JP4912986B2 - Control method for hot water heater - Google Patents

Control method for hot water heater Download PDF

Info

Publication number
JP4912986B2
JP4912986B2 JP2007220538A JP2007220538A JP4912986B2 JP 4912986 B2 JP4912986 B2 JP 4912986B2 JP 2007220538 A JP2007220538 A JP 2007220538A JP 2007220538 A JP2007220538 A JP 2007220538A JP 4912986 B2 JP4912986 B2 JP 4912986B2
Authority
JP
Japan
Prior art keywords
heating
hot water
temperature
heat
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007220538A
Other languages
Japanese (ja)
Other versions
JP2009052812A (en
Inventor
勝巳 諸我
真典 上田
芳美 斎藤
佳広 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2007220538A priority Critical patent/JP4912986B2/en
Publication of JP2009052812A publication Critical patent/JP2009052812A/en
Application granted granted Critical
Publication of JP4912986B2 publication Critical patent/JP4912986B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)

Description

本発明は建物内の温水暖房端末器へ熱源機で加熱した温水を循環させて暖房を行う温水暖房装置の制御方法に関するものである。   The present invention relates to a method for controlling a hot water heating apparatus that performs heating by circulating hot water heated by a heat source device to a hot water heating terminal in a building.

従来よりこの種の温水暖房装置においては、温水往き温度が温水暖房端末器の種類に応じた一定の温水温度(床暖房なら50℃、パネルコンベクターなら60℃等)になるように石油温水ボイラーなどの熱源機を制御することが一般的に行われている。
特開2007−107862号公報
Conventionally, in this type of hot water heater, a hot water boiler is used so that the hot water going temperature is a constant hot water temperature corresponding to the type of hot water heating terminal (50 ° C for floor heating, 60 ° C for panel convectors, etc.). It is generally performed to control a heat source machine such as.
JP 2007-107862 A

このような従来の温水暖房装置においては、暖房負荷が小さい場合など被暖房空間である建物側で本当に必要とされている暖房負荷に比べて過大な熱量を供給することとなり、無駄な放熱となって非効率的なものであった。   In such a conventional hot water heater, an excessive amount of heat is supplied compared to the heating load that is actually required on the building side, which is a space to be heated, such as when the heating load is small, and this is wasteful heat dissipation. And inefficient.

効率的な暖房運転を行うには温水暖房端末器から建物内に放熱する熱量と、建物が外部環境に放熱する熱量とがバランスすることが望ましいが、そのためには建物内に設置される温水暖房端末器の種類や数や放熱特性、また建物そのものの大きさや熱損失係数等の熱的性能データが必要となる。   In order to perform efficient heating operation, it is desirable to balance the amount of heat radiated from the hot water heating terminal into the building and the amount of heat radiated from the building to the external environment. For this purpose, hot water heating installed in the building Thermal performance data such as the type and number of terminals, heat dissipation characteristics, the size of the building itself, and the heat loss coefficient are required.

しかし、温水暖房端末器の放熱特性は、温水と被暖房室の室温との温度差に依存していることに加え、温水暖房端末器が多種類あるような場合は計算条件が複雑化し、簡易的な計算による放熱特性の算出は困難で、暖房負荷と放熱量をバランスさせた効率的な暖房運転を行うことができないものであった。   However, the heat dissipation characteristics of hot water heating terminals depend on the temperature difference between the hot water and the room temperature of the room to be heated, and the calculation conditions become complicated and simple when there are many types of hot water heating terminals. It is difficult to calculate the heat dissipation characteristics by a general calculation, and it is impossible to perform an efficient heating operation in which the heating load and the heat dissipation amount are balanced.

そこで、本発明は高度な専門知識を必要とせずに温水暖房装置の設置環境の諸条件データを自動的に取得し、暖房負荷と放熱量をバランスさせた高効率な暖房運転を行えるようにすることを課題とする。   Therefore, the present invention automatically acquires various condition data of the installation environment of the hot water heating apparatus without requiring high-level specialized knowledge, and enables high-efficiency heating operation that balances the heating load and the heat radiation amount. This is the issue.

本発明は上記課題を解決するため、熱源機で加熱した暖房循環水を温水暖房端末器へ循環させて暖房運転を行う温水暖房装置において、暖房試運転時に、暖房循環水が第1の温水温度を保つよう熱源機を制御し、被暖房室温安定時の熱源機から建物へ流出した熱量である建物全体での第1実暖房負荷を計測し、この第1実暖房負荷と建物内の室温と熱源機での温水往き温度および温水戻り温度とから第1熱コンダクタンスの値を算出し、次に暖房循環水が前記第1の温水温度とは異なる第2の温水温度を保つよう熱源機を制御し、被暖房室温安定時の第2実暖房負荷を計測し、この第2実暖房負荷と室温と温水往き温度および温水戻り温度とから第2熱コンダクタンスの値を算出し、これら暖房負荷と熱コンダクタンスとの相関関係を求め、暖房運転時には、現在の要求暖房負荷に対応する熱コンダクタンスの値を前記相関関係から決定し、この熱コンダクタンス値と所望暖房負荷と設定室温とから目標温水温度を算出し、暖房循環水がこの目標温水温度となるように熱源機を制御して暖房運転を行うようにした。   In order to solve the above-described problems, the present invention provides a warm water heating apparatus that performs a heating operation by circulating heating circulating water heated by a heat source device to a warm water heating terminal, and the heating circulating water has a first warm water temperature during a heating trial operation. The heat source device is controlled so as to maintain, and the first actual heating load in the entire building, which is the amount of heat flowing out from the heat source device to the building when the room temperature is stabilized, is measured. The first heat conductance value is calculated from the warm water going temperature and the warm water return temperature in the machine, and then the heat source machine is controlled so that the heating circulating water maintains a second warm water temperature different from the first warm water temperature. Then, the second actual heating load when the room temperature is stabilized is measured, and the second thermal conductance value is calculated from the second actual heating load, the room temperature, the warm water going temperature, and the warm water return temperature, and the heating load and the thermal conductance are calculated. The correlation with During the cell operation, the value of the thermal conductance corresponding to the current required heating load is determined from the correlation, the target hot water temperature is calculated from the thermal conductance value, the desired heating load, and the set room temperature, Heating operation was performed by controlling the heat source unit so that the temperature of the hot water was reached.

また、前記試運転時に、実暖房負荷と室温と外気温とから建物の総熱損失係数を算出し、この総熱損失係数と所望の設定室温と外気温とから暖房運転時の要求暖房負荷を算出するようにした。   Also, during the trial operation, the total heat loss coefficient of the building is calculated from the actual heating load, room temperature, and outside air temperature, and the required heating load during heating operation is calculated from the total heat loss coefficient and the desired set room temperature and outside air temperature. I tried to do it.

以上のように本発明によれば、温水暖房端末器の個々の種類や性能を知らずとも、専門知識を要することなく温水暖房端末器での放熱量と暖房負荷とを一致させるためのデータを自動的に取得することができ、このデータと現在の要求暖房負荷とから目標温水温度を決定するため、温水暖房端末器での放熱量と暖房負荷とをバランスさせることができ、過不足がなく適正で高効率な暖房運転を行うことが可能である。   As described above, according to the present invention, the data for matching the heat radiation amount and the heating load in the hot water heating terminal is automatically acquired without requiring specialized knowledge without knowing the individual types and performance of the hot water heating terminal. Because the target hot water temperature is determined from this data and the current required heating load, the amount of heat released from the hot water heating terminal can be balanced with the heating load, and there is no excess or deficiency. It is possible to perform highly efficient heating operation.

また、建物に関する熱的性能データが不明であっても、専門知識を要することなく建物に関する熱的性能データも暖房試運転時に同時に取得することができ、より簡便にに温水暖房端末器での放熱量と暖房負荷とをバランスさせることができ、過不足がなく適正で高効率な暖房運転を行うことが可能である。   In addition, even if the thermal performance data related to the building is unknown, the thermal performance data related to the building can be acquired at the same time during the heating trial operation without requiring specialized knowledge. And the heating load can be balanced, and appropriate and highly efficient heating operation can be performed without excess or deficiency.

次に本発明の一実施形態について図面を参照して説明する。
1は被暖房空間としての建物、2は暖房循環水を加熱するための熱源機、3は建物1内に複数設けられたパネルコンベクター等の温水暖房端末器、4は熱源機2と温水暖房端末器3とを暖房循環水が循環可能に接続する温水往き管4aと温水戻り管4bとから構成される温水循環回路、5は建物1内の室温Tを検出する室温センサである。
Next, an embodiment of the present invention will be described with reference to the drawings.
DESCRIPTION OF SYMBOLS 1 is a building as a space to be heated, 2 is a heat source for heating the circulating water, 3 is a hot water heating terminal such as a panel convector provided in the building 1, and 4 is a heat source 2 and hot water heating A hot water circulation circuit 5, which is composed of a hot water forward pipe 4 a and a hot water return pipe 4 b, which connect the terminal device 3 so that heating circulating water can circulate, is a room temperature sensor for detecting the room temperature Tr in the building 1.

熱源機1は、温水循環回路4の暖房循環水を循環させる循環ポンプ6、暖房循環水の温水流量Vを検出する流量センサ7、暖房循環水を加熱するための熱交換器8、熱交換器8を加熱するバーナ等の加熱手段9、外気温(建物の外部環境の温度)Tを検出する外気温センサ10、温水循環回路4の温水往き温度Tを検出する往き温度センサ11、温水戻り温度Tを検出する戻り温度センサ12、この熱源機1そのものおよび温水暖房装置全体を制御する制御装置13とを備えているものである。 The heat source unit 1 includes a circulation pump 6 that circulates heating circulating water in the hot water circulation circuit 4, a flow rate sensor 7 that detects the warm water flow rate V of the heating circulating water, a heat exchanger 8 that heats the heating circulating water, and a heat exchanger. heating means 9 such as a burner, for heating the 8, outside air temperature sensor 10 for detecting the outside air temperature (the temperature of the building of the external environment) T a, forward temperature sensor 11 for detecting the hot water forward temperature T 1 of the hot water circulation circuit 4, the hot water return temperature sensor 12 for detecting the temperature T 2 back, in which and a control unit 13 for controlling the entire heat source apparatus 1 itself and hot water heating system.

本発明は、このような一般的な温水暖房装置において、温水暖房端末器3から建物1内に放熱する熱量と、建物1が外部環境に放熱する熱量とを適切にバランスさせ、高効率な暖房運転を行わせるため、試運転時に後述する温水暖房端末器3全体の熱コンダクタンスCを計測し、この計測した熱コンダクタンスCに基づいて暖房運転時に熱源機2から供給する熱量を決定する制御方法に関するものである。 In such a general hot water heating apparatus, the present invention appropriately balances the amount of heat radiated from the hot water heating terminal 3 into the building 1 and the amount of heat radiated from the building 1 to the external environment, and thus highly efficient heating. A control method for measuring the thermal conductance C i of the entire hot water heating terminal 3 to be described later at the time of trial operation and determining the amount of heat supplied from the heat source unit 2 during the heating operation based on the measured thermal conductance C i in order to perform the operation. It is about.

以下に本発明の制御方法について詳述する。
まず試運転時においては、予備日において予め暖房運転を行って建物1の内部の温度を上げ、暖房状態を安定させる。
The control method of the present invention will be described in detail below.
First, during the trial operation, the heating operation is performed in advance on the preliminary day to raise the temperature inside the building 1 and stabilize the heating state.

次に、試運転第1日目には温水往き温度Tが第1の温水温度(例えば45℃)および一定の流量Vを保つように熱源機2を制御し、建物1の室温Tが安定している状態で、温水往き温度T、温水戻り温度T、温水流量Vを計測記憶し、以下の数式1から実暖房負荷Qを算出する。なお、同時に外気温Tと室温Tも計測記憶する。 Next, on the first day of the trial operation, the heat source unit 2 is controlled so that the warm water going-out temperature T 1 is maintained at the first warm water temperature (for example, 45 ° C.) and a constant flow rate V, and the room temperature Tr of the building 1 is stabilized. In this state, the warm water going temperature T 1 , the warm water return temperature T 2 , and the warm water flow rate V are measured and stored, and the actual heating load Q s is calculated from Equation 1 below. At the same time, the outside temperature Ta and the room temperature Tr are also measured and stored.

<数式1>
=cρV(T−T) [kW]
:暖房循環水の比熱 [J/kgK]
ρ:暖房循環水の密度 [g/cm2
<Formula 1>
Q s = c p ρV (T 1 -T 2) [kW]
c p : Specific heat of heating circulating water [J / kgK]
ρ: Heating circulating water density [g / cm 2 ]

また、同時に以下の数式2から建物1に対する温水暖房端末器3全体の第1の熱コンダクタンスCを算出する。この熱コンダクタンスCは、暖房運転により建物1に流入する熱量Qを室温Tと温水暖房端末器3との温度差で除した値で算出され、温水暖房端末器3の内表面と循環温水との強制対流熱伝達と温水暖房端末器3自体の材料の熱伝導と温水暖房端末器3の外表面と室内空気との自然対流熱伝達とを考慮した熱通過率に基づく係数である。なお、温水暖房端末器3が温水床暖房である場合は、熱通過率を考えるに当たり、温水暖房端末器3自体の熱伝導に加えて床材料の熱伝導が考慮され、さらに温水暖房端末器3の外表面と室内空気との自然対流熱伝達の代わりに暖められた床面と室内空気との自然対流熱伝達が考慮される。 At the same time, the first thermal conductance C i of the entire hot water heating terminal 3 for the building 1 is calculated from Equation 2 below. This thermal conductance C i is calculated by a value obtained by dividing the amount of heat Q s flowing into the building 1 by heating operation by the temperature difference between the room temperature Tr and the hot water heating terminal 3 and is circulated between the inner surface of the hot water heating terminal 3 and the circulation. It is a coefficient based on a heat transfer rate in consideration of forced convection heat transfer with hot water, heat conduction of the material of the hot water heating terminal 3 itself, and natural convection heat transfer between the outer surface of the hot water heating terminal 3 and room air. In the case where the hot water heating terminal 3 is hot water floor heating, in consideration of the heat transfer rate, in addition to the heat conduction of the hot water heating terminal 3 itself, the heat conduction of the floor material is considered, and further the hot water heating terminal 3 Natural convection heat transfer between the heated floor and room air is considered instead of natural convection heat transfer between the outer surface of the room and room air.

<数式2>
=Q/{(T+T)/2−T} [kW/K]
<Formula 2>
C i = Q s / {(T 1 + T 2 ) / 2−T r } [kW / K]

そして、以下の数式3から室温Tと外気温Tとの温度差が1℃当たりの建物1全体の暖房負荷である総熱損失係数Kを算出する。ここでは実暖房負荷Qを建物1内外の温度差で除した値を総熱損失係数Kとする。 Then, the temperature difference from Equation 3 and room temperature T r and the outside air temperature T a of the following to calculate the total heat loss coefficient K which is a heating load of the building 1 as a whole per 1 ° C.. Here, a value obtained by dividing the actual heating load Q s by the temperature difference between inside and outside the building 1 is defined as a total heat loss coefficient K.

<数式3>
K=Q/(T−T) [kW/K]
<Formula 3>
K = Q s / (T r −T a ) [kW / K]

試運転第2日目には、先の第1の温水温度とは異なる第2の温水温度(例えば40℃)および一定の流量を保つように熱源機2を制御し、建物1の室温Tが安定している状態で、温水往き温度T、温水戻り温度T、温水流量Vを計測記憶し、数式1から実暖房負荷Qを算出する。なお、同時に外気温Tと室温Tも計測記憶し、数式2および数式3から暖房端末器3側の第2の熱コンダクタンスCと建物1の総熱損失係数Kを算出する。 On the second day of the test run, the heat source device 2 is controlled so as to maintain a second hot water temperature (for example, 40 ° C.) different from the first hot water temperature and a constant flow rate, and the room temperature Tr of the building 1 is In a stable state, the warm water going temperature T 1 , the warm water return temperature T 2 , and the warm water flow rate V are measured and stored, and the actual heating load Q s is calculated from Equation 1. Incidentally, at the same time outside air temperature T a and the room temperature T r be measured storage, calculates the total heat loss coefficient K of heating terminal unit 3 side second thermal conductance C i and buildings 1 from Equation 2 and Equation 3.

試運転第3日目には、先の第1、第2の温水温度とは異なる第3の温水温度(例えば35℃)および一定の流量を保つように熱源機2を制御し、建物1の室温Tが安定している状態で、温水往き温度T、温水戻り温度T、温水流量Vを計測記憶し、数式1から実暖房負荷Qを算出する。なお、同時に外気温Tと室温Tも計測記憶し、数式2および数式3から暖房端末器3側の第3の熱コンダクタンスCと建物1の総熱損失係数Kを算出する。 On the third day of the test run, the heat source unit 2 is controlled to maintain a third hot water temperature (for example, 35 ° C.) different from the first and second hot water temperatures and a constant flow rate, and the room temperature of the building 1 In a state where Tr is stable, the hot water going temperature T 1 , the hot water return temperature T 2 , and the hot water flow rate V are measured and stored, and the actual heating load Q s is calculated from Equation 1. Incidentally, at the same time outside air temperature T a and the room temperature T r be measured storage, calculates a third thermal conductance C i and the total heat loss coefficient K building 1 heating terminal unit 3 side from the formula 2 and formula 3.

これら各日の各計測値および各算出値を表1〜3に示す。ここで表中の各時刻における計測値は、各時刻付近の数回の計測値の平均値で、この平均値を用いて各値を算出している。   Each measured value and each calculated value of each day are shown in Tables 1-3. Here, the measured value at each time in the table is an average value of several measured values near each time, and each value is calculated using this average value.

Figure 0004912986
Figure 0004912986

Figure 0004912986
Figure 0004912986

Figure 0004912986
Figure 0004912986

そして、各日の実暖房負荷Qと第1〜第3の熱コンダクタンスCをそれぞれ平均した値を用いて線形補間することにより図2に示す相関関係を求める。このように線形補間することによって簡易に実暖房負荷Qと熱コンダクタンスCの相関関係を導出記憶することが可能となり、演算能力の低いマイコンでも容易に扱える。なお、この相関関係の求め方としては、線形補間に限定されるものではなく、例えば表1〜3に示した各計測定時間での各値から最小二乗法等により近似式を求めるようにしてもよいものである。このような実暖房負荷Qと熱コンダクタンスCの相関関係を以下の数式4のように表す。 Then, a correlation shown in FIG. 2 by linear interpolation using the value obtained by averaging the respective each day of the actual heating load Q s and the first to third thermal conductance C i. By performing linear interpolation in this way, it is possible to easily derive and store the correlation between the actual heating load Q s and the thermal conductance C i , and it can be easily handled even by a microcomputer with low calculation capability. Note that the method of obtaining the correlation is not limited to linear interpolation. For example, an approximate expression may be obtained from each value at each measurement time shown in Tables 1 to 3 by the least square method or the like. Is also good. Such a correlation between the actual heating load Q s and the thermal conductance C i is expressed by the following Equation 4.

<数式4>
=f(Q
<Formula 4>
C i = f (Q s )

次に、各日の総熱損失係数Kの平均値を求め、この建物1全体の室温Tと外気温Tとの温度差が1℃当たりの暖房負荷として決定する。なお、ここでは総熱損失係数Kは試運転時にその値を算出するようにしたが、建物1全体の熱的性能である熱損失係数k[kW/m2K]が予め判明している場合には、この熱損失係数kおよび建物1の延床面積A[m2]から算出した総熱損失係数Kを制御装置13に手動で記憶させるような構成としてもよいものである。 Then, the average value of the total heat loss coefficient K of each day, the temperature difference between the room temperature T r and the outside air temperature T a of the entire building 1 is determined as the heating load per 1 ° C.. Here, the value of the total heat loss coefficient K is calculated at the time of trial operation. However, when the heat loss coefficient k [kW / m 2 K] which is the thermal performance of the entire building 1 is known in advance. The configuration may be such that the total heat loss coefficient K calculated from the heat loss coefficient k and the total floor area A [m 2 ] of the building 1 is manually stored in the control device 13.

なお、このような試運転は日射による影響を省いて簡易に各値を算出できるように夜間行うことが望ましい。なお、この実施形態における温水暖房装置の設置条件は、延床面積140mの一戸建て家屋で、部屋の大きさに応じた放熱能力を持つパネルコンベクターを複数台設置し、熱源機2の循環ポンプ6による循環流量は一定になるよう制御し、建物1内の居住者の生活や照明等による内部発熱は存在しない条件としている。 Note that such a trial run is preferably performed at night so that each value can be easily calculated without the influence of solar radiation. In addition, the installation conditions of the hot water heating apparatus in this embodiment are a single-family house with a total floor area of 140 m 2, a plurality of panel convectors having a heat radiation capacity corresponding to the size of the room are installed, and the circulation pump of the heat source unit 2 6 is controlled so that the circulation flow rate is constant, and there is no internal heat generation due to the life of the resident in the building 1 or lighting.

そして、暖房運転を行う際は、まず設定室温Tr_setと外気温Tとの温度差および総熱損失係数Kから以下の数式5に基づき要求暖房負荷Qを求める。なお、複数の部屋で設定室温Tr_setが相違する場合には、その最大値あるいは平均値を用いるようにすればよい。 Then, when performing the heating operation, first determine the set room temperature T R_set and air temperature T a and the temperature difference and the aggregate thermal loss coefficient K from based on Equation 5 below the required heating load Q r of. When the set room temperature Tr_set is different in a plurality of rooms, the maximum value or the average value may be used.

<数式5>
=K(Tr_set−T) [kW]
<Formula 5>
Q r = K (T rset −T a ) [kW]

次に、図3に示すように、求めた要求暖房負荷Qと数式4から現在の暖房運転の状況における熱コンダクタンスCを求める。 Next, as shown in FIG. 3, the thermal conductance C i in the current heating operation status is obtained from the obtained required heating load Q r and Equation 4.

そして、求めた熱コンダクタンスCと以下の数式6から目標温水往き温度T1_setを求め、熱源機2での温水往き温度T1がこの目標温水往き温度T1_setとなるように加熱量を制御して暖房運転を行う。 Then, the target hot water going temperature T 1_set is obtained from the obtained thermal conductance C i and the following formula 6, and the heating amount is controlled so that the hot water going temperature T1 in the heat source unit 2 becomes the target hot water going temperature T 1_set. Perform heating operation.

<数式6>
1_set=Tr_set+Q(1/C+1/2cρV) [℃]
<Formula 6>
T 1set = T rset + Q s (1 / C i + ½ c p ρV) [° C.]

このように、暖房要求のある時点での適切な目標温水温度を算出して熱源機2を制御するので、温水暖房端末器3から建物1内に放熱する熱量と建物1が外部環境に放熱する熱量とを適切にバランスさせることができ、余分な放熱ロスの少ない高効率な暖房運転を実現することができる。   Thus, since the heat source machine 2 is controlled by calculating an appropriate target hot water temperature at the time when there is a heating request, the amount of heat radiated from the hot water heating terminal 3 into the building 1 and the building 1 radiate to the external environment. The amount of heat can be appropriately balanced, and a highly efficient heating operation with little extra heat dissipation loss can be realized.

なお、数式6では目標温水温度として目標温水往き温度T1_setを算出し、熱源機2の加熱量を温水往き温度Tがこの目標温水往き温度T1_setとなるように制御するようにし、熱源機2での加熱量の制御を容易となるようにしたが、これに限らず、例えば目標温水戻り温度T2_setあるいは平均温水温度(T+T)/2を算出し、これを目標温水温度として適切に熱源機2の加熱量を制御してもよいものである。 Note that calculates a target hot water forward temperature T 1_Set as in Equation 6 target hot water temperature, the heating amount of the heat source unit 2 hot water forward temperature T 1 is to be controlled so that the target hot water forward temperature T 1_Set, the heat source equipment However, the present invention is not limited to this. For example, the target warm water return temperature T 2 — set or the average warm water temperature (T 1 + T 2 ) / 2 is calculated, and this is set as the target warm water temperature. The heating amount of the heat source device 2 may be appropriately controlled.

このように、温水暖房端末器3の個々の種類や性能を知らずとも、専門知識を要することなく温水暖房端末器3での放熱量と暖房負荷とを一致させるためのデータである熱コンダクタンスCを自動的に取得することができ、この熱コンダクタンスCと現在の要求暖房負荷Qとから目標温水温度を決定するため、温水暖房端末器3での放熱量と暖房負荷とをバランスさせることができ、過不足がなく適正で高効率な暖房運転を行うことが可能である。 As described above, the thermal conductance C i which is data for matching the heat radiation amount and the heating load in the hot water heating terminal 3 without requiring specialized knowledge without knowing the individual types and performances of the hot water heating terminal 3. In order to determine the target hot water temperature from the thermal conductance C i and the current required heating load Q r , to balance the heat radiation amount in the hot water heating terminal 3 and the heating load Therefore, it is possible to perform an appropriate and highly efficient heating operation without excess or deficiency.

また、建物1に関する熱的性能データが不明であっても、専門知識を要することなく建物1に関する熱的性能データである総熱損失係数Kも暖房試運転時に同時に取得することができ、より簡便にに温水暖房端末器3での放熱量と暖房負荷とをバランスさせることができ、過不足がなく適正で高効率な暖房運転を行うことが可能である。   In addition, even if the thermal performance data related to the building 1 is unknown, the total heat loss coefficient K, which is the thermal performance data related to the building 1, can be obtained at the same time during the heating trial operation without requiring specialized knowledge. In addition, it is possible to balance the heat radiation amount and the heating load in the hot water heating terminal device 3, and it is possible to perform an appropriate and highly efficient heating operation without excess or deficiency.

なお、上記一実施形態の暖房試運転においては、3日間にわたり温水温度を3回変えて計測を行ったが、熱コンダクタンスCと実暖房負荷Qとの相関関係を導出できれば最低2回の温水温度変更でよいもので、温水温度の変更からすぐに室温が収束するならば同一日に温水温度を変更するようにしてもよいものである。 In the heating trial operation of the above-described embodiment, the measurement was performed by changing the hot water temperature three times over three days. However, if the correlation between the thermal conductance C i and the actual heating load Q s can be derived, the hot water is used at least twice. The temperature may be changed, and the temperature of the hot water may be changed on the same day if the room temperature converges immediately after the change of the hot water temperature.

また、上記一実施形態の熱源機2は燃焼式の暖房ボイラーを例にとって説明したが、これに限られず、例えばヒートポンプ式の温水加熱装置や、深夜電力で沸き上げた貯湯タンク内の温水を熱源とした蓄熱式の温水加熱装置等、要求された熱量を暖房循環水に供給できる熱源機であれば熱源の種類に特に限定されるものではない。   Further, the heat source device 2 of the above embodiment has been described by taking a combustion-type heating boiler as an example. However, the heat source device 2 is not limited to this. For example, a heat pump type hot water heating device or hot water in a hot water tank heated by midnight power If it is a heat source machine which can supply the requested | required calorie | heat amount to heating circulation water, such as the heat storage type | formula warm water heating apparatus which was used, it will not specifically limit to the kind of heat source.

本発明の一実施形態の温水暖房装置のシステム図。1 is a system diagram of a hot water heater according to an embodiment of the present invention. 熱コンダクタンスCと暖房負荷Qとの相関関係を示す図。Graph showing the correlation between the thermal conductance C i and heating load Q s. 要求暖房負荷Qから熱コンダクタンスCの求め方を説明する図。Diagram for explaining how to determine the thermal conductance C i from the required heating load Q r.

符号の説明Explanation of symbols

1 建物
2 熱源機
3 温水暖房端末器
1 building 2 heat source machine 3 hot water heating terminal

Claims (2)

熱源機で加熱した暖房循環水を温水暖房端末器へ循環させて暖房運転を行う温水暖房装置において、
暖房試運転時に、暖房循環水が第1の温水温度を保つよう熱源機を制御し、被暖房室温安定時の熱源機から建物へ流出した熱量である建物全体での第1実暖房負荷を計測し、この第1実暖房負荷と建物内の室温と熱源機での温水往き温度および温水戻り温度とから第1熱コンダクタンスの値を算出し、
次に暖房循環水が前記第1の温水温度とは異なる第2の温水温度を保つよう熱源機を制御し、被暖房室温安定時の第2実暖房負荷を計測し、この第2実暖房負荷と室温と温水往き温度および温水戻り温度とから第2熱コンダクタンスの値を算出し、
これら暖房負荷と熱コンダクタンスとの相関関係を求め、
暖房運転時には、現在の要求暖房負荷に対応する熱コンダクタンスの値を前記相関関係から決定し、この熱コンダクタンス値と要求暖房負荷と設定室温とから目標温水温度を算出し、暖房循環水がこの目標温水温度となるように熱源機を制御して暖房運転を行うようにしたことを特徴とする温水暖房装置の制御方法。
In the hot water heating apparatus that performs the heating operation by circulating the heating circulating water heated by the heat source machine to the hot water heating terminal,
During the heating trial operation, the heat source machine is controlled so that the heating circulating water maintains the first hot water temperature, and the first actual heating load in the entire building, which is the amount of heat that has flowed out of the heat source machine when the room temperature is stabilized, is measured. The first heat conductance value is calculated from the first actual heating load, the room temperature in the building, the hot water going temperature at the heat source unit, and the hot water return temperature,
Next, the heat source device is controlled so that the heating circulating water maintains a second hot water temperature different from the first hot water temperature, and the second actual heating load when the heated room temperature is stable is measured. And calculate the value of the second thermal conductance from the room temperature and the warm water return temperature and warm water return temperature,
Find the correlation between these heating load and thermal conductance,
During heating operation, the value of the thermal conductance corresponding to the current required heating load is determined from the above correlation, and the target hot water temperature is calculated from this thermal conductance value, the required heating load, and the set room temperature. A control method for a hot water heating apparatus, wherein a heating operation is performed by controlling a heat source unit so as to be a hot water temperature.
前記試運転時に、実暖房負荷と室温と外気温とから建物の総熱損失係数を算出し、
この総熱損失係数と所望の設定室温と外気温とから暖房運転時の要求暖房負荷を算出するようにしたことを特徴とする請求項1記載の温水暖房装置の制御方法。
During the trial run, calculate the total heat loss coefficient of the building from the actual heating load, room temperature, and outside temperature,
2. The method of controlling a hot water heater according to claim 1, wherein a required heating load during heating operation is calculated from the total heat loss coefficient, a desired set room temperature, and an outside air temperature.
JP2007220538A 2007-08-28 2007-08-28 Control method for hot water heater Expired - Fee Related JP4912986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007220538A JP4912986B2 (en) 2007-08-28 2007-08-28 Control method for hot water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007220538A JP4912986B2 (en) 2007-08-28 2007-08-28 Control method for hot water heater

Publications (2)

Publication Number Publication Date
JP2009052812A JP2009052812A (en) 2009-03-12
JP4912986B2 true JP4912986B2 (en) 2012-04-11

Family

ID=40504046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007220538A Expired - Fee Related JP4912986B2 (en) 2007-08-28 2007-08-28 Control method for hot water heater

Country Status (1)

Country Link
JP (1) JP4912986B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101402665B1 (en) 2011-08-31 2014-06-11 한국건설기술연구원 Calculating method to get the operating condition of centralized heating system
JP5992780B2 (en) * 2012-09-10 2016-09-14 リンナイ株式会社 Heating system
JP7154153B2 (en) * 2019-02-25 2022-10-17 リンナイ株式会社 hot water heating system
KR102417062B1 (en) * 2021-11-05 2022-07-05 부경대학교 산학협력단 Apparatus and method for calculating heat supply quantity for cold weather concrete curing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09236273A (en) * 1995-12-26 1997-09-09 Daikin Ind Ltd Air conditioning control equipment
JPH09217938A (en) * 1996-02-13 1997-08-19 Matsushita Electric Ind Co Ltd Floor heating apparatus
JP2006329529A (en) * 2005-05-26 2006-12-07 Osaka Gas Co Ltd Heat medium circulating type heating apparatus
JP3134180U (en) * 2007-04-27 2007-08-09 竹沢産業株式会社 Hot water temperature control device corresponding to outside temperature

Also Published As

Publication number Publication date
JP2009052812A (en) 2009-03-12

Similar Documents

Publication Publication Date Title
RU2450313C2 (en) Heating system control based on required heating power
Kusama et al. Thermal effects of a novel phase change material (PCM) plaster under different insulation and heating scenarios
US8708244B2 (en) Control of a system with a large thermal capacity
CN101421561B (en) Method and system for controlling the climate in a house
RU2655154C2 (en) Method for adjusting the setpoint temperature of a heat transfer medium
JP4912986B2 (en) Control method for hot water heater
JP5501282B2 (en) HEAT PUMP SYSTEM AND HEAT PUMP SYSTEM CONTROL METHOD
JP2007155206A (en) Radiation cooling/heating system and control method therefor
JP2009014218A (en) Hot water heating device
US11193691B1 (en) Controller for heating system diagnostics and operation
JP2018141566A (en) Radiation air-conditioning system
US10712021B2 (en) Pulse modulated heating, ventilation, and air conditioning (HVAC) control
JP2017067321A (en) Heat pump control device, hot water supply unit of heat pump-type heating system, heat pump-type heating system, and method executed by heat pump control device
US9140503B2 (en) Energy measurement system for fluid systems
JP6537636B2 (en) Heating system
JP2006343026A (en) Heating system for multiple dwelling house
JP4975336B2 (en) Hot water storage water heater
US11243011B2 (en) Heat emitting radiator
US11346571B2 (en) Method for controlling an air conditioning system using an economic balance point and a capacity balance point
KR20080074430A (en) The warming system of apartment, that control water temperature according to outside temperature
JP2023047692A (en) Floor heating apparatus
NO328291B1 (en) Method and apparatus for painting, controlling and recording the amount of energy supplied when supplying energy to a consumer
US20230022808A1 (en) Systems and controllers for controlling heating unit temperature with a simulated outdoor temperature, and methods using the same
Kull et al. Setback efficiency of limited-power heating systems in cold climate
JP2023047694A (en) Floor heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120118

R150 Certificate of patent or registration of utility model

Ref document number: 4912986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees