
US6177800B1 (en) * 1998-11-10 2001-01-23 Xerox Corporation Method and apparatus for using shuttered windows in a micro-electro-mechanical system
JP2003232823A (en) * 2002-02-12 2003-08-22 Atsushi Nakazoe Potential measuring element
JP5027984B2 (en) * 2003-03-28 2012-09-19 キヤノン株式会社 Potential measuring apparatus using oscillator, potential measuring method, and image forming apparatus
JP2004301554A (en) * 2003-03-28 2004-10-28 Canon Inc Electric potential measuring device and image forming device

Also Published As

Publication number Publication date
JP2007003512A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
US7382137B2 (en) Potential measuring apparatus
US7741850B2 (en) Electric potential measuring apparatus, and image forming apparatus
US7576546B2 (en) Electric potential measuring device and image forming apparatus
Jeon et al. Electrostatic suspension of dielectrics
US7149442B2 (en) Electric potential sensor
JP4584446B2 (en) Electrostatic force detector with cantilever for electrostatic force microscope
US8766655B2 (en) Conductive conductivity sensor
JP4921034B2 (en) Potential measurement device
US20160161572A1 (en) Mems magnetic field sensor
JP4873689B2 (en) Surface potential meter and surface potential measurement method
JP2009268309A (en) Electrostatic operation device
JP2006337168A (en) Potential measuring device
JP5113185B2 (en) Charging guard using Paschen stacking
JP2006003130A (en) Electric potential measuring apparatus and image forming apparatus
JP4440065B2 (en) Potential measuring apparatus and image forming apparatus
JP2007163326A (en) Potential measuring device and method for manufacturing potential measuring device
JPH05180918A (en) Magnetic field sensor
JP2006214764A (en) Potential measurement apparatus and image forming apparatus
JP4273049B2 (en) Potential measuring apparatus and image forming apparatus
US20140070664A1 (en) Vibration power generator
KR20150089751A (en) Micro electro mechanical systems magnetic field sensor package
JP2022111675A (en) Hall element
KR20150089750A (en) Micro electro mechanical systems magnetic field sensor package
JP2005221480A (en) Device for and method of detecting charged particle energy, and method of manufacturing detection device
JP2005340574A (en) Semiconductor substrate and method of electrically charged particle line exposure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090501

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees