JP4913495B2 - Inductive displacement detector - Google Patents

Inductive displacement detector Download PDF

Info

Publication number
JP4913495B2
JP4913495B2 JP2006206581A JP2006206581A JP4913495B2 JP 4913495 B2 JP4913495 B2 JP 4913495B2 JP 2006206581 A JP2006206581 A JP 2006206581A JP 2006206581 A JP2006206581 A JP 2006206581A JP 4913495 B2 JP4913495 B2 JP 4913495B2
Authority
JP
Japan
Prior art keywords
magnetic flux
measurement axis
winding
flux coupling
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006206581A
Other languages
Japanese (ja)
Other versions
JP2008032546A (en
Inventor
修 川床
賢一 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP2006206581A priority Critical patent/JP4913495B2/en
Publication of JP2008032546A publication Critical patent/JP2008032546A/en
Application granted granted Critical
Publication of JP4913495B2 publication Critical patent/JP4913495B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、磁場によって誘導される電流信号を用いて、2つの部材間の移動量又は位置を検知する誘導電流を用いた誘導型変位検出装置に関する。   The present invention relates to an inductive displacement detection apparatus using an induced current that detects a movement amount or a position between two members using a current signal induced by a magnetic field.

誘導型変位検出装置は、直線変位や角度変位などの精密な測定に適しており、例えば、ノギス、マイクロメータ、インジケータ、リニヤスケール等に応用される。従来、誘導型変位検出装置は、磁束結合部材となるプレート又は磁束結合巻線を所定ピッチで配列したスケールと、このスケールに対して相対移動可能に対抗配置されると共にプレート又は磁束結合巻線と磁束結合が可能な送信巻線及び受信巻線が配置されたセンサヘッドと、により構成される(例えば、特許文献1)。
特開平8−313295号公報(図4)
The inductive displacement detection device is suitable for precise measurement such as linear displacement and angular displacement, and is applied to, for example, calipers, micrometers, indicators, linear scales and the like. 2. Description of the Related Art Conventionally, an inductive displacement detecting device has a scale in which plates or magnetic flux coupling windings serving as magnetic flux coupling members are arranged at a predetermined pitch, and is disposed so as to be capable of relative movement with respect to the scale, and a plate or magnetic flux coupling winding. And a sensor head in which a transmission winding and a reception winding capable of magnetic flux coupling are arranged (for example, Patent Document 1).
JP-A-8-313295 (FIG. 4)

誘導型変位検出装置の分解能向上及び高精度化のためには、磁束結合部材となるプレート又は磁束結合巻線のピッチや受信巻線を構成する受信ループの寸法を小さくすればよい。プレートや磁束結合巻線はその形状が単純なので、それらの狭ピッチ化は容易である。一方、受信巻線は、分解能向上のために受信巻線からの出力信号を内挿処理する場合等にあっては、センサヘッドの相対移動方向に複数の受信ループを繋げた比較的複雑な形状となる。すなわち、受信巻線の位相をずらして配置した複数枚の絶縁板を重ねてセンサヘッドとする構成となる。特に、ここで問題となるのは、複数枚の各絶縁基板に重ねて配置された受信ループ間を接続するためのコンタクト部の形成位置である。   In order to improve the resolution and increase the accuracy of the inductive displacement detection device, it is only necessary to reduce the pitch of the plate serving as the magnetic flux coupling member, the pitch of the magnetic flux coupling winding, or the dimensions of the receiving loop constituting the receiving winding. Since the plate and the magnetic flux coupling winding have a simple shape, it is easy to narrow their pitch. On the other hand, the receiving winding is a relatively complicated shape that connects multiple receiving loops in the relative movement direction of the sensor head when the output signal from the receiving winding is interpolated to improve resolution. It becomes. That is, the sensor head is configured by stacking a plurality of insulating plates arranged with the receiving windings shifted in phase. In particular, the problem here is the formation position of the contact portion for connecting the receiving loops arranged on each of the plurality of insulating substrates.

このように分解能を向上するためには、受信巻線は、コンタクト部の形成位置等、そのデザインルールに問題が生じる。一方、受信巻線を形成する基板として、薄膜多層基板や高密度ビルドアップ基板を用いれば、受信ループの限界寸法をより小さく設計できる。しかし、このような基板を用いれば、誘導型変位検出装置の製造コストが上昇することになる。   In order to improve the resolution in this way, the receiving winding has a problem with its design rule such as the formation position of the contact portion. On the other hand, if a thin film multilayer substrate or a high-density build-up substrate is used as the substrate for forming the reception winding, the critical dimension of the reception loop can be designed to be smaller. However, if such a substrate is used, the manufacturing cost of the inductive displacement detector increases.

そこで、本発明は、低コストに高分解能及び高精度な誘導型変位検出装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an inductive displacement detection device with high resolution and high accuracy at low cost.

本発明に係る誘導型変位検出装置は、測定軸に沿って複数の磁束結合部材が配設されたスケールと、このスケールと対向すると共に前記スケールに対して測定軸方向に相対移動可能であり、前記複数の磁束結合部材に磁束を供給する送信巻線、及び前記複数の磁束結合部材と磁束結合可能な、前記測定軸に沿ったペアループを形成する受信ループからなる多相の受信巻線が形成されたセンサヘッドとを備え、前記ペアループの前記測定軸方向のピッチをλとしたときに、前記磁束結合部材の前記測定軸方向のピッチがλ/N(Nは3以上の奇数、以下同じ)に設定されている誘導型変位検出装置において、前記受信ループは、第1の層に形成された第1配線と第2の層に形成された第2配線とにより形成され、前記測定軸方向の中心位置の一対の頂点部にコンタクト部が形成され、同一層の配線が交差しないように、前記コンタクト部を介して前記第1配線と第2配線とが接続され、前記第1及び第2配線は、前記コンタクト部の前記測定軸方向の両側に順次対称に配置された第1平行部、第1傾斜部及び第2平行部をそれぞれ有し、前記第2平行部から隣接する受信ループの第2平行部までの間に第2傾斜部を有し、前記コンタクト部の両側の第1傾斜部の測定軸方向の中心間距離がほぼλ/Nに設定され、前記第2傾斜部の測定軸方向の距離がλ/(2N)以下に設定されていることを特徴とする。   The inductive displacement detection apparatus according to the present invention is a scale in which a plurality of magnetic flux coupling members are disposed along the measurement axis, and is opposed to the scale and is relatively movable in the measurement axis direction with respect to the scale. A transmission winding for supplying magnetic flux to the plurality of magnetic flux coupling members, and a multi-phase reception winding comprising a reception loop that forms a pair loop along the measurement axis that can be magnetically coupled to the magnetic flux coupling members are formed. The pitch of the magnetic flux coupling member in the measurement axis direction is λ / N (where N is an odd number of 3 or more, the same applies hereinafter), where λ is the pitch in the measurement axis direction of the pair loop. In the inductive displacement detection device set to, the reception loop is formed by a first wiring formed in a first layer and a second wiring formed in a second layer, and is arranged in the measurement axis direction. A pair of center positions The first wiring and the second wiring are connected to each other through the contact portion so that the wirings of the same layer do not intersect with each other, and the first and second wirings are connected to the contacts. A first parallel portion, a first inclined portion, and a second parallel portion that are sequentially symmetrically arranged on both sides of the measurement axis direction of the portion, from the second parallel portion to the second parallel portion of the adjacent receiving loop A distance between the centers of the first inclined portions on both sides of the contact portion in the measurement axis direction is set to approximately λ / N, and a distance in the measurement axis direction of the second inclined portions is set to It is characterized by being set to λ / (2N) or less.

このような構成によれば、受信ループが、測定軸方向の中心位置の一対の頂点部にコンタクト部を有し、このコンタクト部の測定軸方向の両側に対称に第1平行部、第1傾斜部及び第2平行部をそれぞれ順次形成し、コンタクト部の両側の第1傾斜部の測定軸方向の中心間距離を、ほぼλ/Nとなるように設定したものであるから、ピッチがλ/Nである磁束結合部材と受信ループとが相対移動したときに、コンタクト部の両側の第1傾斜部で、増減する磁束結合面積が打ち消し合い、高調波の発生を抑制することができる。   According to such a configuration, the reception loop has the contact portions at the pair of apexes at the center position in the measurement axis direction, and the first parallel portion and the first inclination are symmetrically provided on both sides of the contact portion in the measurement axis direction. Part and second parallel part are sequentially formed, and the distance between the centers of the first inclined parts on both sides of the contact part in the measurement axis direction is set to be substantially λ / N, so that the pitch is λ / N. When the magnetic flux coupling member N and the receiving loop move relative to each other, the magnetic flux coupling areas that increase and decrease cancel each other at the first inclined portions on both sides of the contact portion, and generation of harmonics can be suppressed.

また、コンタクト部の両側を上記のように構成することにより、隣接相の配線間の干渉を防止することができ、より微細化することが可能になる。   In addition, by configuring both sides of the contact portion as described above, it is possible to prevent interference between adjacent-phase wirings, and further miniaturization can be achieved.

更に、本発明によれば、第2傾斜部の測定軸方向の距離がλ/(2N)以下に設定されることにより、信号強度を最大近くまで高めることができる。   Furthermore, according to the present invention, the signal strength can be increased to the maximum by setting the distance in the measurement axis direction of the second inclined portion to be λ / (2N) or less.

本発明によれば、低コストに高分解能及び高精度な誘導型変位検出装置を提供することが可能となる。   According to the present invention, it is possible to provide an inductive displacement detection device with high resolution and high accuracy at low cost.

以下、図面を参照して、本発明の一実施形態に係る誘導型変位検出装置について説明する。   Hereinafter, an inductive displacement detector according to an embodiment of the present invention will be described with reference to the drawings.

誘導型変位検出装置1は、主に、図1に示すようにスケール3、及びこのスケール3に対向するように配置されたセンサヘッド5から構成される。図1におけるスケール3は、長手方向の一部のみが記載されている。スケール3の長手方向が測定軸Xとなる。センサヘッド5は、スケール3に対して所定ギャップを介して対向し、測定軸Xに沿って移動可能に配置される。なお、センサヘッド5が固定され、スケール3が移動する構成でもよい。すなわち、センサヘッド5とスケール3とは、測定軸の方向に相対移動可能にされていればよい。   As shown in FIG. 1, the inductive displacement detection device 1 mainly includes a scale 3 and a sensor head 5 disposed so as to face the scale 3. As for the scale 3 in FIG. 1, only a part of longitudinal direction is described. The longitudinal direction of the scale 3 is the measurement axis X. The sensor head 5 is opposed to the scale 3 with a predetermined gap, and is arranged so as to be movable along the measurement axis X. The sensor head 5 may be fixed and the scale 3 may move. That is, the sensor head 5 and the scale 3 only need to be relatively movable in the direction of the measurement axis.

スケール3は、ガラスエポキシ樹脂からなる絶縁基板7を備える。絶縁基板7の材料としては、ガラスやシリコン等でもよい。絶縁基板7のセンサヘッド5に対向する面側には、測定軸Xに沿って同形状を有する複数の磁束結合巻線9(磁束結合部材の一例)が所定ピッチで配列されている。   The scale 3 includes an insulating substrate 7 made of glass epoxy resin. As a material of the insulating substrate 7, glass, silicon, or the like may be used. On the surface of the insulating substrate 7 facing the sensor head 5, a plurality of magnetic flux coupling windings 9 (an example of a magnetic flux coupling member) having the same shape along the measurement axis X are arranged at a predetermined pitch.

磁束結合巻線9は、長手方向が測定軸Xと直交する矩形の線状導体であり、この線状導体は、アルミニウム、銅、金などの電気抵抗が低い材料から構成される。この磁束結合巻線9を覆うように、絶縁基板7上に図示しない保護膜としてのパッシベーション膜が形成されている。また、磁束結合巻線9に替えて、磁束結合を阻害する金属プレートを磁束結合部材として測定軸Xに沿って周期的に配置してもよい。このような場合であっても、磁束結合巻線9を配置した場合と同様に、センサヘッド5の位置に依存する周期的信号が受信巻線15から得られるので変位検出が可能である。   The magnetic flux coupling winding 9 is a rectangular linear conductor whose longitudinal direction is orthogonal to the measurement axis X, and this linear conductor is made of a material having a low electrical resistance such as aluminum, copper, or gold. A passivation film as a protective film (not shown) is formed on the insulating substrate 7 so as to cover the magnetic flux coupling winding 9. Further, instead of the magnetic flux coupling winding 9, a metal plate that inhibits magnetic flux coupling may be periodically arranged along the measurement axis X as a magnetic flux coupling member. Even in such a case, since the periodic signal depending on the position of the sensor head 5 is obtained from the receiving winding 15 as in the case where the magnetic flux coupling winding 9 is arranged, the displacement can be detected.

センサヘッド5はガラスエポキシ樹脂からなる絶縁基板11を有する。ガラスやシリコン等を絶縁基板11の材料にすることもできる。絶縁基板11のスケール3と対向する面側には、送信巻線13(送信部材の一例)が形成されている。送信巻線13の形は、長手方向が測定軸Xに沿った矩形状となっている。送信巻線13は、磁束結合巻線9に対して磁束結合可能である。また、送信巻線13の替わりに、1本の線状導体を送信部材としてもよい。   The sensor head 5 has an insulating substrate 11 made of glass epoxy resin. Glass, silicon, or the like can be used as the material of the insulating substrate 11. A transmission winding 13 (an example of a transmission member) is formed on the surface of the insulating substrate 11 facing the scale 3. The shape of the transmission winding 13 is a rectangular shape whose longitudinal direction is along the measurement axis X. The transmission winding 13 can be magnetically coupled to the magnetic flux coupling winding 9. Further, instead of the transmission winding 13, one linear conductor may be used as the transmission member.

絶縁基板11のスケール3と対向する面側及び反対側(又は中間層)であって、送信巻線13の内側には、3相の受信巻線15が配置されている。この受信巻線15は磁束結合巻線9と磁束結合可能であり、測定軸Xに沿って所定ピッチで絶縁基板11上に並べられた複数の受信ループ17により構成される。   A three-phase reception winding 15 is arranged on the surface side and the opposite side (or intermediate layer) of the insulating substrate 11 facing the scale 3 and inside the transmission winding 13. The reception winding 15 can be magnetically coupled to the magnetic flux coupling winding 9 and includes a plurality of reception loops 17 arranged on the insulating substrate 11 along the measurement axis X at a predetermined pitch.

次に、図2を参照して、3相の受信巻線15について詳細に説明する。図2(B)に示すように受信巻線15は、3つの受信巻線15a,15b,15cから構成されており、図2の(A)で示すように、受信巻線15a,15b,15cは互いに絶縁された状態で図1のように重ね合わされて3相の受信巻線15を形成している。また、後述する配線パターンの接点となるコンタクト部16は、それぞれの受信巻線15a,15b,15cの左右両端及び上下両端に形成されている。各受信巻線15は、隣り合う受信ループ17で構成されるペアループ19(ツイストペアとも言われる)を有しており、以下においては、このペアループ19の測定軸Xに沿った長さをλとして説明する。各受信巻線15a〜15cは、図2の(B)に示されているように、互いにλ/3位相ずつずれている。すなわち、受信巻線15aの位相を基準(0°)にすると、受信巻線15bは受信巻線15aに対してλ/3位相(120°位相)だけずらされている。更に、受信巻線15cは受信巻線15aに対して2λ/3位相(240°位相)だけずらされている。   Next, the three-phase receiving winding 15 will be described in detail with reference to FIG. As shown in FIG. 2B, the reception winding 15 is composed of three reception windings 15a, 15b, and 15c. As shown in FIG. 2A, the reception windings 15a, 15b, and 15c. Are superimposed on each other as shown in FIG. 1 to form a three-phase receiving winding 15. Further, contact portions 16 serving as contact points of a wiring pattern to be described later are formed at the left and right ends and the upper and lower ends of each receiving winding 15a, 15b, 15c. Each reception winding 15 has a pair loop 19 (also referred to as a twisted pair) composed of adjacent reception loops 17. In the following description, the length of the pair loop 19 along the measurement axis X is assumed to be λ. To do. As shown in FIG. 2B, the receiving windings 15a to 15c are shifted from each other by λ / 3 phase. That is, when the phase of the reception winding 15a is set to the reference (0 °), the reception winding 15b is shifted by a λ / 3 phase (120 ° phase) with respect to the reception winding 15a. Further, the reception winding 15c is shifted by 2λ / 3 phase (240 ° phase) with respect to the reception winding 15a.

次に、図3を参照して、1つの受信ループ17の詳細な形状と、受信ループ17に対する磁束結合巻線9の形状を説明する。1つの受信ループ17は、図3に示すように、隣接する受信ループ17と測定軸Xに平行な第1中心軸Aに沿って連結され、第1中心軸Aに対して対称に形成されている。各々の受信ループ17は、その第1中心軸A方向の中央で第1中央軸Aに直交する第2中心軸Bと交差する1対の頂点部に、スルーホール、ビアホールなどのコンタクト部16を有する。   Next, the detailed shape of one receiving loop 17 and the shape of the magnetic flux coupling winding 9 with respect to the receiving loop 17 will be described with reference to FIG. As shown in FIG. 3, one receiving loop 17 is connected to an adjacent receiving loop 17 along a first central axis A parallel to the measurement axis X, and is formed symmetrically with respect to the first central axis A. Yes. Each receiving loop 17 has a contact portion 16 such as a through hole or a via hole at a pair of apexes intersecting the second central axis B perpendicular to the first central axis A at the center in the first central axis A direction. Have.

この受信ループ17は、コンタクト部16を含む1対の対向部171,171と、隣接する受信ループの1対の対向部171,171とを交差接続する1対の傾斜部172(第2傾斜部)とを有している。対向部171は、コンタクト部16の測定軸X方向の両側に順次対称配置された第1平行部171a,第1傾斜部171a,第2平行部171bからなる。1対の第1傾斜部171aの中点間の距離は、D=λ/5となるように形成されている。また、傾斜部172の測定軸X方向の距離はS=λ/10に設定されている。 The receiving loop 17 includes a pair of inclined portions 172 (second inclined portions) that cross-connect a pair of opposing portions 171 and 171 including the contact portion 16 and a pair of opposing portions 171 and 171 of the adjacent receiving loop. ). The facing portion 171 includes a first parallel portion 171a 1 , a first inclined portion 171a 2 , and a second parallel portion 171b that are sequentially arranged symmetrically on both sides of the contact portion 16 in the measurement axis X direction. The distance between the midpoints of the pair of first inclined portions 171a 2 is formed to be D = λ / 5. The distance in the measurement axis X direction of the inclined portion 172 is set to S = λ / 10.

上述したように、ペアループ19の測定軸Xに沿った長さをλとすれば、一個分の受信ループ17の測定軸Xに沿った長さはλ/2となり、磁束結合巻線9のピッチPはP=λ/5となるように形成されている。これらの送信巻線13や受信巻線15を覆うように、図示しないパッシベーション膜が絶縁基板11上に形成されている。送信巻線13や受信巻線15の端子16は、配線を介して、変位を測定するための演算・制御用のIC回路(図示せず)と接続されている。送信巻線13及び受信巻線15は、磁束結合巻線9と同様の材料から構成される。以上が誘導型変位検出装置1の構成である。   As described above, if the length along the measurement axis X of the pair loop 19 is λ, the length along the measurement axis X of one reception loop 17 is λ / 2, and the pitch of the magnetic flux coupling winding 9 is P is formed so that P = λ / 5. A passivation film (not shown) is formed on the insulating substrate 11 so as to cover the transmission winding 13 and the reception winding 15. Terminals 16 of the transmission winding 13 and the reception winding 15 are connected to an arithmetic / control IC circuit (not shown) for measuring displacement via wiring. The transmission winding 13 and the reception winding 15 are made of the same material as that of the magnetic flux coupling winding 9. The above is the configuration of the inductive displacement detection device 1.

なお、上記のようなピッチP及びペアループの形状に限られることはなく、ペアループの長さをλとすれば、ピッチPがP=λ/N(Nは3以上の奇数)、1対の第1傾斜部171aの中点間の距離DがD=λ/N(Nは3以上の奇数)、隣接する受信ループ15の結合部である第2傾斜部172の距離SがS≦λ/2N(Nは3以上の奇数)であればよい。 The pitch P and the shape of the pair loop are not limited to the above. If the length of the pair loop is λ, the pitch P is P = λ / N (N is an odd number of 3 or more) and a pair of first loops. The distance D between the midpoints of the first inclined portion 171a 2 is D = λ / N (N is an odd number greater than or equal to 3), and the distance S of the second inclined portion 172 that is the coupling portion of the adjacent receiving loops 15 is S ≦ λ / It may be 2N (N is an odd number of 3 or more).

次に、同様に図3を参照して、誘導型変位検出装置1の動作について簡単に説明する。図3に示すように、誘導型変位検出装置1に備えられる送信巻線13、磁束結合巻線9及び受信巻線15のそれぞれの平面図並びにスケール3に対するセンサヘッド5の相対移動により生じる受信巻線15からの出力信号Hの波形図が示されている。   Next, similarly, the operation of the inductive displacement detector 1 will be briefly described with reference to FIG. As shown in FIG. 3, the plan view of each of the transmission winding 13, the magnetic flux coupling winding 9, and the reception winding 15 provided in the inductive displacement detection device 1 and the reception winding generated by the relative movement of the sensor head 5 with respect to the scale 3. A waveform diagram of the output signal H from line 15 is shown.

送信用励振信号(単層交流)が送信巻線13に送られる。これにより、ある時刻に着目すると、送信巻線13には時計回りに励振電流i1が流れる。励振電流i1により送信巻線13から交番磁束が生成され、磁束結合巻線9と磁束結合する。このため、磁束結合巻線9には反時計回りに誘導電流i2が流れ、これにより磁束結合巻線9から発生される交番磁束が受信巻線15の受信ループ17に磁束結合する。この磁束結合により、各々の受信ループ17には、時計回りの誘導電流i3が流れる。スケール3に対してセンサヘッド5が相対移動すると、磁束結合巻線9と受信ループ17の磁束結合状態が、λ/5の移動周期で変化する。   A transmission excitation signal (single-layer alternating current) is sent to the transmission winding 13. Thus, when attention is paid to a certain time, the excitation current i1 flows through the transmission winding 13 clockwise. An alternating magnetic flux is generated from the transmission winding 13 by the excitation current i1 and is magnetically coupled to the magnetic flux coupling winding 9. For this reason, the induced current i2 flows in the magnetic flux coupling winding 9 counterclockwise, whereby the alternating magnetic flux generated from the magnetic flux coupling winding 9 is magnetically coupled to the receiving loop 17 of the receiving winding 15. Due to this magnetic flux coupling, a clockwise induced current i3 flows through each receiving loop 17. When the sensor head 5 moves relative to the scale 3, the magnetic flux coupling state of the magnetic flux coupling winding 9 and the receiving loop 17 changes with a moving period of λ / 5.

この磁束結合状態の変化により、受信ループ17の交番電流も変化する。すなわち、その磁束は、磁束結合巻線9から供給されるので、受信ループ17と対向する磁束結合巻線9の面積が増大するにつれ、その受信ループ17に流れる交番電流は、増大することとなる。したがって、ペアループ19のいずれか一方の受信ループ17の交番電流の流量が大きければ、そのペアループ19に流れる交番電流の向きが変化する。   Due to the change in the magnetic flux coupling state, the alternating current in the reception loop 17 also changes. That is, since the magnetic flux is supplied from the magnetic flux coupling winding 9, the alternating current flowing through the receiving loop 17 increases as the area of the magnetic flux coupling winding 9 facing the receiving loop 17 increases. . Therefore, if the flow rate of the alternating current in one of the pair loops 19 is large, the direction of the alternating current flowing through the pair loop 19 changes.

このペアループ19に流れる交番電流の変化に基づき、スケール3に対するセンサヘッド5の相対移動により受信巻線15からλ/5周期の正弦波状の出力信号Hが図示しないIC回路に送られる。IC回路は出力信号Hをサンプリングし、ディジタル値に変換して、スケール3に対するセンサヘッド5の位置を演算する。   Based on the change of the alternating current flowing through the pair loop 19, the s / 5-wave sine wave output signal H is sent from the receiving winding 15 to the IC circuit (not shown) by the relative movement of the sensor head 5 with respect to the scale 3. The IC circuit samples the output signal H, converts it into a digital value, and calculates the position of the sensor head 5 relative to the scale 3.

次に、図4を参照して、受信ループ17が有する突出部171の効果を説明する。図4は、本発明の第1実施形態に係る誘導型変位検出装置1の磁束結合巻線9、受信巻線15及びこれらが対向して重なる状態となる重なり部23を示す図である。ペアループ19を形成する一方の受信ループ17(17’)を流れる誘導電流i3の符号を「+」とし、他方の受信ループ17(17’’)を流れる誘導電流i3の符号を「−」とする。   Next, with reference to FIG. 4, the effect of the protrusion 171 included in the reception loop 17 will be described. FIG. 4 is a diagram showing the magnetic flux coupling winding 9 and the receiving winding 15 of the inductive displacement detection device 1 according to the first embodiment of the present invention, and the overlapping portion 23 in which these are opposed and overlapped. The sign of the induced current i3 flowing through one receiving loop 17 (17 ′) forming the pair loop 19 is “+”, and the sign of the induced current i3 flowing through the other receiving loop 17 (17 ″) is “−”. .

ここで、仮に、Nが2以上の偶数であれば、一方の受信ループにより形成される「+」と、他方の受信ループにより形成される「−」とにより誘導電流i3両者が打ち消し合うこととなる。したがって、上記のようにそのピッチPは、λ/N(Nは3以上の奇数)としなければならない。   Here, if N is an even number of 2 or more, both the induced current i3 cancel each other by “+” formed by one receiving loop and “−” formed by the other receiving loop. Become. Therefore, as described above, the pitch P must be λ / N (N is an odd number of 3 or more).

図4の右側の信号ループ17”に示すように、ある時点において、磁束結合巻線9と受信巻線15とがコンタクト部16を中心として対称に位置している時点を考えると、磁束結合巻線9は、第1傾斜部171aの上に重なっており、この場合、測定軸X方向のどちらに移動しても、2つの磁束結合巻線9と受信巻線15のトータルの重なり面積は変化しない。これは1対の第1傾斜部171aの傾斜が対称であることと、1対の第1傾斜部171a間の距離が磁束結合巻線9間の距離と等しいからである。このため、この部分での磁束結合巻線9と受信巻線15の相対移動による高調波ノイズの発生は殆どない。 As shown in the signal loop 17 ″ on the right side of FIG. 4, when the magnetic flux coupling winding 9 and the receiving winding 15 are positioned symmetrically around the contact portion 16 at a certain time, the magnetic flux coupling winding is considered. The line 9 overlaps the first inclined portion 171a 2 , and in this case, the total overlapping area of the two magnetic flux coupling windings 9 and the receiving winding 15 is the same regardless of the movement in the measurement axis X direction. This is because the inclination of the pair of first inclined portions 171a 2 is symmetric and the distance between the pair of first inclined portions 171a 2 is equal to the distance between the magnetic flux coupling windings 9. For this reason, there is almost no generation of harmonic noise due to the relative movement of the magnetic flux coupling winding 9 and the receiving winding 15 in this portion.

次に、図5及び図6を参照して、各絶縁基板11,11に配置された受信巻線15(15a,15b,15c)の詳細について説明する。図5は、図2の(A)に示す受信巻線15a,15b,15cを各々のコンタクト部16において第1配線31、第2配線33に分割した平面図である。この分割した第1配線31は、測定軸Xに対して鈍角(鋭角)方向に傾斜した部分からなる配線であり。第2配線33は、測定軸Xに対して鋭角(鈍角)方向に傾斜した部分からなる配線である。   Next, details of the reception winding 15 (15a, 15b, 15c) arranged on each insulating substrate 11, 11 will be described with reference to FIGS. FIG. 5 is a plan view in which the receiving windings 15 a, 15 b, and 15 c shown in FIG. 2A are divided into the first wiring 31 and the second wiring 33 in each contact portion 16. The divided first wiring 31 is a wiring composed of a portion inclined in an obtuse angle (acute angle) direction with respect to the measurement axis X. The second wiring 33 is a wiring made of a portion inclined in an acute angle (obtuse angle) direction with respect to the measurement axis X.

例えば、受信巻線15aで説明すると、図6に示すように実線で示すパターン(1)〜(10)を接続すれば、受信巻線15aとなる。   For example, in the case of the receiving winding 15a, if the patterns (1) to (10) indicated by solid lines are connected as shown in FIG. 6, the receiving winding 15a is obtained.

一枚の絶縁基板の表裏か、2枚の絶縁基板11,11の各配線面に配置した受信巻線15を所定の条件を満たした対向部171を設ける形状とすることにより、コンタクト部16をその配線を阻害しない箇所に設けることが可能となり、第2傾斜部172の傾斜を測定軸Xに対して大きくすることができる。したがって、高密度ビルドアップ基板や薄膜プロセスといった、高価な製造プロセスを使わなくとも、片面2層(両面4層)の基板で高分解能及び高精度の誘導型変位検出装置を提供することが可能となる。   By forming the receiving winding 15 arranged on the front and back of one insulating substrate or on each wiring surface of the two insulating substrates 11 and 11 with a facing portion 171 satisfying a predetermined condition, the contact portion 16 is formed. The wiring can be provided at a location that does not hinder the wiring, and the inclination of the second inclined portion 172 can be increased with respect to the measurement axis X. Therefore, it is possible to provide a high-resolution and high-precision inductive displacement detection device with a single-sided two-layer (both-sided four-layer) substrate without using an expensive manufacturing process such as a high-density buildup substrate or a thin film process. Become.

以上、発明の実施形態を説明したが、本発明はこれらに限定されるものではなく、発明の趣旨を逸脱しない範囲内において種々の変更、追加、置換等が可能である。   As mentioned above, although embodiment of invention was described, this invention is not limited to these, A various change, addition, substitution, etc. are possible within the range which does not deviate from the meaning of invention.

上記実施形態においては、受信ループ17の対向部171の第1平行部171a,第1傾斜部171a及び第2平行部171bを直線形状としたが、図7に示すように、例えば、正弦波状のように滑らかに結合した形状を有する受信ループ17’’’とすると、更に高調波抑制効果が向上する。 In the above embodiment, the first parallel part 171a 1 , the first inclined part 171a 2 and the second parallel part 171b of the facing part 171 of the reception loop 17 are linear, but as shown in FIG. If the receiving loop 17 ′ ″ has a smoothly coupled shape such as a wave shape, the harmonic suppression effect is further improved.

また、上記実施形態においては、3相の受信巻線の位相をずらして配置しているが、3相に限ることは無く、多相であればよい。   In the above embodiment, the phases of the three-phase receiving windings are shifted from each other. However, the phase is not limited to three phases, and may be multiphase.

また、上記実施形態においては、対向部間の距離Sは、S=λ/10であるが、図8に示すように、信号強度は、S=nλ/5(nは1以上の整数)毎に節を設け、Sが小さいほど、その信号強度は増大する。したがって、好ましくは、S≦λ/10である。   In the above embodiment, the distance S between the opposing portions is S = λ / 10. However, as shown in FIG. 8, the signal intensity is S = nλ / 5 (n is an integer of 1 or more). As the S is smaller, the signal strength increases. Therefore, S ≦ λ / 10 is preferable.

本発明の一実施形態に係る誘導型変位検出装置の概略構成を示す斜視図である。1 is a perspective view illustrating a schematic configuration of an inductive displacement detection device according to an embodiment of the present invention. 本発明の一実施形態に係る誘導型変位検出装置の三つの受信巻線の説明図である。It is explanatory drawing of three receiving windings of the induction type displacement detection apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る誘導型変位検出装置の一つの受信巻線の構造、磁束結合巻線の構造及びそれらの動作の説明図である。It is explanatory drawing of the structure of one receiving winding of the induction type displacement detection apparatus which concerns on one Embodiment of this invention, the structure of a magnetic flux coupling winding, and those operation | movement. 本発明の一実施形態に係る誘導型変位検出装置の一つの受信巻線の重なり部を示す図である。It is a figure which shows the overlap part of one receiving winding of the induction type displacement detection apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る誘導型変位検出装置の図2(A)に示す三つの受信巻線を第1層配線,第2層配線に分解した平面図である。It is the top view which decomposed | disassembled the three receiving windings shown to FIG. 2 (A) of the induction type displacement detection apparatus which concerns on one Embodiment of this invention into the 1st layer wiring and the 2nd layer wiring. 本発明の一実施形態に係る誘導型変位検出装置の図2(A)に示す三つの受信巻線の一つを構成するパターンを説明する図である。It is a figure explaining the pattern which comprises one of the three receiving windings shown to FIG. 2 (A) of the induction type displacement detection apparatus which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る誘導型変位検出装置の受信巻線を示す6 shows a receiving winding of an inductive displacement detector according to another embodiment of the present invention. 本発明の対向部間の距離Sと、信号強度との関係を示す図である。It is a figure which shows the relationship between the distance S between the opposing parts of this invention, and signal strength.

符号の説明Explanation of symbols

1…誘導型変位検出装置、3…スケール、5…センサヘッド、7…絶縁基板、9…磁束結合巻線、11…絶縁基板、13…送信巻線、15,15a,15b,15c…受信巻線、16…コンタクト部、17…受信ループ、171…対向部、171a…第1平行部、171a…第1傾斜部、171b…第2平行部、172…傾斜部(第2傾斜部)、19…ペアループ、23…受信巻線と磁束結合巻線との重なり部、31…第1配線、33…第2配線。 DESCRIPTION OF SYMBOLS 1 ... Inductive displacement detection apparatus, 3 ... Scale, 5 ... Sensor head, 7 ... Insulating substrate, 9 ... Magnetic flux coupling winding, 11 ... Insulating substrate, 13 ... Transmission winding, 15, 15a, 15b, 15c ... Reception winding line, 16 ... contact portion, 17 ... receiving loop, 171 ... counter unit, 171a 1 ... first parallel portion, 171a 2 ... first inclined portion, 171b ... second parallel portion, 172 ... inclined portion (second inclined portion) , 19 ... Pair loop, 23 ... Overlapping portion of the reception winding and the magnetic flux coupling winding, 31 ... First wiring, 33 ... Second wiring.

Claims (4)

測定軸に沿って複数の磁束結合部材が配設されたスケールと、
このスケールと対向すると共に前記スケールに対して測定軸方向に相対移動可能であり、前記複数の磁束結合部材に磁束を供給する送信巻線、及び前記複数の磁束結合部材と磁束結合可能な、前記測定軸に沿ったペアループを形成する受信ループからなる多相の受信巻線が形成されたセンサヘッドとを備え、
前記ペアループの前記測定軸方向のピッチをλとしたときに、前記磁束結合部材の前記測定軸方向のピッチがλ/N(Nは3以上の奇数、以下同じ)に設定されている誘導型変位検出装置において、
前記受信ループは、
第1の層に形成された第1配線と第2の層に形成された第2配線とにより形成され、
前記測定軸方向の中心位置の一対の頂点部にコンタクト部が形成され、同一層の配線が交差しないように、前記コンタクト部を介して前記第1配線と第2配線とが接続され、
前記第1及び第2配線は、
前記コンタクト部の前記測定軸方向の両側に順次対称に配置された第1平行部、第1傾斜部及び第2平行部をそれぞれ有し、
前記第2平行部から隣接する受信ループの第2平行部までの間に第2傾斜部を有し、
前記コンタクト部の両側の第1傾斜部の測定軸方向の中心間距離がほぼλ/Nに設定され、
前記第2傾斜部の測定軸方向の距離がλ/(2N)以下に設定されている
ことを特徴とする誘導型変位検出装置。
A scale on which a plurality of magnetic flux coupling members are disposed along the measurement axis;
The transmitter is opposed to the scale and is movable relative to the scale in the measurement axis direction, the transmission winding for supplying magnetic flux to the plurality of magnetic flux coupling members, and the magnetic flux coupling with the magnetic flux coupling members, A sensor head formed with a multi-phase receiving winding composed of a receiving loop forming a pair loop along the measurement axis;
Inductive displacement in which the pitch in the measurement axis direction of the magnetic flux coupling member is set to λ / N (N is an odd number of 3 or more, the same applies hereinafter) where λ is the pitch of the pair loop in the measurement axis direction. In the detection device,
The receive loop is
Formed by a first wiring formed in the first layer and a second wiring formed in the second layer;
A contact portion is formed at a pair of apexes at the center position in the measurement axis direction, and the first wiring and the second wiring are connected via the contact portion so that the wirings of the same layer do not cross each other.
The first and second wirings are
A first parallel portion, a first inclined portion, and a second parallel portion, which are sequentially arranged symmetrically on both sides of the contact portion in the measurement axis direction;
A second inclined portion between the second parallel portion and the second parallel portion of the adjacent receiving loop;
The distance between the centers of the first inclined portions on both sides of the contact portion in the measurement axis direction is set to approximately λ / N,
A distance in the measurement axis direction of the second inclined portion is set to λ / (2N) or less.
前記前記第1平行部、第1傾斜部及び第2平行部は、滑らかに接続されていることを特徴とする請求項1記載の誘導型変位検出装置。   The inductive displacement detection device according to claim 1, wherein the first parallel portion, the first inclined portion, and the second parallel portion are smoothly connected. 前記受信巻線は、λ/3ずつピッチがずれた3相の受信巻線であることを特徴とする請求項1記載の誘導型変位検出装置。   2. The inductive displacement detecting device according to claim 1, wherein the receiving winding is a three-phase receiving winding whose pitch is shifted by [lambda] / 3. 前記磁束結合部材は、前記スケールの測定軸方向にλ/5のピッチで配設されていることを特徴とする請求項1記載の誘導型変位検出装置。   2. The inductive displacement detection device according to claim 1, wherein the magnetic flux coupling members are arranged at a pitch of [lambda] / 5 in the measurement axis direction of the scale.
JP2006206581A 2006-07-28 2006-07-28 Inductive displacement detector Active JP4913495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006206581A JP4913495B2 (en) 2006-07-28 2006-07-28 Inductive displacement detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006206581A JP4913495B2 (en) 2006-07-28 2006-07-28 Inductive displacement detector

Publications (2)

Publication Number Publication Date
JP2008032546A JP2008032546A (en) 2008-02-14
JP4913495B2 true JP4913495B2 (en) 2012-04-11

Family

ID=39122128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006206581A Active JP4913495B2 (en) 2006-07-28 2006-07-28 Inductive displacement detector

Country Status (1)

Country Link
JP (1) JP4913495B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020056754A (en) 2018-10-04 2020-04-09 株式会社ミツトヨ Electromagnetic induction encoder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0743508A2 (en) * 1995-05-16 1996-11-20 Mitutoyo Corporation Induced current position transducer

Also Published As

Publication number Publication date
JP2008032546A (en) 2008-02-14

Similar Documents

Publication Publication Date Title
JP4615955B2 (en) Inductive displacement detector
JP5224838B2 (en) Electromagnetic induction encoder
US7652469B2 (en) Inductive position sensor
US6646433B2 (en) Induced current position transducers using tape scales with apertures
JP4913843B2 (en) Inductive displacement detector and micrometer
JP5112099B2 (en) Inductive displacement detector
JP3559225B2 (en) Dielectric type position detector
EP3779369A1 (en) Inductive absolute position sensor
JP2009168701A (en) Electromagnetic induction encoder
JP4913495B2 (en) Inductive displacement detector
US7081746B2 (en) Inductive displacement detector and micrometer
JP2011095234A (en) Device for detecting polyphase current
JP2011220952A (en) Current detection device and watt-hour meter using the same
US10996077B2 (en) Electromagnetic induction type encoder
JP6134964B2 (en) Inductive displacement detector
JP5042891B2 (en) Sensor head and inductive displacement detection device
JP5622027B2 (en) Multiphase current detector
JP4340133B2 (en) Inductive displacement detector and micrometer
JP7471993B2 (en) Electromagnetic Induction Encoder
US20210180991A1 (en) Scale and encoder
JP2005077150A (en) Induction type position detector
JP2005201855A (en) Induction displacement detection device and micrometer
JP2022063610A (en) Electromagnetic induction encoder
JP2005214722A (en) Device for detecting inductive displacement
JP2004061498A (en) Induction type position detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120119

R150 Certificate of patent or registration of utility model

Ref document number: 4913495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250