JP4919233B2 - Magnetic recording method - Google Patents

Magnetic recording method Download PDF

Info

Publication number
JP4919233B2
JP4919233B2 JP2008159822A JP2008159822A JP4919233B2 JP 4919233 B2 JP4919233 B2 JP 4919233B2 JP 2008159822 A JP2008159822 A JP 2008159822A JP 2008159822 A JP2008159822 A JP 2008159822A JP 4919233 B2 JP4919233 B2 JP 4919233B2
Authority
JP
Japan
Prior art keywords
magnetic field
recording
magnetic
frequency
alternating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008159822A
Other languages
Japanese (ja)
Other versions
JP2010003339A (en
Inventor
岡本  聡
北上  修
伸明 菊池
武仁 島津
基 青井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2008159822A priority Critical patent/JP4919233B2/en
Publication of JP2010003339A publication Critical patent/JP2010003339A/en
Application granted granted Critical
Publication of JP4919233B2 publication Critical patent/JP4919233B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Heads (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic recording method by which magnetic recording being able to perform high density recording is achieved by solving a problem of switching of polarity of circular polarization, a problem of magnitude of amplitude of alternative magnetic field, and a problem of variance of a resonance frequency of a recording medium which are problems when microwave-assist-recording is performed. <P>SOLUTION: Switching of polarity when circular polarization is used is not required by making an alternating magnetic field used for microwave-assist-magnetic-recording have linear polarization. Further, a magnetization reversal magnetic field can be reduced remarkably by performing frequency modulation of an alternating magnetic field with a modulation amplitude ratio within a range of 0.5 to 50% of a basic frequency of alternating magnetic field and a modulation period ratio of 2 to 20 or less for a basic period of alternating magnetic field; consequently, amplitude of required alternating magnetic field can be reduced remarkably. Also, microwave-assist-recording can be performed stably even in a state in which variance of resonance frequencies of the recording media exists. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、磁気記録装置に用いられる情報の磁気記録方法に関するものである。   The present invention relates to a magnetic recording method for information used in a magnetic recording apparatus.

高速かつランダムアクセスが可能な大容量情報記録装置として、ハードディスクドライブ(HDD)は、現在、コンピュータの外部記憶装置、音楽・映像のストレージサーバ等、様々な分野で広く用いられている。このような幅広い普及には、数々の研究開発の蓄積による記録密度の飛躍的な増大と、それに伴う半導体メモリ等の他の競合技術を遥かに凌ぐビット単価の低減とが大きく寄与している。現在のHDDの記録媒体は、磁化の向きがディスク面に対して垂直となる垂直磁気記録方式をとっており、従来の面内磁気記録方式に比べて高密度化に有利とされている。   As a large-capacity information recording apparatus capable of high-speed and random access, a hard disk drive (HDD) is currently widely used in various fields such as an external storage device of a computer and a music / video storage server. Such widespread use greatly contributes to a dramatic increase in recording density due to the accumulation of numerous research and developments, and a reduction in the bit unit price that far surpasses other competing technologies such as semiconductor memory. Current HDD recording media employ a perpendicular magnetic recording system in which the direction of magnetization is perpendicular to the disk surface, which is advantageous for higher density than conventional in-plane magnetic recording systems.

しかしながら、この垂直磁気記録方式を用いても、次に述べる3つの深刻な問題に基づく原理的な記録密度の限界に近づきつつあり、今後の更なる記録密度の増大は大変難しい状況にある。記録密度の増大には媒体を構成する磁性微粒子の微細化が不可欠であり、その体積をV、磁化の方向を固定するための単位体積当りの磁気異方性エネルギーをKとすると、磁性粒子が有する全磁気異方性エネルギーはKVとなり、記録情報の長期保存性を支配する。ところが、高密度化に伴う粒子体積Vの減少は、この磁気エネルギーKVの減少をまねき、これが熱などの外部擾乱エネルギーと同程度になると、記録情報が消失する。これが一つ目の熱揺らぎ問題と呼ばれるものである。この熱揺らぎ問題を回避するために、最も簡単な方法としてKを大きくすることが考えられるが、これは情報の記録に必要な磁場(磁化反転磁場)HがKに比例するため、Hの増大を招くことになる。従って、大きなHを有する媒体に記録を行うために、磁気ヘッドからの発生磁場Hを大きくすることが求められる。しかしながら、現在の磁気ヘッドは、現在知られている中で最大の飽和磁束密度を有している材料が既に利用されており、さらなるHの増大は現行の磁気ヘッドでの書き込みが出来ない、という問題を生じる。これが二つ目の飽和記録限界の問題である。以上2つの問題を回避するためには、議論の最初に立ち返り、粒子体積Vを大きくする必要があるが、Vの増加は信号ノイズを増加させるため、そもそも高密度の記録が出来ないことになる。これが3つ目の信号ノイズに関する問題である。現行のHDDにおいては、これら3つの問題をすべて満足することが非常に難しい状況となっており、磁気記録におけるトリレンマとして知られている。 However, even if this perpendicular magnetic recording method is used, the limit of the fundamental recording density based on the following three serious problems is approaching, and it is very difficult to further increase the recording density in the future. The increase in the recording density is essential miniaturization of the magnetic fine particles constituting the medium, its volume V, the magnetic anisotropy energy per unit volume for fixing the direction of magnetization and K u, magnetic particles The total magnetic anisotropy energy of is K u V and dominates the long-term preservation of recorded information. However, the decrease in the particle volume V accompanying the increase in density leads to a decrease in the magnetic energy K u V. When this becomes the same level as the external disturbance energy such as heat, the recorded information is lost. This is the first thermal fluctuation problem. Therefore in order to avoid thermal fluctuations problem, it is conceivable to increase the K u easiest way, which is the magnetic field (magnetic reversal magnetic field) H S necessary for recording of information is proportional to K u, It leads to an increase in H S. Therefore, in order to perform recording on a medium having a large H 2 S , it is required to increase the generated magnetic field H W from the magnetic head. However, the current magnetic head already uses a material having the highest saturation magnetic flux density that is currently known, and further increase in H 2 S cannot be written with the current magnetic head. This causes a problem. This is the second problem of saturation recording limit. In order to avoid the above two problems, it is necessary to return to the beginning of the discussion and increase the particle volume V. However, since an increase in V increases signal noise, high-density recording cannot be performed in the first place. . This is the third problem related to signal noise. In the current HDD, it is very difficult to satisfy all these three problems, which is known as a trilemma in magnetic recording.

上記3つの問題のうち、粒子体積Vの減少および磁気エネルギーKの増大は、高信頼の記録のために不可欠な要素であるため、残る飽和記録の問題を解決するために様々な技術提案がこれまでになされている。そのうちの一つが、通常の磁気ヘッドからの磁場に加えて、交流磁場を印加し、大きなKを有する材料においてHの低下を図り、記録し易くするものである。原理的には、交流磁場の周波数が媒体を構成する磁性微粒子の磁気共鳴周波数に近い場合、スピンの歳差運動が励起され、その結果として磁化反転に至ることを利用するものである。この時の周波数が数〜数10GHz程度のマイクロ波帯域であることから、マイクロ波アシスト記録と呼ばれている。例えば、本技術を垂直磁気記録へ応用した場合に、大幅なHの低減が図れ、高密度の記録が可能であることが数値シミュレーションにより示されている(例えば、非特許文献1参照)。また、交流磁場印加手法として、マイクロ波線路が提案されており、現行の単磁極型磁気ヘッドと組み合わせることにより、磁気ヘッドの磁極幅よりも小さい記録ビットの書き込みが可能であることが示されている(例えば、特願2007−247358参照)。しかしながら、その実現のためには次の3つの問題を解決する必要がある。 Among the above three problems, it increased and decreased magnetic energy K u grain volume V are the essential elements for reliable recording, various techniques proposed in order to solve the problem of the remaining saturation recording It has been done so far. One of them is to apply an alternating magnetic field in addition to a magnetic field from a normal magnetic head to reduce H 2 S in a material having a large K u and facilitate recording. In principle, when the frequency of the alternating magnetic field is close to the magnetic resonance frequency of the magnetic fine particles constituting the medium, the precession of spin is excited, resulting in magnetization reversal. Since the frequency at this time is a microwave band of several to several tens GHz, it is called microwave assisted recording. For example, when applying the present technique to perpendicular magnetic recording, Hakare reduction significant H S, and it is shown by numerical simulation is capable of high density recording (for example, see Non-Patent Document 1). In addition, a microwave line has been proposed as an AC magnetic field application method, and it has been shown that writing of a recording bit smaller than the magnetic pole width of the magnetic head is possible by combining with a current single magnetic pole type magnetic head. (For example, see Japanese Patent Application No. 2007-247358). However, in order to realize this, it is necessary to solve the following three problems.

一つ目は、偏光極性の問題である。一般にマイクロ波では、伝搬方向に対して磁場の振動面が揃っている状態を偏光と呼び、最も基本的な偏光状態が円偏光と呼ばれるものである。この円偏光には、右円偏光と左円偏光の2種類があり、これらを極性とよぶ。一方、上記のスピンの歳差運動においても、同様に右円運動と左円運動の場合があり、どちら向きの歳差運動になるかは、スピンの向きとスピンが感じる磁場の方向とで決まる。従って、マイクロ波アシスト記録を行うためには、その交流磁場の周波数を共鳴周波数に近づけるだけではなく、円偏光の極性も歳差運動のそれと一致させる必要がある。このことは、実際に垂直磁気記録方式にマイクロ波アシスト記録を適用することを想定した場合、ビット内の磁化の向きを下向きから上向き、あるいは上向きから下向きにする場合に、それぞれに応じて交流磁場を右円偏光から左円偏光へ、あるいは左円偏光から右円偏光へと極性を反転させなければならないことを意味している。さらに、この極性の反転は、現行HDDの書込み(書込み速度〜10ビット/秒)に同期して行わなければならず、その実現は大変困難と予測される。 The first is a problem of polarization polarity. In general, in a microwave, a state where the vibration planes of the magnetic field are aligned with respect to the propagation direction is called polarization, and the most basic polarization state is called circular polarization. There are two types of circularly polarized light, right circularly polarized light and left circularly polarized light, and these are called polarities. On the other hand, in the above-mentioned spin precession, there are also cases of right circular motion and left circular motion, and the direction of the precession depends on the direction of the spin and the direction of the magnetic field felt by the spin. . Therefore, in order to perform microwave-assisted recording, it is necessary not only to bring the frequency of the alternating magnetic field close to the resonance frequency, but also to make the polarity of circularly polarized light coincide with that of precession. Assuming that microwave-assisted recording is actually applied to the perpendicular magnetic recording method, the AC magnetic field depends on the direction of magnetization in the bit from downward to upward or from upward to downward. This means that the polarity must be reversed from right circular polarization to left circular polarization or from left circular polarization to right circular polarization. Furthermore, reversal of the polarity must be performed in synchronization with the current HDD write (writing speed to 109 bits / sec), its realization is expected very difficult.

二つ目は、交流磁場振幅の問題である。数値シミュレーションによれば、マイクロ波アシストの効果を十分に発現させるためには、少なくとも1kOe以上の交流磁場振幅が必要と見積もられ、より一層のH低下を図るためには、より大きな交流磁場振幅が望ましい。このような大振幅の交流磁場を数〜数10GHzの周波数帯で発信させることは、現状では大きな技術的困難が予想される。 The second is the problem of AC magnetic field amplitude. According to numerical simulation, in order to sufficiently exhibit the effect of microwave assisted is estimated to require alternating field amplitude above at least 1 kOe, in order to more H S decreases, larger alternating magnetic field Amplitude is desirable. At present, it is expected to be a great technical difficulty to transmit such a large-amplitude AC magnetic field in a frequency band of several to several tens of GHz.

三つ目は、媒体の共鳴周波数分散の問題である。記録媒体を構成している磁性微粒子が有するKには数%程度の分散があるのが一般的であり、さらに記録状態に応じて周辺の磁性粒子から受ける静磁気相互作用の大きさが変わる。この2つの効果により、実際の記録媒体の共鳴周波数には、多いものでは数10%の分散が生じることになる。マイクロ波アシスト記録においては、交流磁場周波数と磁性粒子の共鳴周波数とを合わせることが不可欠であるため、その実現のためには媒体の共鳴周波数の分散の抑制、もしくは分散があってもマイクロ波アシスト記録が可能となるような手法が必要である。 The third problem is the resonance frequency dispersion of the medium. Is common to have a distributed about several% in K u of the magnetic fine particles constituting the recording medium has, varies the magnitude of the magnetostatic interaction received from the magnetic particles near depending on further recording state . Due to these two effects, dispersion of several tens of percent occurs at most in the resonance frequency of an actual recording medium. In microwave assisted recording, it is indispensable to match the AC magnetic field frequency and the magnetic particle resonance frequency. To achieve this, microwave dispersion is suppressed even if the resonance frequency of the medium is suppressed or dispersed. A technique that enables recording is necessary.

J-G. Zhu et al., “Microwave assisted magnetic recording”,IEEE Transactions on Magnetics, 2008, Vol.44, No.1, p.125-131J-G. Zhu et al., “Microwave assisted magnetic recording”, IEEE Transactions on Magnetics, 2008, Vol.44, No.1, p.125-131

非特許文献1ならびに特願2007−247358において、交流磁場を利用した磁化反転磁場の低減および微小ビットの記録手法が開示されており、これらを実現できれば垂直磁気記録の更なる高密度記録に大変効果的である。しかし、その実現には、交流磁場の円偏光の極性切換え、大振幅交流磁場の発信、さらには共鳴周波数の分散という3つの原理的な技術課題を解決しなければならない。これらの点を鑑みて、本発明の目的は、まず直線偏光の交流磁場を用いることとし、これにより円偏光の極性切換えを不要とするものであり、またそれに加えて交流磁場の周波数を周期的に変調させることにより、共鳴周波数の分散があった場合でもマイクロ波アシスト記録が可能となり、その上、大幅な磁化反転磁場の低減が実現され、結果として必要な交流磁場振幅も小さくすることを可能とするものであり、現行の垂直磁気記録方式にマイクロ波アシスト記録の適用を実現するために有効な手法を提供することにある。   Non-Patent Document 1 and Japanese Patent Application No. 2007-247358 disclose a method of reducing a magnetization reversal magnetic field using an alternating magnetic field and recording a minute bit, and if these can be realized, it is very effective for higher density recording of perpendicular magnetic recording. Is. However, in order to realize this, it is necessary to solve the three fundamental technical problems of switching the polarity of circularly polarized light of an alternating magnetic field, transmitting a large amplitude alternating magnetic field, and further dispersing the resonance frequency. In view of these points, the object of the present invention is to first use a linearly polarized alternating current magnetic field, thereby eliminating the need for circularly polarized polarity switching, and in addition to that, the frequency of the alternating magnetic field is periodically changed. By modulating to, microwave assisted recording is possible even when there is dispersion in the resonance frequency, and in addition, the magnetization reversal field can be greatly reduced, and as a result, the required AC magnetic field amplitude can be reduced. Therefore, an object of the present invention is to provide an effective technique for realizing the application of microwave assist recording to the current perpendicular magnetic recording system.

本発明は、垂直磁気記録媒体に、磁気ヘッドから印加される磁場に加えて、直線偏光の交流磁場を同時に印加し、なおかつ前記交流磁場の周波数を周期的に変調させることにより記録を行うことを特徴とする磁気記録方法である。   According to the present invention, recording is performed by simultaneously applying a linearly polarized alternating current magnetic field to a perpendicular magnetic recording medium in addition to a magnetic field applied from a magnetic head and periodically modulating the frequency of the alternating magnetic field. This is a characteristic magnetic recording method.

本発明によれば、通常の磁気ヘッドから印加される磁場に加えて、直線偏光の交流磁場を同時に印加し、なおかつ交流磁場の周波数を一定周期で変調させることにより、円偏光の交流磁場を用いた際に問題となる極性の切換えが不要となり、さらに媒体を構成する磁性粒子に共鳴周波数の分散があった場合でも安定にマイクロ波アシスト記録が実現でき、その上、大幅なHの低減が実現され、結果として必要な交流磁場振幅も小さくすることが可能となる。 According to the present invention, a circularly polarized alternating current magnetic field is used by simultaneously applying a linearly polarized alternating magnetic field in addition to a magnetic field applied from a normal magnetic head and modulating the frequency of the alternating magnetic field at a constant period. In this case, the polarity switching which is a problem is not necessary, and even if the magnetic particles constituting the medium have dispersion of the resonance frequency, microwave assisted recording can be stably realized, and in addition, the H S can be greatly reduced. As a result, the necessary AC magnetic field amplitude can be reduced.

また、本発明によれば、前記交流磁場の周波数が1GHz以上40GHz以下の範囲にあり、更にその基本周波数の0.5%から50%の範囲内の変調振幅比で周波数変調させることを特徴とする磁気記録方法が得られる。40GHz以上の交流磁場を用いても本発明の効果は損なわれること無く実現されるが、この40GHz以下の範囲というのは、実際の記録を行う上での限界の目安として与えるものである。また、変調振幅比が基本周波数の50%以上をもちいても、変調周期比を長くすることにより本発明の効果は現れるが、その分だけ記録に要する時間も長くなってしまう。したがって、この変調振幅比が基本周波数の50%以下というのは、実際の書込み速度を実現する上での上限として与えるものである。ここで、この変調振幅比は、図1に示すように、周波数が時間変化する際の振幅を変調振幅とし、その平均の周波数を基本周波数とした場合に、%を単位として〔変調振幅比〕=100×〔変調振幅〕/〔基本周波数〕で与えられるものである。   According to the present invention, the frequency of the alternating magnetic field is in the range of 1 GHz to 40 GHz, and the frequency modulation is performed with a modulation amplitude ratio in the range of 0.5% to 50% of the fundamental frequency. To obtain a magnetic recording method. Even if an AC magnetic field of 40 GHz or more is used, the effect of the present invention is realized without being impaired. However, the range of 40 GHz or less is given as a guideline for the limit in actual recording. Even if the modulation amplitude ratio is 50% or more of the fundamental frequency, the effect of the present invention can be obtained by increasing the modulation period ratio, but the time required for recording is also increased accordingly. Therefore, this modulation amplitude ratio of 50% or less of the fundamental frequency is given as an upper limit for realizing the actual writing speed. Here, as shown in FIG. 1, the modulation amplitude ratio is expressed in units of% when the amplitude when the frequency changes with time is the modulation amplitude and the average frequency is the fundamental frequency [modulation amplitude ratio]. = 100 × [modulation amplitude] / [fundamental frequency].

また、本発明によれば、前記交流磁場の周波数変調の変調周期比は、前記交流磁場の基本周期に対して2以上20以下であることを特徴とする磁気記録方法が得られる。変調周期比が基本周期の20倍以上を用いても、変調振幅比を大きくすることにより本発明の効果は現れるが、その分だけ記録に要する時間も長くなってしまう。したがって、この変調周期比が基本周期の20倍以下というのは実際の書込み速度を実現する上での上限として与えるものである。ここで、この変調周期比は、図1に示すように、周波数が時間変化する際の周期を変調周期とし、その基本周波数の逆数を基本周期とした場合に、〔変調周期比〕=〔変調周期〕/〔基本周期〕で与えられるものである。   Further, according to the present invention, there is obtained a magnetic recording method characterized in that the modulation period ratio of the frequency modulation of the alternating magnetic field is 2 or more and 20 or less with respect to the basic period of the alternating magnetic field. Even if the modulation period ratio is 20 times or more of the fundamental period, the effect of the present invention can be obtained by increasing the modulation amplitude ratio, but the time required for recording is increased accordingly. Therefore, this modulation period ratio of 20 times or less of the fundamental period is given as an upper limit for realizing the actual writing speed. Here, as shown in FIG. 1, the modulation period ratio is calculated by assuming that the period when the frequency changes with time is the modulation period, and the reciprocal of the fundamental frequency is the basic period. Period] / [basic period].

本発明の特徴について説明する。磁性体の磁化の振る舞いは、ナノ秒オーダーの高速な時間スケールにおいて、以下のLandau-Lifschitz-Gilbert(LLG)方程式に従うことが知られている。   The features of the present invention will be described. It is known that the magnetization behavior of a magnetic material follows the following Landau-Lifschitz-Gilbert (LLG) equation on a fast time scale of nanosecond order.

Figure 0004919233
Figure 0004919233

ここで、mは磁化の単位ベクトル、γはジャイロ磁気定数、tは時間、αはギルバートのダンピング定数である。また、有効磁場Heffは、以下で表される。

eff = H + H + H + h

ここで、Hは異方性磁場、Hは反磁場、Hはヘッド磁場、hは交流磁場である。LLG方程式の右辺第1項は、磁場により発生するトルクを表しており、磁化の歳差運動を与える。第2項は、ダンピング項であり、磁化が歳差運動している状態から平衡位置への緩和を与える。つまり、エネルギーの散逸に寄与する。この際に、歳差運動周期に同期させた交流磁場hを与えると、磁気共鳴が起こり、交流磁場のエネルギーを効率良く吸収することができる。従って、ダンピング項によるエネルギー散逸よりも大きなエネルギーを与えると、歳差運動の際に次第にエネルギーが蓄積されていき、ある臨界点で磁気異方性エネルギーKが与えるエネルギー障壁を越えると、磁化反転に至ることが出来る。したがって、磁気共鳴の条件において、このような磁化反転が実現されることが理解され、磁化反転磁場を大幅に低下させることが可能となる。
Here, m is a unit vector of magnetization, γ is a gyro magnetic constant, t is time, and α is a Gilbert damping constant. The effective magnetic field H eff is expressed as follows.

H eff = H k + H d + H D + h

Here, H k is the anisotropy field, H d is the demagnetizing field, H D is the head magnetic field, h is the alternating magnetic field. The first term on the right side of the LLG equation represents the torque generated by the magnetic field and gives a precession of magnetization. The second term is a damping term that provides relaxation from a state where the magnetization precesses to an equilibrium position. In other words, it contributes to energy dissipation. At this time, if an alternating magnetic field h synchronized with the precession motion cycle is applied, magnetic resonance occurs and the energy of the alternating magnetic field can be efficiently absorbed. Thus, given a greater energy than the energy dissipated by the damping term, during precession will be gradually energy accumulation, it exceeds the energy barrier to provide magnetic anisotropy energy K u at some critical point, the magnetization reversal Can be reached. Therefore, it is understood that such magnetization reversal is realized under the condition of magnetic resonance, and the magnetization reversal magnetic field can be greatly reduced.

磁気共鳴における歳差運動が、右円運動か左円運動かは上記LLG方程式の右辺第一項で与えられ、磁化と有効磁場の向きとで決まることが分かる。この磁気共鳴が励起出来るのは、交流磁場の極性が歳差運動の向きと一致した場合だけであることは既に説明した通りである。一方、直線偏光は同一振幅の右偏光および左偏光の2つの円偏光の重ね合わせとして表わせるため、両方の偏光成分を持っていることになる。したがって、直線偏光を用いることにより、磁化の歳差運動が右円運動か左円運動、つまり磁化の向きが上向きか下向きに関わらず、常に磁気共鳴を励起することが可能となることが分かる。この場合、上向きおよび下向きの両方の磁化の歳差運動が励起されてしまっては記録が出来ないのでは、という懸念が生じるが、LLG方程式からも理解されるように、磁気共鳴の周波数は磁気ヘッドからの磁場を含む有効磁場Heffで決まるため、交流磁場の周波数をその値に設定しておくことで、磁気ヘッドからの磁場が印加されている領域のみで磁気共鳴を起こすことが可能となる。 It can be seen that whether the precession motion in the magnetic resonance is a right circular motion or a left circular motion is given by the first term on the right side of the LLG equation, and is determined by the magnetization and the direction of the effective magnetic field. As already described, this magnetic resonance can be excited only when the polarity of the alternating magnetic field matches the direction of precession. On the other hand, since linearly polarized light can be expressed as a superposition of two circularly polarized light of right polarized light and left polarized light having the same amplitude, it has both polarization components. Therefore, it can be seen that by using linearly polarized light, it is possible to always excite magnetic resonance regardless of whether the precession of magnetization is a right circular motion or a left circular motion, that is, the direction of magnetization is upward or downward. In this case, there is a concern that recording cannot be performed if the precession of both upward and downward magnetizations is excited. However, as understood from the LLG equation, the frequency of magnetic resonance is the magnetic field. Since it is determined by the effective magnetic field H eff including the magnetic field from the head, it is possible to cause magnetic resonance only in the region where the magnetic field from the magnetic head is applied by setting the frequency of the alternating magnetic field to that value. Become.

次に、周波数変調の効果について説明する。マイクロ波アシスト記録においては、磁気共鳴を如何に効率的に起こすか、という点が重要であることは既に述べた通りである。上記LLG方程式の中にある有効磁場Heffには、異方性磁場Hが含まれているが、このHが磁化の方位、より正確には磁化容易軸からの角度の関数であるため、磁化の歳差運動が励起され、磁化反転に至る過程においては、Heffは一定値ではなく、順次変化していくことになる。つまり、Heffの関数として与えられる共鳴周波数も、磁化反転に至る過程で変化することになる。このことは、周波数一定の交流磁場を印加した場合、共鳴周波数と交流磁場の周波数とが一致しているのは、磁化反転に至る過程のごく一部でしかないことを意味しており、この狭い範囲で磁化反転に必要なエネルギーを供給できた場合に磁化反転に至り、その効率は決して良くないことが容易に理解される。したがって、磁化反転に至る過程で変化する共鳴周波数に合わせて、交流磁場の周波数を変化させれば、磁化の歳差運動にエネルギーを供給できる時間を長くすることが可能となり、効率が著しく改善される。したがって、磁化反転磁場Hの大幅な低減が実現され、結果として必要な交流磁場振幅も小さくすることが可能となる。 Next, the effect of frequency modulation will be described. As described above, in microwave assisted recording, it is important to determine how efficiently magnetic resonance occurs. The effective magnetic field H eff in the above LLG equation includes an anisotropic magnetic field H k, but this H k is a function of the direction of magnetization, more precisely, the angle from the easy axis of magnetization. In the process where the precession of the magnetization is excited and the magnetization is reversed, H eff is not a constant value but changes sequentially. That is, the resonance frequency given as a function of H eff also changes in the process leading to magnetization reversal. This means that when an alternating magnetic field having a constant frequency is applied, the resonance frequency and the frequency of the alternating magnetic field coincide with each other only in a part of the process leading to magnetization reversal. It is easily understood that the magnetization reversal occurs when the energy necessary for the magnetization reversal can be supplied in a narrow range, and the efficiency is never good. Therefore, if the frequency of the alternating magnetic field is changed in accordance with the resonance frequency that changes in the process leading to magnetization reversal, the time during which energy can be supplied to the magnetization precession can be lengthened, and the efficiency is significantly improved. The Therefore, a significant reduction in the magnetization reversal field H S is realized, it is possible to reduce the alternating magnetic field amplitude required as a result.

また、一般的に記録媒体を構成している磁性微粒子が有するKには数%程度の分散があり、さらに記録状態に応じて周辺の磁性粒子から受ける静磁気相互作用の大きさが変わるため、この2つの効果により、実際の記録媒体の共鳴周波数には多いもので数10%もの分散が生じる。したがって、変調振幅をこの共鳴周波数の分散より広く設定することにより、このような共鳴周波数の分散を持っている記録媒体においても、安定にマイクロ波アシスト記録が可能となる。 Moreover, generally there is dispersed a few percent to K u of the magnetic fine particles constituting the recording medium has, in order to further the size of the magnetostatic interaction received from the magnetic particles near changes according to the recording state Due to these two effects, the actual recording medium resonance frequency has a dispersion as large as several tens of percent. Therefore, by setting the modulation amplitude wider than the dispersion of the resonance frequency, microwave-assisted recording can be stably performed even on a recording medium having such a dispersion of the resonance frequency.

本発明によれば、垂直磁気記録方式においてマイクロ波アシスト記録を実施する際に問題となる、交流磁場の極性切換え、ならびに大振幅の交流磁場印加の問題を解決し、さらには記録媒体が有する共鳴周波数の分散に対しても実施可能であり、低ノイズ性、熱安定性、ならびに書込み特性に優れた超高密度磁気記録の実現に寄与することができる。   According to the present invention, the problem of switching the polarity of an alternating magnetic field and the application of a large amplitude alternating magnetic field, which are problems when performing microwave assisted recording in a perpendicular magnetic recording system, is solved. The present invention can also be applied to frequency dispersion, and can contribute to the realization of ultra-high density magnetic recording excellent in low noise, thermal stability, and writing characteristics.

以下、垂直磁気記録方式においてマイクロ波アシスト記録を行う場合に、本発明を実施するための形態について、図面を参照しながら説明する。直線偏光の交流磁場を得るにはマイクロストリップラインのようなマイクロ波線路を用いるのが最も簡単と考えられる。その一例として、図2は、マイクロ波線路1付き単磁極型磁気ヘッドの磁極2の模式図を示している。単磁極型磁気ヘッドの磁極2の片側に、SiO2などの絶縁体からなる薄板状の絶縁体薄板3を形成し、その上にCuなどの導体のマイクロ波線路1を配置する。このような構造とすることで、ヘッド磁場に対して直交する方向に直線偏光の交流磁場を印加することが出来る。 Hereinafter, an embodiment for carrying out the present invention when performing microwave assist recording in a perpendicular magnetic recording system will be described with reference to the drawings. In order to obtain a linearly polarized alternating magnetic field, it is considered to be easiest to use a microwave line such as a microstrip line. As an example, FIG. 2 shows a schematic diagram of a magnetic pole 2 of a single magnetic pole type magnetic head with a microwave line 1. A thin plate-like insulator thin plate 3 made of an insulator such as SiO 2 is formed on one side of a magnetic pole 2 of a single magnetic pole type magnetic head, and a microwave line 1 made of a conductor such as Cu is disposed thereon. With such a structure, a linearly polarized alternating magnetic field can be applied in a direction orthogonal to the head magnetic field.

次に、本発明の効果を検証するために、モデルを用いた計算を行った。単磁極型磁気ヘッドの磁場が垂直に磁性粒子に印加される条件で、マイクロ波線路1から直交方向に直線偏光の交流磁場が印加されているとし、上記のLLG方程式を計算することにより、様々な条件での磁化反転磁場を求めた。なお、比較のために、円偏光の交流磁場の条件でも計算を行った。磁場の値ならびに磁性粒子の特性を、表1に示す。磁気記録の高速の書込み速度を考慮し、磁気ヘッドからの磁場の印加時間を1ナノ秒とした。   Next, in order to verify the effect of the present invention, calculation using a model was performed. It is assumed that a linearly polarized alternating current magnetic field is applied in the orthogonal direction from the microwave line 1 under the condition that the magnetic field of the single magnetic pole type magnetic head is perpendicularly applied to the magnetic particles, and various calculations are performed by calculating the above LLG equations. Magnetization reversal magnetic field under various conditions was obtained. For comparison, the calculation was also performed under conditions of a circularly polarized alternating magnetic field. Table 1 shows the values of the magnetic field and the characteristics of the magnetic particles. Considering the high writing speed of magnetic recording, the application time of the magnetic field from the magnetic head was set to 1 nanosecond.

Figure 0004919233
Figure 0004919233

まずは、周波数変調なしの場合で、円偏光と直線偏光とによる交流磁場の場合の比較を行った。交流磁場の振幅はいずれも1kOeとし、計算により得られた磁化反転磁場を表2に示す。まず、磁化の方向が上向きの場合は右円運動、下向きの場合は左円運動の歳差運動となるが、円偏光の交流磁場を印加した場合には、歳差運動の向きと一致した円偏光の極性を有する場合のみで、磁化反転磁場の減少が確認できる。一方、直線偏光の場合では、どちらの磁化の向きにおいても、全く同様に反転磁場の減少が確認でき、極性切換えを行うこと無しにマイクロ波アシスト記録が実現できることが分かる。   First, in the case of no frequency modulation, a comparison was made in the case of an alternating magnetic field using circularly polarized light and linearly polarized light. The amplitude of the alternating magnetic field is 1 kOe, and the magnetization switching magnetic field obtained by calculation is shown in Table 2. First, when the direction of magnetization is upward, it is a precession of right circular motion, and when it is downward, it is a precession of left circular motion, but when a circularly polarized alternating magnetic field is applied, a circle that matches the direction of precession A decrease in the magnetization reversal field can be confirmed only in the case of having the polarization polarity. On the other hand, in the case of linearly polarized light, the decrease in the reversal magnetic field can be confirmed in exactly the same way in either magnetization direction, and it can be seen that microwave-assisted recording can be realized without switching the polarity.

Figure 0004919233
Figure 0004919233

次に、直線偏光の交流磁場を用いて、周波数変調を行った場合の結果について述べる。表3は、変調周期比を6とし、変調振幅比を10%とした場合の、交流磁場振幅に対する磁化反転磁場の変化を示したものである。周波数変調を施すことにより、磁化反転磁場が著しく低下していることが分かる。   Next, the results of frequency modulation using a linearly polarized alternating magnetic field will be described. Table 3 shows the change of the magnetization reversal magnetic field with respect to the alternating magnetic field amplitude when the modulation period ratio is 6 and the modulation amplitude ratio is 10%. It can be seen that the magnetization reversal field is significantly reduced by applying the frequency modulation.

Figure 0004919233
Figure 0004919233

次に、表4は、直線偏光の交流磁場を用いて、変調周期比を6とし、変調振幅比を変化させた場合の磁化反転磁場の変化を示したものである。極僅かの変調振幅比を導入することで著しく磁化反転磁場が低下しているが、変調振幅の変化に対しては、あまり大きく反転磁場は変化しないことが分かる。   Next, Table 4 shows changes in the magnetization reversal magnetic field when the modulation period ratio is changed using a linearly polarized alternating current magnetic field and the modulation period ratio is 6. It can be seen that the magnetization reversal field is remarkably lowered by introducing a very small modulation amplitude ratio, but the reversal magnetic field does not change much with respect to the change of the modulation amplitude.

Figure 0004919233
Figure 0004919233

次に、表5は、直線偏光の交流磁場を用いて、変調振幅比を10%とし、変調周期比を変化させた場合の磁化反転磁場の変化を示したものである。変調周期比が大きくなるに従い、磁化反転磁場が低下していることが分かる。   Next, Table 5 shows changes in the magnetization reversal magnetic field when the modulation amplitude ratio is changed to 10% using a linearly polarized alternating current magnetic field and the modulation period ratio is changed. It can be seen that the magnetization reversal field decreases as the modulation period ratio increases.

Figure 0004919233
Figure 0004919233

本発明に係る磁気記録方法に関する、交流磁場に周波数変調を施した場合の、交流磁場周波数と時間との関係を示す模式的なグラフである。It is a typical graph which shows the relationship between an alternating magnetic field frequency and time at the time of frequency-modulating an alternating magnetic field regarding the magnetic recording method which concerns on this invention. 本発明の実施の形態の磁気記録方法の、マイクロ波線路付き単磁極型磁気ヘッドの磁極部を示す斜視図である。It is a perspective view which shows the magnetic pole part of the single magnetic pole type magnetic head with a microwave line of the magnetic recording method of embodiment of this invention.

符号の説明Explanation of symbols

1 マイクロ波線路
2 磁極
3 絶縁体薄板
1 Microwave line 2 Magnetic pole 3 Insulator thin plate

Claims (2)

垂直磁気記録媒体に、磁気ヘッドから印加される磁場に加えて、直線偏光の交流磁場を同時に印加し、なおかつ前記交流磁場の周波数を周期的に変調させることにより記録を行うことを特徴とする磁気記録方法。   Magnetic recording is performed by simultaneously applying a linearly polarized alternating current magnetic field to a perpendicular magnetic recording medium in addition to a magnetic field applied from a magnetic head and periodically modulating the frequency of the alternating magnetic field. Recording method. 前記交流磁場の周波数が1GHz以上40GHz以下の範囲にあり、更にその基本周波数の0.5%から50%の範囲内の変調振幅比で周波数変調させることを特徴とする請求項1記載の磁気記録方法。   2. The magnetic recording according to claim 1, wherein the frequency of the alternating magnetic field is in a range of 1 GHz to 40 GHz and frequency modulation is performed with a modulation amplitude ratio within a range of 0.5% to 50% of the fundamental frequency. Method.
JP2008159822A 2008-06-19 2008-06-19 Magnetic recording method Expired - Fee Related JP4919233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008159822A JP4919233B2 (en) 2008-06-19 2008-06-19 Magnetic recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008159822A JP4919233B2 (en) 2008-06-19 2008-06-19 Magnetic recording method

Publications (2)

Publication Number Publication Date
JP2010003339A JP2010003339A (en) 2010-01-07
JP4919233B2 true JP4919233B2 (en) 2012-04-18

Family

ID=41584954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008159822A Expired - Fee Related JP4919233B2 (en) 2008-06-19 2008-06-19 Magnetic recording method

Country Status (1)

Country Link
JP (1) JP4919233B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8427773B2 (en) 2011-03-23 2013-04-23 Tdk Corporation Method for magnetic recording using microwave assisted magnetic head
US8611034B2 (en) 2012-03-30 2013-12-17 Tdk Corporation Microwave-assisted magnetic recording device and method using non-constant microwave

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07244801A (en) * 1994-03-07 1995-09-19 Hitachi Ltd Spin heating recording method and device
JP4886268B2 (en) * 2005-10-28 2012-02-29 株式会社東芝 High-frequency oscillation element, in-vehicle radar device using the same, inter-vehicle communication device, and inter-information terminal communication device
JP2007299460A (en) * 2006-04-28 2007-11-15 Tdk Corp Magnetic head, and magnetic recording and reproducing device
JP2009080904A (en) * 2007-09-26 2009-04-16 Toshiba Corp Magnetic recording device

Also Published As

Publication number Publication date
JP2010003339A (en) 2010-01-07

Similar Documents

Publication Publication Date Title
JP5172004B1 (en) Magnetic recording head and magnetic recording apparatus
JP5059924B2 (en) Spin torque oscillator, and magnetic recording head and magnetic recording apparatus equipped with the same
JP5361259B2 (en) Spin torque oscillator, magnetic recording head, magnetic head assembly, and magnetic recording apparatus
JP5372361B2 (en) High frequency field assisted writing device
Zhu et al. Microwave assisted magnetic recording utilizing perpendicular spin torque oscillator with switchable perpendicular electrodes
JP5581980B2 (en) Magnetic recording head and magnetic recording apparatus
JP4818234B2 (en) Magnetic recording / reproducing device
US20100027158A1 (en) Magnetic head for high-frequency field assist recording and magnetic recording apparatus using magnetic head for high-frequency field assist recording
WO2010053187A1 (en) Information recording device
JP2013251042A (en) Spin torque oscillator, magnetic recording head, magnetic head assembly, and magnetic recorder
CN105825874A (en) Stabilizing layer for spin torque oscillator (STO)
JP6442978B2 (en) Magnetic recording / reproducing device
WO2003010758A1 (en) Write head for high anisotropy media
US9007721B2 (en) Microwave assisted magnetic recording head having spin torque oscillator, and magnetic recording apparatus
JP5481353B2 (en) Microwave-assisted magnetic recording head and magnetic recording / reproducing apparatus
US20040233578A1 (en) Tapered single pole magnetic heads for perpendicular magnetic recording
Bai et al. Micromagnetics of perpendicular write heads with extremely small pole tip dimensions
JP4919233B2 (en) Magnetic recording method
JP2009080869A (en) Magnetic recording method
JP5515044B2 (en) Magnetic recording device
US10127931B2 (en) Perpendicular magnetic recording and reproducing device
Wang et al. Chirped-microwave assisted magnetization reversal
Shen et al. Issues in recording exchange coupled composite media
US9336797B2 (en) Extended spin torque oscillator
JP5468124B2 (en) Magnetic recording head and magnetic recording apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120124

R150 Certificate of patent or registration of utility model

Ref document number: 4919233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees