JP4919184B2 - Moisture evaporation cooling roof / wall structure - Google Patents

Moisture evaporation cooling roof / wall structure Download PDF

Info

Publication number
JP4919184B2
JP4919184B2 JP2001102902A JP2001102902A JP4919184B2 JP 4919184 B2 JP4919184 B2 JP 4919184B2 JP 2001102902 A JP2001102902 A JP 2001102902A JP 2001102902 A JP2001102902 A JP 2001102902A JP 4919184 B2 JP4919184 B2 JP 4919184B2
Authority
JP
Japan
Prior art keywords
water
temperature
roof
hydrogel
evaporative cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001102902A
Other languages
Japanese (ja)
Other versions
JP2002294891A5 (en
JP2002294891A (en
Inventor
幸雄 石川
俊夫 斉藤
育正 三坂
洋 岡
孝一 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2001102902A priority Critical patent/JP4919184B2/en
Publication of JP2002294891A publication Critical patent/JP2002294891A/en
Publication of JP2002294891A5 publication Critical patent/JP2002294891A5/ja
Application granted granted Critical
Publication of JP4919184B2 publication Critical patent/JP4919184B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低地球環境負荷型建築物における水分蒸発冷却屋根・壁体構造に関する。
【0002】
【従来の技術】
現在、化石燃料や有用天然資源の枯渇、地球環境の保護のため、省エネルギーや新・未利用エネルギーの利用、温室効果ガス・硫化物・窒素酸化物の排出削減、代替フロンの利用などの推進が図られている。
【0003】
こうした背景のもと、建築分野でも、これらを推進するため、環境と調和し、自然エネルギーをうまく利用して、低負荷・省エネルギーで内部環境を創造・制御し、環境と共生し得る、低地球環境負荷型建築物へのニーズが高まっている。
【0004】
自然エネルギー、自然環境を利用した低地球環境負荷型建築物として、屋根および外壁面での水分蒸発冷却により、建物への貫流熱取得を低下させて自然冷房を行い、省エネルギーにより、建物内部環境の快適化を図るもののひとつとして、水分の蒸発冷却を利用した冷房方式がある。これには、一般に、屋根や外壁に散水して蒸発冷却を行う方式があるが、この方式は、屋根や壁体外表面に散水し、その水分の蒸発により、屋根や壁体の外表面を潜熱冷却して表面温度を下げ、これにより建物内部への貫流熱取得を低下させて自然冷房を行うか、または、冷房機器にかかる熱負荷の低減を図るものである。
【0005】
このように水の蒸発潜熱により建築物内部を冷却したり、建築物内部の昇温を防ぐ方法は、散水式の蒸発冷却システムとして、広く検討されている。
【0006】
この散水方式の蒸発冷却システムは、電力等を利用する冷却システムに比べ消費エネルギーが格段に少なく、また、電気冷房のようにトータルで発熱系のシステムでないので、温暖化防止にも有効である。
【0007】
この方式では、一般にスプリンクラーなどにより散水を行うが、スプリンクラー等を用いず、屋根頂部より水勾配に沿って流下させる散水方式も考えられる。
【0008】
なお、同じく蒸発潜熱利用のものでルーフポンドのように屋根に貯水するシステムがあるが、重量が重くなり、建築構造体への荷重負荷が大きく、また、水漏れに対する充分な対策が必要で、コストアップになるので、その採用はあまり現実的でない。
【0009】
【発明が解決しようとする課題】
叙上散水方式の蒸発冷却システムにおける散水量は理論的には1.5kg/mh程度で良い。しかしながら、このような少量散水を長いリーチをもって行うに足る適当なスプリンクラーがない(少量散水用のスプリンクラーはあるが、散水半径が小さく、単位面積当りの散水量は結果として少なくならない)。また、風により散水分が当該建物の近隣に飛散することもあり、水分ロスや近隣との問題が生じうる。
【0010】
また、屋根頂部よりの水勾配に沿っての流下の散水方式では、水道(みずみち)ができ均一に屋根面を濡らすことが難しく、蒸発冷却効果が低下するという欠点がある。
【0011】
本発明は、叙上の事情に鑑みなされたもので、その目的とするところは、水資源の保存の観点から、水分の飛散ロスの防止や、必要以上の水分消費をなくすこと、さらに、屋根面・壁体面での濡れの不均一化をなくし、少ない水分量にて蒸発冷却効果を上げ得、水資源の保存を図りつつ、蒸発冷却効果を高め得る水分蒸発冷却屋根・壁体構造を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するために、本発明の水分蒸発冷却屋根・壁体構造は、屋上設置の送水可能な雨水槽からの供給若しくは降雨での散水供給の前提のもと、前記屋根・壁体である構造体の外表面に、表面が均一に濡れるように、ハイドロゲルを含む層を積層構成するとしたものである。
【0013】
また、上記のハイドロゲルを含む層における当該ハイドロゲルを、感温吸排水性ポリマーとしたものである。
【0015】
【作用】
蒸発面(屋根・壁体である構造体の外表面)にハイドロゲルを含む層を設けることにより、傾斜面においてさえ、水を均一に固定保持することができ、適時散水し、ハイドロゲルに吸収させておけば、頻繁に散水しなくとも、継続的な蒸発冷却が達成される。
【0016】
また、ハイドロゲルを感温吸排水性ポリマーとしたものにあっては、本発明でいう感温吸排水性ポリマーとは、感温点以下では水を吸収し、感温点以上では水を吸収せず低温で吸収していた水を外部に排出する樹脂をいい、ポリマーの温度が特定の感温点以下の場合、水がゲル中に保持されているため蒸発が抑制され、低温時の無駄な蒸発が抑えられ、ポリマーの温度が感温点以上になるとハイドロゲルから自由水が排出され、ハイドロゲル層の表面に移行するため、散水の場合と同様の蒸発冷却がなされるので、不必要な水分消費が全く無い。
【0017】
さらに、連続毛管を有する多孔体または繊維成型体中に、上記の感温吸排水性ポリマーのハイドロゲルを分散させた層としたものにあっては、感温吸排水性ポリマーの感温点以下では、水は水分蒸発冷却屋根・壁体構造のゲル中に保持され構造表面には出てこないので、構造の温度が感温点以下では、ほとんど蒸発が起こらず、水のロスがなく、散水管理が容易になり、感温点以上では、感温吸排水性ポリマーから排出された水が毛管力で構造表面に次々に移行するので蒸発率が高くなり、効率的な冷却が実現する。
【0018】
【発明の実施の形態】
本発明の実施の態様を図1〜10に基づいて説明する。図1a、bは、屋根・壁体である構造体1の水平面(陸面)、傾斜面にハイドロゲル(吸水性ポリマー)を含む層2を積層した例を示す。
【0019】
ここでいうハイドロゲルとは、水溶性ポリマーの網目構造と水とからなるやわらかい構造のもの、具体例として、紙オムツ等に使われる高吸水性ポリマー、食品のゼラチン、寒天等がある。
【0020】
かかる構造のものとしては、カルボキシメチルセルロース架橋物、でんぷん−アクリロニトルグラフト共重合体、ポリビニルアルコール、ポリアクリル酸塩等を原料としたハイドロゲルが広く知られている。
【0021】
上述の如く、蒸発面にハイドロゲルを含む層を設けることにより、傾斜面においてさえ、水を固定保持することができ、適時散水しハイドロゲルに吸収させておけば、頻繁に散水しなくとも継続的な蒸発3により屋根、壁体の冷却が達成される。
【0022】
この方式では、吸水水分を水分として放出せず、直接蒸発させる。
【0023】
図2は、ハイドロゲルとして感温吸排水性ポリマーを採用する例を示す。
【0024】
ここで、本発明でいう感温吸排水性ポリマーとは、感温点以下では水を吸収し、感温点以上では水を吸収せず低温で吸収していた水を外部に排出する樹脂をいい、例えば特開平7−224119号(N−イソプロピルアクリルアミド、アクリル酸ナトリウムおよびダイアセトンアクリルアミドを架橋剤存在下、水溶液重合して吸水樹脂を得た)、特開平8−100010号(N−イソプロピルアクリルアミド、ダイアセトンアクリルアミド、アクリル酸および酸性白土を水に溶解・分散し、窒素ガス気流下、開始剤を添加し重合し、無機粒子を含有した感温吸排水性ゲルを得た)等に記載のN−イソプロピルアクリルアミド等のN−アルキルアクリルアミドを主成分モノマーとして重合架橋させた樹脂等を例示することができる。このタイプの感温吸排水性ポリマーは、N−アルキルアクリルアミドと共重合するモノマーを適当に選択することにより、感温点を任意に設定することができる。本発明においての感温点は、25℃〜30℃が好ましい。
【0025】
叙上の感温吸排水性ポリマーを含む層4を付着のため溝5、…付形の構造体6や折板屋根7の谷部7a、…に設置した。
【0026】
図中、8は雨水槽(図示省略するも、水不足を生じることのないように、給水管の下方からの接続も施される)、9は給水バルブ、10は該バルブ9から供給の水分を示し、当該バルブ9は外気温センサー11の指示により開閉制御される。
【0027】
しかして、
(a)ポリマーの温度が特定の温度(以下、感温点という)以下の場合、水がゲル中に保持されているため蒸発が抑制され、低温時の無駄な蒸発が抑えられる。
(b)ポリマーの温度が感温点以上になるとハイドロゲルから自由水が排出され、ハイドロゲル層の表面に移行するため、散水の場合と同様の蒸発冷却がなされる。
【0028】
図3a、bは、叙上図2の構造体6が傾斜面である場合の対処例を示し、a図は傾斜面に設けた多設孔17、…に感温吸排水性ポリマーを含む層4を充填したものであり、b図は傾斜面を階段状に構成して形成された段状枡18、…に感温吸排水性ポリマーを含む層4を充填したものである。
【0029】
互いに隔離された層4、…は、上位のオーバーフローした水分10を可能なだけ受止するので、視認観察のもとに給水制御をすれば良い。
【0030】
図4は、ハイドロゲルを含む層を、連続毛管を有する多孔体または繊維成型体中に感温吸排水性ポリマーのハイドロゲルを分散させた層とした例の1つで、感温吸排水性ポリマーマット12を用いた蒸発冷却構造を示す。
【0031】
図5a〜cは、他の例で、感温吸排水性ポリマーをコンパウンドしたレンガやポーラスコンクリート13を用いた蒸発冷却構造の各例を示す。表面の凹凸は、伝熱面積を増加させ、効果を大としたものである。
【0032】
図6は、同じく他の例で、不織布14に感温吸排水性ポリマーを混入した冷却構造を示す。
【0033】
図7は、同じく他の例で、構造体6の表面の塗料15中に感温吸排水性ポリマーを混入した冷却構造を示す。
【0034】
図8は、同じく他の例で、金属タワシ状材16を既述の図4に紹介のレンガやポーラスコンクリート13に打ち込む冷却構造を示す。
【0035】
金属タワシ状材16を介して熱伝導を良くし、表面の蒸発冷却効果を室内に伝えやすくしたものである。
【0036】
叙上図4〜8のものにあっては、感温吸排水性ポリマーの感温点以下では、水は水分蒸発冷却屋根・壁体構造中のゲル中に保持され、該構造表面には出てこないので、構造の温度が感温点以下ではほとんど蒸発が起こらず、水のロスがなく散水管理が容易になる。感温点以上では、感温吸排水性ポリマーから排出された水が毛管力で構造表面に次々に移行するので蒸発率が高くなり、効率的な冷却が実現する。なお、冬季等、蒸発冷却を要しない期間は、水抜きをすることで純粋な断熱材としても機能する。なお、多孔体、繊維成型体の具体例としては、上記の如く、発泡ウレタン等の樹脂発泡体、軽量発泡材の成型体、繊維状マット、コンクリート、塗料等が例示されるものである。
【0038】
本発明による蒸発冷却効果を実験で確認した。
【0039】
すなわち、図9は、上部に感温吸排水性ポリマーマットを設置した場合のボックス内部の温度(周囲は断熱)と上部に蒸発冷却のない発泡ウレタンマットを設置した場合との蒸発冷却効果の比較である。夏季の実測結果の例から、感温吸排水性ポリマーマットを用いることにより、ボックス内部の温度を約9℃下げることができた。
【0040】
また、図10は、軽構造屋根で、感温吸排水性ポリマー層を設置した場合と感温吸排水性ポリマー層がない場合の実測による蒸発冷却効果(千葉・夏季の例)の比較である(感温点30℃)。
蒸発冷却効果(13時の例)
外表面温度の低下量 39.1℃
内表面温度の低下量 6.6℃
であった。
【0041】
【発明の効果】
本発明は以上の如く構成されるので、以下列記の諸効果を奏する。
(イ)常時散水不要のため、ポンプ動力や水資源の節約が可能。
(ロ)表面で均一に濡れるため、効果的に蒸発冷却が発現。
(ハ)多孔質材に吸水性ポリマーを内包すれば、水分を毛細管で吸い上げて、表面での蒸発冷却を誘発。
(ニ)用途は、建築物の屋根・壁体(建種は問わないが、軽構造で特に効果が大きい)。
(ホ)水分ロスが少なく、省水化が図れる。
(ヘ)感温性により、必要時に効果的に蒸発冷却が可能となる。
【図面の簡単な説明】
【図1】 a、bは本発明の蒸発冷却構造の説明図である。
【図2】 本発明の蒸発冷却構造の説明図である。
【図3】 a、bは本発明の蒸発冷却構造の説明図である。
【図4】 本発明の蒸発冷却構造の説明図である。
【図5】 a、b、cは本発明の蒸発冷却構造の説明図である。
【図6】 本発明の蒸発冷却構造の説明図である。
【図7】 本発明の蒸発冷却構造の説明図である。
【図8】 本発明の蒸発冷却構造の説明図である。
【図9】 本発明の蒸発冷却効果の実験結果例の説明図である。
【図10】 本発明の蒸発冷却効果の実験結果例の説明図である。
【符号の説明】
1 ; 構造体
2 ; 層
3 ; 蒸発
4 ; 層
5 ; 溝
6 ; 構造体
7 ; 折板屋根
7a ; 谷部
8 ; 雨水槽
9 ; 給水バルブ
10 ; 水分
11 ; 外気温センサー
12 ; 感温吸排性ポリマーマット
13 ; ポーラスコンクリート
14 ; 不織布
15 ; 塗料
16 ; タワシ状材
17 ; 多設孔
18 ; 段状枡
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water evaporation cooling roof / wall structure in a low earth environment load type building.
[0002]
[Prior art]
Currently, in order to deplete fossil fuels and useful natural resources and protect the global environment, energy conservation, use of new and unused energy, reduction of greenhouse gas, sulfide and nitrogen oxide emissions, and use of alternative chlorofluorocarbons are being promoted. It is illustrated.
[0003]
Against this backdrop, in the construction field, in order to promote these, the low earth that can harmoniously coexist with the environment by harmonizing with the environment, making good use of natural energy, creating and controlling the internal environment with low load and energy saving There is a growing need for environmentally friendly buildings.
[0004]
As a low-environmentally friendly building that uses natural energy and the natural environment, natural cooling is achieved by reducing the heat flow through the building by evaporative cooling of the water on the roof and outer wall, and energy conservation reduces the internal environment of the building. There is a cooling method using evaporative cooling of water as one of the means for improving comfort. In general, there is a method in which water is sprayed on the roof or outer wall to evaporate and cool, but this method sprays water on the outer surface of the roof or wall, and the evaporation of the water causes latent heat on the outer surface of the roof or wall. It cools to lower the surface temperature, thereby reducing the through-flow heat acquisition into the building and performing natural cooling or reducing the heat load on the cooling equipment.
[0005]
Thus, the method of cooling the inside of a building by the latent heat of evaporation of water or preventing the temperature rise inside the building has been widely studied as a watering type evaporative cooling system.
[0006]
This sprinkling evaporative cooling system consumes much less energy than a cooling system that uses electric power or the like, and is not a total heat generation system like electric cooling, so it is also effective in preventing global warming.
[0007]
In this method, water is generally sprinkled by a sprinkler or the like, but a sprinkler method is also conceivable in which a sprinkler or the like is used and the water flows down from the roof top along a water gradient.
[0008]
There is also a system that uses latent heat of vaporization to store water on the roof like a roof pond, but it becomes heavier, the load on the building structure is large, and sufficient measures against water leakage are necessary, Adopting it is not practical because it increases costs.
[0009]
[Problems to be solved by the invention]
In theory, the amount of water sprayed in the evaporative cooling system of the above watering method may be about 1.5 kg / m 2 h. However, there is no suitable sprinkler that can perform such a small amount of watering with a long reach (although there are sprinklers for small amounts of watering, the watering radius is small and the amount of watering per unit area is not reduced as a result). In addition, the scattered water may be scattered by the wind in the vicinity of the building, which may cause water loss and problems with the vicinity.
[0010]
In addition, the watering method that flows down along the water gradient from the roof top has a drawback that water is generated and it is difficult to uniformly wet the roof surface, and the evaporative cooling effect is reduced.
[0011]
The present invention has been made in view of the circumstances described above, and its purpose is to prevent loss of moisture from the viewpoint of preservation of water resources, eliminate unnecessary water consumption, and further, roof Providing a moisture evaporative cooling roof and wall structure that can improve the evaporative cooling effect while preserving water resources, eliminating the unevenness of wetting on the surface and wall surfaces, increasing the evaporative cooling effect with a small amount of water There is to do.
[0012]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the water evaporation cooling roof / wall structure of the present invention is based on the assumption that the roof / wall is supplied from a rainwater tank that can be sent on a rooftop or supplied with water. A layer containing a hydrogel is laminated on the outer surface of a certain structure so that the surface is uniformly wetted .
[0013]
Moreover, the said hydrogel in the layer containing said hydrogel is made into the temperature-sensitive water absorption / drainage polymer.
[0015]
[Action]
By providing a layer containing hydrogel on the evaporation surface (outer surface of the structure, which is a roof / wall ), water can be uniformly fixed and held even on inclined surfaces, and water can be sprinkled and absorbed by hydrogel in a timely manner. If this is done, continuous evaporative cooling is achieved without frequent watering.
[0016]
In addition, in the case where hydrogel is a temperature-sensitive water-absorbing polymer, the temperature-sensitive water-absorbing polymer referred to in the present invention absorbs water below the temperature sensitive point and absorbs water above the temperature sensitive point. This is a resin that discharges water that has been absorbed at low temperatures to the outside, and when the polymer temperature is below a specific temperature point, water is retained in the gel, so evaporation is suppressed and waste at low temperatures When the temperature of the polymer reaches or exceeds the temperature point, free water is discharged from the hydrogel and transferred to the surface of the hydrogel layer. There is no significant water consumption.
[0017]
Furthermore, in a porous body or fiber molded body having continuous capillaries, a layer in which the above-mentioned thermosensitive water-absorbing polymer hydrogel is dispersed is below the temperature-sensitive point of the thermosensitive water-absorbing polymer. in, since water does not come out the retained said structure surface while the water evaporation cooling roof-wall structure gel, the temperature is below the temperature-sensitive point of the structure, does not occur almost evaporated, without water loss , watering management is facilitated, in the above temperature-sensitive point, since the water discharged from the temperature sensing intake aqueous polymer shifts one after another to the structured surface by capillary force higher evaporation rate, efficient cooling is achieved To do.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIGS. 1a and 1b show an example in which a layer 2 containing a hydrogel (water-absorbing polymer) is laminated on a horizontal surface (land surface) and an inclined surface of a structure 1 which is a roof / wall body.
[0019]
The hydrogels herein, those of soft structure composed of a mesh structure and a water soluble polymer, as a specific example, the superabsorbent polymer used in paper diaper or the like, food gelatin, is agar.
[0020]
As such a structure, a hydrogel using a carboxymethyl cellulose cross-linked product, a starch-acrylonitrile graft copolymer, polyvinyl alcohol, polyacrylate, or the like as a raw material is widely known.
[0021]
By providing a hydrogel-containing layer on the evaporation surface as described above, water can be fixed and retained even on an inclined surface. If water is sprayed in a timely manner and absorbed by the hydrogel, it will continue even if water is not sprayed frequently. Cooling of the roof and walls is achieved by the typical evaporation 3.
[0022]
In this method, the water absorption is not directly released as water but evaporated directly.
[0023]
FIG. 2 shows an example in which a temperature-sensitive water-absorbing polymer is employed as the hydrogel.
[0024]
Here, the temperature-sensitive water-absorbing polymer referred to in the present invention is a resin that absorbs water below the temperature-sensitive point and does not absorb water above the temperature-sensitive point and discharges the water absorbed at a low temperature to the outside. For example, Japanese Patent Application Laid-Open No. 7-224119 (a water-absorbing resin was obtained by aqueous solution polymerization of N-isopropylacrylamide, sodium acrylate and diacetone acrylamide in the presence of a crosslinking agent), Japanese Patent Application Laid-Open No. 8-100010 (N-isopropylacrylamide). , Diacetone acrylamide, acrylic acid and acidic clay were dissolved and dispersed in water, and the initiator was added and polymerized under a nitrogen gas stream to obtain a temperature-sensitive water-absorbing and draining gel containing inorganic particles). Examples thereof include a resin obtained by polymerization and crosslinking using N-alkylacrylamide such as N-isopropylacrylamide as a main component monomer. In this type of temperature-sensitive water-absorbing and draining polymer, a temperature-sensitive point can be arbitrarily set by appropriately selecting a monomer copolymerizable with N-alkylacrylamide. The temperature sensitive point in the present invention is preferably 25 ° C to 30 ° C.
[0025]
The layer 4 containing the above temperature-sensitive water-absorbing and draining polymer was installed in the groove 5, the shaped structure 6 and the valley 7 a of the folded roof 7 for adhesion.
[0026]
In the figure, 8 is a rainwater tank (not shown, but also connected from below the water supply pipe so as not to cause water shortage), 9 is a water supply valve, and 10 is water supplied from the valve 9. The valve 9 is controlled to open and close according to an instruction from the outside air temperature sensor 11.
[0027]
But
(A) When the temperature of the polymer is lower than a specific temperature (hereinafter referred to as a temperature sensitive point), evaporation is suppressed because water is retained in the gel, and unnecessary evaporation at a low temperature is suppressed.
(B) When the temperature of the polymer reaches the temperature sensing point or more, free water is discharged from the hydrogel and moves to the surface of the hydrogel layer, so that evaporative cooling similar to the case of water spraying is performed.
[0028]
FIGS. 3a and 3b show examples of measures when the structure 6 in FIG. 2 is an inclined surface. FIG. 3a shows a layer containing a temperature-sensitive water-absorbing polymer in the multi-holes 17 provided on the inclined surface. In FIG. B, the stepped ridges 18 formed by forming the inclined surfaces in a step shape are filled with the layer 4 containing the temperature-sensitive water-absorbing and draining polymer.
[0029]
Since the layers 4 separated from each other receive as much of the upper overflowed water 10 as possible, water supply control may be performed under visual observation.
[0030]
FIG. 4 shows an example in which the layer containing the hydrogel is a layer in which a hydrogel of a thermosensitive water-absorbing polymer is dispersed in a porous body or a fiber molded body having continuous capillaries. The evaporative cooling structure using the polymer mat 12 is shown.
[0031]
FIGS. 5a to 5c show other examples of evaporative cooling structures using bricks or porous concrete 13 compounded with a temperature-sensitive water-absorbing and draining polymer. The unevenness on the surface increases the heat transfer area and increases the effect.
[0032]
FIG. 6 shows another example of the cooling structure in which the nonwoven fabric 14 is mixed with a temperature-sensitive water-absorbing polymer.
[0033]
FIG. 7 is another example, and shows a cooling structure in which a temperature-sensitive water-absorbing polymer is mixed in the paint 15 on the surface of the structure 6.
[0034]
FIG. 8 shows another example of a cooling structure in which the metal scrubbing member 16 is driven into the brick or porous concrete 13 introduced in FIG. 4 described above.
[0035]
The heat conduction is improved through the metal scrubbing material 16, and the evaporative cooling effect on the surface is easily transmitted to the room.
[0036]
In the case of FIGS. 4 to 8, below the temperature sensing point of the temperature-sensitive water-absorbing and draining polymer, water is retained in the gel in the moisture evaporative cooling roof / wall structure , and is not exposed to the structure surface. Since there is no leverage, evaporation hardly occurs when the temperature of the structure is equal to or lower than the temperature sensing point, and there is no loss of water, facilitating watering management. The above temperature-sensitive point, the water discharged from the temperature sensing intake aqueous polymer evaporation rate since the transition one after another to the structured surface is higher in capillary force, efficient cooling is realized. In addition, during periods when evaporative cooling is not required, such as in winter, it functions as a pure heat insulating material by draining water. Specific examples of the porous body and the fiber molded body include resin foams such as urethane foam, lightweight foam molded bodies, fibrous mats, concrete, paints and the like as described above.
[0038]
The evaporative cooling effect according to the present invention was confirmed by experiments.
[0039]
That is, FIG. 9 shows a comparison of the evaporative cooling effect between the temperature inside the box when the temperature-sensitive water-absorbing and draining polymer mat is installed at the top (the surroundings are thermally insulated) and the foamed urethane mat without evaporative cooling at the top. It is. From the example of the actual measurement result in summer, the temperature inside the box could be lowered by about 9 ° C. by using the temperature-sensitive water-absorbing and draining polymer mat.
[0040]
Moreover, FIG. 10 is a comparison of the evaporative cooling effect (example in Chiba / Summer) measured when a temperature-sensitive water-absorbing polymer layer is installed on a light structure roof and when there is no temperature-sensitive water-absorbing polymer layer. (Sensing point 30 ° C.).
Evaporative cooling effect (example at 13:00)
Amount of decrease in outer surface temperature 39.1 ° C
Amount of decrease in inner surface temperature 6.6 ° C
Met.
[0041]
【Effect of the invention】
Since the present invention is configured as described above, the following effects can be obtained.
(B) Since watering is not always required, pump power and water resources can be saved.
(B) Evaporative cooling is effectively achieved because the surface is uniformly wetted.
(C) If water-absorbing polymer is included in the porous material, moisture is sucked up by a capillary tube to induce evaporative cooling on the surface.
(D) Use is for roofs and walls of buildings (regardless of building type, but light structure is particularly effective).
(E) Less water loss and water saving.
(F) The temperature sensitivity enables evaporative cooling effectively when necessary.
[Brief description of the drawings]
1A and 1B are explanatory views of an evaporative cooling structure of the present invention.
FIG. 2 is an explanatory diagram of an evaporative cooling structure of the present invention.
FIGS. 3a and 3b are explanatory views of the evaporative cooling structure of the present invention. FIGS.
FIG. 4 is an explanatory diagram of an evaporative cooling structure of the present invention.
FIG. 5 is an explanatory diagram of an evaporative cooling structure of the present invention.
FIG. 6 is an explanatory diagram of an evaporative cooling structure of the present invention.
FIG. 7 is an explanatory diagram of an evaporative cooling structure of the present invention.
FIG. 8 is an explanatory diagram of an evaporative cooling structure of the present invention.
FIG. 9 is an explanatory diagram of an experimental result example of the evaporative cooling effect of the present invention.
FIG. 10 is an explanatory diagram of an experimental result example of the evaporative cooling effect of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1; Structure 2; Layer 3; Evaporation 4; Layer 5; Groove 6; Groove 6; Structure 7; Folded plate roof 7a; Valley 8: Rainwater tank 9; Water supply valve 10; Moisture 11: Outside temperature sensor 12; Porous polymer mat 13; porous concrete 14; non-woven fabric 15; paint 16; scrubbing material 17; multi-hole 18;

Claims (2)

屋上設置の送水可能な雨水槽からの供給若しくは降雨での散水供給を前提とした水分蒸発冷却屋根・壁体構造において、
前記屋根・壁体である構造体の外表面に、表面が均一に濡れるように、ハイドロゲルを含む層を積層構成し、ハイドロゲルを含む層における当該ハイドロゲルを、感温吸排水性ポリマーとし、感温吸排水性ポリマーのハイドロゲルを含む層が屋根・壁体である構造体傾斜面に設けた多設孔に充填・積層するとしたことを特徴とする水分蒸発冷却屋根・壁体構造。
In the evaporative cooling roof / wall structure, assuming the supply from a rainwater tank installed on the rooftop or the water supply in the rain,
A layer containing a hydrogel is laminated on the outer surface of the structure that is the roof / wall so that the surface is uniformly wetted, and the hydrogel in the layer containing the hydrogel is used as a temperature-sensitive water-absorbing polymer. A water evaporation cooling roof / wall structure characterized in that a layer containing a hydrogel of a temperature-sensitive water-absorbing and draining polymer is filled and laminated in a multi-hole provided in an inclined surface of the structure which is a roof / wall.
屋上設置の送水可能な雨水槽からの供給若しくは降雨での散水供給を前提とした水分蒸発冷却屋根・壁体構造において、
前記屋根・壁体である構造体の外表面に、表面が均一に濡れるように、ハイドロゲルを含む層を積層構成し、ハイドロゲルを含む層における当該ハイドロゲルを、感温吸排水性ポリマーとし、感温吸排水性ポリマーのハイドロゲルを含む層が屋根・壁体である構造体傾斜面に設けた段状枡に充填・積層するとしたことを特徴とする水分蒸発冷却屋根・壁体構造。
In the evaporative cooling roof / wall structure, assuming the supply from a rainwater tank installed on the rooftop or the water supply in the rain,
A layer containing a hydrogel is laminated on the outer surface of the structure that is the roof / wall so that the surface is uniformly wetted, and the hydrogel in the layer containing the hydrogel is used as a temperature-sensitive water-absorbing polymer. A water-evaporated cooling roof / wall structure characterized in that a layer containing a hydrogel of a temperature-sensitive water-absorbing / draining polymer is filled and laminated in a stepped ridge provided on the inclined surface of the structure which is a roof / wall.
JP2001102902A 2001-04-02 2001-04-02 Moisture evaporation cooling roof / wall structure Expired - Fee Related JP4919184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001102902A JP4919184B2 (en) 2001-04-02 2001-04-02 Moisture evaporation cooling roof / wall structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001102902A JP4919184B2 (en) 2001-04-02 2001-04-02 Moisture evaporation cooling roof / wall structure

Publications (3)

Publication Number Publication Date
JP2002294891A JP2002294891A (en) 2002-10-09
JP2002294891A5 JP2002294891A5 (en) 2008-04-17
JP4919184B2 true JP4919184B2 (en) 2012-04-18

Family

ID=18956041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001102902A Expired - Fee Related JP4919184B2 (en) 2001-04-02 2001-04-02 Moisture evaporation cooling roof / wall structure

Country Status (1)

Country Link
JP (1) JP4919184B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214902A (en) * 2007-03-01 2008-09-18 Takenaka Komuten Co Ltd Building material for external facing of structure, having evaporative cooling function
KR100835990B1 (en) 2007-11-30 2008-06-09 (주)월드비텍 Roof cooling system
JP4925014B2 (en) * 2008-04-17 2012-04-25 株式会社竹中工務店 Moisture evaporation cooling roof / wall structure
JP5692457B1 (en) * 2014-10-17 2015-04-01 新日鐵住金株式会社 Roof panels, roofs and buildings with excellent heat insulation
US10029808B2 (en) * 2016-02-29 2018-07-24 The Boeing Company Structurally integrated thermal management system for aerospace vehicles

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60115745A (en) * 1983-11-25 1985-06-22 松下電器産業株式会社 Roof member
JPH0323511U (en) * 1989-07-17 1991-03-12
JP2839816B2 (en) * 1993-03-24 1998-12-16 鹿島建設株式会社 Ecosystem maintenance exterior wall system
JP3168240B2 (en) * 1994-09-28 2001-05-21 株式会社興人 Thermosensitive absorption and drainage composition
JP2961489B2 (en) * 1994-03-23 1999-10-12 株式会社クボタ Cooling systems for road surfaces and building exterior walls
JPH108410A (en) * 1996-06-20 1998-01-13 Seibutsu Shigen:Kk Concrete or brick block
JP4092421B2 (en) * 1998-09-30 2008-05-28 行信 徳本 How to lower the pavement temperature
JP2000110270A (en) * 1998-10-09 2000-04-18 Sumitomo Constr Co Ltd Roof cooling structure
JP4156139B2 (en) * 1999-08-09 2008-09-24 三井住友建設株式会社 Roof watering cooling system
JP2001146706A (en) * 1999-11-19 2001-05-29 Nippon Shokubai Co Ltd Civil engineering construction structure body and its manufacturing method

Also Published As

Publication number Publication date
JP2002294891A (en) 2002-10-09

Similar Documents

Publication Publication Date Title
JP5298306B2 (en) Outside insulation panel
CN100591203C (en) Irrigation system
CN106747644A (en) A kind of concrete automatic maintenance device and automatic maintenance method
JP4919184B2 (en) Moisture evaporation cooling roof / wall structure
JP5430973B2 (en) Temperature rise suppression system
JP2007197914A (en) Coolant and cooling method for building
CN209482529U (en) A kind of water circulation outer wall structure of building and temperature regulation system
Deska et al. Investigation of the influence of hydrogel amendment on the retention capacities of green roofs
JP4925014B2 (en) Moisture evaporation cooling roof / wall structure
JP2002130740A (en) Indoor temperature-regulating device
CN207117569U (en) A kind of photovoltaic solar panel cooling system
JP2885085B2 (en) Water-retentive pavement block
JP2001049806A (en) Roof sprinkling cooling system
CN205276525U (en) Sound absorption and cooling device for building outer wall
CN206488400U (en) It is a kind of to be used to reduce the exterior wall water absorber of room temperature
JP3198252U (en) External insulation structure of the structure
CN208633366U (en) A kind of energy-saving building brick
CN206928531U (en) A kind of waterproof thermal-insulated system in passive house face
JP2009221731A (en) Wall body structure of building
CN214144754U (en) Cast-in-place concrete heat preservation automatic curing means that moisturizes
JP5715398B2 (en) Water retention equipment
CN206641063U (en) Housetop greening device
JP2012067566A (en) Water-retention equipment
CN220117606U (en) Flat roof heat preservation waterproof construction
CN110206236B (en) Ecological roof in sponge city

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110328

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees