JP2009168701A - Electromagnetic induction encoder - Google Patents

Electromagnetic induction encoder Download PDF

Info

Publication number
JP2009168701A
JP2009168701A JP2008008803A JP2008008803A JP2009168701A JP 2009168701 A JP2009168701 A JP 2009168701A JP 2008008803 A JP2008008803 A JP 2008008803A JP 2008008803 A JP2008008803 A JP 2008008803A JP 2009168701 A JP2009168701 A JP 2009168701A
Authority
JP
Japan
Prior art keywords
scale
electromagnetic induction
receiving coil
coil
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008008803A
Other languages
Japanese (ja)
Other versions
JP5224830B2 (en
Inventor
Toshihiro Tawara
智弘 田原
Kenichi Nakayama
賢一 中山
Hirokazu Kobayashi
博和 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2008008803A priority Critical patent/JP5224830B2/en
Publication of JP2009168701A publication Critical patent/JP2009168701A/en
Application granted granted Critical
Publication of JP5224830B2 publication Critical patent/JP5224830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To inexpensively achieve a high-precision/high-resolution electromagnetic induction encoder for mitigating a design rule without changing a height and a wavelength of a receiving coil, and reducing a signal pitch without using a high-density PCB. <P>SOLUTION: The electromagnetic induction encoder includes: scale coils 14, 16 arrayed on a scale 10 in the measurement direction; and transmitting coils 24, 26 and the receiving coils 20, 22 provided on a grid 12 moved relative to the scale in the measurement direction. When the transmitting coils are excited, the electromagnetic induction encoder detects a relative movement between the scale and the grid based on a change in a magnetic flux detected by the receiving coils through the scale coils. The receiving coil has twisted wiring using a through-hole, and is folded so as to pass through an intermediate point of a sinusoidal shape. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電磁誘導式エンコーダに係り、特に、ノギス、インジケータ、リニヤスケール、マイクロメータ等に用いるのに好適な、受信コイルの高さや波長を変更せずにデザインルールを緩和することができ、従って、グリッドに高密度プリント配線基板を使わないで信号ピッチを小さくすることが可能な電磁誘導式エンコーダに関する。   The present invention relates to an electromagnetic induction encoder, in particular, it can be used for calipers, indicators, linear scales, micrometers, etc., and can relax design rules without changing the height and wavelength of the receiving coil. Therefore, the present invention relates to an electromagnetic induction encoder that can reduce the signal pitch without using a high-density printed wiring board for the grid.

特許文献1や2に記載されている如く、図1に特許文献2の例を示すように、測定方向に沿ってスケール10上に多数配列されたスケールコイル14、16と、前記スケール10に対して測定方向に相対移動自在なグリッド(スライダとも称する)12上に配設された送信コイル24、26及び受信コイル20、22とを備え、送信コイルを励磁した時に、スケールコイルを経由して受信コイルで検出される磁束の変化から、スケール10とグリッド12の相対移動量を検出する電磁誘導式エンコーダが知られている。図において、18は結合配線、28は送信制御部、30は受信制御部である。   As described in Patent Documents 1 and 2, as shown in FIG. 1 as an example of Patent Document 2, a large number of scale coils 14 and 16 arranged on the scale 10 along the measurement direction, and the scale 10 Transmission coils 24 and 26 and reception coils 20 and 22 disposed on a grid 12 (also referred to as a slider) that is relatively movable in the measurement direction. When the transmission coils are excited, they are received via a scale coil. 2. Description of the Related Art An electromagnetic induction encoder that detects a relative movement amount of a scale 10 and a grid 12 from a change in magnetic flux detected by a coil is known. In the figure, 18 is a coupling wiring, 28 is a transmission control unit, and 30 is a reception control unit.

特開平10−318781号公報Japanese Patent Laid-Open No. 10-318781 特開2003−121206号公報(図1)Japanese Patent Laying-Open No. 2003-121206 (FIG. 1)

しかしながら従来の電磁誘導式エンコーダでは、一般に、図2に例示する如く、受信コイルに菱形形状(高さH、波長λ)を採用しており、受信コイルピッチ(波長λ)を縮小するためには、グリッドに、高密度なプリント配線基板(PCB)を採用しなければならなかった。即ち、菱形の受信コイル形状では、受信コイルピッチ(波長)λを構成するためには、スルーホールピッチA、スルーホール径φBが共に小さなデザインルールを実現可能な高価なPCBを用いる必要があり、同一の受信コイルピッチのエンコーダにデザインルールが粗い安価なPCBを採用して、低価格化を行なうことはできなかった。   However, the conventional electromagnetic induction encoder generally employs a rhombus shape (height H, wavelength λ) as shown in FIG. 2 in order to reduce the receiving coil pitch (wavelength λ). The grid had to employ a high density printed circuit board (PCB). That is, in the diamond-shaped receiving coil shape, in order to configure the receiving coil pitch (wavelength) λ, it is necessary to use an expensive PCB capable of realizing a design rule with a small through-hole pitch A and a through-hole diameter φB. It has not been possible to reduce the cost by adopting an inexpensive PCB having a rough design rule for an encoder having the same receiving coil pitch.

必要な受信コイルの波長λを維持したまま、価格を低減させていくためには、スルーホールピッチA及びスルーホール径φBのデザインルールを緩和させる必要がある。ところが、現行の菱形形状を継承したままで、図3に示すようにスルーホールピッチをA+a、スルーホール径をφB+bにデザインルールを緩和しようとした場合、受信コイル−受信制御部IC間接続用のスルーホール(TH)が接触し、受信コイルを形成することができない。   In order to reduce the price while maintaining the required wavelength λ of the receiving coil, it is necessary to relax the design rules for the through-hole pitch A and the through-hole diameter φB. However, if the design rule is to be relaxed while maintaining the current diamond shape and the through-hole pitch is A + a and the through-hole diameter is φB + b, as shown in FIG. Through holes (TH) are in contact with each other and a receiving coil cannot be formed.

一方、受信コイルの高さHを大きくしたり、波長λを長くしてデザインルールを緩和することも考えられるが、共に基板サイズの拡大及び精度劣化が発生するため、現実的には採用できない。   On the other hand, it is conceivable that the height H of the receiving coil is increased or the design rule is relaxed by increasing the wavelength λ. However, both increase the substrate size and degrade the accuracy, and thus cannot be adopted practically.

一方、受信コイル高さH、波長λを共に変更せずに、図4に示す正弦波形状受信コイルを用いることも考えられる。   On the other hand, it is conceivable to use the sinusoidal receiving coil shown in FIG. 4 without changing both the receiving coil height H and the wavelength λ.

しかしながら、正弦波形状受信コイルは、受信コイル−受信制御部IC間接続用のTH間のクリアランスは満足でき、特性も良いが、受信コイルのライン層間接続用THとラインが接触し、実現することができない。   However, the sinusoidal receiving coil can satisfy the clearance between TH for connecting the receiving coil and the receiving control unit IC, and has good characteristics. I can't.

本発明は、前記従来の問題点を解消するべくなされたもので、受信コイルの高さや波長を変更せずにデザインルールを緩和することができ、従って、グリッドに高密度PCBを使わないでも信号ピッチを小さくすることができるようにすることを課題とする。   The present invention has been made to solve the above-mentioned conventional problems, and can relax the design rule without changing the height and wavelength of the receiving coil. Therefore, the signal can be obtained without using a high-density PCB for the grid. It is an object to be able to reduce the pitch.

本発明は、測定方向に沿ってスケール上に多数配列されたスケールコイルと、前記スケールに対して測定方向に相対移動自在なグリッド上に配設された送信コイル及び受信コイルとを備え、送信コイルを励磁した時に、スケールコイルを経由して受信コイルで検出される磁束の変化から、スケールとグリッドの相対移動量を検出する電磁誘導式エンコーダにおいて、前記受信コイルを、スルーホールを使ったひねり配線にすると共に、正弦波形状の途中の点を通るように折り曲げることにより、前記課題を解決したものである。   The present invention includes a plurality of scale coils arranged on a scale along a measurement direction, and a transmission coil and a reception coil disposed on a grid that is relatively movable in the measurement direction with respect to the scale. In an electromagnetic induction encoder that detects the relative movement of the scale and grid from the change in magnetic flux detected by the receiving coil via the scale coil, the receiving coil is twisted using a through hole. In addition, the problem is solved by bending the sine wave shape so that it passes through a point in the middle.

前記受信コイルは、正弦波形状の頂点を挟んで、±1/6波長で頂点の1/2の高さの点を通るように折り曲げることができる。   The receiving coil can be bent so as to pass through a point having a height of ½ of the apex at ± 1/6 wavelength across the apex of the sine wave shape.

本発明によれば、図5に例示する如く、受信コイルの高さH及び波長λを変更することなく、デザインルールを、例えばスルーホールピッチA+a、スルーホール径φB+bに緩和することができる。従って、グリッドに高密度PCBを使わないでも、信号ピッチを小さくできるため、高精度、高分解能の耐環境性の良い電磁誘導式エンコーダを低価格に実現できる。また、大きな信号強度を得ることができるので、より高分解能、低価格なエンコーダを実現できる。   According to the present invention, as illustrated in FIG. 5, the design rule can be relaxed to, for example, the through hole pitch A + a and the through hole diameter φB + b without changing the height H and the wavelength λ of the receiving coil. Accordingly, since the signal pitch can be reduced without using a high-density PCB for the grid, an electromagnetic induction encoder with high accuracy and high resolution and good environmental resistance can be realized at low cost. In addition, since a large signal strength can be obtained, an encoder with higher resolution and lower cost can be realized.

特に、図6に詳細に示す如く、頂点を挟んで±1/6波長で頂点の1/2の高さの点を通るように折り曲げた場合には、正弦波状のH/2位置で折り曲げていることになり、シミュレーション結果を図7及び図8に示すように、従来の菱形コイルに対し、信号強度の効率を図る(図7)と共に、精度悪化の要因となる3次高調波を低減する(図8)ことができる。   In particular, as shown in detail in FIG. 6, when the vertices are bent so as to pass through a point that is ± 1/6 wavelength and half the height of the vertices, the folds are folded at a sinusoidal H / 2 position. As shown in FIGS. 7 and 8, the simulation results are improved in the signal strength with respect to the conventional rhombus coil (FIG. 7), and the third harmonic that causes the deterioration of accuracy is reduced. (FIG. 8).

以下図面を参照して、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施形態は、図1に例示するような全体構成の電磁誘導式エンコーダにおいて、図5及び図6に示した如く、受信コイルを、スルーホールを使ったひねり配線(ツイストペアー)にすると共に、正弦波形状の頂点を挟んで、±1/6波長で頂点の1/2の高さの点を通るように折り曲げたものである。   In this embodiment, in the electromagnetic induction encoder of the overall configuration illustrated in FIG. 1, as shown in FIGS. 5 and 6, the receiving coil is a twisted wiring using a through hole, and a twisted pair is used. It is bent so that it passes through a point having a height of ½ of the apex at ± 1/6 wavelength across the apex of the sine wave shape.

本実施形態によれば、デザインルールの緩和により、低価格のエンコーダを供給できる。又、図7に示したように、信号強度の向上により、高精度のエンコーダを供給できる。更に、図8に示したように、3次高調波が低減できるので、信号の歪みが少なく、2相あるいは4相の90°位相差の受信コイル構成のエンコーダでも、高精度化が図れる。又、電磁誘導式であるので、水や油に強いエンコーダを供給できる。更に、同一デザインルールで波長を縮小できるので、高精度のエンコーダを供給できる。   According to the present embodiment, a low-cost encoder can be supplied by relaxing the design rule. Further, as shown in FIG. 7, a highly accurate encoder can be supplied by improving the signal strength. Further, as shown in FIG. 8, since the third-order harmonic can be reduced, the distortion of the signal is small, and even a two-phase or four-phase 90 ° phase difference receiving coil configuration encoder can achieve high accuracy. Moreover, since it is an electromagnetic induction type, an encoder resistant to water and oil can be supplied. Further, since the wavelength can be reduced with the same design rule, a highly accurate encoder can be supplied.

なお、前記実施形態においては、受信コイルが、正弦波形状の頂点を挟んで、±1/6波長で頂点の1/2の高さの点を通るように折り曲げられていたが、正弦波形状の途中の点を通るように折り曲げる方法は、これに限定されず、例えば2点以上で折り曲げることも可能である。   In the above-described embodiment, the receiving coil is bent so as to pass through a point having a height of ± 1/6 wavelength and a half of the apex with the apex of the sinusoidal shape interposed therebetween. The method of bending so as to pass through a point in the middle is not limited to this, and for example, it is possible to bend at two or more points.

適用対象も、低価格化エンコーダに限定されず、電磁誘導式エンコーダ一般に適用できる。   The application object is not limited to the low-price encoder, and can be applied to general electromagnetic induction encoders.

電磁誘導式エンコーダの全体構成を示す斜視図The perspective view which shows the whole structure of an electromagnetic induction type encoder 従来の菱形受信コイルの形状の例を示す平面図The top view which shows the example of the shape of the conventional rhombus receiving coil 従来の菱形受信コイルでデザインルールを緩和した場合の問題点を説明するための平面図Plan view for explaining the problems when the design rules are relaxed with a conventional diamond-shaped receiving coil 従来の正弦波形状の受信コイルとその問題点を示す平面図Plan view showing conventional sinusoidal receiver coil and its problems 本発明に係る受信コイルの実施形態の形状を示す平面図The top view which shows the shape of embodiment of the receiving coil which concerns on this invention 前記実施形態の折り曲げ点を説明する図The figure explaining the bending point of the said embodiment 従来例と本発明の実施形態における信号強度のシミュレーション結果を比較して示す図The figure which compares and shows the simulation result of the signal strength in the conventional example and the embodiment of the present invention 同じく高調波比率を比較して示す図Figure showing comparison of harmonic ratios

符号の説明Explanation of symbols

10…スケール
12…グリッド
14、16…スケールコイル
20、22…受信コイル
24、26…送信コイル
28…送信制御部
30…受信制御部
DESCRIPTION OF SYMBOLS 10 ... Scale 12 ... Grid 14, 16 ... Scale coil 20, 22 ... Reception coil 24, 26 ... Transmission coil 28 ... Transmission control part 30 ... Reception control part

Claims (2)

測定方向に沿ってスケール上に多数配列されたスケールコイルと、
前記スケールに対して測定方向に相対移動自在なグリッド上に配設された送信コイル及び受信コイルとを備え、
送信コイルを励磁した時に、スケールコイルを経由して受信コイルで検出される磁束の変化から、スケールとグリッドの相対移動量を検出する電磁誘導式エンコーダにおいて、
前記受信コイルが、スルーホールを使ったひねり配線にされると共に、正弦波形状の途中の点を通るように折り曲げられていることを特徴とする電磁誘導式エンコーダ。
A number of scale coils arranged on the scale along the measurement direction;
A transmitter coil and a receiver coil disposed on a grid that is movable relative to the scale in the measurement direction;
In the electromagnetic induction encoder that detects the relative movement of the scale and grid from the change in magnetic flux detected by the receiving coil via the scale coil when the transmitting coil is excited,
An electromagnetic induction encoder characterized in that the receiving coil is twisted using a through-hole and bent so as to pass through a point in the middle of a sine wave shape.
前記受信コイルが、正弦波形状の頂点を挟んで、±1/6波長で頂点の1/2の高さの点を通るように折り曲げられていることを特徴とする請求項1に記載の電磁誘導式エンコーダ。   2. The electromagnetic wave according to claim 1, wherein the receiving coil is bent so as to pass through a point having a height of ½ of the apex at ± 1/6 wavelength across the apex of the sine wave shape. Inductive encoder.
JP2008008803A 2008-01-18 2008-01-18 Electromagnetic induction encoder Active JP5224830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008008803A JP5224830B2 (en) 2008-01-18 2008-01-18 Electromagnetic induction encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008008803A JP5224830B2 (en) 2008-01-18 2008-01-18 Electromagnetic induction encoder

Publications (2)

Publication Number Publication Date
JP2009168701A true JP2009168701A (en) 2009-07-30
JP5224830B2 JP5224830B2 (en) 2013-07-03

Family

ID=40970027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008008803A Active JP5224830B2 (en) 2008-01-18 2008-01-18 Electromagnetic induction encoder

Country Status (1)

Country Link
JP (1) JP5224830B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107087424A (en) * 2014-10-28 2017-08-22 霍斯特塞德尔两合公司 Position sensor, position-measurement device and the driving method for it
CN108021148A (en) * 2017-12-18 2018-05-11 北京京仪敬业电工科技有限公司 A kind of automatic line sending electric-control system of the warp of metal wire network making machine
CN110375775A (en) * 2018-04-13 2019-10-25 株式会社三丰 Electromagnetic induction type encoder
JP2020003492A (en) * 2018-06-28 2020-01-09 株式会社ミツトヨ Scale composition for electromagnetic induction encoder
CN111006698A (en) * 2018-10-04 2020-04-14 株式会社三丰 Electromagnetic induction type encoder
US11460324B2 (en) 2019-12-17 2022-10-04 Mitutoyo Corporation Scale and encoder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105444659B (en) * 2014-09-30 2018-03-02 葛幸华 The absolute transducer of linear measure longimetry is carried out using electromagnetic induction principle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271112A (en) * 1987-04-30 1988-11-09 S G:Kk Position detecting device
JPS6488121A (en) * 1987-06-15 1989-04-03 Kollmorgen Tech Corp Printed circuit board winding for inductance shielding type sensor especially suitable for liquid level measurement
JPH10318781A (en) * 1997-04-16 1998-12-04 Mitsutoyo Corp Guide type position detector
JP2003121206A (en) * 2001-10-12 2003-04-23 Mitsutoyo Corp Magnetic encoder
JP2006098141A (en) * 2004-09-28 2006-04-13 Makoto Naruse Position detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63271112A (en) * 1987-04-30 1988-11-09 S G:Kk Position detecting device
JPS6488121A (en) * 1987-06-15 1989-04-03 Kollmorgen Tech Corp Printed circuit board winding for inductance shielding type sensor especially suitable for liquid level measurement
JPH10318781A (en) * 1997-04-16 1998-12-04 Mitsutoyo Corp Guide type position detector
JP2003121206A (en) * 2001-10-12 2003-04-23 Mitsutoyo Corp Magnetic encoder
JP2006098141A (en) * 2004-09-28 2006-04-13 Makoto Naruse Position detection device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107087424A (en) * 2014-10-28 2017-08-22 霍斯特塞德尔两合公司 Position sensor, position-measurement device and the driving method for it
US10564009B2 (en) 2014-10-28 2020-02-18 Horst Siedle Gmbh & Co. Kg Position sensor, position measuring device and method for the operation thereof
CN107087424B (en) * 2014-10-28 2020-06-05 霍斯特塞德尔两合公司 Position sensor, position measuring device, and driving method therefor
CN108021148A (en) * 2017-12-18 2018-05-11 北京京仪敬业电工科技有限公司 A kind of automatic line sending electric-control system of the warp of metal wire network making machine
CN110375775A (en) * 2018-04-13 2019-10-25 株式会社三丰 Electromagnetic induction type encoder
CN110375775B (en) * 2018-04-13 2022-07-12 株式会社三丰 Electromagnetic induction type encoder
JP2020003492A (en) * 2018-06-28 2020-01-09 株式会社ミツトヨ Scale composition for electromagnetic induction encoder
JP7300324B2 (en) 2018-06-28 2023-06-29 株式会社ミツトヨ Scale configuration for inductive encoders
CN111006698A (en) * 2018-10-04 2020-04-14 株式会社三丰 Electromagnetic induction type encoder
CN111006698B (en) * 2018-10-04 2022-11-15 株式会社三丰 Electromagnetic induction type encoder
US11460324B2 (en) 2019-12-17 2022-10-04 Mitutoyo Corporation Scale and encoder

Also Published As

Publication number Publication date
JP5224830B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5224838B2 (en) Electromagnetic induction encoder
JP5224830B2 (en) Electromagnetic induction encoder
JP5885382B2 (en) Electromagnetic induction type linear encoder
US7652469B2 (en) Inductive position sensor
US6646433B2 (en) Induced current position transducers using tape scales with apertures
CN110657826B (en) Scale structure for inductive position encoder
JP2006322927A (en) Absolute rotary encoder and micrometer
CN110375775B (en) Electromagnetic induction type encoder
US20090219014A1 (en) Rotation sensor
US9772202B1 (en) Absolute position encoder combining signals of two widely separated wavelengths
JP6475072B2 (en) Electromagnetic induction encoder and scale
JP2009186348A (en) Induction-type displacement detection device
JP2003149002A (en) Scale loop for transducer
US11828627B2 (en) Inductive position sensors
JP2020056754A (en) Electromagnetic induction encoder
JP6134964B2 (en) Inductive displacement detector
JP5676223B2 (en) Electromagnetic induction encoder
JP2020122666A (en) Electromagnetic induction type encoder
JP2005077150A (en) Induction type position detector
JP2005249730A (en) Electromagnetic induction type displacement sensor
US20240102787A1 (en) Inductive position-measuring device
JP2021096160A (en) Scale and encoder
JPH116708A (en) Inductive position measuring unit
JP4913495B2 (en) Inductive displacement detector
CN113614492B (en) Magnetic linear sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130312

R150 Certificate of patent or registration of utility model

Ref document number: 5224830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250