WO2006001225A1 - Corundum crystal formed body - Google Patents

Corundum crystal formed body Download PDF

Info

Publication number
WO2006001225A1
WO2006001225A1 PCT/JP2005/011115 JP2005011115W WO2006001225A1 WO 2006001225 A1 WO2006001225 A1 WO 2006001225A1 JP 2005011115 W JP2005011115 W JP 2005011115W WO 2006001225 A1 WO2006001225 A1 WO 2006001225A1
Authority
WO
WIPO (PCT)
Prior art keywords
corundum crystal
corundum
flux
alumina
compound
Prior art date
Application number
PCT/JP2005/011115
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuya Teshima
Shuji Oishi
Original Assignee
Dai Nippon Printing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co., Ltd. filed Critical Dai Nippon Printing Co., Ltd.
Priority to JP2006528492A priority Critical patent/JPWO2006001225A1/en
Publication of WO2006001225A1 publication Critical patent/WO2006001225A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5072Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with oxides or hydroxides not covered by C04B41/5025
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/0025Compositions or ingredients of the compositions characterised by the crystal structure

Definitions

  • the present invention relates to a corundum crystal composition that can be used for, for example, a material for high hardness, a cutting material, a laser oscillation material, a standard material for measuring physical properties, jewelry, and high value-added daily necessities.
  • Corundum crystals are excellent in chemical resistance, wear resistance, and weather resistance, and show high electrical insulation even in high-temperature environments. Therefore, corundum crystals, instrument bearings, micro scalpels, optical switch elements, or laser oscillations are used. It is used for materials.
  • a flame melting method (Bernoulli method) in which crystal grains are grown while dropping a raw material powder of a corundum crystal in an oxygen and hydrogen flame, (2) corundum The raw material powder of the crystal is mixed with an appropriate flux and melted in a crucible, and the crystal is precipitated and grown while the solution is slowly cooled, or the solution is precipitated with a temperature gradient in the crucible and grown.
  • Non-Patent Document 1 and Non-Patent Document 2 a flux method in which crystals are precipitated and grown while the flux is evaporated.
  • the raw powder of corundum crystal is melted in a crucible, (4) A method of forming a raw powder of corundum crystals and then sintering it by heating at a high temperature for a long time in a hydrogen gas atmosphere (Patent Documents) (See 3) I can get lost.
  • the corundum crystal obtained by the above-described method can be stuck on the substrate, but the corundum crystal is poor in adhesion between the corundum crystal and the substrate, and the corundum crystal is easily peeled off. There is.
  • corundum crystals dark red corundum crystals to which chromium is added are generally called rubies. Since natural ruby is produced in a relatively small amount, corundum crystals that are close to natural rubies. There is a need for a method that allows the substrate to grow directly on the substrate.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7-277893
  • Patent Document 2 JP-A-6-199597
  • Patent Document 3 Japanese Patent Laid-Open No. 7-187760
  • Non-Special Reference 1 Elwell D., Man-made gemstones, Ellis Horwood Ltd., Chichester (197 9)
  • the present invention has been made in view of the above problems, and a corundum crystal formed body in which a corundum crystal is directly grown on a substrate, and the corundum crystal formed body can be easily and inexpensively manufactured.
  • the main purpose is to provide a simple manufacturing method.
  • the present invention provides a corundum crystal formed body comprising an alumina base material and a corundum crystal formed on the alumina base material.
  • corundum crystals are formed directly on the alumina base material, and the corundum crystals are grown directly on the alumina base material.
  • the adhesive strength between the alumina base material and the corundum crystal is strong, and it can be used for various applications.
  • the corundum crystal may be colorless.
  • a coloring component at least one element selected from the group force consisting of chromium, iron, titanium, nickel, vanadium and cobalt may be added.
  • the present invention is characterized in that the flux and the alumina base material are heated to form a corundum crystal on the alumina base material by a flattening evaporation method in which the crystal is precipitated and grown using the evaporation of the flux as a driving force.
  • a method for producing a corundum crystal formed body is provided.
  • the alumina base material becomes a solute, it is possible to grow a corundum crystal directly on the alumina base material, and the corundum has an extremely strong adhesive force between the alumina base material and the corundum crystal.
  • a crystal former can be produced.
  • corundum crystals may contain elements contained in the flux as impurities, and since they are close to natural corundum crystals, corundum crystals that are highly valuable as jewelry are formed.
  • the body can be manufactured. Furthermore, since the apparatus used in the flux evaporation method is simple and the manufacturing process is simple, a high value-added corundum crystal formed body can be provided at low cost.
  • the flux preferably contains a molybdenum compound.
  • the molybdenum compound is preferably molybdenum oxide or a compound that generates acid molybdenum by heating. Molybdenum compounds can be evaporated relatively easily and are therefore preferred as fluxes used in the flux evaporation method.
  • the flux may contain an evaporation inhibitor! /. This is because the flux evaporation rate is suppressed, and the generation of multinuclei and the crystal growth rate can be suppressed, so that high-quality corundum crystals can be obtained.
  • the evaporation inhibitor is an alkali metal compound.
  • the alkali metal compound is preferably an alkali metal oxide or a compound that generates an alkali metal oxide by heating.
  • the corundum crystal can be grown directly on the alumina base material using the alumina base material as a solute by the flux evaporation method, the adhesive strength between the alumina base material and the corundum crystal is strong. There is an effect.
  • a corundum crystal close to natural corundum crystals can be obtained, it has the effect of high value as a jewelry.
  • FIG. 1 is a schematic cross-sectional view showing an example of a corundum crystal formed body of the present invention.
  • FIG. 2 is a photograph showing an example of a cross section of the corundum crystal formed body of the present invention.
  • FIG. 3 is a photograph showing another example of a cross section of the corundum crystal formed body of the present invention.
  • FIG. 4 is a diffraction diagram showing an example of an X-ray diffraction pattern of a corundum crystal in the corundum crystal formed body of the present invention.
  • FIG. 5 is a process chart showing an example of a method for producing a corundum crystal formed body of the present invention.
  • the corundum crystal formed body of the present invention is formed on an alumina substrate and the alumina substrate.
  • FIG. 1 is a schematic cross-sectional view showing an example of a corundum crystal formed body of the present invention.
  • the corundum crystal formed body 1 of the present invention has an alumina base 2 and a corundum crystal 3 formed on the alumina base 2.
  • Fig. 2 and Fig. 3 show examples of photographs taken with a scanning electron microscope (manufactured by Hitachi, Ltd., S-5000) of a cross section of the corundum crystal formed body of the present invention.
  • the corundum crystal formed body of the present invention has nothing between the alumina substrate 2 and the corundum crystal 3, and is directly on the alumina substrate 2. Crystal 3 has grown. Therefore, the corundum crystal formed body of the present invention has an advantage that the adhesive strength between the alumina base material and the corundum crystal is different from that obtained by pasting the corundum crystal on the alumina base material, and is used for various applications. It is possible.
  • FIG. 3 is a photograph showing an example of a cross section of a corundum crystal formed body having a corundum crystal to which chromium is added as a coloring component.
  • the collandum crystal in the present invention is formed on an alumina substrate described later.
  • the corundum crystal has a random structure belonging to the trigonal system.
  • the cation (A1) regularly occupies 2Z3 in the hexacoordinate (octahedron) position of the lattice packed almost hexagonally close, and the AIO octahedron centered on the cation (A1).
  • the surface is shared in part and connected in the c-axis direction.
  • Corundum (Al 2 O 3) is the most stable of the alumina polymorphs.
  • Corundum crystals with a structure have a melting point of about 2050 ° C, high hardness (Mohs hardness 9), and excellent chemical resistance, wear resistance, and weather resistance. It also exhibits high electrical insulation even in high temperature environments. Because of these properties, corundum crystals are used in instrument bearings, micro knives, optical switch elements, laser oscillation materials, and the like. In addition, a part of A1 of corundum (Al 2 O 3) is replaced with Cr, Ti, Fe, etc. These crystals are generally called rubies and sapphires and are used as jewelry.
  • the corundum crystal used in the present invention may be colorless, or may be selected as a coloring component from a group force consisting of chromium, iron, titanium, nickel, vanadium and cobalt. At least one element is added. It may be.
  • the combination of elements of the coloring component is not particularly limited, for example, chromium only; nickel only; vanadium only; cobalt only; iron and titanium; nickel , Titanium and iron; chromium and nickel; chromium, nickel and iron; combinations of chromium, titanium and iron, and the like.
  • corundum crystals have different hues depending on the type of coloring component such as chromium, iron or titanium.
  • coloring component such as chromium, iron or titanium.
  • the color is colorless, the color added with nickel is yellow, the vanadium added is alexandrite color, the cobalt is green, iron and titanium. Blue added, nickel added, titanium and iron added yellow-green, chromium added dark red, red or pink, chromium and nickel, or chromium, nickel and iron added The one with orange is added, and the one with chrome, titanium and iron added becomes purple.
  • a corundum crystal having the above hue can be obtained by combining elements as described above.
  • a dark red corundum crystal to which chromium is added is called ruby
  • corundum crystals other than the red corundum crystal of the chrome-added basket are called sapphire.
  • Natural ruby has a high rare value, and in the present invention, by adding chrome to the corundum crystal, a corundum crystal formed body having a red corundum crystal close to the natural corundum crystal can be obtained. Therefore, a corundum crystal formed body with high added value can be obtained.
  • EPMA electron beam microanalyzer
  • XPS X-ray photoelectron spectroscopy
  • EDX energy dispersive X-ray analysis
  • the content of the element in the corundum crystal varies depending on the type of element. As long as the amount of corundum crystals to be colored is contained, it may be a very small amount.
  • the composition of the corundum crystal is not limited to the stoichiometric one, but may be deviated from the stoichiometric composition.
  • the corundum crystal formed body of the present invention is produced by a flux evaporation method, which is preferably produced by a flux evaporation method as described later, the element contained in the flux is contained as an impurity in the corundum crystal.
  • the content of impurities in the corundum crystal is usually a very small amount of lmol% or less.
  • the corundum crystal can be identified using an X-ray diffractometer.
  • c 12.993A
  • JCPDS No. 46-1212 An example of an X-ray diffraction pattern of a corundum crystal obtained by adding chromium as a coloring component in the present invention is shown in FIG. 4 (a).
  • Figure 4 (a) shows the X-ray diffraction pattern measured by grinding to identify corundum crystals.
  • Fig. 4 (b) is the X-ray diffraction pattern of CPDS No. 46-1212.
  • the X-ray diffraction patterns of Figs. 4 (a) and 4 (b) were measured using CuKo; lines.
  • the corundum crystal formed body is preferably produced by a flux evaporation method! /.
  • a corundum crystal can be formed using an alumina base material described later as a solute, and a corundum crystal can be formed directly on the alumina base material.
  • corundum crystals obtained by the flux evaporation method may contain elements contained in the flux as impurities, they can be made into crystals containing impurities in the same way as natural corundum crystals. This is because it has the advantage of high value.
  • the equipment used in the flux evaporation method is simple as long as it has a high-temperature furnace, and corundum crystals can be obtained easily.
  • corundum crystal forming method such as a flux evaporation method is described in the section “B. Method for manufacturing corundum crystal formed body”, which will be described later.
  • the corundum crystal may intentionally contain impurities. As described above, by containing impurities, it can be made close to nature, and it has a great value as a jewelery product.
  • the corundum crystal may be formed on the entire surface of an alumina base material to be described later, or may be formed on a part thereof. The formation position of such a corundum crystal is appropriately selected according to the use of the corundum crystal formed body of the present invention.
  • an alumina substrate may be used alone, or an alumina substrate and a substrate may be laminated and used.
  • Such an alumina base material is not particularly limited as long as it is mainly composed of alumina, but the content of impurities with respect to alumina in the alumina base material is 5% or less. Is preferable, and it is preferably 1% or less. If the content of impurities relative to alumina is too high, there is a high possibility that impurities will be eluted when corundum crystals are formed, and this may lead to the possibility that crystallization of corundum crystals may be hindered. .
  • Examples of such impurities include general ones such as SiO,
  • the base material to be used is not particularly limited as long as it can form an alumina base material and does not adversely affect the formation of corundum crystals. Although not limited, it is preferable that it can withstand the maximum holding temperature described in the heating / evaporation process section of “B. Corundum crystal forming body” described later.
  • Examples of such a substrate include platinum, sapphire, alumina silica, silicon carbide, and alumina. Since the alumina substrate is not required to have a low impurity content and high purity, unlike the alumina substrate, it may be of low purity.
  • the alumina substrate may be partially formed or may be formed on the entire surface of the substrate, but may be partially formed.
  • platinum is used as the substrate. It is preferable to use it.
  • a substrate made of alumina is partially formed on a substrate other than platinum, when forming a corundum crystal, part of the substrate may elute and adversely affect the formation of the corundum crystal. Because. In addition, platinum is considered to have no effect on the formation of corundum crystals with low reactivity with alumina.
  • an alumina substrate is partially formed on a platinum substrate, corundum crystals are formed on the alumina substrate, and on the platinum substrate on which no alumina substrate is formed.
  • corundum crystal formed body in which a corundum crystal is formed only in a desired portion can be obtained. Furthermore, this is because a corundum crystal formed body having a corundum crystal formed in a pattern can be obtained by forming an alumina substrate in a pattern on a platinum substrate.
  • Examples of the method for forming the alumina substrate on the substrate include a physical vapor phase method such as a sputtering method and an electron beam (EB) method, an electrolysis method, and a compression molding method.
  • a physical vapor phase method such as a sputtering method and an electron beam (EB) method
  • EB electron beam
  • Examples of the method for forming the platinum layer include general physical vapor phase methods such as sputtering, ion plating, and vacuum deposition.
  • the alumina base material becomes a raw material for the corundum crystal, and the corundum crystal is formed by elution of the alumina from the alumina base material. Therefore, the thickness and size of the alumina base material can maintain the shape of the alumina base material even after the alumina is eluted from the alumina base material when the corundum crystal is formed using the flux evaporation method.
  • the thickness and size are not particularly limited, and may be appropriately selected according to the use of the corundum crystal formed body of the present invention.
  • the shape of the alumina substrate used in the present invention is not particularly limited, and is appropriately selected depending on the use of the corundum crystal formed body.
  • containers such as crucibles, plate shapes, rod shapes, wire shapes, ring shapes, cube shapes, uneven shapes, spherical shapes, three-dimensional shapes, cone shapes (cones, pyramids, etc.), column shapes (columns, prisms, etc.), and the like can be mentioned.
  • the inside of the mesh nail may be hollow.
  • the method for producing a corundum crystal formed body of the present invention forms a corundum crystal on an alumina base material by heating the flux and the alumina base material by a flux evaporation method in which the crystal is precipitated and grown using the evaporation of the flux as a driving force. It is characterized by this.
  • the flux method is a kind of solution method and is also called a flux method.
  • an appropriate salt or oxide that becomes a flux and a raw material that becomes a solute are mixed, heated and melted, and then the solution is gradually cooled or the flux is evaporated. Create a supersaturated state and grow crystals. Depending on the difference in formation method of this supersaturated state, it is roughly divided into a flux evaporation method, a flux slow cooling method and a flux temperature gradient method.
  • the present invention uses the flux evaporation method among the above.
  • the flux evaporation method is a method that promotes nucleation and crystal growth using evaporation of flux as a driving force.
  • Fig. 5 (a) an alumina substrate filled with a sample 4 containing flux is used.
  • the crucible 2 is placed in the high-temperature furnace 12, heated to evaporate the flux in the sample 4, and the corundum crystal 3 is deposited and grown on the inner wall of the crucible, which is the alumina substrate 2.
  • 5 (b)) corundum crystal formed body 1 is obtained (Fig. 5 (c)).
  • the mechanism by which corundum crystals are formed on the alumina substrate is considered as follows.
  • the alumina base material becomes a solute, and the surface force of the alumina base material gradually elutes due to the heating of the flux and the alumina base material, and supersaturation occurs at the interface between the portion of the alumina base material where the alumina is dissolved and the flux that evaporates. Since a state is created, it is assumed that corundum crystals precipitate on the surface of the alumina substrate and grow.
  • corundum crystals are considered to precipitate and grow on the portion of the alumina base material where the alumina elutes and the flux that evaporates.
  • the portion of the alumina base material 2 where the alumina is eluted during the formation of the corundum crystal and the sample 4 evaporates. Since the corundum crystal 3 is formed at the portion that becomes the interface A with the flux, it is considered that a corundum crystal formed body 1 as shown in FIG. 5 (c) is obtained.
  • the present invention it is possible to grow corundum crystals directly on an alumina substrate by using the alumina substrate as a solute. Also, conventional flux Compared with the melting of the alumina powder used in the process, the rate at which the alumina substrate strength alumina elutes is slow, so the generation of polynuclears and the crystal growth rate can be suppressed, and high-quality corundum crystals can be produced. Obtainable. Furthermore, since the corundum crystals are precipitated and grown as described above using the alumina base material as a solute as described above, there is an advantage that a corundum crystal formed body having a very strong adhesive force between the alumina base material and the corundum crystals is obtained.
  • a crucible made of alumina that can be used as an alumina base material is alumina. It is a compression-molded powder of V and has a certain degree of heat resistance, so that a large amount of alumina does not elute easily. Therefore, in the present invention, the amount of elution of alumina from the alumina base material is maintained on the alumina base material while maintaining the shape of the alumina base material so as not to change the shape of the alumina base material. Collandum crystals can be formed.
  • the corundum crystals are formed even if the amount of alumina eluted from the alumina base material is small, the amount of alumina eluted may be small.
  • the corundum crystal may contain an element contained in the flux as an impurity, and a product close to natural corundum crystal is obtained. It is possible to produce a corundum crystal formed body having a high value.
  • the apparatus used for the flux evaporation method is simple if it has a high-temperature furnace 12, and as described above, the flux is evaporated to precipitate and grow crystals. Since a corundum crystal can be obtained, the production process is simple, and a high-value-added corundum crystal can be produced at low cost.
  • the method for producing a corundum crystal formed body of the present invention comprises a sample preparation step for preparing a sample containing a flux, heating the sample and the alumina substrate, and further maintaining the temperature at a high temperature to evaporate the flux.
  • a heating 'evaporation step for depositing and growing corundum crystals on an alumina substrate, a cooling step for cooling the sample heated in the heating'evaporation step, and a sample remaining after the caloric heat-evaporation step and the cooling step.
  • a separation step of separating the collandum crystal-former by dissolving them in a suitable medium will be described.
  • a sample preparation step for preparing a sample containing a flux is first performed.
  • the sample used in the present invention is not particularly limited as long as it contains a flux, and may contain a force coloring additive.
  • sample strength S flux is contained, colorless corundum crystals can be formed, and when flux and coloring additives are contained, colored corundum crystals can be formed.
  • a chromium compound is used as an additive for coloring and the sample contains a flux and a chromium compound, a red corundum crystal can be formed.
  • the flux used in the present invention is not particularly limited as long as it evaporates in a heating / evaporation process described later, and dissolves in an appropriate medium in a separation process described later. It is preferable to do. Molybdenum compounds can be evaporated relatively easily, and therefore are suitable as a flux used in the flux evaporation method.
  • molybdenum oxide or a compound that generates acid molybdenum by heating in a heating and evaporation step described later can be used.
  • the compound that generates molybdenum oxide by heating include molybdenum carbonate, molybdenum sulfate, molybdenum nitrate, molybdenum hydroxide, and hydrates thereof.
  • the flux may contain an evaporation inhibitor! /. This is because the evaporation rate of the flux can be suppressed and the generation of multinuclei and the crystal growth rate can be suppressed, so that a high-quality corundum crystal can be obtained. Further, as described above, the corundum crystal is precipitated and grows by forming a supersaturated state at the interface between the portion where the alumina base strength alumina is eluted and the flux that evaporates.
  • the evaporation rate of the flux is too high, even if a corundum crystal is deposited in a certain part of the alumina base material, it will not be in contact with the flux before it grows, and the corundum crystal may not grow any more.
  • by suppressing the evaporation rate of the flux it is possible to lengthen the time during which the alumina-eluting portion of the alumina base material is in contact with the flux. Crystals can be formed.
  • the evaporation rate of the flux is faster and the nucleation rate is faster than when the flux contains the evaporation inhibitor.
  • a relatively thin corundum crystal can be formed on the substrate.
  • the evaporation inhibitor is not particularly limited as long as it can suppress the evaporation of the flux and can be dissolved in an appropriate medium in the separation step described later. Is preferably used. This is because by using an alkali metal compound, evaporation of the flux can be effectively suppressed, so that a high-quality and thick corundum crystal can be formed on the alumina substrate.
  • an alkali metal compound an alkali metal oxide, or a compound that generates an alkali metal oxide by heating in a heating and evaporation step described later can be used.
  • the compound that generates an alkali metal oxide by heating include alkali metal carbonate, alkali metal sulfate, alkali metal nitrate, alkali metal hydroxide, and hydrates thereof.
  • the content of the alkali metal compound is 40 mol% or less, particularly 30 mol% or less, particularly 20 mol% or less with respect to the total number of moles of alkali metal atoms of the alkali metal compound. It is preferable to contain so that it may become. In the present invention, since nucleation and crystal growth are promoted by the evaporation of flux as driving force, crystallization may be hindered if the content of alkali metal compound is too large. [0071] (2) Additive for coloring
  • the coloring additive used in the present invention is different depending on the coloring component added to the corundum crystal as described in the above-mentioned section “A. Corundum crystal forming body”, and is appropriately selected and used.
  • a coloring additive is not necessary.
  • iron and titanium are added as coloring components!
  • iron compounds and titanium compounds are used as coloring additives.
  • chromium compounds and nickel compounds are used as coloring additives.
  • corundum crystals of iron and titanium-added calenders and corundum crystals of chromium-added calenders.
  • iron and titanium are added as coloring components to form corundum crystals
  • iron compounds and titanium compounds are used as coloring additives.
  • the iron compound is not particularly limited as long as it is melted in the heating and evaporation step described later, but is preferably a compound that generates iron ions by heating.
  • the compound that generates iron ions by heating are iron oxide, iron hydroxide, iron sulfate, iron carbonate, iron nitrate, iron chloride, iron citrate, iron phosphate, iron fluoride, iron iodide, and sulfur. Examples thereof include iron acids and hydrates thereof. Among them, it is preferable to use acid pig iron in the present invention.
  • the iron valence in the iron oxide may be bivalent or trivalent, and bivalent and trivalent iron may be mixed.
  • the titanium compound is not particularly limited as long as it can be melted in the heating and evaporation process described later, but is preferably a compound that generates titanium ions by heating.
  • the compound that generates titanium ions by the above heating include titanium oxide, nitrogen Titanium chloride, titanium tetraisopropoxide, titanium oxalate, titanium sulfate, titanium bromide, titanium chloride, and hydrates thereof. Among them, it is preferable to use acid titanium in the present invention.
  • examples of the valence of titanium in the above-mentioned titanium oxide include divalent, trivalent and tetravalent.
  • the valences of titanium may be single or mixed.
  • the addition amount of the iron compound and the titanium compound is not particularly limited as long as the addition amount is sufficient to color the corundum crystals! /.
  • a chromium compound is used as the coloring additive.
  • the chromium compound is not particularly limited as long as it can be melted in the heating and evaporation step described later, but is preferably a compound that generates chromium ions by heating.
  • the compound that generates chromium ions by the above heating include acid chrome, chromium hydroxide, chromium sulfate, chromium carbonate, chromium nitrate, and hydrates thereof. Among them, it is preferable to use acid-chromium for the present invention.
  • the amount of the chromium compound to be added is not particularly limited as long as the amount of corundum crystals that can be colored is added. /.
  • a nickel compound, vanadium compound or cobalt compound when forming a corundum crystal to which nickel, vanadium or cobalt is added as a coloring component, a nickel compound, vanadium compound or cobalt compound may be used as a coloring additive.
  • the nickel-rich compound is not particularly limited as long as it can be melted in the heating and evaporation step described later, but is preferably a compound that generates nickel ions by heating.
  • the compound that generates nickel ions by the heating include nickel acetate, nickel carbonate, nickel chloride, nickel hydroxide, nickel iodide, nickel nitrate, nickel oxide, nickel sulfamate, nickel sulfate, and hydrates thereof. Etc.
  • the nickel valence in the above-mentioned nickel oxide may be bivalent or trivalent, or it may be a mixture of bivalent and trivalent nickel.
  • the vanadium compound is not particularly limited as long as it melts in the heating and evaporation step described later, but is preferably a compound that generates vanadium ions by heating.
  • the compound that generates vanadium ions by the above heating include vanadium carbide, vanadium chloride, vanadium oxide, vanadium oxide sulfate, vanadium oxide oxide, and hydrates thereof.
  • vanadium oxide it is preferable to use vanadium oxide.
  • the valence of vanadium in the above acid vanadium includes trivalent, tetravalent and pentavalent.
  • the valences of vanadium may be single or mixed.
  • the cobalt compound is not particularly limited as long as it is melted in a heating and evaporation step described later, but a compound that generates a corona ion by heating is preferable.
  • the compound that generates cobalt ions by the heating include cobalt bromide, cobalt chloride, cobalt citrate, cobalt fluoride, cobalt dalconate, cobalt hydroxide, cobalt iodide, cobalt nitrate, cobalt oxalate, Examples include cobalt oxide, cobalt phosphate, cobalt stearate, cobalt sulfate, cobalt sulfate, and hydrates thereof.
  • cobalt citrate it is preferable to use cobalt citrate, cobalt fluoride, cobalt dalconate, cobalt hydroxide, cobalt iodide, cobalt oxalate, cobalt oxide, cobalt phosphate, and cobalt stearate.
  • cobalt oxide, cobalt hydroxide, cobalt stearate, or cobalt phosphate it is preferable to use cobalt oxide, cobalt hydroxide, cobalt stearate, or cobalt phosphate.
  • the cobalt valence in the above cobalt toy compound may be bivalent or trivalent, and both divalent and trivalent cobalt may be mixed! / /.
  • the amount of the nickel compound, vanadium compound, or cobalt compound added is not particularly limited as long as it is added in an amount sufficient to color the corundum crystals.
  • a corundum crystal is formed in which chromium as a coloring component and at least one element selected from the group force consisting of iron, titanium, nickel, vanadium and cobalt are added.
  • an iron compound, a titanium compound, a nickel compound, a vanadium compound, or a cobalt compound may be used.
  • the addition amount of the iron compound, titanium compound, nickel compound, vanadium compound, or cobalt compound described above is not particularly limited as long as an amount sufficient to color the corundum crystal is added. Not something! /.
  • the above-mentioned iron compound, titanium compound, chromium compound, nickel compound, vanadium compound or cobalt compound can be used in various combinations, and the mixing ratio of these compounds is as follows. It is appropriately selected according to the use of the corundum crystal formed body.
  • the flux and coloring additives are usually stirred.
  • the stirring method is not particularly limited as long as it is a method capable of stirring uniformly.
  • a method of sufficiently stirring the flux and coloring additive in a mortar can be mentioned.
  • the sample may contain impurities. This makes it possible to obtain crystals that are close to natural V, have high value as jewelry, and can form corundum crystals.
  • the sample may contain an aluminum compound!
  • the alumina base material becomes a solute, and the surface force of the alumina elutes to form a collandum crystal.
  • the aluminum compound is further included as the solute. You can also.
  • the content of the aluminum compound is appropriately determined in consideration of the balance between the elution of alumina from the alumina base material and the melting of the aluminum compound so as not to prevent the precipitation and growth of corundum crystals on the alumina base material. Prepared. For example, if the content of the aluminum compound is too large, crystals may grow with the aluminum compound serving as a nucleus, and it may be difficult to form a corundum crystal on the alumina substrate.
  • alumina as such an aluminum compound, alumina (acid aluminum) or a compound that generates alumina by heating in a heating / evaporation process described later can be used.
  • the compound that forms alumina by the above heating include hydroxyaluminum aluminum, aluminum sulfate, aluminum carbonate, aluminum nitrate, and hydrates thereof. In the present invention, among these, it is preferable to use alumina.
  • the heating / evaporation step in the present invention is a step of heating the sample and the alumina base material, further evaporating the flux by maintaining the temperature at a high temperature, and depositing and growing corundum crystals on the alumina base material.
  • the alumina base material 2 is filled with the sample 4 containing the flux as shown in FIG. 5 (a). Cover the crucible with the lid 13 and place it in the high temperature furnace 12.
  • the flux in sample 4 evaporates, and the crucible force that is alumina substrate 2 also elutes alumina, driving the evaporation of this flux.
  • the precipitation and growth of collandum crystal 3 is promoted (Fig. 5 (b)).
  • a corundum crystal formed body 1 in which the collandum crystal 3 is formed on the alumina substrate 2 is produced (FIG. 5 (c)).
  • the maximum holding temperature in this step is not particularly limited as long as it is a temperature at which the flux evaporates, the coloring additive melts, and the alumina substrate strength alumina elutes. 950 o C ⁇ 1300 o C, Chudechi 975 o C ⁇ 1250 o C, it is preferred that within the limits of the special [this 1000 o C ⁇ 1200 o C.
  • the rate of temperature rise when setting the maximum holding temperature a sample containing a flux and an additive for coloring, etc., and a rate capable of uniformly heating the alumina substrate are particularly effective. It is not limited. Further, the holding time at the maximum holding temperature is not particularly limited as long as it is a time during which the corundum crystal can be sufficiently grown.
  • the alumina base material is the same as that described in the above-mentioned section "A. Corundum crystal formed body", description thereof is omitted here.
  • the alumina base material is a container such as a crucible in which the sample is filled, and the sample may be placed in a container that is the alumina base material. It may be placed inside.
  • the container used is not particularly limited as long as it can withstand the above-mentioned maximum holding temperature and has low reactivity with the sample. Use a container that also has strength.
  • the alumina base material and the sample are mutually compatible. It arrange
  • the alumina base material becomes a solute, and the alumina also gradually elutes the surface force of the alumina base material by heating. Since a supersaturated state is created at the interface, it is considered that corundum crystals precipitate on the surface of the alumina substrate. From this, for example, when the crucible, which is the alumina substrate 2 as shown in FIG. 5 (a), and the sample 4 containing the flux are heated, the flux evaporates, so FIG. 5 (b) As shown, the upper side force of the inner wall of the crucible which is the alumina base material 2 is assumed to gradually form the corundum crystal 3.
  • the cooling step in the present invention is a step of cooling the sample or the like heated in the heating and evaporation step.
  • the crucible which is the alumina base material 2 filled with the sample 4 containing the flux is taken out from the high temperature furnace 12 as shown in FIG. 5 (a) and cooled to room temperature.
  • the cooling method include a method of allowing the crucible to cool as long as it can be cooled to room temperature.
  • the separation step in the present invention is a step of separating the corundum crystal formed body by dissolving the sample remaining after the heating / evaporation step and the cooling step in an appropriate medium.
  • a sample such as a flux remains after the cooling step such that the flux is not completely evaporated in the heating / evaporating step, or the evaporation inhibitor remains undissolved.
  • the corundum crystal formed body can be easily separated by dissolving these remaining samples in an appropriate medium.
  • the medium used for dissolving the remaining sample is not particularly limited as long as it can dissolve the remaining sample other than the corundum crystal and the alumina base material without affecting the corundum crystal.
  • the medium used for dissolving the remaining sample is not particularly limited as long as it can dissolve the remaining sample other than the corundum crystal and the alumina base material without affecting the corundum crystal.
  • cold water, hot water, hot water and the like can be mentioned.
  • corundum crystal formed by the method for producing a corundum crystal formed body of the present invention is the same as that described in the above-mentioned section "A. Corundum crystal formed body”. Is omitted.
  • an alumina substrate is partially formed on a white metal substrate as described in the above-mentioned section “A. Corundum crystal formed body”
  • the alumina substrate is formed.
  • Corundum crystals may also be formed on an unplated platinum substrate.
  • an acid melting treatment is performed using an acid flux such as potassium hydrogen sulfate.
  • the corundum crystals formed on the platinum substrate can be peeled off.
  • Corundum crystals formed on the alumina base material are not peeled off by the acid melting treatment. Thereby, a corundum crystal formed body in which a corundum crystal is formed only in a desired portion can be obtained.
  • the acid fusion is performed. Corundum crystals formed on the platinum layer by the treatment can be peeled off.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an example, and has substantially the same configuration as the technical idea described in the claims of the present invention, and has the same operational effects or equivalents thereof. Anything is included in the technical scope of the present invention.
  • Iron oxide (0.004 g), titanium oxide (0.004 g), molybdenum oxide (28.5 g) and lithium carbonate (0.5 g) were weighed and placed in a mortar.
  • This mixed sample was dry mixed in a mortar for about 20 minutes. Thereafter, the mixed sample was filled in an alumina crucible (purity 99.6%), covered, and placed in an electric furnace. The electric furnace was heated to 1100 ° C at a rate of 45 ° C per hour and held at that temperature for 5 hours. After the holding, the alumina crucible was taken out from the electric furnace and allowed to cool to room temperature.
  • a photograph of the cross section of the obtained corundum crystal formed body is shown in FIG. As shown in FIG. 2, a corundum crystal 3 having a thickness of about 150 / zm was formed on the inner wall of the alumina crucible 2.
  • Acid chrome (0.008 g), molybdenum oxide (28.5 g) and lithium carbonate (0.5 g) were weighed and placed in a mortar.
  • This mixed sample was dry mixed in a mortar for about 20 minutes. Thereafter, the mixed sample was filled in an alumina crucible (purity 99.6%), covered, and placed in an electric furnace. The electric furnace was heated to 1100 ° C at a rate of 45 ° C per hour and held at that temperature for 5 hours. After the holding, the alumina crucible was taken out from the electric furnace and allowed to cool to room temperature.
  • Fig. 2 shows a photograph of the cross section of the resulting corundum crystal formed body. As shown in FIG. 3, a red corundum crystal 3 having a thickness of about 150 m was formed on the inner wall of the alumina crucible 2.

Abstract

Disclosed is a corundum crystal formed body wherein a corundum crystal is directly grown on a base. Also disclosed is a method for easily producing such a corundum crystal formed body at low cost. Specifically disclosed is a corundum crystal formed body which is characterized by comprising an alumina base and a corundum crystal formed on the alumina base.

Description

明 細 書  Specification
コランダム結晶形成体  Corundum crystal former
技術分野  Technical field
[0001] 本発明は、例えば高硬度用材料、切削材料、レーザー発振材料、物性測定用標 準材料、宝飾品および高付加価値日用品等に用いることが可能なコランダム結晶形 成体に関するものである。  The present invention relates to a corundum crystal composition that can be used for, for example, a material for high hardness, a cutting material, a laser oscillation material, a standard material for measuring physical properties, jewelry, and high value-added daily necessities.
背景技術  Background art
[0002] コランダム結晶は、耐薬品性、耐摩耗性および耐候性に優れており、高温環境下 においても高い電気絶縁性を示すことから、計器用軸受、マイクロメス、光スィッチ素 子またはレーザー発振材料等に用いられている。  [0002] Corundum crystals are excellent in chemical resistance, wear resistance, and weather resistance, and show high electrical insulation even in high-temperature environments. Therefore, corundum crystals, instrument bearings, micro scalpels, optical switch elements, or laser oscillations are used. It is used for materials.
[0003] このようなコランダム結晶の製造方法としては、(1)酸素および水素炎中にコランダ ム結晶の原料粉末を落下させながら結晶粒を成長させる火炎溶融法 (ベルヌーィ法 )、(2)コランダム結晶の原料粉末を適当なフラックスに混合して坩堝で溶融し、溶液 を徐冷しながら結晶を析出'成長させる、または溶液を坩堝の中で温度勾配を付けな 力 Sら結晶を析出'成長させる、あるいはフラックスを蒸発させながら結晶を析出'成長 させるフラックス法 (非特許文献 1、非特許文献 2参照)、(3)コランダム結晶の原料粉 末を坩堝で溶融し、融液カゝら結晶を引き上げるチヨクラルスキー法 (特許文献 1、特許 文献 2参照)、(4)コランダム結晶の原料粉末を成形した後、水素ガス雰囲気中、高 温で長時間加熱して焼結する方法 (特許文献 3参照)等が挙げられる。  [0003] As a method for producing such a corundum crystal, (1) a flame melting method (Bernoulli method) in which crystal grains are grown while dropping a raw material powder of a corundum crystal in an oxygen and hydrogen flame, (2) corundum The raw material powder of the crystal is mixed with an appropriate flux and melted in a crucible, and the crystal is precipitated and grown while the solution is slowly cooled, or the solution is precipitated with a temperature gradient in the crucible and grown. Or a flux method in which crystals are precipitated and grown while the flux is evaporated (see Non-Patent Document 1 and Non-Patent Document 2), (3) The raw powder of corundum crystal is melted in a crucible, (4) A method of forming a raw powder of corundum crystals and then sintering it by heating at a high temperature for a long time in a hydrogen gas atmosphere (Patent Documents) (See 3) I can get lost.
[0004] し力しながら、これらの方法は、主にコランダム結晶自体を製造すること目的に行わ れているものであり、基材上に直接コランダム結晶を成長させる試みはほとんど行わ れて 、な 、のが現状である。  [0004] However, these methods are mainly performed for the purpose of producing the corundum crystal itself, and almost no attempt has been made to grow the corundum crystal directly on the substrate. ,is the current situation.
[0005] 例えば、上記(3)のチヨクラルスキー法では、純度の高い結晶を製造することが可 能であるため、得られたコランダム結晶はレーザー発振材料等に好適に用いられて いる。この方法では、基材上に種結晶を固定し、種結晶を核として基材上にコランダ ム結晶を成長させることは可能であるが、基材上に直接コランダム結晶を成長させる ことは困難である。 [0006] また、上記(1)の火炎溶融法、および上記 (4)の成形後焼結する方法にぉ 、ても、 基材上に直接コランダム結晶を成長させることは困難である。 [0005] For example, in the Chiyoklarsky method of (3) above, it is possible to produce crystals with high purity, and thus the obtained corundum crystals are suitably used for laser oscillation materials and the like. In this method, it is possible to fix a seed crystal on a substrate and grow a corundum crystal on the substrate using the seed crystal as a nucleus, but it is difficult to grow a corundum crystal directly on the substrate. is there. [0006] Although it is difficult to grow corundum crystals directly on a substrate, the flame melting method of (1) and the method of sintering after molding of (4) above.
[0007] 一方、上記(2)のフラックス法では、坩堝の壁面にコランダム結晶が偶発的に成長 する場合が想定されるため、基材上に直接コランダム結晶を成長させることも期待で きるが、このような場合、基材の一部にコランダム結晶が成長したとしても、所望の部 分にコランダム結晶を形成することは非常に困難である。 [0007] On the other hand, in the flux method (2) above, it is assumed that a corundum crystal grows accidentally on the wall surface of the crucible. Therefore, it can be expected that the corundum crystal is directly grown on the substrate. In such a case, even if the corundum crystal grows on a part of the substrate, it is very difficult to form the corundum crystal in a desired part.
[0008] さらに、上述した方法により得られたコランダム結晶を基材上に貼付することも可能 であるが、コランダム結晶と基材との密着性が悪ぐコランダム結晶の剥離が生じやす いという問題がある。 [0008] Furthermore, the corundum crystal obtained by the above-described method can be stuck on the substrate, but the corundum crystal is poor in adhesion between the corundum crystal and the substrate, and the corundum crystal is easily peeled off. There is.
[0009] また、コランダム結晶の中でも、クロムが添加された濃赤色のコランダム結晶は一般 にルビーと呼ばれている力 天然ルビーの産出量は比較的少ないことから、特に天 然ルビーに近いコランダム結晶を基材上に直接成長させることが可能な方法が求め られている。  [0009] Among corundum crystals, dark red corundum crystals to which chromium is added are generally called rubies. Since natural ruby is produced in a relatively small amount, corundum crystals that are close to natural rubies. There is a need for a method that allows the substrate to grow directly on the substrate.
[0010] 特許文献 1 :特開平 7— 277893号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 7-277893
特許文献 2:特開平 6— 199597号公報  Patent Document 2: JP-A-6-199597
特許文献 3 :特開平 7— 187760号公報  Patent Document 3: Japanese Patent Laid-Open No. 7-187760
非特干文献 1: Elwell D., Man-made gemstones, Ellis Horwood Ltd., Chichester (197 9)  Non-Special Reference 1: Elwell D., Man-made gemstones, Ellis Horwood Ltd., Chichester (197 9)
非特言午文献 2 : Elwell D., Scheel H. J., Crystal growth from high-temperature solutio ns, Academic Press, London (1975)  Non-Special Terms 2: Elwell D., Scheel H. J., Crystal growth from high-temperature solutio ns, Academic Press, London (1975)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] 本発明は、上記問題点に鑑みてなされたものであり、基材上に直接コランダム結晶 が成長したコランダム結晶形成体、およびこのコランダム結晶形成体を容易に安価に 製造することが可能な製造方法を提供することを主目的とするものである。  [0011] The present invention has been made in view of the above problems, and a corundum crystal formed body in which a corundum crystal is directly grown on a substrate, and the corundum crystal formed body can be easily and inexpensively manufactured. The main purpose is to provide a simple manufacturing method.
課題を解決するための手段  Means for solving the problem
[0012] 上記目的を達成するために、本発明は、アルミナ基材と、上記アルミナ基材上に形 成されたコランダム結晶とを有することを特徴とするコランダム結晶形成体を提供する [0013] 本発明のコランダム結晶形成体は、アルミナ基材上に直接コランダム結晶が形成さ れており、アルミナ基材上に直接コランダム結晶を成長させたものであるので、アルミ ナ基材上にコランダム結晶を貼付したものとは異なりアルミナ基材とコランダム結晶と の接着力が強 、と 、う利点を有し、種々の用途に用いることが可能である。 In order to achieve the above object, the present invention provides a corundum crystal formed body comprising an alumina base material and a corundum crystal formed on the alumina base material. [0013] In the corundum crystal formed body of the present invention, corundum crystals are formed directly on the alumina base material, and the corundum crystals are grown directly on the alumina base material. Unlike the case where the corundum crystal is pasted, the adhesive strength between the alumina base material and the corundum crystal is strong, and it can be used for various applications.
[0014] 上記発明においては、上記コランダム結晶は無色であってもよい。あるいは、上記 コランダム結晶中に、着色成分としてクロム、鉄、チタン、ニッケル、バナジウムおよび コバルトからなる群力も選択される少なくとも 1種の元素が添加されていてもよい。  [0014] In the above invention, the corundum crystal may be colorless. Alternatively, in the corundum crystal, as a coloring component, at least one element selected from the group force consisting of chromium, iron, titanium, nickel, vanadium and cobalt may be added.
[0015] また本発明は、フラックスの蒸発を駆動力として結晶を析出および成長させるフラッ タス蒸発法により、フラックスおよびアルミナ基材を加熱してアルミナ基材上にコラン ダム結晶を形成することを特徴とするコランダム結晶形成体の製造方法を提供する。  [0015] Further, the present invention is characterized in that the flux and the alumina base material are heated to form a corundum crystal on the alumina base material by a flattening evaporation method in which the crystal is precipitated and grown using the evaporation of the flux as a driving force. A method for producing a corundum crystal formed body is provided.
[0016] 本発明においては、アルミナ基材が溶質となるので、アルミナ基材上に直接コラン ダム結晶を成長させることが可能であり、アルミナ基材とコランダム結晶との接着力が 非常に強いコランダム結晶形成体を製造することができる。また、フラックス蒸発法で は、コランダム結晶がフラックス中に含まれる元素を不純物として含有する場合があり 、天然のコランダム結晶に近いものが得られるため、宝飾品等としての価値が高いコ ランダム結晶形成体を製造することができる。さらに、フラックス蒸発法にて用いる装 置は単純であり、製造工程が簡便であることから、安価に高付加価値のコランダム結 晶形成体を提供することができる。  In the present invention, since the alumina base material becomes a solute, it is possible to grow a corundum crystal directly on the alumina base material, and the corundum has an extremely strong adhesive force between the alumina base material and the corundum crystal. A crystal former can be produced. In addition, in the flux evaporation method, corundum crystals may contain elements contained in the flux as impurities, and since they are close to natural corundum crystals, corundum crystals that are highly valuable as jewelry are formed. The body can be manufactured. Furthermore, since the apparatus used in the flux evaporation method is simple and the manufacturing process is simple, a high value-added corundum crystal formed body can be provided at low cost.
[0017] 上記発明においては、上記フラックスは、モリブデン化合物を含有することが好まし い。また、上記モリブデンィ匕合物は、酸化モリブデン、もしくは加熱により酸ィ匕モリブ デンを生成する化合物であることが好ましい。モリブデンィ匕合物は、比較的容易に蒸 発させることができるので、フラックス蒸発法に用いるフラックスとして好ましいのであ る。 [0017] In the above invention, the flux preferably contains a molybdenum compound. The molybdenum compound is preferably molybdenum oxide or a compound that generates acid molybdenum by heating. Molybdenum compounds can be evaporated relatively easily and are therefore preferred as fluxes used in the flux evaporation method.
[0018] また上記発明にお 、ては、上記フラックスは、蒸発抑制剤を含有して!/、てもよ 、。こ れにより、フラックスの蒸発速度が抑えられ、多核発生および結晶成長速度を抑制で きるため、高品質なコランダム結晶を得ることができるからである。  [0018] In the above invention, the flux may contain an evaporation inhibitor! /. This is because the flux evaporation rate is suppressed, and the generation of multinuclei and the crystal growth rate can be suppressed, so that high-quality corundum crystals can be obtained.
[0019] さらに上記発明においては、上記蒸発抑制剤は、アルカリ金属化合物であることが 好ましい。また、上記アルカリ金属化合物は、アルカリ金属酸化物、あるいは加熱によ りアルカリ金属酸ィ匕物を生成する化合物であることが好まし 、。これらの化合物を用 いることにより、効果的にフラックスの蒸発を抑制することができ、アルミナ基材上に高 品質で厚みのあるコランダム結晶を形成することができるからである。 [0019] Further, in the above invention, the evaporation inhibitor is an alkali metal compound. preferable. The alkali metal compound is preferably an alkali metal oxide or a compound that generates an alkali metal oxide by heating. By using these compounds, the evaporation of the flux can be effectively suppressed, and a high-quality and thick corundum crystal can be formed on the alumina substrate.
発明の効果  The invention's effect
[0020] 本発明によれば、フラックス蒸発法によりアルミナ基材を溶質として、アルミナ基材 上に直接コランダム結晶を成長させることができるため、アルミナ基材とコランダム結 晶との接着力が強いという効果を奏する。また、天然のコランダム結晶に近いコランダ ム結晶が得られるため、宝飾品等としての価値が高いという効果を奏する。  [0020] According to the present invention, since the corundum crystal can be grown directly on the alumina base material using the alumina base material as a solute by the flux evaporation method, the adhesive strength between the alumina base material and the corundum crystal is strong. There is an effect. In addition, since a corundum crystal close to natural corundum crystals can be obtained, it has the effect of high value as a jewelry.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]本発明のコランダム結晶形成体の一例を示す概略断面図である。 FIG. 1 is a schematic cross-sectional view showing an example of a corundum crystal formed body of the present invention.
[図 2]本発明のコランダム結晶形成体の断面の一例を示す写真である。  FIG. 2 is a photograph showing an example of a cross section of the corundum crystal formed body of the present invention.
[図 3]本発明のコランダム結晶形成体の断面の他の例を示す写真である。  FIG. 3 is a photograph showing another example of a cross section of the corundum crystal formed body of the present invention.
[図 4]本発明のコランダム結晶形成体におけるコランダム結晶の X線回折パターンの 一例を示す回折図である。  FIG. 4 is a diffraction diagram showing an example of an X-ray diffraction pattern of a corundum crystal in the corundum crystal formed body of the present invention.
[図 5]本発明のコランダム結晶形成体の製造方法の一例を示す工程図である。  FIG. 5 is a process chart showing an example of a method for producing a corundum crystal formed body of the present invention.
符号の説明  Explanation of symbols
[0022] 1 … コランダム結晶形成体 [0022] 1… Corundum crystal formed body
2 … アルミナ基材  2… Alumina substrate
3 … コランダム結晶  3… Corundum crystal
4 … 試料  4… Sample
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 以下、本発明のコランダム結晶形成体およびその製造方法について詳細に説明す る。 Hereinafter, the corundum crystal formed body of the present invention and the production method thereof will be described in detail.
[0024] A.コランダム結晶形成体  [0024] A. Corundum crystal formed body
まず、本発明のコランダム結晶形成体について説明する。  First, the corundum crystal formed body of the present invention will be described.
本発明のコランダム結晶形成体は、アルミナ基材と、上記アルミナ基材上に形成さ れたコランダム結晶とを有することを特徴とするものである。 The corundum crystal formed body of the present invention is formed on an alumina substrate and the alumina substrate. A corundum crystal.
[0025] 本発明のコランダム結晶形成体について図面を参照しながら説明する。図 1は、本 発明のコランダム結晶形成体の一例を示す概略断面図である。図 1に示すように、本 発明のコランダム結晶形成体 1は、アルミナ基材 2と、このアルミナ基材 2上に形成さ れたコランダム結晶 3とを有するものである。  [0025] The corundum crystal formed body of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing an example of a corundum crystal formed body of the present invention. As shown in FIG. 1, the corundum crystal formed body 1 of the present invention has an alumina base 2 and a corundum crystal 3 formed on the alumina base 2.
[0026] また、本発明のコランダム結晶形成体の断面を走査型電子顕微鏡 ( (株)日立製作 所製、 S— 5000)を用いて撮影した写真の一例を図 2および図 3に示す。図 2および 図 3からわ力るように、本発明のコランダム結晶形成体は、アルミナ基材 2とコランダム 結晶 3との間には何も介在しておらず、アルミナ基材 2上に直接コランダム結晶 3が成 長したものである。したがって本発明のコランダム結晶形成体は、アルミナ基材上に コランダム結晶を貼付したものとは異なりアルミナ基材とコランダム結晶との接着強度 が強 ヽと 、う利点を有し、種々の用途に用いることが可能である。  [0026] Fig. 2 and Fig. 3 show examples of photographs taken with a scanning electron microscope (manufactured by Hitachi, Ltd., S-5000) of a cross section of the corundum crystal formed body of the present invention. As can be seen from FIG. 2 and FIG. 3, the corundum crystal formed body of the present invention has nothing between the alumina substrate 2 and the corundum crystal 3, and is directly on the alumina substrate 2. Crystal 3 has grown. Therefore, the corundum crystal formed body of the present invention has an advantage that the adhesive strength between the alumina base material and the corundum crystal is different from that obtained by pasting the corundum crystal on the alumina base material, and is used for various applications. It is possible.
なお、図 3は、着色成分としてクロムが添加されているコランダム結晶を有するコラン ダム結晶形成体の断面の一例を示す写真である。  FIG. 3 is a photograph showing an example of a cross section of a corundum crystal formed body having a corundum crystal to which chromium is added as a coloring component.
以下、このようなコランダム結晶形成体の各構成について説明する。  Hereinafter, each configuration of the corundum crystal formed body will be described.
[0027] 1.コランダム結晶  [0027] 1. Corundum crystal
まず、本発明におけるコランダム結晶について説明する。本発明におけるコランダ ム結晶は、後述するアルミナ基材上に形成されるものである。  First, the corundum crystal in the present invention will be described. The collandum crystal in the present invention is formed on an alumina substrate described later.
[0028] ここで、コランダム結晶について説明する。コランダム結晶は三方晶系に属するコラ ンダム構造を有している。このコランダム構造は、ほぼ六方最密充填した格子の六配 位 (八面体)位置の 2Z3を陽イオン (A1)が規則的に占有しており、陽イオン (A1)を 中心とした AIO八面体が一部で面を共有し、 c軸方向に連結した構造をしている。  [0028] Here, the corundum crystal will be described. The corundum crystal has a random structure belonging to the trigonal system. In this corundum structure, the cation (A1) regularly occupies 2Z3 in the hexacoordinate (octahedron) position of the lattice packed almost hexagonally close, and the AIO octahedron centered on the cation (A1). However, it has a structure in which the surface is shared in part and connected in the c-axis direction.
6  6
[0029] コランダム (Al O )はアルミナ多形の中でも最も安定であり、このようなコランダム構  [0029] Corundum (Al 2 O 3) is the most stable of the alumina polymorphs.
2 3  twenty three
造を有するコランダム結晶は、融点が約 2050°Cであり、高硬度 (モース硬度 9)を有 し、耐薬品性、耐摩耗性および耐候性に優れている。また、高温環境下においても 高い電気絶縁性を示す。このような性質を有することから、コランダム結晶は計器用 軸受、マイクロメス、光スィッチ素子、レーザー発振材料等に用いられている。また、コ ランダム (Al O )の A1の一部が Cr、あるいは Tiや Fe等に置換されることにより、色相 が異なる結晶となり、これらの結晶は一般にルビーやサファイアと呼ばれ、宝飾品とし て用いられている。 Corundum crystals with a structure have a melting point of about 2050 ° C, high hardness (Mohs hardness 9), and excellent chemical resistance, wear resistance, and weather resistance. It also exhibits high electrical insulation even in high temperature environments. Because of these properties, corundum crystals are used in instrument bearings, micro knives, optical switch elements, laser oscillation materials, and the like. In addition, a part of A1 of corundum (Al 2 O 3) is replaced with Cr, Ti, Fe, etc. These crystals are generally called rubies and sapphires and are used as jewelry.
[0030] 本発明に用いられるコランダム結晶は、無色であってもよぐあるいは着色成分とし てクロム、鉄、チタン、ニッケル、バナジウムおよびコバルトからなる群力も選択される 少なくとも 1種の元素が添加されていてもよい。上記コランダム結晶が着色成分が添 カロされたものである場合、上記着色成分の元素の組み合わせとしては特に限定され るものではなぐ例えばクロムのみ;ニッケルのみ;バナジウムのみ;コバルトのみ;鉄 およびチタン;ニッケル、チタンおよび鉄;クロムおよびニッケル;クロム、ニッケルおよ び鉄;クロム、チタンおよび鉄等の組み合わせを挙げることができる。  [0030] The corundum crystal used in the present invention may be colorless, or may be selected as a coloring component from a group force consisting of chromium, iron, titanium, nickel, vanadium and cobalt. At least one element is added. It may be. When the corundum crystal is added with a coloring component, the combination of elements of the coloring component is not particularly limited, for example, chromium only; nickel only; vanadium only; cobalt only; iron and titanium; nickel , Titanium and iron; chromium and nickel; chromium, nickel and iron; combinations of chromium, titanium and iron, and the like.
[0031] ここで、コランダム結晶は、クロム、鉄またはチタン等の着色成分の種類により色相 が異なるものとなることが知られて 、る。例えば着色成分が添加されて 、な 、ものは 無色であり、また着色成分としてニッケルを添加したものは黄色、バナジウムを添加し たものはアレキサンドライトカラー、コバルトを添加したものは緑色、鉄およびチタンを 添加したものは青色、ニッケル、チタンおよび鉄を添加したものは黄緑色、クロムを添 加したものは濃赤色、赤色または桃色、クロムおよびニッケル、あるいはクロム、 -ッケ ルおよび鉄を添カ卩したものはオレンジ色、クロム、チタンおよび鉄を添カ卩したものは紫 色となる。本発明においては、上述したように元素を組み合わせることにより、上記の 色相を有するコランダム結晶を得ることができる。  [0031] Here, it is known that corundum crystals have different hues depending on the type of coloring component such as chromium, iron or titanium. For example, when a coloring component is added, the color is colorless, the color added with nickel is yellow, the vanadium added is alexandrite color, the cobalt is green, iron and titanium. Blue added, nickel added, titanium and iron added yellow-green, chromium added dark red, red or pink, chromium and nickel, or chromium, nickel and iron added The one with orange is added, and the one with chrome, titanium and iron added becomes purple. In the present invention, a corundum crystal having the above hue can be obtained by combining elements as described above.
[0032] 一般に、クロムが添加されている濃赤色のコランダム結晶はルビーと呼ばれ、このク ロム添カ卩の赤色系のコランダム結晶以外のコランダム結晶はサファイアと呼ばれてい る。天然ルビーは希少価値の高いものであり、本発明においてはコランダム結晶にク ロムが添加されていることにより、天然のコランダム結晶に近い赤色系のコランダム結 晶を有するコランダム結晶形成体を得ることができるので、高付加価値のコランダム 結晶形成体とすることができる。  [0032] Generally, a dark red corundum crystal to which chromium is added is called ruby, and corundum crystals other than the red corundum crystal of the chrome-added basket are called sapphire. Natural ruby has a high rare value, and in the present invention, by adding chrome to the corundum crystal, a corundum crystal formed body having a red corundum crystal close to the natural corundum crystal can be obtained. Therefore, a corundum crystal formed body with high added value can be obtained.
[0033] なお、上記の元素が添加されて 、ることは、 EPMA (電子線マイクロアナライザー) 、 XPS (X線光電子分光分析)、または EDX (エネルギー分散型 X線分析)により確認 することができる。  [0033] The addition of the above elements can be confirmed by EPMA (electron beam microanalyzer), XPS (X-ray photoelectron spectroscopy), or EDX (energy dispersive X-ray analysis). .
[0034] また、上記コランダム結晶中の上記元素の含有量としては、元素の種類によって異 なる力 コランダム結晶が着色されるだけの量が含有されていれば特に限定されるも のではなぐ極微量であってもよい。 [0034] The content of the element in the corundum crystal varies depending on the type of element. As long as the amount of corundum crystals to be colored is contained, it may be a very small amount.
[0035] 上記コランダム結晶の組成は、化学量論的なものに限らず、化学量論的な組成か らずれているものであってもよい。本発明のコランダム結晶形成体は、後述するように フラックス蒸発法により作製されることが好ましぐフラックス蒸発法により作製した場 合、コランダム結晶にフラックス中に含まれる元素が不純物として含有される場合があ る力らである。なお、コランダム結晶中の不純物の含有量は、通常 lmol%以下と極 微量である。  [0035] The composition of the corundum crystal is not limited to the stoichiometric one, but may be deviated from the stoichiometric composition. When the corundum crystal formed body of the present invention is produced by a flux evaporation method, which is preferably produced by a flux evaporation method as described later, the element contained in the flux is contained as an impurity in the corundum crystal. There are powers. The content of impurities in the corundum crystal is usually a very small amount of lmol% or less.
[0036] ここで、コランダム結晶は X線回折装置を用いて同定することができる。この際、三 方晶系、 a=4. 759A, c= 12. 993Aとし、 JCPDS No. 46— 1212と it較する。 本発明における着色成分としてクロムが添加されて ヽるコランダム結晶の X線回折パ ターンの一例を図 4 (a)に示す。この図 4 (a)は、コランダム結晶を同定するために粉 砕して測定した X線回折パターンである。また、図 4 (b) iお CPDS No. 46- 1212 の X線回折パターンであり、図 4 (a) , (b)の X線回折パターンは、 CuK o;線を用いて 測定した。  Here, the corundum crystal can be identified using an X-ray diffractometer. In this case, trigonal system, a = 4.759A, c = 12.993A, and compare with JCPDS No. 46-1212. An example of an X-ray diffraction pattern of a corundum crystal obtained by adding chromium as a coloring component in the present invention is shown in FIG. 4 (a). Figure 4 (a) shows the X-ray diffraction pattern measured by grinding to identify corundum crystals. Fig. 4 (b) is the X-ray diffraction pattern of CPDS No. 46-1212. The X-ray diffraction patterns of Figs. 4 (a) and 4 (b) were measured using CuKo; lines.
[0037] 本発明にお 、ては、コランダム結晶形成体はフラックス蒸発法により作製されること が好まし!/、。後述するアルミナ基材を溶質としてコランダム結晶を形成することができ 、アルミナ基材上に直接コランダム結晶を形成することができるからである。また、フラ ックス蒸発法により得られるコランダム結晶は、フラックス中に含まれる元素を不純物 として含有する場合があることから、天然のコランダム結晶と同様に不純物を含む結 晶とすることができ、宝飾品等としての価値が高いという利点を有するからである。さら に、フラックス蒸発法において用いる装置は高温炉があればよく単純であり、容易に コランダム結晶が得られるからである。  [0037] In the present invention, the corundum crystal formed body is preferably produced by a flux evaporation method! /. This is because a corundum crystal can be formed using an alumina base material described later as a solute, and a corundum crystal can be formed directly on the alumina base material. In addition, since corundum crystals obtained by the flux evaporation method may contain elements contained in the flux as impurities, they can be made into crystals containing impurities in the same way as natural corundum crystals. This is because it has the advantage of high value. Furthermore, the equipment used in the flux evaporation method is simple as long as it has a high-temperature furnace, and corundum crystals can be obtained easily.
[0038] なお、フラックス蒸発法等のコランダム結晶の形成方法に関しては、後述する「B.コ ランダム結晶形成体の製造方法」の項に記載するため、ここでの説明は省略する。  It should be noted that a corundum crystal forming method such as a flux evaporation method is described in the section “B. Method for manufacturing corundum crystal formed body”, which will be described later.
[0039] また本発明において、コランダム結晶は、故意に不純物を含有しているものであつ てもよい。上述したように、不純物を含有することにより、天然に近いものとすることが でき、宝飾品等としての価値が高 ヽと 、う利点を有する力 である。 [0040] 上記コランダム結晶は、後述するアルミナ基材上の全面に形成されていてもよぐ 一部に形成されていてもよい。このようなコランダム結晶の形成位置は、本発明のコラ ンダム結晶形成体の用途等に応じて適宜選択される。 [0039] In the present invention, the corundum crystal may intentionally contain impurities. As described above, by containing impurities, it can be made close to nature, and it has a great value as a jewelery product. [0040] The corundum crystal may be formed on the entire surface of an alumina base material to be described later, or may be formed on a part thereof. The formation position of such a corundum crystal is appropriately selected according to the use of the corundum crystal formed body of the present invention.
[0041] 2.アルミナ基材  [0041] 2. Alumina substrate
次に、本発明に用いられるアルミナ基材について説明する。本発明においては、ァ ルミナ基材を単独で用いてもよく、またアルミナ基材と基体とを積層して用いてもよ ヽ  Next, the alumina base material used in the present invention will be described. In the present invention, an alumina substrate may be used alone, or an alumina substrate and a substrate may be laminated and used.
[0042] このようなアルミナ基材としては、アルミナを主成分とするものであれば特に限定さ れるものではないが、アルミナ基材中のアルミナに対する不純物の含有量が 5%以 下であることが好ましぐさらには 1%以下であることが好ましい。アルミナに対する不 純物の含有量が多すぎると、コランダム結晶を形成する際に不純物が溶出する可能 性が高くなり、この不純物の溶出によりコランダム結晶の結晶化が阻害されるおそれ がある力もである。このような不純物としては一般的なものが挙げられ、例えば SiO、 [0042] Such an alumina base material is not particularly limited as long as it is mainly composed of alumina, but the content of impurities with respect to alumina in the alumina base material is 5% or less. Is preferable, and it is preferably 1% or less. If the content of impurities relative to alumina is too high, there is a high possibility that impurities will be eluted when corundum crystals are formed, and this may lead to the possibility that crystallization of corundum crystals may be hindered. . Examples of such impurities include general ones such as SiO,
2 2
Na 0、 Fe O、 CaO、 MgO、 K Oなどがある。 Na 0, Fe 2 O, CaO, MgO, K 2 O, etc.
2 2 3 2  2 2 3 2
[0043] 本発明において、アルミナ基材と基体とが積層されている場合、用いられる基体とし ては、アルミナ基材が形成可能であり、コランダム結晶の形成に悪影響を及ぼさない ものであれば特に限定されないが、後述する「B.コランダム結晶形成体の製造方法 」の加熱 ·蒸発工程の項に記載する最高保持温度に耐えうるものであることが好まし い。このような基体としては、例えば白金、サファイア、アルミナ シリカ、炭化ケィ素、 アルミナ等が挙げられる。このアルミナの基体は、上記アルミナ基材のように不純物 の含有量が少なく純度が高 、ことは要求されな 、ので、低純度のものであってもよ ヽ  [0043] In the present invention, when the alumina base material and the base material are laminated, the base material to be used is not particularly limited as long as it can form an alumina base material and does not adversely affect the formation of corundum crystals. Although not limited, it is preferable that it can withstand the maximum holding temperature described in the heating / evaporation process section of “B. Corundum crystal forming body” described later. Examples of such a substrate include platinum, sapphire, alumina silica, silicon carbide, and alumina. Since the alumina substrate is not required to have a low impurity content and high purity, unlike the alumina substrate, it may be of low purity.
[0044] 上記の場合、アルミナ基材は、基体の全面に形成されていてもよぐ部分的に形成 されて 、てもよ 、が、部分的に形成されて 、る場合は基体として白金を用いることが 好ましい。白金以外の基体上にアルミナの基材が部分的に形成されている場合は、 コランダム結晶を形成する際に、基体の一部が溶出してコランダム結晶の形成に悪 影響を及ぼす可能性があるからである。なお、白金はアルミナとの反応性が低ぐコラ ンダム結晶の形成に影響を及ぼすことはないと考えられる。 [0045] また、白金の基体上にアルミナ基材が部分的に形成されている場合は、アルミナ基 材上にはコランダム結晶が形成され、アルミナ基材が形成されていない白金の基体 上にはコランダム結晶が形成されていないことが好ましい。これにより、所望とする部 分のみにコランダム結晶が形成したコランダム結晶形成体とすることができるからであ る。さら〖こ、白金の基体上にアルミナ基材をパターン状に形成することにより、パター ン状に形成されたコランダム結晶を有するコランダム結晶形成体を得ることもできるか らである。 [0044] In the above case, the alumina substrate may be partially formed or may be formed on the entire surface of the substrate, but may be partially formed. In this case, platinum is used as the substrate. It is preferable to use it. When a substrate made of alumina is partially formed on a substrate other than platinum, when forming a corundum crystal, part of the substrate may elute and adversely affect the formation of the corundum crystal. Because. In addition, platinum is considered to have no effect on the formation of corundum crystals with low reactivity with alumina. [0045] When an alumina substrate is partially formed on a platinum substrate, corundum crystals are formed on the alumina substrate, and on the platinum substrate on which no alumina substrate is formed. It is preferable that no corundum crystal is formed. This is because a corundum crystal formed body in which a corundum crystal is formed only in a desired portion can be obtained. Furthermore, this is because a corundum crystal formed body having a corundum crystal formed in a pattern can be obtained by forming an alumina substrate in a pattern on a platinum substrate.
[0046] また、上記の他に、アルミナ基材上に白金の層がパターン状に形成されている場合 や、上記基体上にアルミナ基材と白金の層とがパターン状に形成されて ヽる場合も、 ノ ターン状のコランダム結晶を有するコランダム結晶形成体を得ることができる。  [0046] In addition to the above, when the platinum layer is formed in a pattern on the alumina base, or the alumina base and the platinum layer are formed in a pattern on the base. Also in this case, a corundum crystal formed body having a nodular corundum crystal can be obtained.
[0047] 上記アルミナ基材を基体上に形成する方法としては、例えばスパッタリング法、電子 ビーム (EB)法などの物理的気相法、あるいは電気分解法、圧縮成型法等が挙げら れる。  [0047] Examples of the method for forming the alumina substrate on the substrate include a physical vapor phase method such as a sputtering method and an electron beam (EB) method, an electrolysis method, and a compression molding method.
[0048] また、上記白金の層の形成方法としては、スパッタリング法、イオンプレーティング 法、真空蒸着法等の一般的な物理的気相法が挙げられる。  [0048] Examples of the method for forming the platinum layer include general physical vapor phase methods such as sputtering, ion plating, and vacuum deposition.
[0049] 本発明においては、後述するフラックス蒸発法によりコランダム結晶を形成する際 にアルミナ基材がコランダム結晶の原料となり、アルミナ基材カゝらアルミナが溶出する ことでコランダム結晶が形成される。したがって、上記アルミナ基材の厚みおよび大き さとしては、フラックス蒸発法を用いてコランダム結晶を形成する際にアルミナ基材か らアルミナが溶出した後もアルミナ基材の形状等を維持することができる厚みおよび 大きさであれば特に限定されるものではなぐ本発明のコランダム結晶形成体の用途 等に応じて適宜選択すればよ!ヽ。  In the present invention, when a corundum crystal is formed by a flux evaporation method described later, the alumina base material becomes a raw material for the corundum crystal, and the corundum crystal is formed by elution of the alumina from the alumina base material. Therefore, the thickness and size of the alumina base material can maintain the shape of the alumina base material even after the alumina is eluted from the alumina base material when the corundum crystal is formed using the flux evaporation method. The thickness and size are not particularly limited, and may be appropriately selected according to the use of the corundum crystal formed body of the present invention.
[0050] 本発明に用いられるアルミナ基材の形状としては特に限定されるものではなぐコラ ンダム結晶形成体の用途等によって適宜選択される。例えば、坩堝等の容器、板状 、棒状、ワイヤー状、リング状、立方体、凹凸形状、球状、三次元形状、錐状(円錐、 角錐など)、柱状(円柱、角柱など)等が挙げられる。また、例えば指輪の爪の間ゃメ ッシュ籠内部などの中空状であってもよ 、。  [0050] The shape of the alumina substrate used in the present invention is not particularly limited, and is appropriately selected depending on the use of the corundum crystal formed body. For example, containers such as crucibles, plate shapes, rod shapes, wire shapes, ring shapes, cube shapes, uneven shapes, spherical shapes, three-dimensional shapes, cone shapes (cones, pyramids, etc.), column shapes (columns, prisms, etc.), and the like can be mentioned. Also, for example, the inside of the mesh nail may be hollow.
[0051] B.コランダム結晶形成体の製造方法 次に、本発明のコランダム結晶形成体の製造方法について説明する。 本発明のコランダム結晶形成体の製造方法は、フラックスの蒸発を駆動力として結 晶を析出および成長させるフラックス蒸発法により、フラックスおよびアルミナ基材を 加熱してアルミナ基材上にコランダム結晶を形成することを特徴とするものである。 [0051] B. Method for producing corundum crystal formed body Next, the manufacturing method of the corundum crystal formed body of the present invention will be described. The method for producing a corundum crystal formed body of the present invention forms a corundum crystal on an alumina base material by heating the flux and the alumina base material by a flux evaporation method in which the crystal is precipitated and grown using the evaporation of the flux as a driving force. It is characterized by this.
[0052] フラックス法とは、溶液法の一種であり、融剤法とも呼ばれるものである。フラックス 法により結晶を成長させる際には、フラックスとなる適当な塩または酸ィ匕物と、溶質と なる原料とを混合し、加熱溶融した後、溶液を徐冷あるいはフラックスを蒸発させなが ら過飽和状態をつくり、結晶を成長させる。この過飽和状態の形成方法の違いにより 、フラックス蒸発法、フラックス徐冷法およびフラックス温度勾配法に大別される。  [0052] The flux method is a kind of solution method and is also called a flux method. When growing a crystal by the flux method, an appropriate salt or oxide that becomes a flux and a raw material that becomes a solute are mixed, heated and melted, and then the solution is gradually cooled or the flux is evaporated. Create a supersaturated state and grow crystals. Depending on the difference in formation method of this supersaturated state, it is roughly divided into a flux evaporation method, a flux slow cooling method and a flux temperature gradient method.
[0053] 本発明は、上記の中でもフラックス蒸発法を用いるものである。フラックス蒸発法と は、フラックスの蒸発を駆動力とした核形成および結晶成長を促す方法であり、例え ば図 5 (a)に示すように、フラックスを含有する試料 4が充填されたアルミナ基材 2であ る坩堝を高温炉 12中に設置し、加熱して試料 4中のフラックスを蒸発させて、アルミ ナ基材 2である坩堝の内壁にコランダム結晶 3を析出および成長させることにより(図 5 (b) ) ,コランダム結晶形成体 1が得られる(図 5 (c) )。  [0053] The present invention uses the flux evaporation method among the above. The flux evaporation method is a method that promotes nucleation and crystal growth using evaporation of flux as a driving force. For example, as shown in Fig. 5 (a), an alumina substrate filled with a sample 4 containing flux is used. The crucible 2 is placed in the high-temperature furnace 12, heated to evaporate the flux in the sample 4, and the corundum crystal 3 is deposited and grown on the inner wall of the crucible, which is the alumina substrate 2. 5 (b)), corundum crystal formed body 1 is obtained (Fig. 5 (c)).
[0054] ここで、アルミナ基材上にコランダム結晶が形成される機構は以下のように考えられ る。すなわち、アルミナ基材が溶質となり、フラックスおよびアルミナ基材の加熱により アルミナ基材の表面力 アルミナが徐々に溶出し、このアルミナ基材のアルミナが溶 出した部分と蒸発するフラックスとの界面で過飽和状態がつくられるため、アルミナ基 材表面にコランダム結晶が析出して成長すると想定される。  [0054] Here, the mechanism by which corundum crystals are formed on the alumina substrate is considered as follows. In other words, the alumina base material becomes a solute, and the surface force of the alumina base material gradually elutes due to the heating of the flux and the alumina base material, and supersaturation occurs at the interface between the portion of the alumina base material where the alumina is dissolved and the flux that evaporates. Since a state is created, it is assumed that corundum crystals precipitate on the surface of the alumina substrate and grow.
[0055] このように、アルミナ基材のアルミナが溶出した部分と蒸発するフラックスとの界面と なる部分にはコランダム結晶が析出および成長すると考えられるため、例えば図 5 (a )に示すようにアルミナ基材 2である坩堝にフラックスを含有する試料 4を充填した場 合は、図 5 (b)に示すようにコランダム結晶形成時にアルミナ基材 2のアルミナが溶出 した部分と試料 4中の蒸発するフラックスとの界面 Aとなる部分にコランダム結晶 3が 形成するので、図 5 (c)に示すようなコランダム結晶形成体 1が得られると考えられる。  [0055] In this way, corundum crystals are considered to precipitate and grow on the portion of the alumina base material where the alumina elutes and the flux that evaporates. Thus, for example, as shown in FIG. When the crucible which is the base material 2 is filled with the sample 4 containing the flux, as shown in Fig. 5 (b), the portion of the alumina base material 2 where the alumina is eluted during the formation of the corundum crystal and the sample 4 evaporates. Since the corundum crystal 3 is formed at the portion that becomes the interface A with the flux, it is considered that a corundum crystal formed body 1 as shown in FIG. 5 (c) is obtained.
[0056] このように本発明においては、アルミナ基材を溶質として用いることにより、アルミナ 基材上に直接コランダム結晶を成長させることが可能である。また、従来のフラックス 法にて用いられるアルミナの粉体が溶融するのに比べて、アルミナ基材力 アルミナ が溶出する速度は遅 、ので、多核発生および結晶成長速度を抑制することができ、 高品質なコランダム結晶を得ることができる。さらに、上述したようにコランダム結晶を アルミナ基材を溶質として析出および成長させるので、アルミナ基材とコランダム結晶 との接着力が非常に強いコランダム結晶形成体が得られるという利点を有する。 [0056] Thus, in the present invention, it is possible to grow corundum crystals directly on an alumina substrate by using the alumina substrate as a solute. Also, conventional flux Compared with the melting of the alumina powder used in the process, the rate at which the alumina substrate strength alumina elutes is slow, so the generation of polynuclears and the crystal growth rate can be suppressed, and high-quality corundum crystals can be produced. Obtainable. Furthermore, since the corundum crystals are precipitated and grown as described above using the alumina base material as a solute as described above, there is an advantage that a corundum crystal formed body having a very strong adhesive force between the alumina base material and the corundum crystals is obtained.
[0057] ここで、アルミナ基材からのアルミナの溶出量が多いとアルミナ基材の形状等が変 化することが懸念される力 例えばアルミナ基材として用いることができるアルミナから なる坩堝等はアルミナの粉体を圧縮成形したものであり、ある程度の耐熱性を有して V、るので容易に多量のアルミナが溶出することはな 、。したがって本発明にお 、ては 、アルミナ基材からのアルミナの溶出量力 アルミナ基材の形状等を変化させる程の 量となることはなぐアルミナ基材の形状等を維持しつつ、アルミナ基材上にコランダ ム結晶を形成することができる。 [0057] Here, when there is a large amount of alumina eluted from the alumina base material, there is a concern that the shape of the alumina base material may change. For example, a crucible made of alumina that can be used as an alumina base material is alumina. It is a compression-molded powder of V and has a certain degree of heat resistance, so that a large amount of alumina does not elute easily. Therefore, in the present invention, the amount of elution of alumina from the alumina base material is maintained on the alumina base material while maintaining the shape of the alumina base material so as not to change the shape of the alumina base material. Collandum crystals can be formed.
[0058] また、アルミナ基材からのアルミナの溶出量が少なくてもコランダム結晶は形成され るため、アルミナの溶出量は少なくてもよいのである。 [0058] Further, since the corundum crystals are formed even if the amount of alumina eluted from the alumina base material is small, the amount of alumina eluted may be small.
[0059] さらに本発明においては、フラックス蒸発法を用いることから、コランダム結晶がフラ ックス中に含まれる元素を不純物として含有する場合があり、天然のコランダム結晶 に近いものが得られるため、宝飾品等としての価値が高いコランダム結晶形成体を製 造することができる。 [0059] Further, in the present invention, since the flux evaporation method is used, the corundum crystal may contain an element contained in the flux as an impurity, and a product close to natural corundum crystal is obtained. It is possible to produce a corundum crystal formed body having a high value.
[0060] また、フラックス蒸発法に用いる装置としては図 5 (a)に示すように高温炉 12があれ ばよく単純であり、上述したようにフラックスを蒸発させて結晶を析出および成長させ るとコランダム結晶が得られることから製造工程が簡便であり、安価に高付加価値の コランダム結形成体を製造することができる。  [0060] In addition, as shown in Fig. 5 (a), the apparatus used for the flux evaporation method is simple if it has a high-temperature furnace 12, and as described above, the flux is evaporated to precipitate and grow crystals. Since a corundum crystal can be obtained, the production process is simple, and a high-value-added corundum crystal can be produced at low cost.
[0061] 本発明のコランダム結晶形成体の製造方法は、フラックスを含有する試料を調製す る試料調製工程と、上記試料およびアルミナ基材を加熱し、さらに高温保持してフラ ックスを蒸発させ、アルミナ基材上にコランダム結晶を析出および成長させる加熱 '蒸 発工程と、上記加熱'蒸発工程にて加熱した試料等を冷却する冷却工程と、上記カロ 熱-蒸発工程および冷却工程後に残存した試料を適当な媒体に溶解させてコランダ ム結晶形成体を分離する分離工程とを有するものである。 以下、このようなコランダム結晶形成体の製造方法の各工程にっ 、て説明する。 [0061] The method for producing a corundum crystal formed body of the present invention comprises a sample preparation step for preparing a sample containing a flux, heating the sample and the alumina substrate, and further maintaining the temperature at a high temperature to evaporate the flux. A heating 'evaporation step for depositing and growing corundum crystals on an alumina substrate, a cooling step for cooling the sample heated in the heating'evaporation step, and a sample remaining after the caloric heat-evaporation step and the cooling step. And a separation step of separating the collandum crystal-former by dissolving them in a suitable medium. Hereinafter, each step of the manufacturing method of such a corundum crystal formed body will be described.
[0062] 1.試料調製工程  [0062] 1. Sample preparation process
本発明のコランダム結晶形成体の製造方法にぉ ヽては、まずフラックスを含有する 試料を調製する試料調製工程が行われる。  In the method for producing a corundum crystal formed body of the present invention, a sample preparation step for preparing a sample containing a flux is first performed.
[0063] 本発明に用いられる試料は、フラックスを含有するものであれば特に限定されな 、 力 着色用添加物を含有していてもよい。試料力 Sフラックスを含有する場合は、無色 のコランダム結晶を形成することができ、フラックスおよび着色用添加物を含有する場 合は、着色されたコランダム結晶を形成することができる。例えば、着色用添加物とし てクロム化合物を用い、試料がフラックスおよびクロム化合物を含有する場合は、赤 色系のコランダム結晶を形成することができる。  [0063] The sample used in the present invention is not particularly limited as long as it contains a flux, and may contain a force coloring additive. When sample strength S flux is contained, colorless corundum crystals can be formed, and when flux and coloring additives are contained, colored corundum crystals can be formed. For example, when a chromium compound is used as an additive for coloring and the sample contains a flux and a chromium compound, a red corundum crystal can be formed.
以下、フラックスおよび着色用添加物について説明する。  Hereinafter, the flux and coloring additives will be described.
[0064] (1)フラックス [0064] (1) Flux
本発明に用いられるフラックスは、後述する加熱 ·蒸発工程にて蒸発するものであり 、かつ後述する分離工程にて適当な媒体に溶解するものであれば特に限定されない 力 モリブデンィ匕合物を含有することが好ましい。モリブデンィ匕合物は、比較的容易 に蒸発させることができるので、フラックス蒸発法に用いるフラックスとして好適である 力 である。  The flux used in the present invention is not particularly limited as long as it evaporates in a heating / evaporation process described later, and dissolves in an appropriate medium in a separation process described later. It is preferable to do. Molybdenum compounds can be evaporated relatively easily, and therefore are suitable as a flux used in the flux evaporation method.
[0065] このようなモリブデンィ匕合物としては、酸化モリブデン、あるいは後述する加熱'蒸発 工程にて加熱することにより酸ィ匕モリブデンを生成する化合物を用いることができる。 また、加熱により酸化モリブデンを生成する化合物としては、例えば炭酸モリブデン、 硫酸モリブデン、硝酸モリブデン、モリブデン水酸化物、およびこれらの水和物等が 挙げられる。本発明においては、上記の中でも、酸ィ匕モリブデンを用いることが好まし い。  [0065] As such a molybdenum compound, molybdenum oxide or a compound that generates acid molybdenum by heating in a heating and evaporation step described later can be used. Examples of the compound that generates molybdenum oxide by heating include molybdenum carbonate, molybdenum sulfate, molybdenum nitrate, molybdenum hydroxide, and hydrates thereof. In the present invention, among the above, it is preferable to use oxymolybdenum.
[0066] また、本発明にお 、ては、上記フラックスが蒸発抑制剤を含有して!/、てもよ 、。これ により、フラックスの蒸発速度が抑えられ、多核発生および結晶成長速度を抑制する ことができるため、高品質なコランダム結晶を得ることが可能となるからである。さらに 、上述したようにコランダム結晶は、アルミナ基材力 アルミナが溶出した部分と蒸発 するフラックスとの界面で過飽和状態がつくられることにより析出および成長するので 、フラックスの蒸発速度が速すぎると、アルミナ基材のある部分ではコランダム結晶が 析出しても成長する前にフラックスに接しない状態となり、それ以上コランダム結晶が 成長しなくなる可能性がある。これに対して、フラックスの蒸発速度を抑えることにより 、アルミナ基材のアルミナが溶出した部分がフラックスに接している時間を長くするこ とができるので、アルミナ基材上に比較的厚みのあるコランダム結晶を形成すること ができる。 [0066] In the present invention, the flux may contain an evaporation inhibitor! /. This is because the evaporation rate of the flux can be suppressed and the generation of multinuclei and the crystal growth rate can be suppressed, so that a high-quality corundum crystal can be obtained. Further, as described above, the corundum crystal is precipitated and grows by forming a supersaturated state at the interface between the portion where the alumina base strength alumina is eluted and the flux that evaporates. If the evaporation rate of the flux is too high, even if a corundum crystal is deposited in a certain part of the alumina base material, it will not be in contact with the flux before it grows, and the corundum crystal may not grow any more. On the other hand, by suppressing the evaporation rate of the flux, it is possible to lengthen the time during which the alumina-eluting portion of the alumina base material is in contact with the flux. Crystals can be formed.
[0067] 一方、フラックスが上記蒸発抑制剤を含有しな!ヽ場合は、フラックスの蒸発速度が 蒸発抑制剤を含有する場合と比較して速ぐまた核形成の速度が速くなるので、アル ミナ基材上に比較的薄いコランダム結晶を形成することができる。  [0067] On the other hand, when the flux does not contain the above evaporation inhibitor, the evaporation rate of the flux is faster and the nucleation rate is faster than when the flux contains the evaporation inhibitor. A relatively thin corundum crystal can be formed on the substrate.
[0068] 上記蒸発抑制剤としては、フラックスの蒸発を抑制することができるものであり、かつ 後述する分離工程において適当な媒体に溶解するものであれば特に限定されない 力 本発明においてはアルカリ金属化合物を用いることが好ましい。アルカリ金属化 合物を用いることにより、効果的にフラックスの蒸発を抑制することができるので、高 品質で厚みのあるコランダム結晶をアルミナ基材上に形成することができるからであ る。  [0068] The evaporation inhibitor is not particularly limited as long as it can suppress the evaporation of the flux and can be dissolved in an appropriate medium in the separation step described later. Is preferably used. This is because by using an alkali metal compound, evaporation of the flux can be effectively suppressed, so that a high-quality and thick corundum crystal can be formed on the alumina substrate.
[0069] このようなアルカリ金属化合物としては、アルカリ金属酸化物、ある 、は後述する加 熱'蒸発工程にて加熱することによりアルカリ金属酸化物を生成する化合物を用いる ことができる。上記の加熱によりアルカリ金属酸化物を生成する化合物としては、例え ば炭酸アルカリ金属、硫酸アルカリ金属、硝酸アルカリ金属、アルカリ金属水酸化物 、およびこれらの水和物等が挙げられる。本発明においては、上記の中でも Li 0、 N  [0069] As such an alkali metal compound, an alkali metal oxide, or a compound that generates an alkali metal oxide by heating in a heating and evaporation step described later can be used. Examples of the compound that generates an alkali metal oxide by heating include alkali metal carbonate, alkali metal sulfate, alkali metal nitrate, alkali metal hydroxide, and hydrates thereof. In the present invention, among the above, Li 0, N
2 a Oおよび K O力 なる群力 選択される少なくとも 1種のアルカリ金属酸ィ匕物を生成 2 a O and K O forces Group forces Generate at least one selected alkali metal oxide
2 2 twenty two
するものであることが好ましい。具体的には、 Li CO、 Na CO、 K CO等が挙げら  It is preferable that Specific examples include Li CO, Na CO, and K CO.
2 3 2 3 2 3 れる。  2 3 2 3 2 3
[0070] また、上記アルカリ金属化合物の含有量としては、アルカリ金属化合物のアルカリ 金属原子のモル数力 試料の全モル数に対して 40mol%以下、中でも 30mol%以 下、特に 20mol%以下の範囲となるように含有されることが好ましい。本発明におい ては、フラックスの蒸発を駆動力として核形成および結晶成長が促されるため、アル カリ金属化合物の含有量が多すぎると、結晶化が妨げられる可能性があるからである [0071] (2)着色用添加物 [0070] Further, the content of the alkali metal compound is 40 mol% or less, particularly 30 mol% or less, particularly 20 mol% or less with respect to the total number of moles of alkali metal atoms of the alkali metal compound. It is preferable to contain so that it may become. In the present invention, since nucleation and crystal growth are promoted by the evaporation of flux as driving force, crystallization may be hindered if the content of alkali metal compound is too large. [0071] (2) Additive for coloring
次に、本発明に用いられる着色用添加物について説明する。本発明に用いられる 着色用添加物としては、上述した「A.コランダム結晶形成体」の項に記載したように、 コランダム結晶に添加される着色成分により異なるものであり、適宜選択して用いられ る。例えば、無色のコランダム結晶を形成する場合、着色用添加物は不要である。ま た例えば、着色成分として鉄およびチタンが添加されて!ヽるコランダム結晶を形成す る場合、着色用添加物としては鉄化合物およびチタンィ匕合物が用いられる。さらに例 えば、着色成分としてクロムが添加されているコランダム結晶を形成する場合、着色 用添加物としてはクロム化合物が用いられ、また着色成分としてクロムおよびニッケル が添加されているコランダム結晶を形成する場合、着色用添加物としてはクロム化合 物およびニッケルィ匕合物が用いられる。  Next, the coloring additive used in the present invention will be described. The coloring additive used in the present invention is different depending on the coloring component added to the corundum crystal as described in the above-mentioned section “A. Corundum crystal forming body”, and is appropriately selected and used. The For example, when a colorless corundum crystal is formed, a coloring additive is not necessary. Also, for example, iron and titanium are added as coloring components! In the case of forming corundum crystals, iron compounds and titanium compounds are used as coloring additives. For example, when forming a corundum crystal to which chromium is added as a coloring component, a chromium compound is used as the coloring additive, and to form a corundum crystal to which chromium and nickel are added as coloring components. As coloring additives, chromium compounds and nickel compounds are used.
以下、鉄およびチタン添カ卩のコランダム結晶、およびクロム添カ卩のコランダム結晶を 例として挙げる。  The following are examples of corundum crystals of iron and titanium-added calenders and corundum crystals of chromium-added calenders.
[0072] (鉄およびチタン添カ卩のコランダム結晶) [0072] (Corundum crystal with iron and titanium)
本発明にお 、て、着色成分として鉄およびチタンが添加されて 、るコランダム結晶 を形成する場合、着色用添加物としては鉄化合物およびチタン化合物が用いられる  In the present invention, when iron and titanium are added as coloring components to form corundum crystals, iron compounds and titanium compounds are used as coloring additives.
[0073] 鉄化合物としては、後述する加熱 ·蒸発工程にて溶融するものであれば特に限定さ れないが、加熱により鉄イオンを生成する化合物であることが好ましい。上記の加熱 により鉄イオンを生成する化合物としては、例えば酸化鉄、水酸化鉄、硫酸鉄、炭酸 鉄、硝酸鉄、塩化鉄、クェン酸鉄、リン酸鉄、フッ化鉄、ヨウ化鉄、シユウ酸鉄、および これらの水和物等が挙げられる。中でも、本発明においては酸ィ匕鉄を用いることが好 ましい。この場合、上記酸化鉄における鉄の価数は、 2価であっても 3価であってもよ ぐまた 2価および 3価の鉄が混在していてもよい。 [0073] The iron compound is not particularly limited as long as it is melted in the heating and evaporation step described later, but is preferably a compound that generates iron ions by heating. Examples of the compound that generates iron ions by heating are iron oxide, iron hydroxide, iron sulfate, iron carbonate, iron nitrate, iron chloride, iron citrate, iron phosphate, iron fluoride, iron iodide, and sulfur. Examples thereof include iron acids and hydrates thereof. Among them, it is preferable to use acid pig iron in the present invention. In this case, the iron valence in the iron oxide may be bivalent or trivalent, and bivalent and trivalent iron may be mixed.
[0074] また、チタンィ匕合物としては、後述する加熱'蒸発工程にて溶融するものであれば 特に限定されないが、加熱によりチタンイオンを生成する化合物であることが好ましい 。上記の加熱によりチタンイオンを生成する化合物としては、例えば酸ィ匕チタン、窒 化チタン、チタンテトライソプロポキシド、シユウ酸チタン、硫ィ匕チタン、臭化チタン、塩 化チタン、およびこれらの水和物等が挙げられる。中でも、本発明においては酸ィ匕チ タンを用いることが好ましい。この場合、上記酸ィ匕チタンにおけるチタンの価数として は 2価、 3価および 4価が挙げられる。チタンの価数は、単一であってもよぐ混在して いてもよい。 [0074] The titanium compound is not particularly limited as long as it can be melted in the heating and evaporation process described later, but is preferably a compound that generates titanium ions by heating. Examples of the compound that generates titanium ions by the above heating include titanium oxide, nitrogen Titanium chloride, titanium tetraisopropoxide, titanium oxalate, titanium sulfate, titanium bromide, titanium chloride, and hydrates thereof. Among them, it is preferable to use acid titanium in the present invention. In this case, examples of the valence of titanium in the above-mentioned titanium oxide include divalent, trivalent and tetravalent. The valences of titanium may be single or mixed.
[0075] 上記鉄化合物およびチタン化合物の添加量としては、コランダム結晶が着色される だけの量が添加されて ヽれば特に限定されるものではな!/、。  [0075] The addition amount of the iron compound and the titanium compound is not particularly limited as long as the addition amount is sufficient to color the corundum crystals! /.
[0076] また、鉄化合物とチタンィ匕合物との混合比としては、鉄およびチタンの価数によって も異なるが、通常は鉄元素とチタン元素との重量比が Fe :Ti= 1 : 0. 05〜20となるよ うに混合する。中でも 1 : 0. 07〜15、特に 1 : 0. 1〜: LOとなるように混合することが好 ましい。上記の混合比を上記範囲とすることにより、鮮やかな青色に着色されたコラン ダム結晶を得ることができる力もである。 [0076] The mixing ratio of the iron compound and the titanium compound varies depending on the valences of iron and titanium, but the weight ratio of the iron element to the titanium element is usually Fe: Ti = 1: 0. Mix until 05-20. Among them, it is preferable to mix so that 1: 0.0.07 to 15, particularly 1: 0.1. By setting the above mixing ratio within the above range, it is possible to obtain a corundum crystal colored bright blue.
[0077] (クロム添カ卩のコランダム結晶) [0077] (Corundum crystal of chromium-added powder)
本発明にお 、て、着色成分としてクロムが添加されて 、るコランダム結晶を形成す る場合、着色用添加物としてはクロム化合物が用いられる。  In the present invention, when chromium is added as a coloring component to form corundum crystals, a chromium compound is used as the coloring additive.
[0078] クロム化合物としては、後述する加熱'蒸発工程にて溶融するものであれば特に限 定されないが、加熱によりクロムイオンを生成する化合物であることが好ましい。上記 の加熱によりクロムイオンを生成する化合物としては、例えば酸ィ匕クロム、水酸化クロ ム、硫酸クロム、炭酸クロム、硝酸クロム、およびこれらの水和物等が挙げられる。中 でも、本発明にお ヽては酸ィ匕クロムを用いることが好まし 、。 [0078] The chromium compound is not particularly limited as long as it can be melted in the heating and evaporation step described later, but is preferably a compound that generates chromium ions by heating. Examples of the compound that generates chromium ions by the above heating include acid chrome, chromium hydroxide, chromium sulfate, chromium carbonate, chromium nitrate, and hydrates thereof. Among them, it is preferable to use acid-chromium for the present invention.
[0079] 上記クロム化合物の添加量としては、コランダム結晶が着色されるだけの量が添カロ されて ヽれば特に限定されるものではな!/、。 [0079] The amount of the chromium compound to be added is not particularly limited as long as the amount of corundum crystals that can be colored is added. /.
[0080] (その他のコランダム結晶) [0080] (Other corundum crystals)
本発明において、着色成分としてニッケル、バナジウムまたはコバルトが添加されて いるコランダム結晶を形成する場合は、着色用添加物としてニッケルィ匕合物、バナジ ゥム化合物またはコバルト化合物を用いればょ 、。  In the present invention, when forming a corundum crystal to which nickel, vanadium or cobalt is added as a coloring component, a nickel compound, vanadium compound or cobalt compound may be used as a coloring additive.
[0081] ニッケルィヒ合物としては、後述する加熱'蒸発工程にて溶融するものであれば特に 限定されないが、加熱によりニッケルイオンを生成する化合物であることが好ましい。 上記の加熱によりニッケルイオンを生成する化合物としては、例えば酢酸ニッケル、 炭酸ニッケル、塩化ニッケル、水酸化ニッケル、ヨウ化ニッケル、硝酸ニッケル、酸化 ニッケル、スルファミン酸ニッケル、硫酸ニッケル、およびこれらの水和物等が挙げら れる。中でも、酸ィ匕ニッケルを用いることが好ましい。この場合、上記酸ィ匕ニッケルに おけるニッケルの価数としては、 2価であっても 3価であってもよぐまた 2価および 3価 のニッケノレが混在して ヽてもよ 、。 [0081] The nickel-rich compound is not particularly limited as long as it can be melted in the heating and evaporation step described later, but is preferably a compound that generates nickel ions by heating. Examples of the compound that generates nickel ions by the heating include nickel acetate, nickel carbonate, nickel chloride, nickel hydroxide, nickel iodide, nickel nitrate, nickel oxide, nickel sulfamate, nickel sulfate, and hydrates thereof. Etc. Among these, it is preferable to use acid nickel. In this case, the nickel valence in the above-mentioned nickel oxide may be bivalent or trivalent, or it may be a mixture of bivalent and trivalent nickel.
[0082] また、バナジウム化合物としては、後述する加熱'蒸発工程にて溶融するものであ れば特に限定されないが、加熱によりバナジウムイオンを生成する化合物であること が好ましい。上記の加熱によりバナジウムイオンを生成する化合物としては、例えば 炭化バナジウム、塩化バナジウム、酸化バナジウム、酸化硫酸バナジウム、酸化シュ ゥ酸バナジウム、およびこれらの水和物等が挙げられる。中でも、酸化バナジウムを 用いることが好ましい。この場合、上記酸ィ匕バナジウムにおけるバナジウムの価数とし ては 3価、 4価および 5価が挙げられる。バナジウムの価数は、単一であってもよぐ混 在していてもよい。  [0082] The vanadium compound is not particularly limited as long as it melts in the heating and evaporation step described later, but is preferably a compound that generates vanadium ions by heating. Examples of the compound that generates vanadium ions by the above heating include vanadium carbide, vanadium chloride, vanadium oxide, vanadium oxide sulfate, vanadium oxide oxide, and hydrates thereof. Among these, it is preferable to use vanadium oxide. In this case, the valence of vanadium in the above acid vanadium includes trivalent, tetravalent and pentavalent. The valences of vanadium may be single or mixed.
[0083] さらに、コバルト化合物としては、後述する加熱'蒸発工程にて溶融するものであれ ば特に限定されないが、加熱によりコノ レトイオンを生成する化合物であることが好ま しい。上記の加熱によりコバルトイオンを生成する化合物としては、例えば臭化コバル ト、塩化コバルト、クェン酸コバルト、フッ化コバルト、ダルコン酸コバルト、水酸化コバ ルト、ヨウ化コバルト、硝酸コバルト、シユウ酸コバルト、酸化コバルト、リン酸コバルト、 ステアリン酸コバルト、硫酸コバルト、硫ィ匕コバルト、およびこれらの水和物等が挙げ られる。中でも、本発明においては、クェン酸コバルト、フッ化コバルト、ダルコン酸コ バルト、水酸化コバルト、ヨウ化コバルト、シユウ酸コバルト、酸化コバルト、リン酸コバ ルト、ステアリン酸コバルトを用いることが好ましい。特に、酸化コバルト、水酸化コバ ルト、ステアリン酸コバルト、リン酸コバルトを用いることが好ましい。この場合、上記コ バルトイ匕合物におけるコバルトの価数としては、 2価であっても 3価であってもよぐま た 2価および 3価のコバルトが混在して!/、てもよ!/、。  [0083] Further, the cobalt compound is not particularly limited as long as it is melted in a heating and evaporation step described later, but a compound that generates a corona ion by heating is preferable. Examples of the compound that generates cobalt ions by the heating include cobalt bromide, cobalt chloride, cobalt citrate, cobalt fluoride, cobalt dalconate, cobalt hydroxide, cobalt iodide, cobalt nitrate, cobalt oxalate, Examples include cobalt oxide, cobalt phosphate, cobalt stearate, cobalt sulfate, cobalt sulfate, and hydrates thereof. Among them, in the present invention, it is preferable to use cobalt citrate, cobalt fluoride, cobalt dalconate, cobalt hydroxide, cobalt iodide, cobalt oxalate, cobalt oxide, cobalt phosphate, and cobalt stearate. In particular, it is preferable to use cobalt oxide, cobalt hydroxide, cobalt stearate, or cobalt phosphate. In this case, the cobalt valence in the above cobalt toy compound may be bivalent or trivalent, and both divalent and trivalent cobalt may be mixed! / /.
[0084] 上述したニッケルィ匕合物、バナジウム化合物、またはコバルト化合物の添加量とし ては、コランダム結晶が着色されるだけの量が添加されていれば特に限定されない。 [0085] また本発明にお 、て、着色成分としてクロムと、鉄、チタン、ニッケル、バナジウムお よびコバルトからなる群力も選択される少なくとも 1種の元素とが添加されているコラン ダム結晶を形成する場合は、上述したクロム化合物の他に、鉄化合物、チタン化合 物、ニッケル化合物、バナジウム化合物、またはコバルト化合物を用いればよい。 [0084] The amount of the nickel compound, vanadium compound, or cobalt compound added is not particularly limited as long as it is added in an amount sufficient to color the corundum crystals. [0085] Further, in the present invention, a corundum crystal is formed in which chromium as a coloring component and at least one element selected from the group force consisting of iron, titanium, nickel, vanadium and cobalt are added. In this case, in addition to the chromium compound described above, an iron compound, a titanium compound, a nickel compound, a vanadium compound, or a cobalt compound may be used.
[0086] この際、上述した鉄化合物、チタン化合物、ニッケル化合物、バナジウム化合物ま たはコバルト化合物の添加量としては、コランダム結晶が着色されるだけの量が添カロ されて ヽれば特に限定されるものではな!/、。 [0086] At this time, the addition amount of the iron compound, titanium compound, nickel compound, vanadium compound, or cobalt compound described above is not particularly limited as long as an amount sufficient to color the corundum crystal is added. Not something! /.
[0087] 本発明にお 、ては、上述した鉄化合物、チタン化合物、クロム化合物、ニッケルィ匕 合物、バナジウム化合物またはコバルト化合物を種々に組み合わせて用いることが でき、これらの化合物の混合比としてはコランダム結晶形成体の用途に応じて適宜選 択される。 In the present invention, the above-mentioned iron compound, titanium compound, chromium compound, nickel compound, vanadium compound or cobalt compound can be used in various combinations, and the mixing ratio of these compounds is as follows. It is appropriately selected according to the use of the corundum crystal formed body.
[0088] (3)その他 [0088] (3) Other
本工程において試料を調製する際には通常、フラックスおよび着色用添加物を攪 拌する。この攪拌方法としては、均一に攪拌することができる方法であれば特に限定 されるものではな 、が、例えば乳鉢でフラックスおよび着色用添加物を十分に攪拌す る方法が挙げられる。  In preparing the sample in this step, the flux and coloring additives are usually stirred. The stirring method is not particularly limited as long as it is a method capable of stirring uniformly. For example, a method of sufficiently stirring the flux and coloring additive in a mortar can be mentioned.
[0089] 本発明においては、上記試料に不純物を含有させてもよい。これにより、天然に近 V、結晶を得ることができ、宝飾品等としての価値が高 、コランダム結晶を形成すること ができるからである。  [0089] In the present invention, the sample may contain impurities. This makes it possible to obtain crystals that are close to natural V, have high value as jewelry, and can form corundum crystals.
[0090] また、上記試料にアルミニウム化合物を含有させてもよ!、。本発明にお 、ては上述 したようにアルミナ基材が溶質となり、その表面力 アルミナが溶出することによりコラ ンダム結晶が形成されるものであるが、この溶質としてアルミニウム化合物をさらに含 有させることもできるのである。この場合、アルミニウム化合物の含有量は、アルミナ 基材上へのコランダム結晶の析出および成長を妨げな 、ように、アルミナ基材からの アルミナの溶出とアルミニウム化合物の溶融とのバランスを考慮して適宜調製される。 例えばアルミニウム化合物の含有量が多すぎると、アルミニウム化合物が核となって 結晶が成長する可能性があり、アルミナ基材上にコランダム結晶を形成することが困 難となる場合があるからである。 [0091] このようなアルミニウム化合物としては、アルミナ(酸ィ匕アルミニウム)、あるいは後述 する加熱 ·蒸発工程にて加熱することによりアルミナを生成する化合物を用いることが できる。上記の加熱によりアルミナを生成する化合物としては、例えば水酸ィ匕アルミ- ゥム、硫酸アルミニウム、炭酸アルミニウム、硝酸アルミニウム、およびこれらの水和物 等が挙げられる。本発明においては、これらの中でもアルミナを用いることが好ましい [0090] The sample may contain an aluminum compound! In the present invention, as described above, the alumina base material becomes a solute, and the surface force of the alumina elutes to form a collandum crystal. The aluminum compound is further included as the solute. You can also. In this case, the content of the aluminum compound is appropriately determined in consideration of the balance between the elution of alumina from the alumina base material and the melting of the aluminum compound so as not to prevent the precipitation and growth of corundum crystals on the alumina base material. Prepared. For example, if the content of the aluminum compound is too large, crystals may grow with the aluminum compound serving as a nucleus, and it may be difficult to form a corundum crystal on the alumina substrate. As such an aluminum compound, alumina (acid aluminum) or a compound that generates alumina by heating in a heating / evaporation process described later can be used. Examples of the compound that forms alumina by the above heating include hydroxyaluminum aluminum, aluminum sulfate, aluminum carbonate, aluminum nitrate, and hydrates thereof. In the present invention, among these, it is preferable to use alumina.
[0092] 2.加熱 ·蒸発工程 [0092] 2. Heating / evaporation process
次に、本発明における加熱'蒸発工程について説明する。本発明における加熱'蒸 発工程は、上記試料およびアルミナ基材を加熱し、さらに高温保持してフラックスを 蒸発させ、アルミナ基材上にコランダム結晶を析出および成長させる工程である。  Next, the heating and evaporation step in the present invention will be described. The heating / evaporation step in the present invention is a step of heating the sample and the alumina base material, further evaporating the flux by maintaining the temperature at a high temperature, and depositing and growing corundum crystals on the alumina base material.
[0093] 本工程にぉ 、て、例えばアルミナ基材としてアルミナ力もなる坩堝を用いた場合は 、図 5 (a)に示すようにフラックスを含有する試料 4が充填されたアルミナ基材 2である 坩堝に蓋 13をかぶせ、高温炉 12内に設置する。次に、最高保持温度まで昇温し、 その温度にて所定時間保持することにより、試料 4中のフラックスが蒸発し、アルミナ 基材 2である坩堝力もアルミナが溶出し、このフラックスの蒸発を駆動力としてコランダ ム結晶 3の析出および成長が促される(図 5 (b) )。これにより、アルミナ基材 2上にコラ ンダム結晶 3が形成されたコランダム結晶形成体 1が製造される(図 5 (c) )。  [0093] In this step, for example, when a crucible having an alumina force is used as the alumina base material, the alumina base material 2 is filled with the sample 4 containing the flux as shown in FIG. 5 (a). Cover the crucible with the lid 13 and place it in the high temperature furnace 12. Next, when the temperature is raised to the maximum holding temperature and held at that temperature for a predetermined time, the flux in sample 4 evaporates, and the crucible force that is alumina substrate 2 also elutes alumina, driving the evaporation of this flux. As a force, the precipitation and growth of collandum crystal 3 is promoted (Fig. 5 (b)). As a result, a corundum crystal formed body 1 in which the collandum crystal 3 is formed on the alumina substrate 2 is produced (FIG. 5 (c)).
[0094] 本工程における最高保持温度としては、フラックスが蒸発し、着色用添加物が溶融 し、かつアルミナ基材力 アルミナが溶出する温度であれば特に限定されないが、具 体的【こ ίま 950oC〜1300oC、中でち 975oC〜1250oC、特【こ 1000oC〜1200oCの範 囲内であることが好ましい。 [0094] The maximum holding temperature in this step is not particularly limited as long as it is a temperature at which the flux evaporates, the coloring additive melts, and the alumina substrate strength alumina elutes. 950 o C~1300 o C, Chudechi 975 o C~1250 o C, it is preferred that within the limits of the special [this 1000 o C~1200 o C.
[0095] また、上記最高保持温度に設定する際の昇温速度としては、フラックスおよび着色 用添加物等を含有する試料、ならびにアルミナ基材を均一に加熱することができる速 度であれば特に限定されるものではない。さらに、上記最高保持温度にて保持する 時間としては、コランダム結晶を十分に成長させることができる時間であれば特に限 定されない。  [0095] Further, as the rate of temperature rise when setting the maximum holding temperature, a sample containing a flux and an additive for coloring, etc., and a rate capable of uniformly heating the alumina substrate are particularly effective. It is not limited. Further, the holding time at the maximum holding temperature is not particularly limited as long as it is a time during which the corundum crystal can be sufficiently grown.
[0096] なお、アルミナ基材につ 、ては、上述した「A.コランダム結晶形成体」の項に記載 したものと同様であるので、ここでの説明は省略する。 [0097] 本発明にお ヽては、アルミナ基材が試料を充填する坩堝等の容器であり、アルミナ 基材である容器内に試料を配置してもよぐまたアルミナ基材および試料を容器内に 配置してもよい。アルミナ基材および試料を容器内に配置する場合、用いられる容器 としては、上記最高保持温度に耐えうるものであり、かつ上記試料と反応性が低いも のであれば特に限定されないが、通常は白金力もなる容器を用いることとする。 [0096] Since the alumina base material is the same as that described in the above-mentioned section "A. Corundum crystal formed body", description thereof is omitted here. In the present invention, the alumina base material is a container such as a crucible in which the sample is filled, and the sample may be placed in a container that is the alumina base material. It may be placed inside. When the alumina base material and the sample are placed in a container, the container used is not particularly limited as long as it can withstand the above-mentioned maximum holding temperature and has low reactivity with the sample. Use a container that also has strength.
[0098] また、アルミナ基材である容器内に試料を配置する場合、またアルミナ基材および 試料を容器内に配置する場合の 、ずれにぉ 、ても、アルミナ基材および試料は互!ヽ に接するように配置される。  [0098] Further, when the sample is placed in a container that is an alumina base material, or when the alumina base material and the sample are placed in the container, the alumina base material and the sample are mutually compatible. It arrange | positions so that it may touch.
[0099] 本発明においては上述したように、アルミナ基材が溶質となり、加熱によりアルミナ 基材の表面力もアルミナが徐々に溶出し、このアルミナ基材のアルミナが溶出した部 分と蒸発するフラックスとの界面で過飽和状態がつくられるため、アルミナ基材表面 にコランダム結晶が析出して成長すると考えられる。このことから、例えば図 5 (a)に示 すようなアルミナ基材 2である坩堝とフラックスを含有する試料 4とを加熱した場合は、 フラックスが上力 蒸発するので、図 5 (b)に示すようにアルミナ基材 2である坩堝の 内壁の上側力 徐々にコランダム結晶 3が形成するものと想定される。  [0099] In the present invention, as described above, the alumina base material becomes a solute, and the alumina also gradually elutes the surface force of the alumina base material by heating. Since a supersaturated state is created at the interface, it is considered that corundum crystals precipitate on the surface of the alumina substrate. From this, for example, when the crucible, which is the alumina substrate 2 as shown in FIG. 5 (a), and the sample 4 containing the flux are heated, the flux evaporates, so FIG. 5 (b) As shown, the upper side force of the inner wall of the crucible which is the alumina base material 2 is assumed to gradually form the corundum crystal 3.
[0100] また、アルミナ基材のアルミナが溶出した部分と蒸発するフラックスとの界面となつ た部分のみにコランダム結晶が析出および成長することが想定されるので、コランダ ム結晶を形成したい部分はフラックスが完全に蒸発していることが求められる。例え ば図 3 (a)に示すようなアルミナ基材 2である坩堝の内壁と底面とにコランダム結晶を 形成したい場合には、坩堝の底面にフラックスが残らないようにフラックスを完全に蒸 発させるのがよい。  [0100] Further, since it is assumed that corundum crystals precipitate and grow only on the portion of the alumina base material where the alumina elutes and the flux that evaporates, it is assumed that the portion where the corundum crystals are to be formed is a flux. Is required to be completely evaporated. For example, to form corundum crystals on the inner wall and bottom surface of the crucible, which is the alumina substrate 2 as shown in Fig. 3 (a), completely evaporate the flux so that no flux remains on the bottom surface of the crucible. It is good.
[0101] 3.冷却工程  [0101] 3. Cooling process
次に、本発明における冷却工程について説明する。本発明における冷却工程は、 上記加熱'蒸発工程にて加熱した試料等を冷却する工程である。  Next, the cooling process in the present invention will be described. The cooling step in the present invention is a step of cooling the sample or the like heated in the heating and evaporation step.
[0102] 本工程においては、例えば図 5 (a)に示すような高温炉 12からフラックスを含有する 試料 4が充填されたアルミナ基材 2である坩堝を取り出し、室温となるまで冷却する。 この冷却方法としては、室温になるまで冷却することができる方法であればよぐ坩堝 を放冷する方法等が挙げられる。 [0103] 4.分離工程 In this step, for example, the crucible which is the alumina base material 2 filled with the sample 4 containing the flux is taken out from the high temperature furnace 12 as shown in FIG. 5 (a) and cooled to room temperature. Examples of the cooling method include a method of allowing the crucible to cool as long as it can be cooled to room temperature. [0103] 4. Separation process
次に、本発明における分離工程について説明する。本発明における分離工程は、 上記加熱 ·蒸発工程および冷却工程後に残存した試料を適当な媒体に溶解させて コランダム結晶形成体を分離する工程である。  Next, the separation step in the present invention will be described. The separation step in the present invention is a step of separating the corundum crystal formed body by dissolving the sample remaining after the heating / evaporation step and the cooling step in an appropriate medium.
[0104] 本発明においては、上記加熱 ·蒸発工程にてフラックスが完全に蒸発しな力つたり、 蒸発抑制剤が溶け残ったりするなど、上記冷却工程後にはフラックス等の試料が残 存する。本工程では、これらの残存した試料を適当な媒体に溶解させることにより、コ ランダム結晶形成体のみを容易に分離することができる。 [0104] In the present invention, a sample such as a flux remains after the cooling step such that the flux is not completely evaporated in the heating / evaporating step, or the evaporation inhibitor remains undissolved. In this step, only the corundum crystal formed body can be easily separated by dissolving these remaining samples in an appropriate medium.
[0105] 上記の残存した試料を溶解させるために用いる媒体としては、コランダム結晶に影 響を及ぼさず、コランダム結晶およびアルミナ基材以外の残存した試料を溶解させる ことができるものであれば特に限定されないが、例えば冷水、温水、熱水等を挙げる ことができる。  [0105] The medium used for dissolving the remaining sample is not particularly limited as long as it can dissolve the remaining sample other than the corundum crystal and the alumina base material without affecting the corundum crystal. For example, cold water, hot water, hot water and the like can be mentioned.
[0106] なお、本発明のコランダム結晶形成体の製造方法により形成されるコランダム結晶 に関しては、上述した「A.コランダム結晶形成体」の項に記載したものと同様である ので、ここでの説明は省略する。  [0106] The corundum crystal formed by the method for producing a corundum crystal formed body of the present invention is the same as that described in the above-mentioned section "A. Corundum crystal formed body". Is omitted.
[0107] 5.その他  [0107] 5. Other
本発明において、上述した「A.コランダム結晶形成体」の項に記載したような、白 金の基体上にアルミナ基材が部分的に形成されて!ヽる場合、アルミナ基材が形成さ れていない白金の基体上にもコランダム結晶が形成されることがある。このような場合 であって、白金の基体上にコランダム結晶が形成されていないコランダム結晶形成体 を作製する場合には、硫酸水素カリウム等の酸融剤を用いて酸融解処理を行うことに より、白金の基体上に形成されたコランダム結晶を剥がすことができる。酸融解処理 によってアルミナ基材上に形成されたコランダム結晶が剥がれることはない。これによ り、所望とする部分のみにコランダム結晶が形成したコランダム結晶形成体を得ること ができる。  In the present invention, when an alumina substrate is partially formed on a white metal substrate as described in the above-mentioned section “A. Corundum crystal formed body”, the alumina substrate is formed. Corundum crystals may also be formed on an unplated platinum substrate. In such a case, when producing a corundum crystal formed body in which corundum crystals are not formed on a platinum substrate, an acid melting treatment is performed using an acid flux such as potassium hydrogen sulfate. The corundum crystals formed on the platinum substrate can be peeled off. Corundum crystals formed on the alumina base material are not peeled off by the acid melting treatment. Thereby, a corundum crystal formed body in which a corundum crystal is formed only in a desired portion can be obtained.
[0108] また、アルミナ基材上に白金の層がパターン状に形成されている場合や、基体上に アルミナ基材と白金の層がパターン状に形成されている場合においても、上記酸融 解処理により白金の層上に形成されたコランダム結晶を剥がすことができる。 [0109] なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例 示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構 成を有し、同様な作用効果を奏するもの、またはそれらの均等物は、いかなるもので あっても本発明の技術的範囲に包含される。 [0108] In addition, when the platinum layer is formed in a pattern on the alumina base material, or when the alumina base material and the platinum layer are formed in a pattern shape on the base material, the acid fusion is performed. Corundum crystals formed on the platinum layer by the treatment can be peeled off. [0109] The present invention is not limited to the above embodiment. The above-described embodiment is an example, and has substantially the same configuration as the technical idea described in the claims of the present invention, and has the same operational effects or equivalents thereof. Anything is included in the technical scope of the present invention.
実施例  Example
[0110] 以下、実施例を挙げて本発明を具体的に説明する。  [0110] Hereinafter, the present invention will be specifically described by way of examples.
[実施例 1]  [Example 1]
酸化鉄(0. 004g)、酸化チタン (0. 004g)、酸ィ匕モリブデン(28. 5g)および炭酸リ チウム (0. 5g)を秤量し、乳鉢に入れた。この混合試料を乳鉢中で、約 20分間乾式 混合した。その後、上記混合試料をアルミナるつぼ (純度 99. 6%)に充填し、ふたを して、電気炉中に設置した。電気炉を毎時 45°Cの速度で 1100°Cまで加熱し、その 温度で 5時間保持した。保持後、電気炉カゝらアルミナるつぼを取り出し、室温まで放 冷した。得られたコランダム結晶形成体の断面の写真を図 2に示す。図 2に示すよう に、アルミナるつぼ 2の内壁には、厚み約 150 /z mのコランダム結晶 3が形成された。  Iron oxide (0.004 g), titanium oxide (0.004 g), molybdenum oxide (28.5 g) and lithium carbonate (0.5 g) were weighed and placed in a mortar. This mixed sample was dry mixed in a mortar for about 20 minutes. Thereafter, the mixed sample was filled in an alumina crucible (purity 99.6%), covered, and placed in an electric furnace. The electric furnace was heated to 1100 ° C at a rate of 45 ° C per hour and held at that temperature for 5 hours. After the holding, the alumina crucible was taken out from the electric furnace and allowed to cool to room temperature. A photograph of the cross section of the obtained corundum crystal formed body is shown in FIG. As shown in FIG. 2, a corundum crystal 3 having a thickness of about 150 / zm was formed on the inner wall of the alumina crucible 2.
[0111] [実施例 2] [0111] [Example 2]
酸ィ匕クロム(0. 008g)、酸化モリブデン(28. 5g)および炭酸リチウム(0. 5g)を秤 量し、乳鉢に入れた。この混合試料を乳鉢中で、約 20分間乾式混合した。その後、 上記混合試料をアルミナるつぼ (純度 99. 6%)に充填し、ふたをして、電気炉中に 設置した。電気炉を毎時 45°Cの速度で 1100°Cまで加熱し、その温度で 5時間保持 した。保持後、電気炉カゝらアルミナるつぼを取り出し、室温まで放冷した。得られたコ ランダム結晶形成体の断面の写真を図 2に示す。図 3に示すように、アルミナるつぼ 2 の内壁には、厚み約 150 mの赤色コランダム結晶 3が形成された。  Acid chrome (0.008 g), molybdenum oxide (28.5 g) and lithium carbonate (0.5 g) were weighed and placed in a mortar. This mixed sample was dry mixed in a mortar for about 20 minutes. Thereafter, the mixed sample was filled in an alumina crucible (purity 99.6%), covered, and placed in an electric furnace. The electric furnace was heated to 1100 ° C at a rate of 45 ° C per hour and held at that temperature for 5 hours. After the holding, the alumina crucible was taken out from the electric furnace and allowed to cool to room temperature. Fig. 2 shows a photograph of the cross section of the resulting corundum crystal formed body. As shown in FIG. 3, a red corundum crystal 3 having a thickness of about 150 m was formed on the inner wall of the alumina crucible 2.

Claims

請求の範囲 The scope of the claims
[1] アルミナ基材と、前記アルミナ基材上に形成されたコランダム結晶とを有することを 特徴とするコランダム結晶形成体。  [1] A corundum crystal formed body comprising an alumina base material and a corundum crystal formed on the alumina base material.
[2] 前記コランダム結晶は無色であることを特徴とする請求の範囲第 1項に記載のコラ ンダム結晶形成体。  [2] The corundum crystal formed body according to claim 1, wherein the corundum crystal is colorless.
[3] 前記コランダム結晶中に、着色成分としてクロム、鉄、チタン、ニッケル、バナジウム およびコバルトからなる群力も選択される少なくとも 1種の元素が添加されていること を特徴とする請求の範囲第 1項に記載のコランダム結晶形成体。  [3] The corundum crystal includes at least one element selected from the group consisting of chromium, iron, titanium, nickel, vanadium and cobalt as a coloring component. The corundum crystal formed body according to Item.
[4] フラックスの蒸発を駆動力として結晶を析出および成長させるフラックス蒸発法によ り、フラックスおよびアルミナ基材を加熱してアルミナ基材上にコランダム結晶を形成 することを特徴とするコランダム結晶形成体の製造方法。 [4] Corundum crystal formation, characterized in that the flux and alumina substrate are heated to form a corundum crystal on the alumina substrate by the flux evaporation method in which the evaporation of the flux is used as the driving force to drive the flux. Body manufacturing method.
[5] 前記フラックスは、モリブデン化合物を含有することを特徴とする請求の範囲第 4項 に記載のコランダム結晶形成体の製造方法。 [5] The method for producing a corundum crystal formed body according to claim 4, wherein the flux contains a molybdenum compound.
[6] 前記モリブデン化合物は、酸化モリブデン、もしくは加熱により酸ィ匕モリブデンを生 成する化合物であることを特徴とする請求の範囲第 5項に記載のコランダム結晶形成 体の製造方法。 6. The method for producing a corundum crystal forming body according to claim 5, wherein the molybdenum compound is molybdenum oxide or a compound that generates molybdenum oxide by heating.
[7] 前記フラックスは、蒸発抑制剤を含有することを特徴とする請求の範囲第 5項または 請求の範囲第 6項に記載のコランダム結晶形成体の製造方法。  [7] The method for producing a corundum crystal formed body according to claim 5 or 6, wherein the flux contains an evaporation inhibitor.
[8] 前記蒸発抑制剤は、アルカリ金属化合物であることを特徴とする請求の範囲第 7項 に記載のコランダム結晶形成体の製造方法。 [8] The method for producing a corundum crystal formed body according to claim 7, wherein the evaporation inhibitor is an alkali metal compound.
[9] 前記アルカリ金属化合物は、アルカリ金属酸化物、あるいは加熱によりアルカリ金 属酸化物を生成する化合物であることを特徴とする請求の範囲第 8項に記載のコラン ダム結晶形成体の製造方法。 [9] The method for producing a corundum crystal forming body according to claim 8, wherein the alkali metal compound is an alkali metal oxide or a compound that generates an alkali metal oxide by heating. .
PCT/JP2005/011115 2004-06-28 2005-06-17 Corundum crystal formed body WO2006001225A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006528492A JPWO2006001225A1 (en) 2004-06-28 2005-06-17 Corundum crystal former

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-189671 2004-06-28
JP2004-189665 2004-06-28
JP2004189671 2004-06-28
JP2004189665 2004-06-28

Publications (1)

Publication Number Publication Date
WO2006001225A1 true WO2006001225A1 (en) 2006-01-05

Family

ID=35781713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011115 WO2006001225A1 (en) 2004-06-28 2005-06-17 Corundum crystal formed body

Country Status (2)

Country Link
JP (1) JPWO2006001225A1 (en)
WO (1) WO2006001225A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016509246A (en) * 2012-12-11 2016-03-24 ジーティーエイティー コーポレーションGtat Corporation Portable electronic equipment containing modified sapphire
JP2020074443A (en) * 2014-07-22 2020-05-14 株式会社Flosfia Crystalline semiconductor film and semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843000A (en) * 1971-10-08 1973-06-21
JP2002053946A (en) * 2000-08-04 2002-02-19 Kobe Steel Ltd Hard film and wear resistant member, and manufacturing method thereof
JP2004083407A (en) * 2002-08-24 2004-03-18 Carl Zeiss Stiftung Method and device for growing corundum single crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843000A (en) * 1971-10-08 1973-06-21
JP2002053946A (en) * 2000-08-04 2002-02-19 Kobe Steel Ltd Hard film and wear resistant member, and manufacturing method thereof
JP2004083407A (en) * 2002-08-24 2004-03-18 Carl Zeiss Stiftung Method and device for growing corundum single crystal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016509246A (en) * 2012-12-11 2016-03-24 ジーティーエイティー コーポレーションGtat Corporation Portable electronic equipment containing modified sapphire
JP2020074443A (en) * 2014-07-22 2020-05-14 株式会社Flosfia Crystalline semiconductor film and semiconductor device
US11069781B2 (en) 2014-07-22 2021-07-20 Flosfia Inc. Crystalline semiconductor film, plate-like body and semiconductor device
US11682702B2 (en) 2014-07-22 2023-06-20 Flosfia Inc. Crystalline semiconductor film, plate-like body and semiconductor device
JP7352226B2 (en) 2014-07-22 2023-09-28 株式会社Flosfia Crystalline semiconductor film and semiconductor device

Also Published As

Publication number Publication date
JPWO2006001225A1 (en) 2008-04-17

Similar Documents

Publication Publication Date Title
JP2011063510A (en) Method for producing artificial corundum crystal
CN101796227B (en) Process for growing single-crystal silicon carbide
Matsubara et al. Growth mechanism of Bi2Sr2CaCu2Ox superconducting whiskers
KR20180090186A (en) Method for producing garnet type oxide solid electrolyte
Yao et al. The crystal structure of a new ternary metal-rich sulfide Ta6. 08Nb4. 92S4
US7585365B2 (en) Corundum crystal formed body
JP2011207761A (en) Artificial corundum crystal
WO2006001225A1 (en) Corundum crystal formed body
US4057458A (en) Method of making nickel zinc ferrite by liquid-phase epitaxial growth
CN100567593C (en) Artificial corundum crystal
Li et al. Solid–liquid phase epitaxial growth of Li4Ti5O12 thin film
JP4668177B2 (en) Method for producing corundum crystals
JP3987925B2 (en) Method for producing multi-element transition metal complex oxide single crystal
JP4092398B2 (en) Bulk single crystal of alkali cobalt oxide
Teshima et al. Unique coating of ruby crystals on an aluminum oxide wall by flux evaporation
KR100509345B1 (en) A process for producing single crystals of blue colored cubic zirconia
JP3188541B2 (en) Method for producing single crystal thin film by liquid phase epitaxy
Oishi et al. Growth of emerald crystals by evaporation of a K 2 O–MoO 3 flux
Thieme et al. Comparative study of the crystallization behavior within the Na 2 O–Y 2 O 3–ZrO 2–SiO 2 system during heating and cooling
KR100509346B1 (en) A process for producing single crystals of green colored cubic zirconia
Rajasekaran et al. Growth and morphological aspects of Pb [(Sc1/2 Nb1/2) 0.58 Ti0. 42] O3 single crystals by slow-cooling technique
JP2003183028A (en) METHOD FOR GROWING NaxCoO2 CRYSTAL
JP4911617B2 (en) Process for producing bulk single crystal of alkali cobalt oxide
JPS63274695A (en) Production of cupric acid-lanthanum single crystal
Kantha et al. The effect of processing parameters on properties of Bi2GeO5 glass ceramics

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528492

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase