JP4911617B2 - Process for producing bulk single crystal of alkali cobalt oxide - Google Patents

Process for producing bulk single crystal of alkali cobalt oxide Download PDF

Info

Publication number
JP4911617B2
JP4911617B2 JP2007211727A JP2007211727A JP4911617B2 JP 4911617 B2 JP4911617 B2 JP 4911617B2 JP 2007211727 A JP2007211727 A JP 2007211727A JP 2007211727 A JP2007211727 A JP 2007211727A JP 4911617 B2 JP4911617 B2 JP 4911617B2
Authority
JP
Japan
Prior art keywords
single crystal
bulk single
coo
producing
bulk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007211727A
Other languages
Japanese (ja)
Other versions
JP2008019165A (en
Inventor
順二 秋本
靖彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007211727A priority Critical patent/JP4911617B2/en
Publication of JP2008019165A publication Critical patent/JP2008019165A/en
Application granted granted Critical
Publication of JP4911617B2 publication Critical patent/JP4911617B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、熱電変換材料およびリチウムイオン二次電池材料等として有用な、新規なアルカリコバルト酸化物のバルク状単結晶及びその製造方法に関する。   The present invention relates to a novel alkali cobalt oxide bulk single crystal useful as a thermoelectric conversion material and a lithium ion secondary battery material, and a method for producing the same.

従来、リチウム電池材料として実用化されているコバルト酸リチウムは、多結晶体を使用するものである。しかしながら、薄膜電池、マイクロ電池、全固体型リチウム電池等を構成する材料としては、単結晶性の材料がエネルギー密度、並びに固体中の拡散の観点から好ましく、単結晶膜作製技術とともに単結晶育成技術の確立が必要となる。
一方、熱電材料として注目されているコバルト酸ナトリウムについても、単結晶を用いた場合に熱電変換特性が向上することが知られており、単結晶育成技術の確立が必要となる。
これら層状結晶構造を有するコバルト酸アルカリの単結晶育成技術に関しては、これまでにフラックス法を適用して、微小で薄片状の単結晶を合成した例があるにすぎず、リチウム電池材料や熱電変換材料等として使用可能な層状結晶構造を有するコバルト酸アルカリのバルク状単結晶を得るための、単結晶育成技術の確立が求められていた。
Conventionally, lithium cobalt oxide that has been put to practical use as a lithium battery material uses a polycrystal. However, as a material constituting a thin film battery, a micro battery, an all-solid-state lithium battery, etc., a single crystal material is preferable from the viewpoint of energy density and diffusion in a solid, and a single crystal growth technique together with a single crystal film preparation technique. Need to be established.
On the other hand, sodium cobaltate, which is attracting attention as a thermoelectric material, is known to improve thermoelectric conversion characteristics when a single crystal is used, and it is necessary to establish a single crystal growth technique.
With regard to single-crystal growth technology for these alkali-cobalt oxides having a layered crystal structure, there are only examples of synthesizing small, flaky single crystals by applying the flux method so far, and lithium battery materials and thermoelectric conversion. Establishment of a single crystal growth technique for obtaining a bulk single crystal of an alkali cobaltate having a layered crystal structure that can be used as a material or the like has been demanded.

したがって、本発明は、優れた電池特性ならびに熱電変換性能を有し、有用な、層状結晶構造を有するコバルト酸アルカリのバルク状単結晶の製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a useful method for producing an alkali cobalt oxide bulk single crystal having a layered crystal structure, which has excellent battery characteristics and thermoelectric conversion performance.

本発明者等は鋭意検討した結果、コバルト酸アルカリの単結晶が溶融法によってバルク状単結晶として育成できることを見出し、本発明を完成した。
すなわち、本発明はつぎのような構成を有するものである。
1.ACoO粉末をその融点以上の温度に加熱して溶融し、その後冷却することを特徴とする、単結晶の縦、横、及び高さがそれぞれ少なくとも1mm以上であり、化学式ACoO(0<x≦1,A=Li又はNa)で示される化合物のバルク状単結晶の製造方法。
2.加熱雰囲気が酸素ガス中又は大気中であることを特徴とする1に記載のバルク状単結晶の製造方法。
3.ACoO粉末を筒状の容器中に収納し、ACoOの溶融域を徐々に移動させることにより単結晶を育成することを特徴とする1又は2に記載のバルク状単結晶の製造方法。
4.筒状の容器がアルミナ(Al)、マグネシア(MgO)、ジルコニア(ZrO)又は白金(Pt)により構成されたものであることを特徴とする3に記載のバルク状単結晶の製造方法。
5.筒状の容器を局部的に加熱することを特徴とする3又は4に記載のバルク状単結晶の製造方法。
6.ハロゲンランプ又はレーザー光源による単結晶育成装置を使用して加熱することを特徴とする1〜5のいずれかに記載のバルク状単結晶の製造方法。
As a result of intensive studies, the present inventors have found that an alkali cobalt oxide single crystal can be grown as a bulk single crystal by a melting method, and completed the present invention.
That is, the present invention has the following configuration.
1. The A x CoO 2 powder is melted by heating to a temperature equal to or higher than its melting point, and then cooled, each of the vertical, horizontal and height of the single crystal is at least 1 mm or more, and the chemical formula A x CoO 2 A method for producing a bulk single crystal of a compound represented by (0 <x ≦ 1, A = Li or Na).
2. 2. The method for producing a bulk single crystal according to 1, wherein the heating atmosphere is in oxygen gas or air.
3. The bulk single crystal according to 1 or 2, wherein the A x CoO 2 powder is stored in a cylindrical container, and the single crystal is grown by gradually moving the melting region of the A x CoO 2 . Production method.
4). 3. Production of bulk single crystal according to 3, wherein the cylindrical container is composed of alumina (Al 2 O 3 ), magnesia (MgO), zirconia (ZrO 2 ) or platinum (Pt). Method.
5. The method for producing a bulk single crystal according to 3 or 4, wherein the cylindrical container is locally heated.
6). The method for producing a bulk single crystal according to any one of 1 to 5, wherein heating is performed using a single crystal growth apparatus using a halogen lamp or a laser light source.

本発明では、ACoO粉末を原料として、高温の保持容器に入れ、加熱により充分に溶融させた後に冷却する、溶融結晶育成法により、ACoOのバルク状単結晶を得る。この溶融結晶育成法としては、ゾーンメルティング(Zone Melting)、ブリッジマン法(Bridgeman Method)等が挙げられる。
すなわち、出発原料をアルミナ、マグネシア、ジルコニア等のセラミックス製容器、或いは白金等の容器に入れ、酸素ガス雰囲気中又は大気中で、加熱温度1300℃以上に保持して充分に溶融したのを確認した後に、冷却することによってバルク状の単結晶が得られる。この単結晶の育成には、汎用の大型単結晶育成装置を使用することができる。
In the present invention, a bulk single crystal of A x CoO 2 is obtained by a melt crystal growth method in which A x CoO 2 powder is used as a raw material, put into a high-temperature holding container, sufficiently melted by heating, and then cooled. Examples of the melt crystal growth method include zone melting and bridgeman method.
That is, the starting material was put in a ceramic container such as alumina, magnesia, zirconia, or a container such as platinum, and it was confirmed that the starting material was sufficiently melted by holding at a heating temperature of 1300 ° C. or higher in an oxygen gas atmosphere or in the air. Later, by cooling, a bulk single crystal is obtained. For the growth of this single crystal, a general-purpose large single crystal growth apparatus can be used.

得られたバルク状の単結晶は、SEM−EDXによる形態観察、化学分析及びX線回折等により、その組成及び結晶構造を確認することができる。
単結晶の化学組成としては、アルミナ製の容器を使用した場合には、化学式ACoOのコバルトの一部がアルミニウムで置換された単結晶が得られるが、本発明のバルク状単結晶は、このようなものも包含するものである。
The composition and crystal structure of the obtained bulk single crystal can be confirmed by morphological observation by SEM-EDX, chemical analysis, X-ray diffraction, and the like.
As for the chemical composition of the single crystal, when an alumina container is used, a single crystal in which a part of cobalt of the chemical formula A x CoO 2 is substituted with aluminum is obtained. Such a thing is also included.

単結晶の形状やサイズは、製造条件によって異なるものとなるが、通常は1mm角程度の直方体として得ることができ、最大では5mmφ×3mm程度のバルク状のものとして得ることができる。
従来のフラックス法では、LiCoOやNaCoO粉末とそれぞれの融剤となるLiCl又はNaClを混合し、比較的低温で加熱した後に徐冷することによって単結晶を得るものであり、薄い単結晶は得られるものの、バルク状の単結晶を製造することはできなかった。
本発明のACoOのバルク状単結晶は、汎用の大型単結晶育成装置を使用して、工業的に有利な溶融結晶育成法により製造することができるものであり、大型化及び結晶方位の制御が容易であることから、リチウム電池材料及び熱電変換材料として実用的価値の高い材料である。
Although the shape and size of the single crystal vary depending on the production conditions, it can usually be obtained as a rectangular solid of about 1 mm square, and can be obtained as a bulk of about 5 mmφ × 3 mm at the maximum.
In the conventional flux method, a single crystal is obtained by mixing LiCoO 2 or Na x CoO 2 powder with LiCl or NaCl as a flux, heating at a relatively low temperature and then gradually cooling. Although crystals were obtained, bulk single crystals could not be produced.
The bulk single crystal of A x CoO 2 according to the present invention can be manufactured by an industrially advantageous melt crystal growth method using a general-purpose large single crystal growth apparatus. Therefore, it is a material having high practical value as a lithium battery material and a thermoelectric conversion material.

つぎに、図に基づいて本発明のACoOのバルク状単結晶を製造する装置について説明する。
図1は、本発明のバルク状単結晶の製造装置の1例を示す模式図である。この装置1は、アルミナ、マグネシア、ジルコニア又は白金により構成された筒状の容器2を内部に収納したクォーツチューブ3、クォーツチューブ3の周囲を覆うように設けられた楕円状反射鏡4を有する。クォーツチューブ3には、酸素ガス導入口5及び酸素ガス排出口6、ならびに容器2を上下に移動可能に保持する保持手段7が設けられている。また、楕円状反射鏡4には、容器2に赤外線を照射して加熱するためのハロゲンランプ8が設置されている。ハロゲンランプに代えて、レーザー光源を使用してもよい。
Next, an apparatus for producing an A x CoO 2 bulk single crystal of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view showing an example of a bulk single crystal production apparatus of the present invention. The apparatus 1 includes a quartz tube 3 that houses a cylindrical container 2 made of alumina, magnesia, zirconia, or platinum, and an elliptical reflecting mirror 4 that is provided so as to cover the periphery of the quartz tube 3. The quartz tube 3 is provided with an oxygen gas inlet 5 and an oxygen gas outlet 6 and holding means 7 for holding the container 2 so as to be movable up and down. In addition, the elliptical reflecting mirror 4 is provided with a halogen lamp 8 for heating the container 2 by irradiating infrared rays. A laser light source may be used in place of the halogen lamp.

この装置1を使用して、本発明のACoOのバルク状単結晶を製造するには、容器2内部に原料となるACoO粉末11を収納した後に、酸素ガス導入口5からクォーツチューブ3内に酸素ガスを導入し、ハロゲンランプ8により赤外線を照射してACoO粉末11を加熱溶融する。
加熱溶融されたACoO粉末11からは、はじめにACoOの多結晶が生成するが、容器2を保持手段7によりクォーツチューブ3内で上下に移動させて、多結晶の溶融域12を徐々に上下に移動させることにより、単結晶を育成する。加熱温度を1300℃以上に保持し、ACoOが充分に溶融したのを確認した後に冷却すると、バルク状の単結晶が得られる。
In order to produce the bulk single crystal of A x CoO 2 of the present invention using this apparatus 1, after the A x CoO 2 powder 11 as a raw material is stored in the container 2, the oxygen gas inlet 5 is used. Oxygen gas is introduced into the quartz tube 3, and infrared rays are irradiated from the halogen lamp 8 to heat and melt the A x CoO 2 powder 11.
From the heat-melted A x CoO 2 powder 11, polycrystals of A x CoO 2 are first formed. The container 2 is moved up and down in the quartz tube 3 by the holding means 7, and the polycrystal melting region 12 is obtained. Is gradually moved up and down to grow a single crystal. When the heating temperature is maintained at 1300 ° C. or higher and it is cooled after confirming that A x CoO 2 is sufficiently melted, a bulk single crystal is obtained.

つぎに、実施例により本発明をさらに説明するが、以下の具体例は本発明を限定するものではない。
(実施例1)
図1の構成を有するハロゲンランプ8を有する赤外線集光加熱単結晶育成装置((株)クリスタルシステム製、四楕円鏡)を使用し、純度99.9%以上のLiCoO粉末(粒径は数ミクロン程度)を片封じの白金チューブ製容器2内に充填し、容器2の先端を炉の最高温度域にセットした。雰囲気ガスとして酸素ガスを毎分3リットルの流速で流しながら、ハロゲンランプ出力で最高温度を制御しつつ加熱し、試料を溶融させた後、容器2を毎時3〜10mmの速度で高温部を通過させることによって、単結晶を育成した。得られた黒色の単結晶は、最大で3x2x2mm程度の大きさを有していた。
EXAMPLES Next, the present invention will be further described with reference to examples, but the following specific examples are not intended to limit the present invention.
Example 1
Using an infrared condensing and heating single crystal growing apparatus (manufactured by Crystal System Co., Ltd., four elliptical mirror) having the halogen lamp 8 having the configuration of FIG. 1, LiCoO 2 powder having a purity of 99.9% or more (particle size is several About 5 microns) was filled into a single-sealed platinum tube container 2, and the tip of the container 2 was set to the maximum temperature range of the furnace. While flowing oxygen gas as an atmospheric gas at a flow rate of 3 liters per minute, controlling the maximum temperature with a halogen lamp output, heating the sample, melting the sample, and then passing the container 2 through the high temperature part at a rate of 3 to 10 mm per hour To grow a single crystal. The obtained black single crystal had a maximum size of about 3 × 2 × 2 mm.

実施例1で得られた、縦、横及び高さがそれぞれ2mm程度のバルク状単結晶の実体顕微鏡写真を図2に示す。なお、図2において図中の1目盛りが1mmに相当する。
また、SEM-EDX(日本電子製JSM-5400使用)による化学分析により、単結晶中に容器2を構成する元素の混入がないことを確認した。得られたEDXスペクトル(加速電圧20kv、測定時間100秒)を図3に示す。
さらに、四軸型X線回折装置(理学電機製AFC-7S、Mo管球X線使用)を用いて三方晶系、空間群R-3mの層状岩塩型の結晶構造であることを確認した。2θ(Mo)=20〜30°の有意の強度を持つ25反射について四軸角を精密測定し、最小二乗法によって決定された格子定数は、六方格子で表現すると次の通りであった。
a=2.8159±0.0007(Å)
c=14.0543±0.0010(Å)
FIG. 2 shows a stereoscopic microscope photograph of the bulk single crystal obtained in Example 1 and having a length, width and height of about 2 mm each. In FIG. 2, one scale in the figure corresponds to 1 mm.
Moreover, it was confirmed by chemical analysis by SEM-EDX (using JSM-5400 manufactured by JEOL) that the elements constituting the container 2 were not mixed in the single crystal. The obtained EDX spectrum (acceleration voltage 20 kv, measurement time 100 seconds) is shown in FIG.
Furthermore, using a four-axis X-ray diffractometer (Rigaku Denki AFC-7S, using Mo tube X-rays), it was confirmed that the crystal structure was a layered rock-salt type with a trigonal system and a space group of R-3m. The lattice constants determined by the least square method by accurately measuring the four-axis angle for 25 reflections having a significant intensity of 2θ (Mo) = 20 to 30 ° were as follows when expressed by a hexagonal lattice.
a = 2.8159 ± 0.0007 (Å)
c = 14.0543 ± 0.0010 (Å)

(実施例2)
実施例1において、白金チューブ製容器2に代えてアルミナ(JIS規格 SSA-S)チューブ製容器2を使用した以外は、実施例1と同様にしてLiCoO単結晶を育成した。得られた単結晶の大きさは、実施例1と同様に2mm角程度のバルク状単結晶であった。
実施例2で得られた、アルミナチューブ壁面に成長した単結晶群の走査型電子顕微鏡写真を図4に示す。また、SEM-EDX(日本電子製JSM-5400使用)による化学分析により、単結晶中に容器2を構成する元素であるアルミニウムの混入を確認した。得られたEDXスペクトル(加速電圧20kv、測定時間100秒)を図5に示す。
さらに、四軸型X線回折装置(理学電機製AFC-7S、Mo管球X線使用)を用いて単結晶X線構造解析を行った結果、最終の信頼度因子(R値)3%で、三方晶系、空間群R-3mの層状岩塩型の結晶構造と、正確な化学組成がLiAl0.32Co0.68であることを確認した。2θ(Mo)=20〜30°の有意の強度を持つ25反射について四軸角を精密測定し、最小二乗法によって決定された格子定数は、六方格子で表現すると次の通りであった。
a=2.8056±0.0011(Å)
c=14.1079±0.0015(Å)
(Example 2)
In Example 1, a LiCoO 2 single crystal was grown in the same manner as in Example 1 except that an alumina (JIS standard SSA-S) tube container 2 was used instead of the platinum tube container 2. The size of the obtained single crystal was a bulk single crystal of about 2 mm square as in Example 1.
A scanning electron micrograph of the single crystal group grown on the alumina tube wall surface obtained in Example 2 is shown in FIG. In addition, by chemical analysis using SEM-EDX (using JSM-5400 manufactured by JEOL Ltd.), it was confirmed that aluminum as an element constituting the container 2 was mixed in the single crystal. FIG. 5 shows the obtained EDX spectrum (acceleration voltage 20 kv, measurement time 100 seconds).
Furthermore, as a result of single crystal X-ray structural analysis using a four-axis X-ray diffractometer (AFC-7S manufactured by Rigaku Corporation, using Mo tube X-ray), the final reliability factor (R value) was 3%. It was confirmed that the layered rock salt type crystal structure of the trigonal system, space group R-3m, and the exact chemical composition were LiAl 0.32 Co 0.68 O 2 . The lattice constants determined by the least square method by accurately measuring the four-axis angle for 25 reflections having a significant intensity of 2θ (Mo) = 20 to 30 ° were as follows when expressed by a hexagonal lattice.
a = 2.80656 ± 0.0011 (Å)
c = 14.1079 ± 0.0015 (Å)

本発明のバルク状単結晶の製造装置の1例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing apparatus of the bulk-like single crystal of this invention. 実施例1で得られたバルク状単結晶の実体顕微鏡写真である。2 is a stereomicrograph of a bulk single crystal obtained in Example 1. FIG. 実施例1で得られたバルク状単結晶のEDXスペクトルである。2 is an EDX spectrum of a bulk single crystal obtained in Example 1. 実施例2で得られたバルク状単結晶の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of a bulk single crystal obtained in Example 2. FIG. 実施例2で得られたバルク状単結晶のEDXスペクトルである。4 is an EDX spectrum of a bulk single crystal obtained in Example 2.

符号の説明Explanation of symbols

1 バルク状単結晶の製造装置
2 筒状の容器
3 クォーツチューブ
4 楕円状反射鏡
5 酸素ガス導入口
6 酸素ガス排出口
7 保持手段
8 ハロゲンランプ
11 LiCoO粉末
12 溶融域
DESCRIPTION OF SYMBOLS 1 Bulk single crystal manufacturing apparatus 2 Cylindrical container 3 Quartz tube 4 Elliptical reflector 5 Oxygen gas inlet 6 Oxygen gas outlet 7 Holding means 8 Halogen lamp 11 LiCoO 2 powder 12 Melting zone

Claims (6)

CoO粉末をその融点以上の温度に加熱して溶融し、その後冷却することを特徴とする、単結晶の縦、横、及び高さがそれぞれ少なくとも1mm以上であり、化学式ACoO(0<x≦1,A=Li又はNa)で示される化合物のバルク状単結晶の製造方法。 The A x CoO 2 powder is melted by heating to a temperature equal to or higher than its melting point, and then cooled, each of the vertical, horizontal and height of the single crystal is at least 1 mm or more, and the chemical formula A x CoO 2 A method for producing a bulk single crystal of a compound represented by (0 <x ≦ 1, A = Li or Na). 加熱雰囲気が酸素ガス中又は大気中であることを特徴とする請求項1に記載のバルク状単結晶の製造方法。   2. The method for producing a bulk single crystal according to claim 1, wherein the heating atmosphere is in oxygen gas or air. CoO粉末を筒状の容器中に収納し、ACoOの溶融域を徐々に移動させることにより単結晶を育成することを特徴とする請求項1又は2に記載のバルク状単結晶の製造方法。 3. The bulk single crystal according to claim 1, wherein the single crystal is grown by storing the A x CoO 2 powder in a cylindrical container and gradually moving the melting region of the A x CoO 2. 4. Crystal production method. 筒状の容器がアルミナ(Al)、マグネシア(MgO)、ジルコニア(ZrO)又は白金(Pt)により構成されたものであることを特徴とする請求項3に記載のバルク状単結晶の製造方法。 Cylindrical container alumina (Al 2 O 3), magnesia (MgO), zirconia (ZrO 2) or platinum bulk single crystal according to claim 3, characterized in that constituted by (Pt) Manufacturing method. 筒状の容器を局部的に加熱することを特徴とする請求項3又は4に記載のバルク状単結晶の製造方法。   The method for producing a bulk single crystal according to claim 3 or 4, wherein the cylindrical container is locally heated. ハロゲンランプ又はレーザー光源による単結晶育成装置を使用して加熱することを特徴とする請求項1〜5のいずれかに記載のバルク状単結晶の製造方法。   The method for producing a bulk single crystal according to any one of claims 1 to 5, wherein heating is performed using a single crystal growth apparatus using a halogen lamp or a laser light source.
JP2007211727A 2007-08-15 2007-08-15 Process for producing bulk single crystal of alkali cobalt oxide Expired - Lifetime JP4911617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007211727A JP4911617B2 (en) 2007-08-15 2007-08-15 Process for producing bulk single crystal of alkali cobalt oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007211727A JP4911617B2 (en) 2007-08-15 2007-08-15 Process for producing bulk single crystal of alkali cobalt oxide

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002359147A Division JP4092398B2 (en) 2002-12-11 2002-12-11 Bulk single crystal of alkali cobalt oxide

Publications (2)

Publication Number Publication Date
JP2008019165A JP2008019165A (en) 2008-01-31
JP4911617B2 true JP4911617B2 (en) 2012-04-04

Family

ID=39075420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007211727A Expired - Lifetime JP4911617B2 (en) 2007-08-15 2007-08-15 Process for producing bulk single crystal of alkali cobalt oxide

Country Status (1)

Country Link
JP (1) JP4911617B2 (en)

Also Published As

Publication number Publication date
JP2008019165A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
KR102028362B1 (en) Method for producing garnet type oxide solid electrolyte
Allix et al. Highly transparent BaAl4O7 polycrystalline ceramic obtained by full crystallization from glass
Zhu et al. Hydrothermal synthesis of sodium niobate with controllable shape and structure
Drisko et al. Crystallization of hollow mesoporous silica nanoparticles
WO2016086425A1 (en) Nonlinear optical crystal material, method for preparation thereof, and application thereof
CN106796825B (en) Lithium-ion-conducting crystal and all-solid-state lithium-ion secondary battery
JP4092398B2 (en) Bulk single crystal of alkali cobalt oxide
JP5858410B2 (en) Single crystal of lithium ion conductive oxide, method for producing the same, and electrochemical device using the same as member
CN101979320B (en) Method for preparing Bi2SiO5 powder by molten salt growth method
CN110607556A (en) Crystal material, preparation and growth method thereof and application of crystal material in nonlinear optics
JP4911617B2 (en) Process for producing bulk single crystal of alkali cobalt oxide
WO2005054550A1 (en) Artificial corundum crystal
US20150244021A1 (en) Solid electrolyte single crystal having perovskite structure and method for producing the same
JP3867136B2 (en) Sodium cobalt oxide single crystal and method for producing the same
Xu et al. Enthalpies of formation of CdSxSe1–x solid solutions
WO2005078170A1 (en) Artificial corundum crystal
JPH09328395A (en) Cesium lithium borate crystal
JP3987925B2 (en) Method for producing multi-element transition metal complex oxide single crystal
JPH10114570A (en) Shape anisotropy ceramic powder and its production
JP4619946B2 (en) Borate crystal manufacturing method and laser oscillation apparatus
JP6718161B2 (en) Crystal material and manufacturing method thereof
JP2000044235A (en) Production of yttrium-aluminum multiple oxide
US20100207075A1 (en) Method for producing metal complex oxide powder
CN102732964B (en) Preparation method of millimeter-scale tubular R&#39;xR1-xAl3(BO3)4 crystals
WO2006001225A1 (en) Corundum crystal formed body

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120112

R150 Certificate of patent or registration of utility model

Ref document number: 4911617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term