JP4920373B2 - 屈折率変化の測定装置 - Google Patents

屈折率変化の測定装置 Download PDF

Info

Publication number
JP4920373B2
JP4920373B2 JP2006302796A JP2006302796A JP4920373B2 JP 4920373 B2 JP4920373 B2 JP 4920373B2 JP 2006302796 A JP2006302796 A JP 2006302796A JP 2006302796 A JP2006302796 A JP 2006302796A JP 4920373 B2 JP4920373 B2 JP 4920373B2
Authority
JP
Japan
Prior art keywords
refractive index
measured
change
light
interference system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006302796A
Other languages
English (en)
Other versions
JP2008122084A (ja
Inventor
克彦 平林
浩久 神原
裕平 森
栗原  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006302796A priority Critical patent/JP4920373B2/ja
Publication of JP2008122084A publication Critical patent/JP2008122084A/ja
Application granted granted Critical
Publication of JP4920373B2 publication Critical patent/JP4920373B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は屈折率変化の測定装置に関する。
従来、例えば屈折率を測定する方法として、表面が滑らかに研磨され、所定の切り出し角度を有する形状の光学プリズムを用いる方法が知られている。
しかしながら、例えば透過光の偏角を求める最小偏角型屈折計や、全反射を利用するアッベの屈折計や、液浸計や、プルフルリの屈折計等を用いる場合には、被測定物の試料をプリズム形状に形成する必要があるという問題が生じる。
また、従来、例えば薄膜あるいは液体である被測定物にプリズムを介して光を斜めから入射させ、この光の反射の角度が屈折率によって変化することを利用したプリズムカプラ法が知られている(例えば、非特許文献1参照)。
このプリズムカプラ法は、特に液体の屈折率を測定するのに適しており、例えば果汁などの糖濃度を高精度に測定することができる。しかしながら、例えばガラス基板上やシリコン基板上に形成された薄膜の屈折率を測定する場合には、被測定物にプリズムを密着させる必要があり、例えば薄膜の膜表面に凸凹が存在すると、被測定物にプリズムを密着させることが困難となって測定精度が低下してしまうという問題が生じる。また、プリズムカプラ法では、装置が大型となり、費用が嵩むという問題が生じる。
また、従来、例えば光導波路測定により、全反射光の透過光強度を測定して、屈折率を測定する方法が知られている(例えば、特許文献1参照)。
この方法では、例えば2方向から被測定物の膜に光を入射させて、この光の反射率から屈折率を測定するようになっている。しかしながら、この方法は、光導波路に限定され、予め蓄積されたデータと、相対的に高い安定度を有する可視光源と、相対的に高精度の可視分光器と、専用のソフトウェアとを用いる必要があり、費用が嵩むという問題が生じる(例えば、非特許文献2参照)。
また、従来、例えば被測定物を薄い金属電極上に載置し、下方から光を当てるとエバネッセント波が被測定物に浸みだし、金属電極付近に励起された表面プラズモン共鳴により、光が反射する角度が大きく変化するという原理を用いて、屈折率変化を測定する表面プラズモン共鳴法が知られている(例えば、非特許文献3参照)。
この表面プラズモン共鳴法では、例えば0.01度の精度で励起角の角度変化を測定することにより、薄膜や溶疲の屈折率変化を高精度に測定することができる。
しかしながら、表面プラズモンを励起するには、光をエバネッセント場化する必要がある。例えば、Kretschmann配置の光学系では、被測定物の試料の屈折率が相対的に高くなることに伴い、あるいは、、被測定物の試料の膜厚が相対的に厚くなることに伴い、プリズムの屈折率を増大傾向に変化させる必要がある。また、入射した光は全反射条件を保つ必要があるため、測定可能な屈折率範囲が限定されてしまうという問題が生じる。しかも、汎用の装置では被測定物が水溶液に限定され、測定可能な屈折率範囲は、例えば1.31〜1.37程度の狭い範囲に限定されてしまうという問題が生じる。
特開2000−146836号公報 [平成18年10月24日検索]、インターネット<http://www.sekitech.co.jp/product/opto/metricon/index.html> [平成18年10月24日検索]、インターネット<http://www.ya-man.com/03ec/02kogaku.html> [平成18年10月24日検索]、インターネット<http://www.nbci.jp/file/051227-3.pdf>
ところで、上記従来技術に係る屈折率の測定方法では、適宜の被測定物に対する所望の測定が不可能となる場合が生じる。
例えば大容量光メモリとしてのホログラムメモリ、3次元多層メモリでは、光書き込みによる屈折率変化を測定する必要がある。しかしながら、ホログラムメモリ用フォトポリマーなどの可視域に感度を有する被測定物では、光照射による屈折率変化を測定する際に、測定用の光源が可視光源であると、感光が生じてしまうという問題が生じる。
また、プリズムカブラ法において、測定用の光源を被測定物が感光しない長波長の光源としても、プリズムが被測定物の膜に密着しているため、測定位置を把握することができず、外部から屈折率変化を発生させる可視光を測定箇所に照射することが困難であるという問題が生じる。
また、汎用の表面プラズモン共鳴測定装置(例えば、水溶液測定用の装置)では、測定可能な屈折率が1.3程度であり、例えば屈折率が1.45〜1.60程度の範囲となるフォトポリマーに対しては測定が不可能であるという問題が生じる。
また、例えば超大容量の光メモリとして、3次元の光非線形効果を用いた多層光メモリのピットでは、ピット自体の大きさが数μm以下であり、例えばプリズムカブラ法および表面プラズモン共鳴法では、ピットの大きさに比べて入射光の直径が過剰に大きく、しかも、表面プラズモン共鳴法では、被測定物の表面から300nm程度の過剰に薄い領域のみで測定可能となるだけであるから、このピットの屈折率を測定することが困難であるという問題が生じる。
また、例えば電気光学効果を有する被測定物の薄膜の電界印加による屈折率変化を測定する場合、上記従来技術に係る屈折率計では薄膜の表面上には電極を形成することが困難であって、薄膜をプリズムあるいは空気と接触させる必要があり、電圧印加あるいは電流注入による屈折率変化を測定することは困難である。
また、例えば500μm以下の相対的に小さな領域での屈折率変化を測定する場合、上記従来技術に係る屈折率計では、入射光の直径が、例えば1mm以上となって過剰に大きいことから、測定が困難であるという問題が生じる。
また、例えば表面プラズモン共鳴法では、被測定物の膜の表面付近の300nm程度の過剰に薄い領域のみで屈折率変化が可能となるだけであるから、膜厚全域での屈折率変化を高精度に測定することが困難であるという問題が生じる。
ところで、従来、ファブリーペロー型の干渉系の透過ピーク波長の変化を測定する方法は知られていたが、この方法による屈折率変化の測定精度は10−3程度であって、測定精度が相対的に低いという問題が生じる。この原因は、キャビティ内で被測定物を挟持しつつスペクトル幅を相対的に狭い値とするファブリーペロー型の干渉系を容易に作製することが困難であったこと、および、リップルの発生が相対的に抑制された安定な光源が存在しなかったこと、および、光スペクトラムアナライザの波長分解能が相対的に低かったこと等である。
しかしながら、近年、波長多重光通信技術の進展に伴い、この技術で用いられる可変波長フィルタが作製されることで、ファブリーペロー型の干渉系の平行度が向上し、ビーム径が500μm以下に設定されることで、スペクトル幅が相対的に細い透過スペクトルが得られるようになった(例えば、特開平4−248515号公報等)。
しかも、波長多重光通信技術の進展に伴い、通信波長帯での光スペクトラムアナライザの分解能が向上し、汎用の光スペクトラムアナライザや波長計であっても、例えば0.001〜0.01mm程度の相対的に高精度のピーク波長分解能が得られるようになった。
さらに、長距離大容量通信の進展に伴い、光ファイバアンプおよびこの光ファイバアンプを用いたASE(Amplified Spontaneous Emission)光源の構成に要する費用が低下し、相対的に安定かつリップルの発生が抑制された光源が適切に得られるようになった。
本発明は上記事情に鑑みてなされたもので、例えば電気光学効果または熱光学効果を有する材料、あるいは、感光性材料等の屈折率が変化する材料の屈折率変化を、所望の屈折率範囲において、費用の増大を抑制しつつ容易かつ高精度に測定することが可能な屈折率変化の測定装置を提供することを目的とする。
上記課題を解決して係る目的を達成するために、請求項1に記載の発明の屈折率変化の測定装置は、可視光で感光するフォトポリマーの屈折率変化の測定装置であって、1対の誘電体ミラーによって両側から挟み込まれた被測定物を具備するファブリーペロー型の干渉系と、前記被測定物に屈折率変化を与えない測定波長λの光を発する第1光源と、前記第1光源からの光を平行ビームとして前記干渉系に入射するコリメータと、前記干渉系を通過した前記測定波長λの前記平行ビームのピーク波長を検出する検出器として、分光器および光スペクトラムアナライザおよび波長計のうちの少なくとも何れか1つと、前記被測定物に前記第1光源からの光とは異なり、前記被測定物に屈折率変化を与える所望の波長λの光を照射する第2光源とを備え、前記第1光源は、光ファイバアンプのファイバ出力型光源またはファイバ出力型スーパールミネッセントダイオードであり、少なくとも波長に800〜900nmあるいは1250〜1350nmあるいは1500〜1600nmの波長を含む光を出力し、前記検出器は、波長測定の再現性分解能が±0.01nm以下であって、下記数式(a)に基づき、前記第1光源の前記測定波長λで測定した屈折率nから可視光域の前記所望の波長λでの屈折率n λ を算出することを、前記第2光源が前記被測定物に所望の波長λの光を照射する前後で行うことにより、所望の波長λの光を照射する前後での前記被測定物の屈折率n λ の変化を、屈折率変化として求める手段を有することを特徴とする屈折率変化の測定装置。
λ=n+a(1/λ−1/λ )…(a)
ここで
λ:所望の波長(可視光)λでの屈折率
:測定波長(近赤外)λでの屈折率
a:予め求めてある係数
λ:所望の波長(可視光)
λ:測定波長(近赤外)
としている。
さらに、請求項に記載の発明の屈折率変化の測定装置は、前記誘電体ミラーに設けられた電極および該電極に電圧を印加あるいは電流を通電する手段と、前記1対の誘電体ミラー間に液状の被測定物を注入すると共に、前記1対の誘電体ミラー間から前記液状の被測定物を吸引する手段とのうち、少なくとも何れか1つを備えることを特徴としている。
さらに、請求項に記載の発明の屈折率変化の測定装置では、前記被測定物は固体であって、前記被測定物と、前記誘電体ミラーとは、互いに屈折率が略同等のマッチングオイルまたは光学接着剤を介して接合されていることを特徴としている。
さらに、請求項に記載の発明の屈折率変化の測定装置では、前記被測定物は液状あるいはゲル状であって、前記1対の誘電体ミラー間に前記被測定物を貯留する貯留部を形成するスペーサを備え、前記貯留部に前記被測定物を注入すると共に、前記貯留部から前記被測定物を吸引する手段を備えることを特徴としている。
さらに、請求項に記載の発明の屈折率変化の測定装置は、前記誘電体ミラーを具備するオプティカルフラットなガラス基板を備え、前記スペーサは、オプティカルフラットなガラスからなり、1対の前記ガラス基板によって厚さ方向の両側から挟み込まれ、前記ガラス基板と前記スペーサとは光学接合されていることを特徴としている。
さらに、請求項に記載の発明の屈折率変化の測定装置は、前記干渉系を内部に備え、該内部を流通する前記被測定物を、前記干渉系の前記貯留部に流通させる伸縮性のチューブを備え、前記チューブは、前記干渉系の表面を覆うようにして該表面に当接する内面と、前記干渉系に前記光源からの光を入射させる入射窓および前記干渉系を通過した前記光源からの光を外部に出射させる出射窓とを備えることを特徴としている。
さらに、請求項に記載の発明の屈折率変化の測定装置は、前記干渉系の温度状態を制御する手段と、前記干渉系を内部に収容する筐体および該筐体内の雰囲気温度を制御する手段とのうち、少なくとも何れか一方を備えることを特徴としている。
さらに、請求項に記載の発明の屈折率変化の測定装置では、前記干渉系は、厚さ方向に直交する平面上での少なくとも4点以上の位置において前記厚さ方向に前記干渉系に作用する圧力を変更可能な機構を備えることを特徴としている。
さらに、請求項9に記載の発明の屈折率変化の測定装置は、前記被測定物に対して、前記第1光源からの光とは異なる波長の光を所定周期で断続的に光照射あるいは、所定周期で断続的に電圧印加あるいは電流通電する手段を備え、前記光照射、前記電圧印加前記電流通電起因する屈折率変化と、温度変化に伴う屈折率変化と、3次の非線形効果による屈折率変化とを区別して検出することを特徴としている。
請求項1に記載の発明の屈折率変化の測定装置によれば、液体または固定の被測定物の光照射効果や電気光学効果や熱光学効果等による屈折率変化を、例えば10−5〜10−6以下等の高精度で容易かつ安価に測定することができる。また、被測定物に対する測定領域が、例えば500μm以下等の微小領域であっても、屈折率を適切に測定することができる。
さらに、通信波長帯(例えば、波長800〜1600nm)における被測定物の屈折率変化を測定することができ、この測定結果から、所望の波長における被測定物の屈折率変化を検知することができ、例えば被測定物が可視光で感光してしまう材料(例えば、大容量光メモリ用の感光性フォトポリマー等)であっても、屈折率変化を適切かつ高精度に測定することができる。
さらに、請求項に記載の発明の屈折率変化の測定装置によれば、電圧印加、電流通電、光照射によって屈折率が変化する被測定物であっても、屈折率変化を適切かつ高精度に測定することができる。
さらに、請求項に記載の発明の屈折率変化の測定装置によれば、ファブリーペロー型の干渉系の光学特性を容易に向上させることができる。
さらに、請求項に記載の発明の屈折率変化の測定装置によれば、流動性の被測定物の屈折率変化を適切かつ高精度に測定することができる。
さらに、請求項に記載の発明の屈折率変化の測定装置によれば、流動性の被測定物に対するファブリーペロー型の干渉系の光学特性を容易に向上させることができる。
さらに、請求項に記載の発明の屈折率変化の測定装置によれば、伸縮性のチューブによってファブリーペロー型の干渉系の表面が覆われることによって、この干渉系の光学接合状態を判定に保持することができると共に、流動性の被測定物の屈折率変化を適切かつ高精度に測定することができる。
さらに、請求項に記載の発明の屈折率変化の測定装置によれば、被測定物の温度変化、さらには、この温度変化に伴う体積変化に起因して屈折率が変化する場合であっても、被測定物の屈折率変化を適切かつ高精度に測定することができる。
さらに、請求項に記載の発明の屈折率変化の測定装置によれば、少なくとも4点以上の位置において干渉系の厚さ方向に作用する圧力を変更することによって、ファブリーペロー型の干渉系を構成する各要素、つまり被測定物および誘電体ミラーおよびガラス基板等の平行状態を容易に調整することができ、例えば干渉縞が最も少なくなるようにして圧力を調整することにより、ファブリーペロー型の干渉系の光学特性を容易に向上させることができる。
さらに、請求項に記載の発明の屈折率変化の測定装置によれば、ファブリーペロー型の干渉系に光を照射、あるいは、電圧を印加、あるいは、電流を注入した場合等において、被測定物の屈折率変化の要因には、光および電圧および電流に応答する3次の非線形の効果や、電気光学効果や、光重反応効果等の種々の要因が含まれることになるが、これらの屈折率変化の各要因毎によって屈折率変化の時定数が異なることから、外部からの電界印加、電流通電、光照射等を周期的に断続させて行うことにより、屈折率変化の各要因を分離することができる。
以下、本発明の屈折率変化の測定方法および屈折率変化の測定装置の一実施形態について添付図面を参照しながら説明する。
本実施の形態による屈折率変化の測定装置は、例えば、被測定物をキャビティに含むファブリーペロー型の干渉系を備え、光源を通信波長帯のファイバ出力光源とし、光源の出力に対し、光通信用測定器であるファイバ入力型光スペクトラムアナライザあるいは波長計あるいは分光器によってスペクトルのピークを±0.01nmあるいは±0.001nm以下の精度で測定し、このスペクトルの中心波長の変化を、所望の波長での屈折率変化に変換して、屈折率の変化を測定するようになっている。
この屈折率変化の測定装置は、例えば図1に示すように、光源1と、光ファイバ2と、コリメートレンズ3と、ファブリーペローエタロンを温度一定に保つためのホルダ4と、ホルダ4に設けられた窓5と、被測定物であるフォトポリマ6と、所定の面精度を有するガラス基板7と、誘電体ミラー8と、ペルチェ素子10aと、ヒートシンク10bbと、ファブリーペロー型の干渉系を通過した光ビーム11と、光ビーム11を集光して光ファイバ13に入力するコリメータ12と、光ファイバ13と、光スペクトラムアナライザ14と、青色LD(Laser Diode)15と、青色LD15から出射された光ビーム16とを備えて構成されている。
光源1は、例えば10nm以上の半値幅を有するファイバアンプのASE(Amplified Spontaneous Emission;つまり増幅された自然放出光)光源であって、例えば1.5μm帯のASE光源とされ、リップルの発生が所定程度未満となるように設定されている。
光源1から出力された光は光ファイバ2によって取り出され、この光ファイバ2の先端のコリメータによって、所定幅(例えば、ビーム直径100μm程度)の平行ビームとされている。
なお、ビーム直径は、少なくとも500μm以下、より好ましくは、100μm以下とされており、このビーム直径が小さくなることに伴い、ファブリーペロー型の干渉系の分解能が向上することになる。
なお、光源1は、光ファイバアンプのファイバ出力型光源に限定されず、例えばスーパールミネッセントダイオード等であってもよい。
また、光源1は、例えば波長が800nm以上の近赤外域の波長であればよく、例えば800〜900nm帯、あるいは、1250nm〜1350nm帯、あるいは、1500nm〜1600nm帯等であってもよい。
そして、この平行ビームが被測定物であるフォトポリマ6の配置位置に照射されるように設定されている。
被測定物であるフォトポリマ6は、例えば所定のシクロオレフィンポリマーに所定のアジド化合物が所定量添加されたものであって、所定の誘電体ミラー8(例えば、1550nmにおいて反射率99%かつ可視光を透過可能な誘電体ミラー)を有するガラス基板7上に塗布されている。
なお、このカラス基板7の面精度が増大することに伴い、ファブリーペロー干渉系の分解能が向上することになることから、このカラス基板7の面精度は、例えば波長λにより、(λ/10)程度とされている。
また、誘電体ミラー8の反射率は、少なくとも90%以上、より好ましくは99%以上とされている。
そして、この誘電体ミラー8には、例えば電圧を印加、電流を通電するための透明あるいは不透明の電極が形成されている。
被測定物であるフォトポリマ6は、例えば25μmの膜厚を有し、誘電体ミラー8を具備するガラス基板7によって厚さ方向の両側から挟み込まれている。被測定物であるフォトポリマ6と、誘電体ミラー8を具備するガラス基板7とは、例えば屈折率の一致した光学用接着剤によって空隙が取り除かれるようにして接着され、ファブリーペロー型の干渉系を形成するようにして、干渉縞の数が所定数未満となるようにして、平行状態に設定されて接着固定されている。
また、このファブリーペロー型の干渉系にホルダ4から圧力が作用することを抑制するために、この干渉系とホルダ4との間には所望の熱伝導性を有する潤滑剤が塗布されている。
なお、被測定物であるフォトポリマ6と、誘電体ミラー8を具備するガラス基板7との平行状態は適宜に調整可能とされてもよく、この平行状態を調整可能なファブリーペロー型の干渉系は、例えば図2に示すように、略正方形板状のジグ30と、ねじ31と、ばね32と、ナット33とを備え、少なくとも4点以上の点で圧力を作用させて平行状態を設定することが可能であって、例えば略正方形板状のジグ30は、央部において厚さ方向に貫通する貫通窓30aと、4つの隅部において厚さ方向に貫通するねじ装着孔30bとを備えている。
例えば、マッチングオイルが塗布された被測定物であるフォトポリマ6は、厚さ方向の両側から、各誘電体ミラー8を具備する1対のガラス基板7によって挟み込まれ、さらに、この状態で1対のガラス基板7を厚さ方向の両側から挟み込むようにして1対のジグ30が配置され、各ジグ30のねじ装着孔30bに装着されたねじ31の先端部には、ばね32を介してナット33が螺着されている。また、1対のガラス基板7,7間にはスペーサ9が設けられている。なお、スペーサ9は省略可能である。
この干渉系では、各ねじ31によって、フォトポリマ6と、誘電体ミラー8を具備するガラス基板7との間に作用する圧力が変更され、フォトポリマ6と、誘電体ミラー8を具備するガラス基板7との平行状態が調整されるようになっている。なお、これらのねじ31の数は4個に限定されず、より好ましくは、8個以上とされる。
そして、この干渉系は、例えば図3に示すように、内部が所定精度(例えば、±0.1℃以下等)の所定温度(例えば、30℃等)に保持されると共に、光ビームが通過可能な窓40aを有する恒温漕40の内部に収容される。
ファブリーペロー型の干渉系を通過した光ビーム11は、コリメータ12によって集光され、光ファイバ13に入力されている。そして、この光ファイバ13からの出力は光スペクトラムアナライザ14に入力されている。
光スペクトラムアナライザ14は、例えば、入射した光をグレーティング回折格子で分光し、グレーティング回折格子を回転させて、波長を操引するようになっている。波長の分解能および再現性は、入射した光に対するスリットの幅と、グレーティングを回転させる機構の角度精度とに応じて変化する。例えばグレーティング回折格子を回転させる機構の角度精度が0.01°であれば、光スペクトラムアナライザ14の波長の読み取り再現性は0.005nmであり、1500nmの光源1に対して波長測定精度が0.005nmであれば、屈折率に対して5×10−6の測定精度となる。
例えば、干渉系を静止させた状態で、所定時間(例えば、5時間等)に亘って所定温度(例えば、30℃等)に保持させた場合には、光スペクトラムアナライザ14によるピーク波長の測定の再現性は、±0.01nm程度となり、屈折率の揺らぎは、±10−5程度となる。
なお、この屈折率変化の測定装置では、光スペクトラムアナライザ14の代わりに波長計(例えば、波長分解能0.01nm以下等の波長計)を備えてもよく、例えば測定光と平行に入射されるHe−Neレーザと、可動式のマイケルソン干渉系とを備える波長計では、干渉縞の本数の測定結果に応じて、光スペクトラムアナライザ14よりも、1桁程度高い波長測定精度を得ることが可能である。
ファブリーペロー型の干渉系のスペクトルの中心波長は、例えば下記数式(1)に示すように、任意の自然数mと、キャビティギャップLと、屈折率nとによって、
λ=2nL/m…(1)
であり、光スペクトラムアナライザ14は、測定される複数の透過ピークのうち何れか1つの中心波長を抽出する。ここで、キャビティギャップLが熱膨張や歪み等によって変化しない場合には、中心波長λと屈折率nとは比例することから、中心波長λの変化から屈折率変化が測定されるようになっている
なお、光源1は、被測定物であるフォトポリマ6が感光されてしまうことを防止するようにして、長波長の光を出力することから、例えば下記数式(2)に示すように、測定波長(近赤外)λ での屈折率nと所定係数aとによる所望の波長(可視光)λでの屈折率nλ 基づき、屈折率変化が算出されるようになっている。
λ=n+a(1/λ −1/λ …(2)
また、この屈折率変化の測定装置では、外部からの電界印加、電流通電、光照射等を周期的に断続させて行うことにより、屈折率変化の各要因を分離することができる。
すなわち、屈折率変化が相対的に速く、光や電気に応答する3次の非線形や電気光学効果による屈折率変化と、屈折率変化が相対的に緩やかな光反応型および電界・電流反応型の屈折率変化とを分離することができる。
また、ファブリーペロー型の干渉系内の膜厚が、温度変化等に応じて変化する場合であっても、外部からの電界印加、電流通電、光照射等を周期的に断続させて行うことにより、この膜厚の変動に起因する屈折率変化を抽出することができる。
例えば光照射では、ファブリーペロー型の干渉系のフォトポリマ6において光源1からの光ビーム11が通過する位置に、青色LD15から出射された所定(例えば、0.5W/cm)の光ビーム16を照射する。この照射時における屈折率変化Δnの時間変化では、例えば図4に示すように、所定の照射期間(例えば、30分)において、屈折率が緩やかに変化し、最大で10−3程度となる。そして、この光照射を停止すると、3次の非線形の効果で大きくなっていた屈折率が10−5程度減少する。
また、例えば電界印加および電流通電では、例えば図5(a)〜(c)に示すように、ファブリーペロー型の干渉系に電極を設け、電源(図示略)から被測定物であるフォトポリマ6の膜面に垂直な方向や水平な方向に電界を印加あるいは電流を注入した状態で、屈折率変化を測定することになる。
例えば図5(a)に示すファブリーペロー型の干渉系では、被測定物であるフォトポリマ6は、厚さ方向の両側から1対の誘電体ミラー8,8により挟み込まれ、さらに、この状態で1対の誘電体ミラー8,8を厚さ方向の両側から挟み込むようにして1対の板状のITO透明電極50,50が配置され、さらに、この状態で1対のITO透明電極50,50を厚さ方向の両側から挟み込むようにして1対のガラス基板7,7が配置され、各ITO透明電極50には取り出し電極51が接続されている。これにより、1対のITO透明電極50,50間において、被測定物であるフォトポリマ6の厚さ方向に電界が印加される。
また、例えば図5(b)に示すファブリーペロー型の干渉系では、被測定物であるフォトポリマ6は、厚さ方向の両側から1対の板状のITO透明電極52,52により挟み込まれ、さらに、この状態で1対のITO透明電極52,52を厚さ方向の両側から挟み込むようにして1対の誘電体ミラー8,8が配置され、さらに、この状態で1対の誘電体ミラー8,8を厚さ方向の両側から挟み込むようにして1対のガラス基板7,7が配置され、各ITO透明電極52には取り出し電極51が接続されている。これにより、1対のITO透明電極52,52間において、被測定物であるフォトポリマ6の厚さ方向に電流が通電される。
また、例えば図5(c)に示すファブリーペロー型の干渉系では、被測定物であるフォトポリマ6の厚さ方向の一方の表面上に離間配置された1対の板状のITO透明電極53,53を備え、この状態でフォトポリマ6およびITO透明電極53,53を厚さ方向の両側から挟み込むようにして1対の誘電体ミラー8,8が配置され、さらに、この状態で1対の誘電体ミラー8,8を厚さ方向の両側から挟み込むようにして1対のガラス基板7,7が配置され、各ITO透明電極53には取り出し電極51が接続されている。これにより、1対のITO透明電極53,53間において、被測定物であるフォトポリマ6の厚さ方向に垂直な方向に電界が印加あるいは電流が通電される。
また、例えば被測定物であるフォトポリマ6の温度変化に応じた屈折率変化の測定では、例えば図5(d)に示すように、ファブリーペロー型の干渉系にヒータを設け、このヒータに対する通電を制御した状態で、屈折率変化を測定することになる。
例えば図5(d)に示すファブリーペロー型の干渉系では、被測定物であるフォトポリマ6の厚さ方向の一方の表面上に相対的に電気抵抗値が大きい板状のITO透明電極53を備え、この状態でフォトポリマ6およびITO透明電極53を厚さ方向の両側から挟み込むようにして1対の誘電体ミラー8,8が配置され、さらに、この状態で1対の誘電体ミラー8,8を厚さ方向の両側から挟み込むようにして1対のガラス基板7,7が配置され、ITO透明電極53の両端部には1対の取り出し電極51,51が接続されている。これにより、ITO透明電極53において、通電に伴う発熱が生じ、被測定物であるフォトポリマ6の温度が変更される。
なお、被測定物は、液体であってもよいし、誘電体ミラー8等に塗布された膜であってもよいし、所定の厚さを有する固体の板等であってもよい。
例えば被測定物が液状あるいはゲル状である場合には、例えば図6(a)に示すファブリーペロー型の干渉系のように、各誘電体ミラー8を具備する1対のガラス基板7,7間には、スペーサ60によって液状の被測定物6aの流通路が形成されている。
また、被測定物が、誘電体ミラー8等に対する液状材料の塗布により形成された膜である場合には、例えば図6(b)に示すファブリーペロー型の干渉系のように、1対のガラス基板7,7のうち、一方のガラス基板7に具備される誘電体ミラー8の表面上に液状材料の塗布により被測定物の膜6bが形成され、他方のガラス基板7に具備される誘電体ミラー8の表面上にはマッチングオイルまたは屈折率の一致した光学用接着剤61が塗布され、一方の誘電体ミラー8の被測定物の膜6bと、他方の誘電体ミラー8のマッチングオイルまたは光学用接着剤61とが接着固定された状態で、1対のガラス基板7,7によって厚さ方向の両側から挟み込まれている。
また、被測定物が、所定の厚さを有する固体の板である場合には、例えば図6(c)に示すファブリーペロー型の干渉系のように、各誘電体ミラー8を具備する1対のガラス基板7,7間に、屈折率の一致した光学用接着剤62を介して被測定物である固体の板6cが接着固定されている。
また、例えば被測定物が液状である場合には、例えば図6(d)に示すファブリーペロー型の干渉系のように、離間配置された1対のガラススペーサ63,63が、各誘電体ミラー8を具備する1対のガラス基板7,7によって両側から挟み込まれることによって、各誘電体ミラー8に光学接合されると共に、被測定物の流通路63aが形成され、この流通路63aに連通するチューブ64と、このチューブ64内において被測定物を流通させるポンプ(図示略)等によって液状の被測定物が流通路63a内に導入されるようになっている。
この干渉系では、被測定物である液体を流通させた状態で屈折率変化を測定することができ、例えば予め絶対屈折率が既知の流体を流通させることによって、被測定物の屈折率の絶対値を検出可能である。
この液体の注入および吸引が可能な干渉系を作製する場合には、先ず、例えば図7(a)に示すように、離間配置された1対のガラススペーサ63,63を、各誘電体ミラー8を具備する1対のガラス基板7,7によって両側から挟み込み、各誘電体ミラー8に光学接合させてエアギャップファブリーペローエタロンを形成する。ここで、誘電体ミラー8およびガラススペーサ63の各表面をオプティカルフラットの状態に設定しておくことで、1対の誘電体ミラー8,8はガラススペーサ63,63に光学接合した時点で平行状態となる。
次に、被測定物の流通路63aが形成されたエアギャップファブリーペローエタロンを、例えば図7(b)に示すように、熱伸縮性のチューブ64内に挿入する。
そして、チューブ64を加熱し、例えば図7(c)に示すように、流通路63aの開口部を除くエアギャップファブリーペローエタロンの表面を覆うようにしてチューブ64を収縮させる。これにより、誘電体ミラー8とガラススペーサ63との光学接合状態が安定に保持される。
そして、例えば図7(d)に示すように、エアギャップファブリーペローエタロンに光源1からの光ビーム11を導入するための貫通窓64aをチューブ64に設ける。
これにより、チューブ64内を流通する液状の被測定物は、エアギャップファブリーペローエタロンの流通路63a内を流通するようになる。
なお、チューブ64は、熱伸縮性を有するチューブに限らず、例えばゴム等からなる伸縮性を有するチューブであってもよい。
この干渉系において、例えば予め絶対屈折率が既知の流体を流通させることによって、被測定物の屈折率の絶対値を検出する場合として、例えば絶対屈折率が既知の流体を純水とし、例えば被測定物を果汁や血液とした場合には、果汁や血液の糖度は屈折率に比例することから、屈折率変化の測定により、果汁の糖度に加えて、糖尿病等の血管病の検出が可能となる。
なお、この干渉系において、エアギャップファブリーペローエタロンのエアギャップは、好ましくは100μm以上とされている。また、ガラス基板7は、好ましくは5mm以上とされている。
なお、ファブリーペロー型の干渉系に光を照射、あるいは、電圧を印加、あるいは、電流を注入すると、被測定物の屈折率が変化することになるが、この屈折率変化の要因には、光および電圧および電流に応答する3次の非線形の効果や、電気光学効果や、光重反応効果等の種々の要因が含まれる場合がある。
また、これらの各種要因に伴う温度変化によって、被測定物が膨張し、見かけ上、屈折率が変化しているように観測される場合がある。すなわち、上記数式(1)において、キャビティギャップLの増大は、屈折率nの増大と同様に、中心波長λを増大させることになる。このため、単被測定物の膨張が屈折率nの増大として誤検知される虞がある。
これらの場合、屈折率変化の各要因毎によって屈折率変化の時定数が異なることから、外部からの電界印加、電流通電、光照射等を周期的に断続させて行うことにより、屈折率変化の各要因を分離することができる。
例えば図8に示すように、所定のシクロオレフィンポリマーの単体膜に、青色LD15から出射された所定(例えば、408nm、1W/cm)の青色の光ビーム16を断続的に照射した場合の屈折率変化Δnの時間変化において、先ず、光ビーム16の照射開始毎に3次の非線形効果によって屈折率は増大する。また、光照射によるシクロオレフィンポリマーの分解反応に起因して、光ビーム16の照射前後において、照射停止時には照射開始時よりも屈折率が低下する。
また、例えば図9に示すように、所定のアジド化合物が所定量添加された所定のシクロオレフィンポリマーに所定(例えば、655nm、10W/cm)の赤色の光ビームを照射した場合の屈折率変化Δnの時間変化において、照射開始から5分程度の期間においては、光照射に起因する被測定物の温度上昇および熱膨張によって、屈折率は、見かけ上、増大傾向に変化する。この温度上昇の時定数は5分程度であり、熱膨張の温度時定数とほぼ一致している。
そして、照射停止から5分程度の期間においては、屈折率は照射開始時と同程度の値に戻り、この光照射ではシクロオレフィンポリマーの分解反応が発生しないことがわかる。
なお、本発明では、光源1から出力される光ビーム11の波長は、例えば1550nmの長波長とされ、予め可視光での屈折率と、この波長1550nmでの屈折率の絶対値とを求めておき、上記数式(2)に基づき、この波長1550nmでの屈折率変化を、可視光における屈折率変化に変換するようになっている。
上述したように、本実施の形態による屈折率変化の測定装置によれば、液体または固定の被測定物の屈折率および電気光学効果や熱光学効果等による屈折率変化を、例えば10−5〜10−6以下等の高精度で容易かつ安価に測定することができる。また、被測定物に対する測定領域が、例えば500μm以下等の微小領域であっても、屈折率を適切に測定することができる。
さらに、通信波長帯(例えば、波長800〜1600nm)における被測定物の屈折率変化を測定することができ、この測定結果から、所望の波長における被測定物の屈折率変化を検知することができ、例えば被測定物が可視光で感光してしまう材料(例えば、大容量光メモリ用の感光性フォトポリマー等)であっても、屈折率変化を適切かつ高精度に測定することができる。
さらに、電圧印加、電流通電、光照射によって屈折率が変化する被測定物であっても、屈折率変化を適切かつ高精度に測定することができる。
さらに、流動性の被測定物に対するファブリーペロー型の干渉系の光学特性を容易に向上させることができ、流動性の被測定物の屈折率変化を適切かつ高精度に測定することができる。
さらに、伸縮性のチューブによってファブリーペロー型の干渉系の表面が覆われることによって、この干渉系の光学接合状態を判定に保持することができると共に、流動性の被測定物の屈折率変化を適切かつ高精度に測定することができる。
さらに、被測定物の温度変化、さらには、この温度変化に伴う体積変化に起因して屈折率が変化する場合であっても、被測定物の屈折率変化を適切かつ高精度に測定することができる。
さらに、少なくとも4点以上の位置において干渉系の厚さ方向に作用する圧力を変更することによって、ファブリーペロー型の干渉系を構成する各要素、つまり被測定物および誘電体ミラーおよびガラス基板等の平行状態を容易に調整することができ、例えば干渉縞が最も少なくなるようにして圧力を調整することにより、ファブリーペロー型の干渉系の光学特性を容易に向上させることができる。
また、本実施の形態による屈折率変化の測定方法によれば、例えば外部からの電圧印加、電流通電、光照射等に起因する被測定物の屈折率変化を適切かつ高精度に測定することができる。また、予め絶対屈折率が既知の所定の被測定物に対する測定結果に基づき、所望の被測定物の屈折率を適切かつ高精度に測定することができる。
さらに、所定波長帯での測定結果に基づき、所望波長帯での被測定物の屈折率を適切かつ高精度に測定することができ、例えば被測定物が可視光で感光してしまう材料(例えば、大容量光メモリ用の感光性フォトポリマー等)であっても、赤外線領域での測定結果から所望の可視光領域での屈折率を適切に測定することができる。
さらに、ファブリーペロー型の干渉系に光を照射、あるいは、電圧を印加、あるいは、電流を注入した場合等において、被測定物の屈折率変化の要因には、光および電圧および電流に応答する3次の非線形の効果や、電気光学効果や、光重反応効果等の種々の要因が含まれることになるが、これらの屈折率変化の各要因毎によって屈折率変化の時定数が異なることから、外部からの電界印加、電流通電、光照射等を周期的に断続させて行うことにより、屈折率変化の各要因を分離することができる。
本発明の一実施形態に係る屈折率変化の測定装置の構成図である。 本発明の一実施形態に係るファブリーペロー型の干渉系の一例を示す構成図である。 図2に示すファブリーペロー型の干渉系を備える屈折率変化の測定装置の構成図である。 本発明の一実施形態に係る屈折率変化の測定装置において、光源からの光ビームが通過するファブリーペロー型の干渉系の位置に青色の光ビームを照射した際の屈折率変化の時間変化の一例を示すグラフ図である。 図5(a)は被測定物であるフォトポリマの厚さ方向に電界が印加されるファブリーペロー型の干渉系の構成図であり、図5(b)は被測定物であるフォトポリマの厚さ方向に電流が通電されるファブリーペロー型の干渉系の構成図であり、図5(c)は被測定物であるフォトポリマの厚さ方向に直交する方向に電界が印加または電流が通電されるファブリーペロー型の干渉系の構成図であり、図5(d)は被測定物であるフォトポリマの温度を変更可能なファブリーペロー型の干渉系の構成図である。 図6(a)は被測定物が液状あるいはゲル状であるファブリーペロー型の干渉系の構成図であり、図6(b)は被測定物が誘電体ミラー等に対する液状材料の塗布により形成された膜であるファブリーペロー型の干渉系の構成図であり、図6(c)は被測定物が所定の厚さを有する固体の板であるファブリーペロー型の干渉系の構成図であり、図6(d)は被測定物が液状であるファブリーペロー型の干渉系の構成図である。 図6(d)に示すファブリーペロー型の干渉系の製作工程の一例を示す図である。 シクロオレフィンポリマーに所定の青色の光ビームを照射した場合の屈折率変化Δnの時間変化の一例を示すグラフ図である。本発明の一実施形態に係る屈折率変化の測定装置の構成図である。 アジド化合物が所定量添加されたシクロオレフィンポリマーに所定の赤色の光ビームを照射した場合の屈折率変化Δnの時間変化の一例を示すグラフ図である。
符号の説明
1 光源、6 フォトポリマ、7 カラス基板、8 誘電体ミラー、10a ペルチェ素子、10b ヒートシンク、12 コリメータ、14 光スペクトラムアナライザ、15 青色LD、30 ジグ、31 ねじ、32 ばね、33 ナット

Claims (9)

  1. 可視光で感光するフォトポリマーの屈折率変化の測定装置であって、
    1対の誘電体ミラーによって両側から挟み込まれた被測定物を具備するファブリーペロー型の干渉系と、
    前記被測定物に屈折率変化を与えない測定波長λの光を発する第1光源と、
    前記第1光源からの光を平行ビームとして前記干渉系に入射するコリメータと、
    前記干渉系を通過した前記測定波長λの前記平行ビームのピーク波長を検出する検出器として、分光器および光スペクトラムアナライザおよび波長計のうちの少なくとも何れか1つと、
    前記被測定物に前記第1光源からの光とは異なり、前記被測定物に屈折率変化を与える所望の波長λの光を照射する第2光源と
    を備え、
    前記第1光源は、光ファイバアンプのファイバ出力型光源またはファイバ出力型スーパールミネッセントダイオードであり、少なくとも波長に800〜900nmあるいは1250〜1350nmあるいは1500〜1600nmの波長を含む光を出力し、
    前記検出器は、波長測定の再現性分解能が±0.01nm以下であって、
    下記数式(a)に基づき、前記第1光源の前記測定波長λで測定した屈折率nから可視光域の前記所望の波長λでの屈折率n λ を算出することを、前記第2光源が前記被測定物に所望の波長λの光を照射する前後で行うことにより、所望の波長λの光を照射する前後での前記被測定物の屈折率n λ の変化を、屈折率変化として求める手段を有することを特徴とする屈折率変化の測定装置。
    λ=n+a(1/λ−1/λ )…(a)
    ここで
    λ:所望の波長(可視光)λでの屈折率
    :測定波長(近赤外)λでの屈折率
    a:予め求めてある係数
    λ:所望の波長(可視光)
    λ:測定波長(近赤外)
    としている。
  2. 前記誘電体ミラーに設けられた電極および該電極に電圧を印加あるいは電流を通電する手段と、
    前記1対の誘電体ミラー間に液状の被測定物を注入すると共に、前記1対の誘電体ミラー間から前記液状の被測定物を吸引する手段とのうち、少なくとも何れか1つを備えることを特徴とする請求項1に記載の屈折率変化の測定装置。
  3. 前記被測定物は固体であって、
    前記被測定物と、前記誘電体ミラーとは、互いに屈折率が略同等のマッチングオイルまたは光学接着剤を介して接合されていることを特徴とする請求項1に記載の屈折率変化の測定装置。
  4. 前記被測定物は液状あるいはゲル状であって、
    前記1対の誘電体ミラー間に前記被測定物を貯留する貯留部を形成するスペーサを備え、
    前記貯留部に前記被測定物を注入すると共に、前記貯留部から前記被測定物を吸引する手段を備えることを特徴とする請求項1に記載の屈折率変化の測定装置。
  5. 前記誘電体ミラーを具備するオプティカルフラットなガラス基板を備え、
    前記スペーサは、オプティカルフラットなガラスからなり、1対の前記ガラス基板によって厚さ方向の両側から挟み込まれ、
    前記ガラス基板と前記スペーサとは光学接合されていることを特徴とする請求項4に記載の屈折率変化の測定装置。
  6. 前記干渉系を内部に備え、該内部を流通する前記被測定物を、前記干渉系の前記貯留部に流通させる伸縮性のチューブを備え、
    前記チューブは、
    前記干渉系の表面を覆うようにして該表面に当接する内面と、前記干渉系に前記光源からの光を入射させる入射窓および前記干渉系を通過した前記光源からの光を外部に出射させる出射窓とを備えることを特徴とする請求項4に記載の屈折率変化の測定装置。
  7. 前記干渉系の温度状態を制御する手段と、前記干渉系を内部に収容する筐体および該筐体内の雰囲気温度を制御する手段とのうち、少なくとも何れか一方を備えることを特徴とする請求項1に記載の屈折率変化の測定装置。
  8. 前記干渉系は、厚さ方向に直交する平面上での少なくとも4点以上の位置において前記厚さ方向に前記干渉系に作用する圧力を変更可能な機構を備えることを特徴とする請求項1に記載の屈折率変化の測定装置。
  9. 前記被測定物に対して、前記第1光源からの光とは異なる波長の光を所定周期で断続的に光照射あるいは、所定周期で断続的に電圧印加あるいは電流通電する手段を備え、
    前記光照射、前記電圧印加、前記電流通電に起因する屈折率変化と、温度変化に伴う屈折率変化と、3次の非線形効果による屈折率変化とを区別して検出することを特徴とする請求項1に記載の屈折率変化の測定装置。
JP2006302796A 2006-11-08 2006-11-08 屈折率変化の測定装置 Expired - Fee Related JP4920373B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006302796A JP4920373B2 (ja) 2006-11-08 2006-11-08 屈折率変化の測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006302796A JP4920373B2 (ja) 2006-11-08 2006-11-08 屈折率変化の測定装置

Publications (2)

Publication Number Publication Date
JP2008122084A JP2008122084A (ja) 2008-05-29
JP4920373B2 true JP4920373B2 (ja) 2012-04-18

Family

ID=39507006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006302796A Expired - Fee Related JP4920373B2 (ja) 2006-11-08 2006-11-08 屈折率変化の測定装置

Country Status (1)

Country Link
JP (1) JP4920373B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110122412A1 (en) * 2009-11-23 2011-05-26 General Electric Company Devices and methods for optical detection
WO2014002475A1 (ja) * 2012-06-26 2014-01-03 パナソニック株式会社 光学的センサと、光学的センサを用いた検出方法と、捕捉体の固定方法と、検査ユニット
CN103743708B (zh) * 2013-12-11 2015-11-11 浙江理工大学 激光合成波长干涉测量空气折射率波动的方法
CN103674895B (zh) * 2013-12-12 2015-12-09 南京大学 一种介电超晶格材料周期测量仪及其使用方法
CN111337455B (zh) * 2020-04-17 2022-09-23 湖南文理学院 用于电镀溶液的浓度检测系统
CN112161952B (zh) * 2020-09-15 2023-05-16 南京信息职业技术学院 一种基于干涉滤光片的液体折射率测量方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2766998B2 (ja) * 1989-11-17 1998-06-18 日本電信電話株式会社 3次非線形光学定数の測定装置
JPH07198604A (ja) * 1993-12-29 1995-08-01 Shimadzu Corp 屈折率測定装置
JP3454417B2 (ja) * 1998-07-13 2003-10-06 日本電信電話株式会社 屈折率測定方法及び屈折率測定器
US7099015B2 (en) * 2003-08-25 2006-08-29 Ivan Melnyk Fiber optic sensing device for measuring a physical parameter
JP2006162312A (ja) * 2004-12-03 2006-06-22 Hitachi Cable Ltd 屈折率測定用光デバイス、その製造方法、及びそれを用いた屈折率測定方法

Also Published As

Publication number Publication date
JP2008122084A (ja) 2008-05-29

Similar Documents

Publication Publication Date Title
JP4920373B2 (ja) 屈折率変化の測定装置
Snyder et al. Cavity ring-down spectroscopy as a detector for liquid chromatography
Chang et al. Enhancing the sensitivity of single-particle photothermal imaging with thermotropic liquid crystals
JP6985561B2 (ja) 生体成分測定装置
CN106092906A (zh) 一种基于线偏振光入射的圆二色谱和折射率测量系统
Bahnev et al. Miniaturized cavity ring-down detection in a liquid flow cell
Nedosekin et al. Solid Phase–Enhanced Photothermal Lensing with Mesoporous Polymethacrylate Matrices for Optical-Sensing Chemical Analysis
Krivtzun et al. Temperature measurement of liquids by differential absorption of two diode lasers: Application of contactless optical detection in isotachophoresis
Garcı̀a-Valenzuela et al. Dynamic reflectometry near the critical angle for high-resolution sensing of the index of refraction
Zhou et al. Fiber-optic refractometer based on a reflective aspheric prism rendering adjustable sensitivity
Sang et al. Three-wavelength Fiber Laser Sensor with Miniaturization, Integration for The Simultaneous Measurement of Underwater pH, Salinity, Temperature and Axial Strain
Grubbs et al. High resolution stimulated Brillouin gain spectrometer
Qi et al. Integrated switching circuit for low-noise self-referenced mid-infrared absorption sensing using silicon waveguides
CN114112925A (zh) 一种液体痕量检测装置及方法
Zeng et al. Applications of optical fiber SPR sensor for measuring of temperature and concentration of liquids
Navea et al. Thermal Lens Spectroscopy in Liquid Argon Solutions:(Δ v= 6) C− H Vibrational Overtone Absorption of Methane
CN106525810B (zh) 基于激光倍频及空芯光纤的拉曼光谱液体探测方法
Njegovec et al. Gas sensing system based on an all-fiber photothermal microcell
Anderson et al. Grating light reflection spectroscopy for determination of bulk refractive index and absorbance
RU2821154C1 (ru) Способ и устройство определения степени деградации емкости ванадиевого проточного аккумулятора
Theodosiou et al. Acetone gas sensing using a hybrid mid-infrared fluoride fiber laser
Chauvet et al. Self-trapped beams for fabrication of optofluidic chips
Yan et al. Nanoliter‐Scale Light–Matter Interaction in a Fiber‐Tip Cavity Enables Sensitive Photothermal Gas Detection
Jäger et al. Multiplexed single wavelength bio sensor for low cost applications
JPH0215814B2 (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees