JP4919012B2 - Deployable side grinding machine and steel strip manufacturing method - Google Patents

Deployable side grinding machine and steel strip manufacturing method Download PDF

Info

Publication number
JP4919012B2
JP4919012B2 JP2006199858A JP2006199858A JP4919012B2 JP 4919012 B2 JP4919012 B2 JP 4919012B2 JP 2006199858 A JP2006199858 A JP 2006199858A JP 2006199858 A JP2006199858 A JP 2006199858A JP 4919012 B2 JP4919012 B2 JP 4919012B2
Authority
JP
Japan
Prior art keywords
steel strip
polishing
steel
strip
guide span
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006199858A
Other languages
Japanese (ja)
Other versions
JP2008023667A (en
Inventor
伸明 高橋
孝治 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2006199858A priority Critical patent/JP4919012B2/en
Publication of JP2008023667A publication Critical patent/JP2008023667A/en
Application granted granted Critical
Publication of JP4919012B2 publication Critical patent/JP4919012B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a band steel polishing device and a band steel manufacturing method, capable of achieving excellent straightness in a band saw and of enhancing working efficiency and yield. <P>SOLUTION: This developing type side face polishing machine pulls out band steel by rotating a band steel coil obtained by winding the band steel to perform heat treatment. Next, the band steel, in such a state that the band steel is not taken, is guided into the developing side face polishing machine 1 having a plurality of polishing heads 2, or the developing side face polishing machine 5 of which guide spans GS<SB>1</SB>, GS<SB>2</SB>, GS<SB>3</SB>are set at desired values, for example, GS<SB>1</SB>&gt;GS<SB>2</SB>&gt;GS<SB>3</SB>, thereby polishing the side faces of the band steel. The guide spans GS<SB>1</SB>, GS<SB>2</SB>, GS<SB>3</SB>are established based on the guide spans of other polishing heads and the meandering period of the band steel. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、展開式側面研磨機及び帯鋼製造方法に関し、さらに詳しくは、帯鋼の製造効率、歩留まり、帯鋼及び帯鋸の品質を向上させる技術に関する。   The present invention relates to a deployable side polishing machine and a steel strip manufacturing method, and more particularly, to a technique for improving the manufacturing efficiency of the steel strip, the yield, and the quality of the steel strip and the band saw.

帯鋸は、歯切りされた焼入帯鋼(硬さHV400〜600)の長手方向両端面どうしを溶接し、エンドレスのループ状にしたものである。この帯鋸は、木材等の切削に用いられる。この帯鋸は、その使用時において、駆動プーリーと従動プーリーに掛け渡された状態で回転することにより木材等の切削を行う。
この帯鋸が歯切りされる前の状態である帯鋼の従来の製造工程の概略を図3(b)に示す。同図に示した従来の帯鋼製造工程は、(1)焼入れ、焼き鈍しなどの熱処理工程、(2)帯鋼側面の側面研磨工程、(3)帯鋼表面の表面研磨工程、(4)検査工程、からなるものであった。なお、以下の説明においては、「帯鋼側面」というときは、帯鋼の長手方向の側面をいい、「帯鋼表面」というときは、帯鋼の長手方向の表面をいう。
The band saw is formed by endless loop welding by welding the longitudinal ends of hardened band steel (hardness HV 400 to 600). This band saw is used for cutting wood or the like. In use, the band saw cuts wood or the like by rotating in a state where it is stretched over a driving pulley and a driven pulley.
FIG. 3B shows an outline of a conventional manufacturing process of the band steel before the band saw is cut. The conventional steel strip manufacturing process shown in the figure includes (1) heat treatment processes such as quenching and annealing, (2) side surface polishing process of the steel strip, (3) surface polishing process of the steel strip surface, and (4) inspection. Process. In the following description, the term “band steel side surface” refers to the side surface in the longitudinal direction of the band steel, and the term “band steel surface” refers to the surface in the longitudinal direction of the band steel.

これらのうち、側面研磨工程は、帯鋼側面を研磨することにより、帯鋼の直線度、ひいては、最終製品としての帯鋸の直線度を高めるための工程である。この工程を行う理由は、次の通りである。すなわち、帯鋼の直線度が悪い場合には、最終製品としての帯鋸を駆動プーリーと従動プーリーとに掛け渡して回転させると帯鋸が前後に振れ、切断した木材等の挽き肌(切断面)が悪くなるからである(図8参照)。そこで、その挽き肌を良くするために、歯切りする前の帯鋼の段階で直線度を高めるため、従来、図9に示した回転テーブル式の帯鋼側面研磨機91を用いて帯鋼側面Fの研磨を行っていた。   Among these, the side polishing process is a process for increasing the straightness of the band steel, and consequently the straightness of the band saw as the final product, by polishing the side surface of the band steel. The reason for performing this step is as follows. In other words, when the straightness of the band steel is poor, when the band saw as the final product is spanned between the driving pulley and the driven pulley and rotated, the band saw swings back and forth, and the cut surface of the cut wood or the like is cut. This is because it becomes worse (see FIG. 8). Therefore, in order to improve the ground surface, in order to increase the straightness at the stage of the steel strip before gear cutting, conventionally, the side surface of the steel strip using the rotary table type steel strip side surface polishing machine 91 shown in FIG. 9 is used. Polishing of F was performed.

この帯鋼側面研磨機91は、回転テーブル92と、回転体93とを備え、この回転体93の端面には砥石が設けられている。コイル状に巻回された帯鋼コイルCは、帯鋼側面Fが上下面にくるように横に倒して回転テーブル92に載せ、回転テーブル92とともに所定速度(最大20rpm)で回転させる。これと同時に、回転体93も所定速度(最大480rpm)で回転させながら、砥石が帯鋼側面Fに当てられる。これによって、帯鋼側面Fの平坦化がなされる。この研磨処理を行うためには、帯鋼コイルCを回転テーブル92に載置する必要があるため、帯鋼コイルCは、回転テーブル92に載置可能な重量・大きさでなければならない。   The steel strip side surface polishing machine 91 includes a rotary table 92 and a rotary body 93, and a grindstone is provided on an end surface of the rotary body 93. The steel strip coil C wound in a coil shape is placed sideways on the rotary table 92 so that the steel strip side surface F is on the top and bottom surfaces, and is rotated together with the rotary table 92 at a predetermined speed (maximum 20 rpm). At the same time, the grindstone is applied to the side surface F of the steel strip while rotating the rotating body 93 at a predetermined speed (maximum 480 rpm). As a result, the side surface F of the steel strip is flattened. In order to perform this polishing treatment, it is necessary to place the steel strip coil C on the turntable 92. Therefore, the steel strip coil C must have a weight and size that can be placed on the turntable 92.

しかしながら、従来の図3(b)に示した熱処理工程へ送られる帯鋼の長さをYと仮定すると(実際には長さYに相当する帯鋼は重さが約4t)、長さYの帯鋼を、そのまま巻き取って帯鋼コイルCとすると、その重量が重くなりすぎて(又は直径が大きくなりすぎて)、回転テーブル92に載せることができなかった。そのため、従来においては、熱処理工程が終わってから、長さYの半分の長さ0.5Yの帯鋼を巻き取って、二個の帯鋼コイルC1,C2とし、側面研磨工程へ送っていた。すなわち、従来においては、熱処理工程の開始時点で一個の長さYの帯鋼コイルCであったものを、熱処理工程の終了時点で二個の長さ0.5Yの帯鋼コイルC1,C2に分割していた。
従って、この分割作業そのものが効率化の点で問題があった。
However, assuming that the length of the steel strip sent to the conventional heat treatment step shown in FIG. 3B is Y (actually, the steel strip corresponding to the length Y weighs about 4 t), the length Y When the steel strip was wound as it was to form the steel strip coil C, the weight was too heavy (or the diameter was too large), and could not be placed on the turntable 92. Therefore, conventionally, after the heat treatment process is finished, the steel strip having a length of 0.5Y, which is half the length Y, is wound up to form two steel strip coils C1 and C2 and sent to the side polishing process. . That is, in the prior art, one steel strip coil C having a length Y at the start of the heat treatment process is replaced with two steel strip coils C1 and C2 having a length 0.5Y at the end of the heat treatment process. It was divided.
Therefore, this division work itself has a problem in terms of efficiency.

しかも、熱処理工程が終わってから、二個の帯鋼コイルC1,C2を作製すると、以降の側面研磨工程、表面研磨工程、検査工程はいずれも二回づつ行う必要があり、作業能率が悪いという問題があった。
さらに、帯鋼コイルCがタイトに巻かれていないと、研磨を行っても逆に曲がりが大きくなるなど(図8(b)参照)、技能による作業が多いという問題があった。
さらに、回転テーブル92へのセットは、帯鋼コイルCの側面をある程度揃えてから行わないと帯鋼側面の研磨代が多くなり帯鋼の歩留まりが悪化するという問題があった。
また、帯鋼コイルCの長手方向の両端部分の二箇所は、研磨ができない未研磨部分になり、最終製品としたときに使用できない部分となる。そして、従来のように、側面研磨工程以降の工程が二個の長さ0.5Yの帯鋼コイルC1,C2となる場合には、未研磨部分が全部で四箇所になる。従って、長さ0.5Yの帯鋼コイルC1,C2で側面研磨工程以降の工程を行った場合は、長さYの帯鋼コイルCで一度に全ての工程(熱処理〜検査まで)が可能になった場合に比べると、得られる帯鋼の歩留まりが低いという問題があった。
Moreover, when the two steel strip coils C1 and C2 are produced after the heat treatment process is finished, it is necessary to perform the subsequent side polishing process, the surface polishing process, and the inspection process twice, and the work efficiency is poor. There was a problem.
Furthermore, if the steel strip coil C is not tightly wound, there is a problem that there are many operations due to skill, such as an increase in bending even after polishing (see FIG. 8B).
Furthermore, there is a problem that unless the side surface of the steel strip coil C is aligned to some extent, the amount of polishing on the side surface of the steel strip increases and the yield of the steel strip deteriorates.
Moreover, the two places of the both ends of the longitudinal direction of the strip steel coil C become an unpolished part which cannot be grind | polished, and become a part which cannot be used when it is set as a final product. And when the process after a side surface grinding | polishing process becomes the strip steel coils C1 and C2 of length 0.5Y like the past, an unpolished part becomes a total of four places. Therefore, when the processes after the side polishing process are performed with the steel strip coils C1 and C2 having a length of 0.5Y, all processes (from heat treatment to inspection) can be performed at once with the steel strip coil C having a length of Y. There was a problem that the yield of the obtained steel strip was low compared with the case where it became.

また、帯鋼コイルCを分割して二個にすることなく、一個の長さYの帯鋼コイルで一度に全ての工程(熱処理〜検査まで)が可能となっても、帯鋼の直線度が少なくとも従来と同等又はそれ以上でなければ、最終製品としての帯鋸を用いて切削作業を行ったときの挽き肌(切断面)が悪くなる。
従って、一個の長さYの帯鋼コイルで一度に全ての工程を行う場合には、作業能率や歩留まりをあげることはもちろん、適切な研磨量を確保しつつ、帯鋼及び最終製品としての帯鋸の直線度を良好なものとすることができなければならない。
さらに、帯鋼側面の凹面における未研磨面や研磨後の焼けが残っていることは望ましくない。
Moreover, even if all the processes (from heat treatment to inspection) can be performed at once with a single steel strip of length Y without dividing the steel strip coil C into two, the linearity of the steel strip If it is not at least equal to or higher than that of the prior art, the ground skin (cut surface) when the cutting operation is performed using the band saw as the final product is deteriorated.
Therefore, when all the processes are carried out at once with a single Y-long steel strip coil, not only the working efficiency and yield are improved, but also the steel strip and the band saw as the final product while ensuring an appropriate amount of polishing. It must be possible to achieve a good linearity.
Furthermore, it is not desirable that the unpolished surface and the burnt after polishing remain on the concave surface of the side surface of the steel strip.

本発明は、上記事情に鑑みてなされたものであり、本発明の第一の目的は、適切な研磨量を確保しつつ、帯鋼及び最終製品としての帯鋸の直線度を良好なものとすることができる展開式側面研磨機及び帯鋼製造方法を提供することにある。
本発明の第二の目的は、作業効率及び歩留まりを向上させることができる展開式側面研磨機及び帯鋼製造方法を提供することにある。
本発明の第三の目的は、帯鋼の未研磨面や研磨後の焼けをなくすことができる展開式側面研磨機及び帯鋼製造方法を提供することにある。
This invention is made | formed in view of the said situation, and the 1st objective of this invention makes favorable the linearity of a band saw and a band saw as a final product, ensuring an appropriate grinding | polishing amount. Another object of the present invention is to provide a deployable side polishing machine and a method for manufacturing a steel strip.
The second object of the present invention is to provide a development side grinder and a steel strip manufacturing method capable of improving working efficiency and yield.
The third object of the present invention is to provide an unfolded side polishing machine and a method of manufacturing a steel strip that can eliminate the unpolished surface of the steel strip and burn after polishing.

上記課題を解決するために、本発明に係る展開式側面研磨機は、
帯鋼通過時に帯鋼側面の片側に面する位置に配置された又は両側に面する位置にそれぞれ配置された二個以上の研磨ヘッドを備え、
前記研磨ヘッドは、
前記帯鋼をガイドする第一ローラ及び第二ローラと、
前記第一ローラの先端と前記第二ローラの先端とに接する直線から外れたところに位置する前記帯鋼側面を研磨する砥石とを備え、
先頭から数えてn(nは自然数)番目の研磨ヘッドのガイドスパンGSが、(1)式を満たすことを要旨とするものである。
GS≠GS(但し、GSは、m(mは自然数、m≠n)番目の研磨ヘッドのガイドスパン)…(1)式
In order to solve the above-mentioned problem, a deployable side polishing machine according to the present invention is:
Two or more polishing heads are disposed at positions facing one side of the side surface of the steel strip when passing through the steel strip or at positions facing both sides, respectively.
The polishing head is
A first roller and a second roller for guiding the steel strip;
A grindstone for polishing the side surface of the steel strip located at a position deviated from a straight line contacting the tip of the first roller and the tip of the second roller;
The gist is that the guide span GS n of the n- th polishing head counted from the head (n is a natural number) satisfies the equation (1).
GS n ≠ GS m (where GS m is the mth (m is a natural number, m ≠ n) guide span of the nth polishing head) (1)

この場合に、前記ガイドスパンGSが(2)式を満たすことが望ましい。
GS=GSn−1×s(但し、n≧2、GSn−1は、n−1番目の研磨ヘッドのガイドスパン、0<s<1)…(2)式
この場合に、前記ガイドスパンGSが(3)式を満たすことが望ましい。
GS=GSn−1×s(但し、n≧2、GSn−1は、n−1番目の研磨ヘッドのガイドスパン、0.5≦s≦0.8)…(3)式
この場合に、前記帯鋼側面に最後に接触する研磨ヘッドの後に、定圧で前記帯鋼側面に接触させながら前記帯鋼側面を研磨する定圧研磨ヘッドを備えることが望ましい。
In this case, it is desirable that the guide span GS n satisfies the formula (2).
GS n = GS n−1 × s 1 (where n ≧ 2, GS n−1 is the guide span of the n−1th polishing head, 0 <s 1 <1) (2) Formula In this case, It is desirable that the guide span GS n satisfies the expression (3).
GS n = GS n−1 × s 2 (where n ≧ 2, GS n−1 is the guide span of the n−1th polishing head, 0.5 ≦ s 2 ≦ 0.8) (3) In this case, it is desirable to provide a constant pressure polishing head that polishes the side surface of the steel strip while contacting the side surface of the steel strip with a constant pressure after the polishing head that finally contacts the side surface of the steel strip.

本発明に係る帯鋼製造方法は、
帯鋼を巻回して得られる帯鋼コイルを回転させることにより前記帯鋼を引き出して熱処理を行い、その熱処理が終わった後、前記帯鋼を巻き取らない状態で前記帯鋼側面を研磨する熱処理・帯鋼側面研磨工程と、
前記帯鋼側面の研磨が終わった後、前記帯鋼を巻き取って新たな帯鋼コイルとする巻取工程とを備えたことを要旨とする。
The steel strip manufacturing method according to the present invention includes:
Heat treatment is performed by pulling out the steel strip by rotating a steel strip coil obtained by winding the steel strip, and polishing the side surface of the steel strip without winding the steel strip after the heat treatment is completed. -Strip steel side polishing process,
The present invention includes a winding step of winding the steel strip to form a new steel strip coil after polishing of the side surface of the steel strip.

この場合に、前記熱処理・帯鋼側面研磨工程は、前記熱処理が終わった後、前記帯鋼を巻き取らない状態で、前記帯鋼を上記記載のいずれかの展開式側面研磨機へ導入し、前記帯鋼側面を研磨する工程であることが望ましい。
さらに、この場合に、前記ガイドスパンGSが(4)式を満たすことが望ましい。
GS=CS×(2k−1)(但し、CSは帯鋼の蛇行周期、kは自然数)…(4)式
さらに、この場合に、先頭から数えて1番目のガイドスパンGSが(5)式を満たすことが望ましい。
GS=CS1(但し、CS1は研磨開始前の帯鋼の蛇行周期)…(5)式
さらに、この場合に、ガイドスパンGSが(6)式を満たすことが望ましい。
GS≠CS×2k(CSは帯鋼の蛇行周期、kは自然数)…(6)式
In this case, the heat treatment and strip steel side polishing step, after the heat treatment is finished, in a state where the strip steel is not wound up, the strip steel is introduced into any one of the above-described deployable side polishing machines, It is desirable to be a step of polishing the side surface of the steel strip.
Further, in this case, it is desirable that the guide span GS n satisfies the formula (4).
GS n = CS × (2k−1) (where CS is the meander period of the steel strip, k is a natural number) (4) Further, in this case, the first guide span GS 1 counted from the top is (5 It is desirable to satisfy the formula.
GS 1 = CS1 (where CS1 is the meandering period of the steel strip before the start of polishing) (5) Further, in this case, it is desirable that the guide span GS n satisfies the expression (6).
GS n ≠ CS × 2k (CS is the meandering period of the steel strip, k is a natural number) (6)

本発明に係る展開式側面研磨機及び帯鋼製造方法は、n番目の研磨ヘッドのガイドスパンGSを研磨ヘッド毎に変えたもの、すなわち、ガイドスパンGSが(1)式〜(3)式のいずれかを満たすものであるから、適切な研磨量を確保しつつ、帯鋼及び最終製品としての帯鋸の直線度を良好なものとすることができる。特に、(2)式及び(3)式を満たすと帯鋼の蛇行周期を研磨のたびに小さくでき、これに伴い帯鋼及び最終製品としての帯鋸の直線度をさらに上げることができる。 In the development type side polishing machine and the steel strip manufacturing method according to the present invention, the guide span GS n of the n-th polishing head is changed for each polishing head, that is, the guide span GS n is expressed by the formulas (1) to (3). Since either of the equations is satisfied, the straightness of the band steel and the band saw as the final product can be improved while ensuring an appropriate amount of polishing. In particular, when the expressions (2) and (3) are satisfied, the meandering period of the steel strip can be reduced every time polishing is performed, and accordingly, the straightness of the steel strip and the band saw as the final product can be further increased.

本発明に係る帯鋼製造方法は、帯鋼の熱処理が終わった後、その帯鋼を巻き取らない状態でその帯鋼側面を研磨し、その研磨が終わった帯鋼を巻き取って1つの新たな帯鋼コイルとする方法であるから、当該帯鋼を2つに分割して2つの帯鋼コイルとする必要がない。従って、本発明に係る帯鋼製造方法によれば、全ての工程を1つの帯鋼コイルに対して一度行えばよく、従来のように側面研磨工程以降を2つの帯鋼コイルに対して二度行う必要がなくなり、作業効率を向上させることができる。また、当該帯鋼を2つに分割して帯鋼コイルとする必要がなくなるため、合計四箇所あった未研磨部分を二箇所に減らすことができる。従って、帯鋼や最終製品としての帯鋸の歩留まりを高くすることができる。   In the steel strip manufacturing method according to the present invention, after the heat treatment of the steel strip is finished, the side surface of the steel strip is polished without winding the steel strip, and the polished steel strip is wound up to create a new Therefore, it is not necessary to divide the steel strip into two to make two steel strip coils. Therefore, according to the steel strip manufacturing method according to the present invention, all the steps may be performed once for one steel strip coil, and the side polishing step and subsequent steps are performed twice for the two steel strip coils as in the past. There is no need to do so, and work efficiency can be improved. Moreover, since it becomes unnecessary to divide the said steel strip into two and make it a steel strip coil, the unpolished part which was four places in total can be reduced to two places. Therefore, the yield of the band steel or the band saw as the final product can be increased.

本発明に係る帯鋼製造方法は、ガイドスパンGSを蛇行周期CSの奇数倍にしたもの、すなわち、(4)式又は(5)式を満たすものであるから、帯鋼の研磨量を最適化することができ、帯鋼の適切な研磨量を確保しつつ、帯鋼及び最終製品としての帯鋸の直線度を良好なものとすることができる。本発明に係る帯鋼製造方法は、ガイドスパンGSを蛇行周期CSの偶数倍にはしないもの、すなわち、(6)式を満たすものであるから、研磨ヘッドが帯鋼を研磨できないという状況を回避することができる。   Since the strip steel manufacturing method according to the present invention is such that the guide span GS is an odd multiple of the meander period CS, that is, satisfies the formula (4) or (5), the polishing amount of the strip steel is optimized. It is possible to improve the linearity of the band steel and the band saw as the final product while ensuring an appropriate amount of polishing of the band steel. The steel strip manufacturing method according to the present invention avoids a situation in which the polishing head cannot polish the steel strip because the guide span GS is not an even multiple of the meandering cycle CS, that is, satisfies the formula (6). can do.

本発明に係る展開式側面研磨機は、帯鋼通過時に帯鋼側面に面する位置に研磨ヘッドが配置されているから、熱処理後の巻き取らない状態の帯鋼を研磨することができる。しかも、予め帯鋼側面をある程度研磨するなどの歩留まりを悪化させる作業が不要となる。従って、本発明に係る展開式側面研磨機によれば、作業効率と歩留まりとを向上させることができる。本発明に係る帯鋼製造方法は、この展開式側面研磨機を用いたものであるから同様の効果を奏する。   The development-type side polishing machine according to the present invention can polish the steel strip in a state where it is not wound after heat treatment because the polishing head is disposed at a position facing the side surface of the steel strip when passing through the steel strip. Moreover, the work of deteriorating the yield, such as polishing the side surfaces of the steel strip to some extent in advance, becomes unnecessary. Therefore, according to the deployable side polishing machine according to the present invention, work efficiency and yield can be improved. Since the strip steel manufacturing method according to the present invention uses this unfolding side grinder, the same effect is obtained.

本発明に係る展開式側面研磨機は、定圧で帯鋼側面に接触させながらその帯鋼側面を研磨する定圧研磨ヘッドを備えたものであるから、帯鋼の未研磨面や研磨後の焼けをなくすことができる。本発明に係る帯鋼製造方法は、この展開式側面研磨機を用いたものであるから同様の効果を奏する。   The deployable side polishing machine according to the present invention includes a constant pressure polishing head that polishes the side surface of the steel strip while contacting the side surface of the steel strip at a constant pressure. Can be eliminated. Since the strip steel manufacturing method according to the present invention uses this unfolding side grinder, the same effect is obtained.

以下に図面を参照して本発明の一実施形態について詳細に説明する。
(展開式側面研磨機)
図1は、展開式側面研磨機1の概略構成を示す。展開式側面研磨機1は、帯鋼通過時に帯鋼側面Fの片側に面する位置に配置された又は両側に面する位置にそれぞれ配置された二個以上の研磨ヘッド2と、それらと同様に配置された一個以上の定圧式仕上げヘッド3とを備える。好ましい研磨ヘッド2の個数は、二個以上であればよく、三個〜四個が好ましいが、限定されるものではない。好ましい定圧式仕上げヘッド3の個数は、一個以上であればよく、二個が好ましいが、限定されるものではない。また、研磨ヘッド2及び定圧式仕上げヘッド3は、帯鋼通過時に帯鋼側面Fの両側に面する位置に配置するのが好ましいが、片側のみに配置するものでもよい。また、帯鋼通過時に帯鋼側面Fの両側に面する位置に研磨ヘッド2及び定圧式仕上げヘッド3を配置する場合におけるこれらの個数は、それぞれ、同一であることが望ましいが、異なっていてもよい。さらに、展開式側面研磨機1に繰り返し複数回の研磨を行わせる場合や、複数の展開式側面研磨機1を連繋させる場合には、帯鋼通過時に帯鋼側面Fの片側又は両側に面する位置に配置する研磨ヘッド2は、それぞれ、一個であってもよい。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
(Expandable side polishing machine)
FIG. 1 shows a schematic configuration of a deployable side polishing machine 1. The development-type side polishing machine 1 includes two or more polishing heads 2 arranged at positions facing one side of the band steel side surface F when passing the band steel, or respectively arranged at positions facing both sides, and similarly to them. And one or more constant pressure finishing heads 3 arranged. The number of polishing heads 2 is preferably two or more, and preferably three to four, but is not limited. The number of preferred constant pressure type finishing heads 3 may be one or more, and preferably two, but is not limited. In addition, the polishing head 2 and the constant pressure type finishing head 3 are preferably arranged at positions facing both sides of the side surface F of the steel strip when passing through the steel strip, but may be arranged only on one side. In addition, when the polishing head 2 and the constant pressure finishing head 3 are disposed at positions facing both sides of the side surface F of the steel strip when passing through the steel strip, it is desirable that the number of these is the same, but they are different. Good. Further, when the development-type side polishing machine 1 repeatedly performs polishing a plurality of times, or when a plurality of development-type side polishing machines 1 are connected to each other, it faces one side or both sides of the band steel side F when passing through the steel strip. One polishing head 2 may be disposed at each position.

研磨ヘッド2は、第一ローラR1及び第二ローラR2と、砥石4と、受けローラR3とを備える。研磨ヘッド2は、第一ローラR1及び第二ローラR2が受けローラR3との間に帯鋼を挟持した状態で、帯鋼をガイドする。
ここで、「ガイドスパンGS」とは、第一ローラR1の中心と第二ローラR2の中心との間の距離である。研磨ヘッド2が二個以上配置される場合には、帯鋼の通板方向に対して最も上流側に配置された先頭の研磨ヘッドから順番に、1番目の研磨ヘッド2のガイドスパンをGS、2番目の研磨ヘッド2のガイドスパンをGS、・・・、n(nは自然数)番目の研磨ヘッド2のガイドスパンをGSという。また、「蛇行周期CS」とは、研磨ヘッド2により研磨されようとする直前の帯鋼の蛇行する周期である。「蛇行周期CS1」とは、蛇行周期CSの中でも特に帯鋼側面Fの研磨開始前の帯鋼の蛇行する周期いう。
The polishing head 2 includes a first roller R1 and a second roller R2, a grindstone 4, and a receiving roller R3. The polishing head 2 guides the steel strip while the first roller R1 and the second roller R2 sandwich the steel strip between the receiving roller R3.
Here, the “guide span GS” is a distance between the center of the first roller R1 and the center of the second roller R2. When two or more polishing heads 2 are arranged, the guide span of the first polishing head 2 is set to GS 1 in order from the first polishing head arranged on the most upstream side with respect to the strip passing direction. The guide span of the second polishing head 2 is called GS 2 ,..., N (n is a natural number), and the guide span of the second polishing head 2 is called GS n . Further, the “meandering cycle CS” is a cycle in which the band steel just before being polished by the polishing head 2 meanders. The “meandering cycle CS1” is a cycle in which the steel strip meanders before the polishing of the side surface F of the steel strip, particularly, in the meandering cycle CS.

次に、ガイドスパンGS、GS、…、GSの決め方について説明する。
このガイドスパンGSは、
(要因1)他の研磨ヘッド2のガイドスパンGSと、
(要因2)蛇行周期CSと、に基づいて適当な値に決めることが望ましい。
そこで、ガイドスパンGSの決め方について、帯鋼通過時に帯鋼側面Fの片側に面する位置又は両側に面する位置にそれぞれ二個以上の研磨ヘッド2を備えていると仮定して説明する。
Next, how to determine the guide spans GS 1 , GS 2 ,..., GS n will be described.
This guide span GS is
(Factor 1) Guide span GS of the other polishing head 2;
(Factor 2) It is desirable to determine an appropriate value based on the meander cycle CS.
Therefore, how to determine the guide span GS n will be described on the assumption that two or more polishing heads 2 are provided at positions facing one side or both sides of the side surface F of the steel strip when passing through the steel strip.

第一に、研磨ヘッド2毎にガイドスパンGSを変更するとよい(要因1)。すなわち、複数の研磨ヘッド2がある場合には、一の研磨ヘッド2のガイドスパンGSは、他の研磨ヘッド2のガイドスパンGSとは同一の値にせず、異なった値にするとよい。従って、n(nは自然数)番目の研磨ヘッド2のガイドスパンGSは、(1)式を満たすように決めることができる。
GS≠GS(但し、GSは、m(mは自然数、m≠n)番目の研磨ヘッドのガイドスパン)…(1)式
First, the guide span GS may be changed for each polishing head 2 (Factor 1). That is, when there are a plurality of polishing heads 2, the guide span GS n of one polishing head 2 may not be the same value as the guide span GS m of the other polishing head 2, but may be a different value. Accordingly, the guide span GS n of the n-th (n is a natural number) polishing head 2 can be determined so as to satisfy the expression (1).
GS n ≠ GS m (where GS m is the mth (m is a natural number, m ≠ n) guide span of the nth polishing head) (1)

第二に、先頭の研磨ヘッド2から最後尾の研磨ヘッド2に行くにつれてガイドスパンGSを小さくするとよい(要因1)。すなわち、GS>GS>、…、>GSとなるようにするとよい。従って、n(nは自然数)番目の研磨ヘッド2のガイドスパンGSは、(2)式を満たすように決めることができる。
GS=GSn−1×s(但し、n≧2、GSn−1は、n−1番目の研磨ヘッドのガイドスパン、0<s<1)…(2)式
すなわち、n番目のガイドスパンGSが一つ前のn−1番目のガイドスパンGSn−1とは異なり、さらに、それより小さければよい。研磨するたびに蛇行周期CSを徐々に小さくしていくことができるからである。
(2)式を満たすガイドスパンGSは、特に、次の(3)式を満たすものが好ましい。
GS=GSn−1×s(但し、n≧2、GSn−1は、n−1番目の研磨ヘッドのガイドスパン、0.5≦s≦0.8)…(3)式
Secondly, the guide span GS is preferably made smaller from the first polishing head 2 to the last polishing head 2 (factor 1). That is, it is preferable that GS 1 > GS 2 >,...,> GS n . Accordingly, the guide span GS n of the n-th (n is a natural number) polishing head 2 can be determined so as to satisfy the expression (2).
GS n = GS n−1 × s 1 (where n ≧ 2, GS n−1 is the guide span of the n−1 th polishing head, 0 <s 1 <1) (2), ie, n th The guide span GS n is different from the previous (n−1) th guide span GS n−1, and may be smaller than that. This is because the meander cycle CS can be gradually reduced every time polishing is performed.
The guide span GS n that satisfies the formula (2) is preferably one that satisfies the following formula (3).
GS n = GS n−1 × s 2 (where n ≧ 2, GS n−1 is the guide span of the n−1th polishing head, 0.5 ≦ s 2 ≦ 0.8) (3)

第三に、n番目のガイドスパンGSを蛇行周期CSの奇数倍にするとよい(要因2)。ガイドスパンGSが蛇行周期CSの奇数倍である研磨ヘッドは、研磨量が多いからである。従って、n(nは自然数)番目の研磨ヘッド2のガイドスパンGSは、(4)式を満たすように決めることができる。
GS=CS×(2k−1)(但し、CSは帯鋼の蛇行周期、kは自然数)…(4)式
(4)式を満たすガイドスパンGSは、特に、次の(5)式を満たすものが好ましい。
GS=CS1(但し、CS1は研磨開始前の帯鋼の蛇行周期)…(5)式
すなわち、1番目のガイドスパンGSが帯鋼の研磨開始前の帯鋼の蛇行周期CS1と同一であればよい。
Third, the n-th guide span GS n may be an odd multiple of the meander cycle CS (factor 2). Polishing head guide span GS n is an odd multiple of meander period CS is because the polishing amount is large. Therefore, the guide span GS n of the n-th (n is a natural number) polishing head 2 can be determined so as to satisfy the equation (4).
GS n = CS × (2k−1) (where CS is the meandering period of the steel strip, k is a natural number) (4) Formula In particular, the guide span GS n satisfying the formula (4) is expressed by the following formula (5) Those satisfying these conditions are preferred.
GS 1 = CS1 (where CS1 is the meandering period of the steel strip before the start of polishing) (5) That is, the first guide span GS 1 is the same as the meandering period CS1 of the steel strip before the start of polishing of the steel strip. I just need it.

第四に、n番目のガイドスパンGSを蛇行周期CSの偶数倍にしなければよい(要因2)。ガイドスパンGSが蛇行周期CSの偶数倍である研磨ヘッドは、研磨ができないからである。従って、n(nは自然数)番目の研磨ヘッド2のガイドスパンGSは、(6)式を満たすように決めることができる。
GS≠CS×2k(CSは帯鋼の蛇行周期、kは自然数)…(6)式
Fourth, it is sufficient that the nth guide span GSn is not an even multiple of the meander cycle CS (factor 2). This is because a polishing head in which the guide span GS n is an even multiple of the meandering cycle CS cannot be polished. Accordingly, the guide span GS n of the n-th (n is a natural number) polishing head 2 can be determined so as to satisfy the expression (6).
GS n ≠ CS × 2k (CS is the meandering period of the steel strip, k is a natural number) (6)

第五に、出来る限りガイドスパンGS〜GSが互いに約数や倍数になる関係にならないように決めるとよい(要因1+要因2)。研磨量が極めて良い場合もある反面(後述する実施例5)、偶然に(6)式の状態ができた場合の未研磨状態(後述する実施例1)を予め除外するためである。 Fifth, guide spans GS 1 to GS n should be determined so as not to be divisors or multiples (factor 1 + factor 2) as much as possible. Although the polishing amount may be extremely good (Example 5 described later), the unpolished state (Example 1 described later) when the state of the formula (6) is accidentally formed is excluded in advance.

なお、全ての研磨ヘッドのガイドスパンが他のガイドスパンとの関係で、又は、蛇行周期との関係で(1)式〜(6)式を満たすことは望ましいが、必ずしも全てのガイドスパンがこれらの式を満たすものでなくてもよい。蛇行周期は、帯鋼の加工状態によって微妙に変化するため不明瞭だからである。従って、全ての研磨ヘッドのガイドスパンのうちいずれかが(1)式〜(6)式のいずれかを満たせばよい。   In addition, it is desirable that the guide spans of all polishing heads satisfy the expressions (1) to (6) in relation to other guide spans or in relation to the meandering cycle, but not all guide spans are required. It does not have to satisfy the formula. This is because the meandering cycle is unclear because it changes slightly depending on the working state of the steel strip. Therefore, any one of the guide spans of all the polishing heads may satisfy any one of the expressions (1) to (6).

以下に好ましい一例を示す。研磨対象たる帯鋼は、鋼種がSKS5、長さが500〜1500m、板厚が1〜3mm、幅が50〜400mmが一般的であるが、これに限定されるものではない。蛇行周期は、経験上1〜2mである。そして、帯鋼通過時の帯鋼側面Fに面する位置の両側に三個づつ研磨ヘッド2を配置する(図1参照)。ガイドスパンGS,GS,GSは、GS=2000mm,GS=1200mm(GSの0.6倍),GS=600mm(GSの0.5倍)としたり、GS=1500mm,GS=800mm(GSの0.53倍),GS=500mm(GSの0.625倍)としたり、GS=1000mm,GS=600mm(GSの0.6倍),GS=450mm(GSの0.75倍)としたりすることができる。 A preferred example is shown below. A steel strip to be polished is generally a steel type SKS5, a length of 500 to 1500 m, a plate thickness of 1 to 3 mm, and a width of 50 to 400 mm, but is not limited thereto. The meandering period is empirically 1 to 2 m. And three polishing heads 2 are arranged on both sides of the position facing the steel strip side face F when the steel strip passes (see FIG. 1). The guide spans GS 1 , GS 2 , and GS 3 are GS 1 = 2000 mm, GS 2 = 1200 mm (0.6 times GS 1 ), GS 3 = 600 mm (0.5 times GS 2 ), or GS 1 = 1500 mm, GS 2 = 800 mm (0.53 times GS 1 ), GS 3 = 500 mm (0.625 times GS 2 ), GS 1 = 1000 mm, GS 2 = 600 mm (0.6 times GS 1 ) , GS 3 = 450 mm (0.75 times GS 2 ).

砥石4(図2参照)は、第一ローラR1と第二ローラR2との間の中央付近に取り付けられ、第一ローラR1の先端と第二ローラR2の先端とに接する直線から外れたところに位置する帯鋼側面Fを研磨する。すなわち、砥石4は、その直線から研磨ヘッド2側へ飛び出た帯鋼側面Fを研磨する。ここで、砥石4は、カップ形状であり、そのカップの端面に形成された研削面で研磨する。砥石4は、Mo負荷が基準よりも一定時間連続して小さくなったところで帯鋼側面Fへ向かって前進させる。これによって、砥石摩耗補正が簡略化されている。   The grindstone 4 (see FIG. 2) is attached in the vicinity of the center between the first roller R1 and the second roller R2, and deviates from a straight line that contacts the tip of the first roller R1 and the tip of the second roller R2. The band steel side F located is ground. That is, the grindstone 4 grinds the steel strip side surface F that protrudes from the straight line toward the polishing head 2 side. Here, the grindstone 4 has a cup shape and is polished by a grinding surface formed on the end face of the cup. The grindstone 4 is advanced toward the steel strip side surface F when the Mo load continuously decreases from the reference for a certain period of time. This simplifies the grinding wheel wear correction.

図1に示す定圧仕上げヘッド3は、帯鋼側面Fが研磨ヘッド2から遠ざかる方向へ向かって凹に曲がっている場合には未研磨面ができるため、その未研磨面を定圧で研磨する。また、定圧仕上げヘッド3は、既に研磨ヘッド2によって研磨された部分のその研磨時に出来た焼けを定圧研磨によって取り除く。   The constant pressure finishing head 3 shown in FIG. 1 has an unpolished surface when the band steel side surface F is bent concavely in the direction away from the polishing head 2, and therefore the unpolished surface is polished at a constant pressure. In addition, the constant pressure finishing head 3 removes the burns generated during the polishing of the portion already polished by the polishing head 2 by constant pressure polishing.

(帯鋼製造システム)
図3を参照して、本発明の一実施形態に係る帯鋼製造システムについて説明する。帯鋼製造システムは、熱処理・帯鋼側面研磨機構5と、帯鋼表面研磨機構6と、帯鋼検査ライン7とからなる。
まず、熱処理・帯鋼側面研磨機構5は、帯鋼を巻回して得られる帯鋼コイルC(同図(c)参照)を回転させることにより、帯鋼を引き出して熱処理(焼入れや焼き戻しなど)を行い、さらに、帯鋼側面Fを研磨するものであり、熱処理装置8と展開式側面研磨機1とからなる。熱処理装置8は、熱処理が終了すると、帯鋼を巻き取らない状態で、図示しない送り機構によって、帯鋼を展開式側面研磨機1に送る。展開式側面研磨機1は、熱処理後の巻き取らない状態の帯鋼側面Fを研磨する。従来においては、熱処理と帯鋼側面研磨とは別個の工程として行われていたが、本実施形態においては、これらは一つの工程として行われる。
巻取機構9は、帯鋼側面Fの研磨が終わった後、帯鋼を巻き取って1つの新たな帯鋼コイルCとする。巻取機構9による巻取を行うに際して、帯鋼を2分割して、2つの帯鋼コイルとする必要はない。
(Strip manufacturing system)
With reference to FIG. 3, the strip steel manufacturing system which concerns on one Embodiment of this invention is demonstrated. The band steel manufacturing system includes a heat treatment / band steel side surface polishing mechanism 5, a band steel surface polishing mechanism 6, and a band steel inspection line 7.
First, the heat treatment / band steel side surface polishing mechanism 5 rotates the band steel coil C (see FIG. 5C) obtained by winding the band steel to draw out the band steel and perform heat treatment (quenching, tempering, etc.). In addition, the side surface F of the steel strip is polished, and includes a heat treatment apparatus 8 and a deployable side polishing machine 1. When the heat treatment is completed, the heat treatment apparatus 8 sends the steel strip to the deployable side polishing machine 1 by a feed mechanism (not shown) without winding the steel strip. The unfolding side grinder 1 grinds the steel strip side surface F that is not wound after heat treatment. Conventionally, heat treatment and strip steel side surface polishing are performed as separate steps, but in the present embodiment, these are performed as one step.
The winding mechanism 9 winds the band steel after the band steel side surface F has been polished to form one new band coil C. When performing winding by the winding mechanism 9, it is not necessary to divide the steel strip into two to form two steel strip coils.

表面研磨機構2は、巻取機構9によって巻回された帯鋼コイルCから帯鋼を順次引き出して、帯鋼表面Pを表面研磨機10によって研磨し、研磨した部分から、巻取機構9によって順次巻取を行い、再び、帯鋼コイルCとする。
帯鋼検査ライン7は、帯鋼コイルCから帯鋼を引き出して、図示しない送り装置により帯鋼を送り、巻取装置6で帯鋼コイルCとして巻き取る。帯鋼が送られている間に、作業員の目視による帯鋼検査がなされる。
The surface polishing mechanism 2 sequentially pulls the steel strip from the steel strip coil C wound by the winding mechanism 9, polishes the steel strip surface P by the surface polishing machine 10, and starts the polished portion by the winding mechanism 9. Winding is performed sequentially, and the steel strip coil C is formed again.
The steel strip inspection line 7 pulls the steel strip from the steel strip coil C, feeds the steel strip with a feeding device (not shown), and winds it as the steel strip coil C with the winding device 6. While the steel strip is being sent, the steel strip is visually inspected by the operator.

(帯鋼製造方法)
次に、同じく、図3を参照して、本発明の一実施形態に係る帯鋼製造方法について説明する。同図(a)に示したように、帯鋼製造方法は、熱処理・帯鋼側面研磨工程と、帯鋼表面研磨工程と、帯鋼検査工程とからなる。
まず、熱処理・帯鋼側面研磨工程では、帯鋼を巻回して得られる帯鋼コイルCを回転させることにより帯鋼を引き出して熱処理を行い、帯鋼を巻き取らない状態で、その帯鋼を展開式側面研磨機1へ導入し、帯鋼側面Fを研磨し、これが終わると帯鋼を帯鋼コイルCに巻き取る。従って、帯鋼を2つに分割して2つの帯鋼コイルとする必要がない。従って、全ての工程を1つの帯鋼コイルに対して一度行えばよく、従来のように側面研磨工程以降を2つの帯鋼コイルに対して二度行う必要がなくなり、作業効率があがる。また、当該帯鋼を2つに分割して帯鋼コイルとする必要がなくなるため、合計四箇所あった未研磨部分を二箇所に減らすことができる。従って、帯鋼や最終製品としての帯鋸の歩留まりを高くすることができる。なお、この工程を行うに際しては、式(1)〜式(6)に基づいてガイドスパンGSを適当な値に決めて研磨を行うことが望ましい。
(Strip manufacturing method)
Next, similarly, with reference to FIG. 3, a steel strip manufacturing method according to an embodiment of the present invention will be described. As shown in FIG. 1A, the steel strip manufacturing method includes a heat treatment / steel strip side surface polishing step, a strip steel surface polishing step, and a strip steel inspection step.
First, in the heat treatment and band steel side polishing step, the band steel is drawn by rotating the band steel coil C obtained by winding the band steel, and then the heat treatment is performed. It introduce | transduces into the expansion | deployment type side grinder 1, and the steel strip side F is grind | polished. Therefore, it is not necessary to divide the steel strip into two to form two steel strip coils. Therefore, it is only necessary to perform all the processes once for one band steel coil, and it is not necessary to perform the side polishing process and subsequent steps twice for the two band steel coils as in the prior art, and the working efficiency is improved. Moreover, since it becomes unnecessary to divide the said steel strip into two and make it a steel strip coil, the unpolished part which was four places in total can be reduced to two places. Therefore, the yield of the band steel or the band saw as the final product can be increased. Note that when performing this step, it is desirable to perform the grinding decide guide span GS n to an appropriate value based on the equation (1) to (6).

帯鋼表面研磨工程では、帯鋼コイルCを回転させることにより帯鋼を引き出して、その帯鋼を表面研磨機10へ導入し、帯鋼表面Pを研磨し、これが終わると帯鋼を帯鋼コイルCに巻き取る。帯鋼検査工程では、帯鋼コイルCを回転させることにより帯鋼を引き出して、帯鋼を走行させ、作業員の目視に供し、適当な距離を走行させた後で、帯鋼コイルCに巻き取る。   In the band steel surface polishing step, the band steel is pulled out by rotating the band steel coil C, the band steel is introduced into the surface polishing machine 10, the band steel surface P is polished, and when this is finished, the band steel is removed. Winding on coil C. In the steel strip inspection process, the steel strip C is pulled out by rotating the steel strip coil C, the steel strip is run, provided to the operator's visual inspection, and traveled an appropriate distance, and then wound around the steel strip coil C. take.

(シミュレーション試験の方法)
図4に示したように、帯鋼通過時に帯鋼側面Fの両側に面する位置に一個づつ合計二個の研磨ヘッド2を取り付けたと仮定した。そして、帯鋼側面Fの片側又は両側に対して4回の研磨を行ったと仮定したときの帯鋼側面Fの振れ(蛇行量)をシミュレーションにより確認した。シミュレーション用として想定した帯鋼のシミュレーション開始前の蛇行周期CS1は、2mとした。
(Method of simulation test)
As shown in FIG. 4, it was assumed that a total of two polishing heads 2 were attached to the positions facing both sides of the side surface F of the steel strip when passing through the steel strip. And the fluctuation | variation (meandering amount) of the strip steel side surface F when it assumed that the grinding | polishing was performed 4 times with respect to the one side or both sides of the strip steel side surface F was confirmed by simulation. The meandering period CS1 before the simulation of the steel strip assumed for simulation was 2 m.

表1に示した実施例1〜4は、ガイドスパンを変えないで一定のガイドスパンで4回(4パス)研磨を行った場合をシミュレーションしたものであり、表2に示した実施例5は、各パス毎にガイドスパンを最適化して4回研磨を行った場合をシミュレーションしたものである。図5及び図6は、それぞれ、表1及び表2に示した結果を図示したものである。なお、「パス」とは、帯鋼の研磨の一単位を示し、具体的には、帯鋼が研磨ヘッド2の間を砥石4によって研磨されながら所定距離分、走行することをいう。「nパス」とは帯鋼のn回の走行及び研磨をいう。   Examples 1 to 4 shown in Table 1 are simulations of polishing performed four times (4 passes) with a constant guide span without changing the guide span. Example 5 shown in Table 2 The simulation is performed when the guide span is optimized for each pass and polishing is performed four times. 5 and 6 illustrate the results shown in Table 1 and Table 2, respectively. The “pass” refers to one unit of polishing of the steel strip. Specifically, it means that the steel strip travels a predetermined distance while being polished by the grindstone 4 between the polishing heads 2. “N pass” means n times of running and polishing of the steel strip.

なお、このシミュレーションの前提条件は次の通りであった。
(1)蛇行経路(振れ)は一定の正弦波形、その周期を蛇行周期CSとした。
(2)砥石4、第一ローラR1及び第二ローラR2の帯鋼側面Fとの接触位置は、直線上とし、第一ローラR1と第二ローラR2との間の中央に砥石4を配置した。
(3)砥石4、第一ローラR1及び第二ローラR2の帯鋼側面Fへの当たりは点接触とし、帯鋼側面F及び砥石4の逃げは無いものとした。
The prerequisites for this simulation were as follows.
(1) The meandering path (vibration) is a constant sine waveform, and its period is defined as a meandering period CS.
(2) The contact position of the grindstone 4, the first roller R1 and the second roller R2 with the steel strip side surface F is linear, and the grindstone 4 is arranged at the center between the first roller R1 and the second roller R2. .
(3) The contact between the grinding wheel 4, the first roller R1 and the second roller R2 with respect to the steel strip side surface F is point contact, and the strip steel side surface F and the grinding stone 4 do not escape.

Figure 0004919012
Figure 0004919012
Figure 0004919012
Figure 0004919012

(シミュレーション結果の評価−その1)
表1の結果について考察する。
まず、研磨量が最大になる場合について、実施例1〜4の1パス後の振れに基づいて考察する。実施例1の1パス後の振れは、実施例2〜4の1パス目後の振れに比べて最も小さい値になった。このことから、実施例1の研磨量が最も大きいことがわかった。実施例1のガイドスパンGSは、蛇行周期CS(CS1ともいえる)に等しい。従って、ガイドスパンGSを蛇行周期CSの奇数倍(1倍)にすると、1回当たりの研磨量を大きくできることがわかった。
(Evaluation of simulation results-1)
Consider the results in Table 1.
First, the case where the polishing amount is maximized will be considered based on the shake after one pass in Examples 1 to 4. The shake after the first pass of Example 1 was the smallest value compared with the shake after the first pass of Examples 2-4. From this, it was found that the polishing amount of Example 1 was the largest. The guide span GS of the first embodiment is equal to the meander cycle CS (also referred to as CS1). Accordingly, it has been found that the polishing amount per time can be increased by setting the guide span GS to an odd number (one time) of the meandering cycle CS.

次に、研磨が全く出来ない条件の回避について、実施例1の1パス〜4パス後の振れに基づいて考察する。実施例1の1パス後〜4パス後の振れは、いずれも、0.5の値を示す。このことは、2パス目〜4パス目においては、研磨が全く出来なかったことを示す。その理由は、振れの1パス後と2パス後との差、振れの2パス後と3パス後との差、振れの3パス後と4パス後との差が、いずれも、0だからである。これらの場合の蛇行周期CSとガイドスパンGSとの関係を見る。実施例1の2パス目の蛇行周期CSは、1パス目の研磨で小さくなり、1パス目の蛇行周期CSの2分の1(すなわち、1m)となる。一方、実施例1の2パス目のガイドスパンGSは、2.0mである。従って、実施例1の2パス目のガイドスパンGSは、2パス目の蛇行周期CSの2倍(偶数倍)である。このことから、ガイドスパンGSが蛇行周期CSの偶数倍になると研磨が出来ないことがわかった。従って、ガイドスパンGSを蛇行周期CSの偶数倍にしなければ未研磨状態を回避できることがわかった。   Next, avoidance of a condition in which polishing cannot be performed at all will be considered based on the shake after the first to fourth passes in the first embodiment. The shakes after the first pass to the fourth pass in Example 1 all show a value of 0.5. This indicates that polishing was not possible at all in the second to fourth passes. The reason is that the difference between the first and second passes of the shake, the difference between the second and third passes, and the difference between the third and fourth passes are zero. is there. The relationship between the meander cycle CS and the guide span GS in these cases will be seen. In the first embodiment, the meander cycle CS of the second pass becomes smaller by the polishing of the first pass and becomes one half (that is, 1 m) of the meander cycle CS of the first pass. On the other hand, the guide span GS of the second pass in Example 1 is 2.0 m. Therefore, the guide span GS of the second pass in the first embodiment is twice (even times) the meander cycle CS of the second pass. From this, it was found that when the guide span GS is an even multiple of the meander cycle CS, polishing cannot be performed. Therefore, it has been found that the unpolished state can be avoided unless the guide span GS is an even multiple of the meander cycle CS.

さらに、蛇行周期CSの具体的な数値を予測することは困難であり、偶然、ガイドスパンGSが蛇行周期CSの偶数倍になることがあり得る。そこで、1パスの範囲で片側又は両側に二個以上の複数研磨ヘッド2を設ける場合には、各研磨ヘッド2毎にガイドスパンGSを変えると研磨不能の状態を回避できることがわかった。   Furthermore, it is difficult to predict a specific numerical value of the meandering cycle CS, and the guide span GS may accidentally be an even multiple of the meandering cycle CS. Therefore, when two or more polishing heads 2 are provided on one side or both sides in the range of one pass, it has been found that if the guide span GS is changed for each polishing head 2, an unpolishing state can be avoided.

(シミュレーション結果の評価−その2)
表2の結果について考察する。
この実施例5は、各パス毎にガイドスパンGSを最適化したもの、具体的には、これを蛇行周期CSの1倍としたものである(はじめからガイドスパンGSを蛇行周期CSと等しくすると、1回研磨すると蛇行周期がその半分になることを利用している)。すなわち、ガイドスパンGSを、1パス目は2.0m(蛇行周期は2.0m)→2パス目は1.0m(蛇行周期は1.0m)→3パス目は0.5m(蛇行周期は0.5m)→4パス目は0.25m(蛇行周期は0.25m)とした。これにより、表2に示した実施例5の各パス後の振れは、表1に示した実施例1〜4の各パス後の振れよりも小さくなった。すなわち、実施例5は、研磨量が最大になった。なお、ガイドスパンGS〜GSは、いずれも、一つ前のガイドスパンGS〜GSのそれぞれ0.5倍であることがわかる。ガイドスパンGSは研磨開始前の蛇行周期CS1である2.0mであり、ガイドスパンGS〜GSは、このCS1の0.5倍から0.125倍の範囲にあることがわかる。
(Evaluation of simulation results-2)
Consider the results in Table 2.
In the fifth embodiment, the guide span GS is optimized for each pass, specifically, the guide span GS is set to one time the meander cycle CS (from the beginning, the guide span GS is equal to the meander cycle CS. It uses the fact that the meander cycle is half that when polished once). That is, the guide span GS is set to 2.0 m for the first pass (the meander cycle is 2.0 m) → 1.0 m for the second pass (the meander cycle is 1.0 m) → 0.5 m for the third pass (the meander cycle is 0.5 m) → 4th pass was 0.25 m (meandering period was 0.25 m). Thereby, the shake after each pass of Example 5 shown in Table 2 was smaller than the shake after each pass of Examples 1 to 4 shown in Table 1. That is, in Example 5, the polishing amount was maximized. It can be seen that the guide spans GS 2 to GS 4 are each 0.5 times the previous guide spans GS 1 to GS 3 . Guide span GS 1 is 2.0m a meandering period CS1 before the start of polishing, the guide span GS 2 ~GS 4 is found to be in the range of 0.5 times the CS1 0.125 times.

表1及び表2に示した結果から、
(1)ガイドスパンGSを各研磨ヘッド毎に変更し、研磨するにつれて徐々に小さくするとよいこと(要因1)、
(2)蛇行周期CSに対してガイドスパンGSを奇数倍にし、偶数倍にしないとよいこと(要因2)、がわかった。
From the results shown in Table 1 and Table 2,
(1) The guide span GS should be changed for each polishing head and gradually reduced as polishing is performed (Factor 1).
(2) It has been found that the guide span GS should be an odd multiple and not an even multiple of the meander cycle CS (factor 2).

(帯鋼の研磨試験の方法)
次に、ガイドスパンGSを上記各式を満たす適当な値に設定して帯鋼の研磨試験を行ったのでそれについて説明する。
(実施例6)
図1に示したように、帯鋼が送られてくる上流方向から順番に、帯鋼通過時に帯鋼側面Fに面する位置に三個(合計6個)の研磨ヘッド2を配置し、最後に二個(合計4個)の定圧式仕上げヘッド3を配置した。このとき、研磨ヘッド2のガイドスパンGS,GS,GSは、1500mm、750mm(GSの0.5倍)、600mm(GSの0.8倍)とした。また、帯鋼は、鋼種SKS5、長手方向長さ100m、短手方向幅100mm、厚さ1.0mmであった。この帯鋼について、研磨前と研磨後における曲り(バック値)を測定した。その測定結果を図7(a)(b)に示す。同図(a)が研磨前における曲りを示し、同図(b)が研磨後における曲りを示す。なお、「曲り(バック値)」とは、帯鋼の単位長さ当たりの小曲りのことをいう。
(Method of polishing test for steel strip)
Next, a strip steel polishing test was conducted with the guide span GS set to an appropriate value satisfying the above equations, which will be described.
(Example 6)
As shown in FIG. 1, in order from the upstream direction in which the steel strip is sent, three (6 in total) polishing heads 2 are arranged at positions facing the steel strip side surface F when passing the steel strip. Two (4 in total) constant pressure type finishing heads 3 were arranged. At this time, the guide spans GS 1 , GS 2 , GS 3 of the polishing head 2 were 1500 mm, 750 mm (0.5 times GS 1 ), and 600 mm (0.8 times GS 2 ). The steel strip was steel type SKS5, the length in the longitudinal direction was 100 m, the width in the short direction was 100 mm, and the thickness was 1.0 mm. About this steel strip, the bending (back value) before and after polishing was measured. The measurement results are shown in FIGS. The figure (a) shows the curve before grinding | polishing, and the figure (b) shows the curve after grinding | polishing. “Bend (back value)” means a small bend per unit length of the steel strip.

(比較例)
従来の帯鋼側面研磨機91を用いて研磨を行い、研磨後の曲り(バック値)を測定した。その測定結果を図7(c)に示す。
(Comparative example)
Polishing was performed using a conventional strip steel side polishing machine 91, and the bend (back value) after polishing was measured. The measurement result is shown in FIG.

(帯鋼の研磨試験の評価)
実施例6に係る図7(a)の研磨後のバック値と同図(b)の研磨前のバック値とを比較すると、研磨後のバック値が研磨前のバック値より著しく小さくなった。このことから研磨が出来たことが確認できた。次に、実施例6に係る同図(a)の研磨後のバック値と、比較例に係る同図(c)の研磨後のバック値とを比較すると、いずれもバック値が最大で0.1mm程度であった。また、実施例6は、比較例よりも全体としてバック値が良い傾向にあることがわかった。以上より、実施例6のように上記各式を満たすようにガイドスパンGSを設定すれば、従来と同等以上の帯鋼の直線度が得られることがわかった。
(Evaluation of band steel polishing test)
When the back value after polishing in FIG. 7A according to Example 6 and the back value before polishing in FIG. 7B were compared, the back value after polishing was significantly smaller than the back value before polishing. This confirmed that polishing was possible. Next, when the back value after polishing in FIG. 10A according to Example 6 is compared with the back value after polishing in FIG. It was about 1 mm. Moreover, it turned out that Example 6 has a tendency that the back value as a whole is better than the comparative example. From the above, it was found that if the guide span GS is set so as to satisfy the above equations as in Example 6, the straightness of the steel strip equal to or higher than the conventional one can be obtained.

以上、本発明の一実施形態について説明したが、本発明は上記実施の形態に何ら限定されるものではない。   Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment.

本発明に係る展開式側面研磨機及び帯鋼製造方法は、作業能率、製品の歩留まりを良くし、さらに、帯鋼の直線度を良好なものとするため、最終製品としての帯鋸の製造に好適である。   The deployable side polishing machine and the steel strip manufacturing method according to the present invention are suitable for manufacturing a band saw as a final product in order to improve work efficiency and product yield and to improve the straightness of the steel strip. It is.

本発明の一実施形態に係る展開式側面研磨機の概略構成図である。It is a schematic block diagram of the expansion | deployment type side surface grinder which concerns on one Embodiment of this invention. 砥石を拡大して示した外観図である。It is the external view which expanded and showed the grindstone. 本発明の一実施形態に係る帯鋼製造工程等を示す図である。It is a figure which shows the strip steel manufacturing process etc. which concern on one Embodiment of this invention. シミュレーション試験で想定した研磨ヘッドの配置図である。It is a layout view of a polishing head assumed in a simulation test. シミュレーション試験の結果を示すグラフである。It is a graph which shows the result of a simulation test. シミュレーション試験の結果を示すグラフである。It is a graph which shows the result of a simulation test. 帯鋼研磨後の曲り(バック値)を測定したグラフである。It is the graph which measured the curvature (back value) after strip steel grinding | polishing. 直線度の良い帯鋼と悪い帯鋼との比較図である。It is a comparison figure of a steel strip with a good straightness and a steel strip with a bad linearity. 従来の回転テーブル式の帯鋼側面研磨機の外観図である。It is an external view of the conventional rotary table type steel strip side polishing machine.

符号の説明Explanation of symbols

R1、R2、R3 第一ローラ、第二ローラ、受けローラ
GS ガイドスパン
GS n番目の研磨ヘッドのガイドスパン
CS 帯鋼の蛇行周期
CS 研磨開始前の帯鋼の蛇行周期
C 帯鋼コイル
F 帯鋼側面
P 帯鋼表面
1 展開式側面研磨機
2 研磨ヘッド
3 定圧仕上げヘッド
4 砥石
5 熱処理・帯鋼側面研磨機構
6 帯鋼表面研磨機構
7 帯鋼検査ライン
8 熱処理装置
9 巻取機構
10 表面研磨機
R1, R2, R3 1st roller, 2nd roller, receiving roller GS Guide span GS n Guide span CS of n-th polishing head CS meander cycle CS of strip steel 1 meander cycle C of strip before start of grinding strip C coil F Strip Steel Side P Strip Steel Surface 1 Deployable Side Polisher 2 Polishing Head 3 Constant Pressure Finishing Head 4 Grinding Wheel 5 Heat Treatment / Strip Steel Side Polishing Mechanism 6 Strip Steel Surface Polishing Mechanism 7 Strip Steel Inspection Line 8 Heat Treatment Equipment 9 Winding Mechanism 10 Surface Polishing machine

Claims (7)

帯鋼通過時に帯鋼側面の片側に面する位置に配置された又は両側に面する位置にそれぞれ配置された二個以上の研磨ヘッドを備え、
前記研磨ヘッドは、
前記帯鋼をガイドする第一ローラ及び第二ローラと、
前記第一ローラの先端と前記第二ローラの先端とに接する直線から外れたところに位置する前記帯鋼側面を研磨する砥石とを備え、
先頭から数えてn(nは自然数)番目の研磨ヘッドのガイドスパンGSが、(1)式 及び(2)式を満たすことを特徴とする展開式側面研磨機。
GS≠GS(但し、GSは、m(mは自然数、m≠n)番目の研磨ヘッドのガイドスパン)…(1)式
GS =GS n−1 ×s (但し、n≧2、GS n−1 は、n−1番目の研磨ヘッドのガイドスパン、0<s <1)…(2)式
Two or more polishing heads are disposed at positions facing one side of the side surface of the steel strip when passing through the steel strip or at positions facing both sides, respectively.
The polishing head is
A first roller and a second roller for guiding the steel strip;
A grindstone for polishing the side surface of the steel strip located at a position deviated from a straight line contacting the tip of the first roller and the tip of the second roller;
A development type side polishing machine characterized in that a guide span GS n of an n- th polishing head counted from the head (n is a natural number) satisfies the expressions (1) and (2).
GS n ≠ GS m (where GS m is the mth (m is a natural number, m ≠ n) guide span of the nth polishing head) (1)
GS n = GS n−1 × s 1 (where n ≧ 2, GS n−1 is the guide span of the n−1 th polishing head, 0 <s 1 <1) (2)
前記ガイドスパンGSが(3)式を満たすことを特徴とする請求項に記載の展開式側面研磨機。
GS=GSn−1×s(但し、n≧2、GSn−1は、n−1番目の研磨ヘッドのガイドスパン、0.5≦s≦0.8)…(3)式
The development-type side polishing machine according to claim 1 , wherein the guide span GS n satisfies the formula (3).
GS n = GS n−1 × s 2 (where n ≧ 2, GS n−1 is the guide span of the n−1th polishing head, 0.5 ≦ s 2 ≦ 0.8) (3)
前記帯鋼側面に最後に接触する研磨ヘッドの後に、定圧で前記帯鋼側面に接触させながら前記帯鋼側面を研磨する定圧研磨ヘッドを備えたことを特徴とする請求項1又は2に記載の展開式側面研磨機。 The polishing head according to claim 1 or 2 , further comprising a constant pressure polishing head that polishes the side surface of the steel strip while contacting the side surface of the steel strip at a constant pressure after the polishing head that finally contacts the side surface of the steel strip. Expandable side polishing machine. 帯鋼を巻回して得られる帯鋼コイルを回転させることにより前記帯鋼を引き出して熱処理を行い、その熱処理が終わった後、前記帯鋼を巻き取らない状態で、前記帯鋼を請求項1〜3のいずれかに記載の展開式側面研磨機へ導入し、前記帯鋼側面を研磨する熱処理・帯鋼側面研磨工程と、
前記帯鋼側面の研磨が終わった後、前記帯鋼を巻き取って新たな帯鋼コイルとする巻取工程と、
を備えたことを特徴とする帯鋼製造方法。
Followed by heat treatment pull the steel strip by rotating the strip coil obtained by winding a strip, after the heat treatment is finished, with no wound the steel strip, according to claim 1 wherein the steel strip Introducing into the expandable side polishing machine according to any one of to 3, heat treatment and band steel side polishing step for polishing the side of the band steel,
After the polishing of the side surface of the steel strip is finished, a winding step of winding the steel strip into a new steel strip coil;
A method for producing a steel strip, comprising:
前記ガイドスパンGSが(4)式を満たすことを特徴とする請求項に記載の帯鋼製造方法。
GS=CS×(2k−1)(但し、CSは帯鋼の蛇行周期、kは自然数)…(4)式
The strip steel manufacturing method according to claim 4 , wherein the guide span GS n satisfies the formula (4).
GS n = CS × (2k−1) (where CS is the meander cycle of the steel strip, k is a natural number) (4)
先頭から数えて1番目のガイドスパンGSが(5)式を満たすことを特徴とする請求項4又は5に記載の帯鋼製造方法。
GS=CS1(但し、CS1は研磨開始前の帯鋼の蛇行周期)…(5)式
The strip steel manufacturing method according to claim 4 or 5 , wherein the first guide span GS1 counted from the top satisfies the formula (5).
GS 1 = CS1 (where CS1 is the meander cycle of the steel strip before the start of polishing) (5)
前記ガイドスパンGSが(6)式を満たすことを特徴とする請求項4〜6のいずれかに記載の帯鋼製造方法。
GS≠CS×2k(CSは帯鋼の蛇行周期、kは自然数)…(6)式
The strip steel manufacturing method according to any one of claims 4 to 6 , wherein the guide span GS n satisfies the formula (6).
GS n ≠ CS × 2k (CS is the meandering period of the steel strip, k is a natural number) (6)
JP2006199858A 2006-07-21 2006-07-21 Deployable side grinding machine and steel strip manufacturing method Expired - Fee Related JP4919012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006199858A JP4919012B2 (en) 2006-07-21 2006-07-21 Deployable side grinding machine and steel strip manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006199858A JP4919012B2 (en) 2006-07-21 2006-07-21 Deployable side grinding machine and steel strip manufacturing method

Publications (2)

Publication Number Publication Date
JP2008023667A JP2008023667A (en) 2008-02-07
JP4919012B2 true JP4919012B2 (en) 2012-04-18

Family

ID=39114825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006199858A Expired - Fee Related JP4919012B2 (en) 2006-07-21 2006-07-21 Deployable side grinding machine and steel strip manufacturing method

Country Status (1)

Country Link
JP (1) JP4919012B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106312726A (en) * 2015-06-29 2017-01-11 宝山钢铁股份有限公司 Trimming device used for cold rolling finishing unit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216097A (en) * 1975-07-30 1977-02-07 Namio Ashihara Floor polishing machine
US4573363A (en) * 1983-10-17 1986-03-04 Mannesmann Tally Corporation Vibration isolating coupling
JPH089083B2 (en) * 1987-12-25 1996-01-31 石川島播磨重工業株式会社 Semi-solid metal slurry production equipment
JP2003145397A (en) * 2001-11-12 2003-05-20 Daido Steel Co Ltd End face finishing method and device for band material

Also Published As

Publication number Publication date
JP2008023667A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
JP4662083B2 (en) Polishing equipment
US20150158098A1 (en) Sawing wire, method and equipment for manufacturing such a wire, and use
US20030034022A1 (en) Method for separating slices from a hard brittle workpiece, and wire saw for carrying out the method
TWI729010B (en) Fixed abrasive grain wire saw and method for dressing fixed abrasive grain wire
WO2014142058A1 (en) Centerless polishing device
CN110193759A (en) A kind of high-precision cold roll grinding control method
JP4919012B2 (en) Deployable side grinding machine and steel strip manufacturing method
CN207480310U (en) Floating press beam formula deburring grinding attachment
CN209380437U (en) Steel band edge burr remover
JP2018176301A (en) Cutting method for workpiece
JP2012007693A (en) Continuously variable transmission metal belt, method for manufacturing metal ring of the continuously variable transmission metal belt, and method for measuring shape of the metal ring of the continuously variable transmission metal belt
US1921039A (en) Method and apparatus fob making
JP6353246B2 (en) Glass chopped strand manufacturing apparatus and manufacturing method
US10766118B2 (en) Edge processing device for molded powder compact and edge processing method for molded powder compact
JP3502000B2 (en) Online roll grinding method
US2329376A (en) Wire-making process
JP2011152594A (en) Method of grinding metal ring
US1637074A (en) Edging machine
JPH0970747A (en) Wire saw
CN208758339U (en) Copper strips rolling device with polishing function
CN206780128U (en) The accurate end face abrasive cutoff machine of monocrystalline silicon piece
CN103097609B (en) Press belt and shoe press roll, and manufacturing method for press belt
KR20020075840A (en) A wire rod working system
JP2005335048A (en) Grinding method of metal strip
US20190168351A1 (en) Method for manufacturing ring and ring polishing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120118

R150 Certificate of patent or registration of utility model

Ref document number: 4919012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees