JP4911477B2 - IH type drift tube linear accelerator - Google Patents

IH type drift tube linear accelerator Download PDF

Info

Publication number
JP4911477B2
JP4911477B2 JP2008205093A JP2008205093A JP4911477B2 JP 4911477 B2 JP4911477 B2 JP 4911477B2 JP 2008205093 A JP2008205093 A JP 2008205093A JP 2008205093 A JP2008205093 A JP 2008205093A JP 4911477 B2 JP4911477 B2 JP 4911477B2
Authority
JP
Japan
Prior art keywords
drift tube
drift
electric field
tuner
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008205093A
Other languages
Japanese (ja)
Other versions
JP2010040462A (en
Inventor
洋一 黒田
和男 山本
博文 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008205093A priority Critical patent/JP4911477B2/en
Publication of JP2010040462A publication Critical patent/JP2010040462A/en
Application granted granted Critical
Publication of JP4911477B2 publication Critical patent/JP4911477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Particle Accelerators (AREA)

Description

この発明は、高周波加速電場によって粒子線を加速するためのドリフトチューブと呼ばれる電極を用いたIH型ドリフトチューブ線形加速器に関するものである。   The present invention relates to an IH type drift tube linear accelerator using an electrode called a drift tube for accelerating a particle beam by a high frequency acceleration electric field.

IH型ドリフトチューブ線形加速器においては、円筒形の加速空胴内部に加速空胴内周壁面の上下から交互に径方向に突出するステムを配置し、ステムにドリフトチューブを取り付けて、複数のドリフトチューブを円筒軸方向に配列する。ドリフトチューブ間に高周波電場が発生する。粒子線は複数のドリフトチューブの中を通過し、ドリフトチューブ間の高周波電場で加速される。この高周波電場は、通常、加速電場と呼ばれる。IH型加速器においては加速空洞内の水平方向を回転する方向の磁場が発生し、これによって電場が誘起されるため、加速空胴中央での加速電場が大きいという分布を持つ。これにより両端では加速電場が小さくなるため、入射側の加速電場を上げるために入射側数個のドリフトチューブ外径を大きくする、内径を小さくする、あるいはドリフトチューブ外側の曲率半径を小さくするなどして加速電場の向上が図られてきた(例えば、特許文献1参照)。
最も効率よく加速するためには各ドリフトチューブ間での電場強度の平均値が等しくなる必要がある。しかし、それぞれのドリフトチューブ間での平均電場強度を等しくするという調整を行なった場合、ドリフトチューブ同士の距離が遠い出射側においてはその表面における電場強度が高くなり、放電危険性が高くなる。この発明は、このような放電危険性を下げるためのものであり、この点は上記従来例と異なる。
In the IH type drift tube linear accelerator, a plurality of drift tubes are arranged in a cylindrical acceleration cavity by arranging stems that protrude alternately in the radial direction from the top and bottom of the inner wall surface of the acceleration cavity, and attaching the drift tubes to the stems. Are arranged in the cylindrical axis direction. A high frequency electric field is generated between the drift tubes. The particle beam passes through a plurality of drift tubes and is accelerated by a high-frequency electric field between the drift tubes. This high frequency electric field is usually called an acceleration electric field. In the IH type accelerator, a magnetic field rotating in the horizontal direction in the acceleration cavity is generated, and an electric field is induced thereby, so that the acceleration electric field at the center of the acceleration cavity is large. As a result, the accelerating electric field becomes smaller at both ends, so in order to increase the accelerating electric field on the incident side, increase the outer diameter of several drift tubes on the incident side, decrease the inner diameter, or decrease the radius of curvature outside the drift tube. Thus, the acceleration electric field has been improved (for example, see Patent Document 1).
In order to accelerate most efficiently, the average value of the electric field strength between the drift tubes needs to be equal. However, when the adjustment is made such that the average electric field strength between the drift tubes is equal, the electric field strength on the surface increases on the emission side where the distance between the drift tubes is long, and the risk of discharge increases. The present invention is intended to reduce such a discharge risk, and this point is different from the conventional example.

特開2006−351233号公報(第6−7頁、図5、図8)JP 2006-351233 (page 6-7, FIG. 5, FIG. 8)

IH型ドリフトチューブ線形加速器において、ドリフトチューブの表面における電場強度が大きくなると、放電が起こり、粒子線が安定して加速できない。
粒子線が加速され、粒子線のエネルギーが大きくなると粒子は高速となり、ドリフトチューブ間の距離は長くする必要があるので、粒子線出射側のドリフトチューブ間の距離は粒子線入射側のドリフトチューブ間の距離より長くなる。ドリフトチューブ間の電場強度分布の平均値を一定にするという条件で設計を行うと、このドリフトチューブ間の距離が長くなるほどドリフトチューブにおける表面電場強度は大きくなる。
In the IH type drift tube linear accelerator, when the electric field strength on the surface of the drift tube increases, discharge occurs and the particle beam cannot be accelerated stably.
When the particle beam is accelerated and the energy of the particle beam increases, the particle becomes faster and the distance between the drift tubes needs to be longer, so the distance between the drift tubes on the particle beam exit side is between the drift tubes on the particle beam incident side. Longer than the distance. When the design is performed under the condition that the average value of the electric field strength distribution between the drift tubes is constant, the surface electric field strength at the drift tubes increases as the distance between the drift tubes increases.

また、加速空胴の共振周波数及びドリフトチューブ間の電場強度分布の平均値の調整は、加速空胴の円筒壁に孔を開けこの孔に銅製の棒あるいは銅メッキした金属棒からなるチューナを挿入して行う。円筒壁を貫通してチューナを挿入した場合、チューナ挿入部中心付近の電場強度は小さくなり、チューナ両側付近の電場強度は大きくなる。従って、このようにチューナを挿入した場合、ドリフトチューブにおける表面電場強度はさらに大きくなる。また、そのチューナよりもさらに出射側に位置するドリフトチューブの表面電場強度は、ドリフトチューブ間の距離が大きくなることにより、そのチューナよりも入射側に位置するドリフトチューブの表面電場強度より大きくなる。また、最も出射側に位置するチューナよりも入射側にあるドリフトチューブ間の電場強度分布はチューナ相互の調節によって調整でき、表面電場強度を下げることができるが、最も出射側に位置するチューナよりも出射側にあるドリフトチューブ間の電場強度分布はチューナによって調整できない。これは、ドリフトチューブ間の電場強度と空洞の共振周波数の両方をチューナにより調節する必要があることに起因している。   To adjust the resonant frequency of the accelerating cavity and the average value of the electric field strength distribution between the drift tubes, a hole is made in the cylindrical wall of the accelerating cavity and a tuner made of a copper rod or a copper-plated metal rod is inserted into the hole. And do it. When the tuner is inserted through the cylindrical wall, the electric field strength near the center of the tuner insertion portion is small, and the electric field strength near both sides of the tuner is large. Therefore, when the tuner is inserted in this way, the surface electric field strength in the drift tube is further increased. Further, the surface electric field strength of the drift tube located on the emission side further than the tuner becomes larger than the surface electric field strength of the drift tube located on the incident side of the tuner as the distance between the drift tubes becomes larger. Also, the electric field strength distribution between the drift tubes on the incident side than the tuner located on the most exit side can be adjusted by adjusting the tuners, and the surface electric field strength can be lowered, but it is lower than the tuner located on the most exit side. The electric field intensity distribution between the drift tubes on the exit side cannot be adjusted by the tuner. This is because both the electric field strength between the drift tubes and the resonant frequency of the cavity need to be adjusted by the tuner.

粒子線出射側のドリフトチューブ間の距離が長くなるということ、挿入したチューナよりもさらに出射側に位置するドリフトチューブの表面電場強度が大きくなること及び最も出射側に位置するチューナよりも出射側にあるドリフトチューブ間の電場強度分布はチューナによって調整できないことから、最も出射側に位置するチューナよりもさらに出射側に位置するドリフトチューブの円筒軸方向端部の外周エッジ部においては表面電場強度が大きくなり、放電が発生して粒子線の安定な加速が行えなくなる場合があるという問題がある。   The distance between the drift tubes on the particle beam exit side becomes longer, the surface electric field strength of the drift tube located on the exit side becomes larger than the inserted tuner, and the tuner located on the most exit side is closer to the exit side. Since the electric field strength distribution between certain drift tubes cannot be adjusted by the tuner, the surface electric field strength is larger at the outer peripheral edge of the cylindrical axial end of the drift tube located on the exit side than the tuner located on the most exit side. Therefore, there is a problem in that discharge may occur and stable acceleration of the particle beam may not be performed.

この発明は、上記のような問題を解決するためになされたものであり、最も出射側に位置するチューナよりもさらに出射側にあるドリフトチューブの表面電場強度が大きくなり放電が発生する可能性がある場合に、このドリフトチューブの表面電場強度を低減し、これにより主にドリフトチューブ間の放電を防ぎ、粒子線の安定な加速が行えるようにしたIH型ドリフトチューブ線形加速器を提供することを目的とする。   The present invention has been made to solve the above-described problems, and there is a possibility that the surface electric field strength of the drift tube on the exit side becomes larger than the tuner located on the most exit side and discharge may occur. The purpose is to provide an IH type drift tube linear accelerator that reduces the surface electric field strength of this drift tube in some cases, thereby mainly preventing discharge between drift tubes and enabling stable acceleration of particle beams. And

この発明に係るIHドリフトチューブ線形加速器は、円筒形の加速空胴と、上記加速空胴内部に円筒軸方向に配列され高周波加速電場を発生させる複数のドリフトチューブと、上記各ドリフトチューブを一方の先端部に固定し他方の先端部を上記加速空胴の内周壁面に保持した複数のステムと、上記加速空胴の円筒壁を貫通する孔に挿入され上記円筒軸方向に配列設置されたチューナとを備え、上記チューナは、上記各チューナの上記貫通する孔に挿入される挿入部の長さを相互に調節可能に構成され、上記加速空洞の円筒軸方向の一端を入射端、他端を出射端として上記入射端から入射した粒子線を上記ドリフトチューブ間にかけられている高周波加速電場で加速して上記出射端から出射するIH型ドリフトチューブ線形加速器であって、
上記ドリフトチューブは、上記円筒軸方向端部の外周エッジ部が所定の曲率半径を有し、
上記出射端最近接位置に配置された上記チューナの中心位置よりも上記出射端の側に位置する上記ドリフトチューブの上記曲率半径を、上記チューナの中心位置よりも上記入射端の側に位置する上記ドリフトチューブそれぞれの上記曲率半径よりも大きくしたものである。
An IH drift tube linear accelerator according to the present invention includes a cylindrical acceleration cavity, a plurality of drift tubes arranged in the axial direction of the cylinder inside the acceleration cavity and generating a high-frequency accelerating electric field, and each of the drift tubes. A plurality of stems fixed to the distal end and having the other distal end held on the inner peripheral wall surface of the accelerating cavity, and a tuner inserted in a hole penetrating the cylindrical wall of the accelerating cavity and arranged in the cylindrical axis direction The tuner is configured such that the lengths of the insertion portions inserted into the through-holes of the tuners can be adjusted to each other, and one end of the acceleration cavity in the cylindrical axis direction is an incident end and the other end is An IH type drift tube linear accelerator for accelerating a particle beam incident from the incident end as an exit end with a high frequency acceleration electric field applied between the drift tubes and exiting from the exit end,
The drift tube has a predetermined radius of curvature at the outer peripheral edge portion of the cylindrical axial end portion,
The curvature radius of the drift tube located on the side of the exit end of the center position of the tuner arranged in the exit end closest position, the center position of the upper Symbol tuner located on the side of the incident end It is larger than the curvature radius of each drift tube.

この発明に係るIHドリフトチューブ線形加速器によれば、円筒形の加速空胴と、上記加速空胴内部に円筒軸方向に配列され高周波加速電場を発生させる複数のドリフトチューブと、上記各ドリフトチューブを一方の先端部に固定し他方の先端部を上記加速空胴の内周壁面に保持した複数のステムと、上記加速空胴の円筒壁を貫通する孔に挿入され上記円筒軸方向に配列設置されたチューナとを備え、上記チューナは、上記各チューナの上記貫通する孔に挿入される挿入部の長さを相互に調節可能に構成され、上記加速空洞の円筒軸方向の一端を入射端、他端を出射端として上記入射端から入射した粒子線を上記ドリフトチューブ間にかけられている高周波加速電場で加速して上記出射端から出射するIH型ドリフトチューブ線形加速器であって、
上記ドリフトチューブは、上記円筒軸方向端部の外周エッジ部が所定の曲率半径を有し、
上記出射端最近傍位置に配置された上記チューナの中心位置よりも上記出射端の側に位置し上記表面電場強度が上記許容値を超える可能性の高いドリフトチューブの上記曲率半径を、上記出射端最近接位置に配置された上記チューナの中心位置よりも上記入射端の側に位置する上記ドリフトチューブそれぞれの上記曲率半径よりも大きくしたので、ドリフトチューブ間の放電を防ぎ、粒子線を安定に加速することができる。
According to the IH drift tube linear accelerator according to the present invention, a cylindrical acceleration cavity, a plurality of drift tubes arranged in the axial direction of the cylinder inside the acceleration cavity and generating a high-frequency accelerating electric field, and the drift tubes are provided. A plurality of stems fixed to one tip and the other tip held on the inner peripheral wall surface of the accelerating cavity, and inserted into a hole penetrating the cylindrical wall of the accelerating cavity and arranged in the cylindrical axis direction The tuner is configured such that the lengths of the insertion portions inserted into the through-holes of the tuners can be adjusted with respect to each other. An IH type drift tube linear accelerator that accelerates a particle beam incident from the incident end with a high-frequency accelerating electric field applied between the drift tubes with an end as an exit end and exits from the exit end. Te,
The drift tube has a predetermined radius of curvature at the outer peripheral edge portion of the cylindrical axial end portion,
The radius of curvature of the drift tube, which is located closer to the exit end than the center position of the tuner disposed at the position closest to the exit end and the surface electric field strength is likely to exceed the allowable value, is set to the exit end. Since the radius of curvature of each of the drift tubes located closer to the incident end than the center position of the tuner located at the closest position is larger than the curvature radius of each of the drift tubes, discharge between the drift tubes is prevented and the particle beam is stably accelerated. can do.

実施の形態1.
図1は、この発明に係るドリフトチューブ線形加速器の実施の形態1を示す断面図であり、IH(Interdigital H−mode)型ドリフトチューブ線形加速器の断面図を示している。図1に示したように、IH型ドリフトチューブ線形加速器は、円筒形の加速空胴1と、加速空胴1の円筒軸方向に配列され高周波加速電場を発生させる複数のドリフトチューブ3と、各ドリフトチューブ3を一方の先端部に固定し他方の先端部を加速空胴1の内周壁面に保持した複数のステム2と、加速空胴1の円筒壁を貫通する孔に円筒壁を貫通して挿入され円筒軸方向に配列された複数のチューナとを備える。複数のチューナ相互の円筒壁の孔に挿入される挿入部の長さを調節することによって加速空胴1の共振周波数及びドリフトチューブ3間の電場強度分布の平均値を各ドリフトチューブ3間において同じ値に調整し、かつ、ドリフトチューブ3間の電場強度分布を調整してドリフトチューブ3における表面電場強度を許容値以下とし、加速空洞1の円筒軸の一方を入射端、他方を出射端として入射端から入射した粒子線を加速して出射端から出射する。チューナは、銅棒あるいは銅メッキ金属等からなり、例えば、加速空胴1の円筒部のチューナ設置位置4,5,6,7に設けた貫通孔に挿入される。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing a first embodiment of a drift tube linear accelerator according to the present invention, and shows a cross-sectional view of an IH (Interdigital H-mode) type drift tube linear accelerator. As shown in FIG. 1, the IH type drift tube linear accelerator includes a cylindrical acceleration cavity 1, a plurality of drift tubes 3 arranged in the cylinder axis direction of the acceleration cavity 1 to generate a high-frequency acceleration electric field, The drift tube 3 is fixed to one tip portion, and the other tip portion is held on the inner peripheral wall surface of the accelerating cavity 1 and the cylindrical wall is passed through a hole penetrating the cylindrical wall of the accelerating cavity 1. And a plurality of tuners arranged in the cylindrical axis direction. The resonance frequency of the accelerating cavity 1 and the average value of the electric field intensity distribution between the drift tubes 3 are the same between the drift tubes 3 by adjusting the length of the insertion portion inserted into the hole of the cylindrical wall between the plurality of tuners. And the electric field strength distribution between the drift tubes 3 is adjusted so that the surface electric field strength in the drift tube 3 is less than the allowable value, and one of the cylindrical axes of the accelerating cavity 1 is incident as the incident end and the other as the incident end. The particle beam incident from the end is accelerated and emitted from the emission end. The tuner is made of a copper rod or copper-plated metal or the like, and is inserted into, for example, through holes provided at tuner installation positions 4, 5, 6, and 7 in the cylindrical portion of the acceleration cavity 1.

IH型ドリフトチューブ線形加速器においては、ドリフトチューブ3同士の間の空間に高周波加速電場が発生し、粒子線の加速が行われる。そのために、入射側から出射側に向かって次第に粒子線のエネルギーが高くなるので、入射端側から出射端側に向かって次第にドリフトチューブ3間の距離を長くする必要がある。ドリフトチューブ3間における粒子線加速軸(円筒軸)a方向の電場強度分布はドリフトチューブ3表面で高く、ドリフトチューブ3間で低くなる。すなわち、ドリフトチューブ3間の電場強度分布はドリフトチューブ3間の両端にピークを持つことになる。従って、各ドリフトチューブ3間の電場強度分布の平均値を等しくするという条件で設計を行った場合、ドリフトチューブ3間の距離を長くした出射側のドリフトチューブ3の表面電場強度の最大値は、入射側に位置するドリフトチューブ3間の距離が短いドリフトチューブ3の表面電場強度の最大値に比べて大きくなる。   In the IH type drift tube linear accelerator, a high frequency accelerating electric field is generated in the space between the drift tubes 3 and the particle beam is accelerated. Therefore, since the energy of the particle beam gradually increases from the incident side toward the emission side, it is necessary to gradually increase the distance between the drift tubes 3 from the incident end side toward the emission end side. The electric field intensity distribution in the direction of the particle beam acceleration axis (cylindrical axis) a between the drift tubes 3 is high on the surface of the drift tube 3 and is low between the drift tubes 3. That is, the electric field intensity distribution between the drift tubes 3 has peaks at both ends between the drift tubes 3. Therefore, when the design is performed under the condition that the average value of the electric field intensity distribution between the drift tubes 3 is equal, the maximum value of the surface electric field intensity of the drift tube 3 on the emission side with the longer distance between the drift tubes 3 is The distance between the drift tubes 3 located on the incident side is larger than the maximum value of the surface electric field strength of the drift tube 3.

また、チューナを、円筒壁を貫通して挿入した場合、図2に示すようにチューナ挿入位置16(チューナの中心位置)付近の電場強度は小さくなり、チューナ挿入後のドリフトチューブ3間の電場分布18は、チューナの挿入位置から入射端側、出射端側に向かって離れるに従って、その電場強度がチューナ挿入前の電場分布17における電場強度より大きくなる。このような状況に対して、最も出射端側に位置するチューナの中心位置より入射端側に位置するドリフトチューブ3間の電場強度分布については複数のチューナの挿入部長さを相互に調節することによって、その強度を調整し、ドリフトチューブ3の表面電場強度を許容値以下にすることができる。しかし、チューナを用いて表面電場強度と共振周波数をともに調整する必要があるので、最も出射端側に位置するチューナの中心位置よりさらに出射端側に位置するドリフトチューブ3間の電場強度分布の調整範囲は制限されるため、チューナの調節という従来の方法では、最も出射端側に位置するチューナの中心位置より出射端側に位置するドリフトチューブ3の表面電場強度は放電にかかる許容値を超えることがある。   When the tuner is inserted through the cylindrical wall, the electric field strength near the tuner insertion position 16 (tuner center position) decreases as shown in FIG. 2, and the electric field distribution between the drift tubes 3 after the tuner is inserted. 18, the electric field strength becomes larger than the electric field strength in the electric field distribution 17 before the tuner is inserted as the distance from the insertion position of the tuner increases toward the incident end side and the outgoing end side. For such a situation, with respect to the electric field intensity distribution between the drift tubes 3 located closer to the incident end than the center position of the tuner located closest to the emission end, the insertion lengths of the plurality of tuners are adjusted to each other. The strength of the drift tube 3 can be adjusted below the allowable value by adjusting the strength. However, since it is necessary to adjust both the surface electric field strength and the resonance frequency using a tuner, the electric field strength distribution between the drift tubes 3 positioned further on the exit end side than the center position of the tuner located closest to the exit end side is adjusted. Since the range is limited, in the conventional method of adjusting the tuner, the surface electric field strength of the drift tube 3 located on the exit end side from the center position of the tuner located closest to the exit end side exceeds the allowable value for discharge. There is.

このように、ドリフトチューブ3間の距離が長くなること、チューナを挿入したこと及び最も出射端側に位置するチューナの中心位置より出射端側に位置するドリフトチューブ3間の電場強度分布が調整できないことが原因となって、最も出射端側に位置するチューナの中心位置よりさらに出射端側に位置するドリフトチューブ3の表面電場強度が大きくなり、放電が発生する可能性が生じる。   As described above, the distance between the drift tubes 3 is increased, the tuner is inserted, and the electric field intensity distribution between the drift tubes 3 positioned on the output end side from the center position of the tuner positioned closest to the output end side cannot be adjusted. For this reason, the surface electric field strength of the drift tube 3 located on the emission end side further increases from the center position of the tuner located closest to the emission end side, which may cause a discharge.

この発明においては、最も出射端側に位置するチューナ設置位置7の中心位置よりもさらに出射端側に位置して放電発生の可能性があるドリフトチューブ3の端部外周(粒子線加速軸a方向端部の外周部)のエッジ部の曲率半径をチューナ設置位置7の中心位置よりも入射端側に位置する各ドリフトチューブ3の端部外周のエッジ部の曲率半径より大きくすることでエッジ部の電場集中を避けて電場強度を低減することにより放電を防ぎ、放電による加速電場の乱れを防止することで安定な粒子線加速ができるようにするものである。また、放電を防ぐことでドリフトチューブ線形加速器の長寿命化及び製品の安全性を図るものである。   In this invention, the outer periphery of the end of the drift tube 3 that is located further on the emission end side than the center position of the tuner installation position 7 that is located closest to the emission end side and in which discharge may occur (in the direction of the particle beam acceleration axis a) The radius of curvature of the edge portion of the edge portion of the edge portion is made larger than the radius of curvature of the edge portion of the outer periphery of the end portion of each drift tube 3 located on the incident end side of the center position of the tuner installation position 7. By avoiding electric field concentration and reducing electric field intensity, discharge is prevented, and disturbance of acceleration electric field due to discharge is prevented, thereby enabling stable particle beam acceleration. Moreover, the life of the drift tube linear accelerator and the safety of the product are achieved by preventing discharge.

図3は、ドリフトチューブ3の端部外周エッジ部の曲率半径の大きさを変えた2種類のドリフトチューブを示す断面図である。図3(a)は、チューナ設置位置7の中心位置よりも入射端側に位置するドリフトチューブ3における端部外周エッジ部8,9の曲率半径を示し、図3(b)は、チューナ設置位置7の中心位置よりも出射端側に位置するドリフトチューブ3における端部外周エッジ部10,11の曲率半径を示している。   FIG. 3 is a cross-sectional view showing two types of drift tubes in which the radius of curvature of the outer peripheral edge portion of the end portion of the drift tube 3 is changed. 3A shows the curvature radii of the outer peripheral edge portions 8 and 9 of the drift tube 3 located on the incident end side with respect to the center position of the tuner installation position 7, and FIG. 3B shows the tuner installation position. 7 shows the radii of curvature of the outer peripheral edge portions 10 and 11 of the end portion of the drift tube 3 located closer to the emission end side than the center position of FIG.

以上のように、この実施の形態1によれば、最も出射端側に位置するチューナ設置位置7の中心位置よりもさらに出射端側に位置するドリフトチューブ3の端部外周エッジ部10,11における曲率半径を、チューナ設置位置7の中心位置より入射端側に位置する各ドリフトチューブ3の端部外周エッジ部8、9の曲率半径に比べて大きくすることで放電を防ぎ、安定な粒子線加速ができるようにすることができる。   As described above, according to the first embodiment, in the end outer peripheral edge portions 10 and 11 of the drift tube 3 positioned further on the emission end side than the center position of the tuner installation position 7 located on the most emission end side. Discharge is prevented by increasing the radius of curvature compared to the radius of curvature of the outer peripheral edge portions 8 and 9 of each drift tube 3 located on the incident end side from the center position of the tuner installation position 7, and stable particle beam acceleration Can be able to.

また、端部外周エッジ部の曲率半径を大きくする対象となるドリフトチューブ3が複数ある場合においては、一つのドリフトチューブ3の両端で表面電場強度が異なり、その両端において放電の起こる可能性が異なる場合があるので、その場合には、図4に示すように、ドリフトチューブ3の端部外周エッジ部12の曲率半径と端部外周エッジ部13の曲率半径を異なるものとし、また、ドリフトチューブ3の端部外周エッジ部14の曲率半径と端部外周エッジ部15の曲率半径は異なるものとして放電の起こりやすい対向する面の端部外周エッジ部13,14の曲率半径を大きくする。   In addition, when there are a plurality of drift tubes 3 that are targets for increasing the radius of curvature of the outer peripheral edge portion, the surface electric field strength is different at both ends of one drift tube 3, and the possibility of discharge occurring at both ends is different. In this case, as shown in FIG. 4, the curvature radius of the end outer peripheral edge portion 12 of the drift tube 3 is different from the curvature radius of the end outer peripheral edge portion 13, and the drift tube 3 The radius of curvature of the end outer peripheral edge portion 14 and the radius of curvature of the end outer peripheral edge portion 15 are different, and the radius of curvature of the end outer peripheral edge portions 13 and 14 of the opposing surfaces where discharge easily occurs is increased.

また、端部外周エッジ部の曲率半径を大きくするドリフトチューブ3が複数ある場合、各ドリフトチューブ3の表面電場強度が異なるので、図5に示すように、ドリフトチューブ3の端部外周エッジ部12及び13の曲率半径と端部外周エッジ部14及び15の曲率半径とを異なるものとする。また、この場合、一つのドリフトチューブ3の両端で表面電場強度が異なる場合があるので、その場合には、その両端の端部外周エッジ部の曲率半径を異なるものとする。   Further, when there are a plurality of drift tubes 3 that increase the radius of curvature of the end outer peripheral edge portion, the surface electric field strength of each drift tube 3 is different, so that the end outer peripheral edge portion 12 of the drift tube 3 is shown in FIG. And the curvature radius of the end edge edge portions 14 and 15 are different from each other. In this case, since the surface electric field strength may be different at both ends of one drift tube 3, in this case, the curvature radii of the outer peripheral edge portions at the both ends are different.

この発明のドリフトチューブ線形加速器は、医療用の機器に有効に利用することができる。   The drift tube linear accelerator of the present invention can be effectively used for medical equipment.

この発明に係るIHドリフトチューブ線形加速器の実施の形態1の構成を示す断面図である。It is sectional drawing which shows the structure of Embodiment 1 of the IH drift tube linear accelerator which concerns on this invention. 実施の形態1によるチューナ挿入時の電場強度分布の変化を示すグラフである。5 is a graph showing a change in electric field strength distribution when a tuner is inserted according to the first embodiment. 実施の形態1におけるIHドリフトチューブを示す断面図である。FIG. 3 is a cross-sectional view showing an IH drift tube in the first embodiment. 実施の形態1におけるIHドリフトチューブを示す断面図である。FIG. 3 is a cross-sectional view showing an IH drift tube in the first embodiment. 実施の形態1におけるIHドリフトチューブを示す断面図である。FIG. 3 is a cross-sectional view showing an IH drift tube in the first embodiment.

符号の説明Explanation of symbols

1 加速空胴、2 ステム、3 ドリフトチューブ、4〜7 チューナ設置位置、
a ビーム加速軸、8〜15 端部外周エッジ部、16 チューナ挿入位置、
17 チューナ挿入前の電場分布、18 チューナ挿入後の電場分布。
1 Acceleration cavity, 2 stem, 3 drift tube, 4-7 tuner installation position,
a beam acceleration axis, 8 to 15 end outer peripheral edge, 16 tuner insertion position,
17 Electric field distribution before inserting the tuner, 18 Electric field distribution after inserting the tuner.

Claims (3)

円筒形の加速空胴と、上記加速空胴内部に円筒軸方向に配列され高周波加速電場を発生させる複数のドリフトチューブと、上記各ドリフトチューブを一方の先端部に固定し他方の先端部を上記加速空胴の内周壁面に保持した複数のステムと、上記加速空胴の円筒壁を貫通する孔に挿入され上記円筒軸方向に配列設置されたチューナとを備え、上記チューナは、上記各チューナの上記貫通する孔に挿入される挿入部の長さを相互に調節可能に構成され、上記加速空洞の円筒軸方向の一端を入射端、他端を出射端として上記入射端から入射した粒子線を上記ドリフトチューブ間にかけられている高周波加速電場で加速して上記出射端から出射するIH型ドリフトチューブ線形加速器であって、
上記ドリフトチューブは、上記円筒軸方向端部の外周エッジ部が所定の曲率半径を有し、
上記出射端最近傍位置に配置された上記チューナの中心位置よりも上記出射端の側に位置する上記ドリフトチューブの上記曲率半径を、上記チューナの中心位置よりも上記入射端の側に位置する上記ドリフトチューブそれぞれの上記曲率半径よりも大きくしたことを特徴とするIH型ドリフトチューブ線形加速器。
A cylindrical acceleration cavity, a plurality of drift tubes arranged in the axial direction of the cylinder inside the acceleration cavity and generating a high-frequency accelerating electric field, and each drift tube is fixed to one tip and the other tip is A plurality of stems held on the inner peripheral wall surface of the accelerating cavity; and tuners that are inserted into holes that penetrate the cylindrical wall of the accelerating cavity and that are arranged in the cylindrical axis direction. The length of the insertion portion inserted into the through-hole of each of the accelerating cavities is configured to be mutually adjustable. Is an IH type drift tube linear accelerator that accelerates with a high frequency acceleration electric field applied between the drift tubes and exits from the exit end,
The drift tube has a predetermined radius of curvature at the outer peripheral edge portion of the cylindrical axial end portion,
The curvature radius of the drift tube located on the side of the exit end of the center position of the tuner arranged in the exit end nearest position, the center position of the upper Symbol tuner located on the side of the incident end An IH type drift tube linear accelerator characterized by being larger than the curvature radius of each of the drift tubes.
上記曲率半径を大きくしたドリフトチューブが複数の場合、該複数のドリフトチューブそれぞれの上記曲率半径が異なることを特徴とした請求項1に記載のIH型ドリフトチューブ線形加速器。 2. The IH type drift tube linear accelerator according to claim 1, wherein when there are a plurality of drift tubes having a larger curvature radius, the curvature radii of the plurality of drift tubes are different from each other. 上記曲率半径を大きくしたドリフトチューブの上記曲率半径が、当該ドリフトチューブの上記入射端側と上記出射端側とで異なることを特徴とした請求項1または請求項2に記載のIH型ドリフトチューブ線形加速器。 3. The IH drift tube linear shape according to claim 1, wherein the curvature radius of the drift tube having a larger curvature radius is different between the incident end side and the emission end side of the drift tube. Accelerator.
JP2008205093A 2008-08-08 2008-08-08 IH type drift tube linear accelerator Active JP4911477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008205093A JP4911477B2 (en) 2008-08-08 2008-08-08 IH type drift tube linear accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008205093A JP4911477B2 (en) 2008-08-08 2008-08-08 IH type drift tube linear accelerator

Publications (2)

Publication Number Publication Date
JP2010040462A JP2010040462A (en) 2010-02-18
JP4911477B2 true JP4911477B2 (en) 2012-04-04

Family

ID=42012768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008205093A Active JP4911477B2 (en) 2008-08-08 2008-08-08 IH type drift tube linear accelerator

Country Status (1)

Country Link
JP (1) JP4911477B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111526655A (en) * 2019-02-02 2020-08-11 清华大学 Tuning method and device for radio frequency quadrupole accelerator and storage medium

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4869374B2 (en) * 2009-03-25 2012-02-08 三菱電機株式会社 H-mode drift tube linear accelerator
CN103945633B (en) * 2014-05-12 2016-05-18 重庆大学 A kind of bicylindrical electron linear accelerator Effective focus size adjusting device and method
CN113784495A (en) * 2021-09-10 2021-12-10 中山大学 High-gradient and high-strength harmonic accelerator
CN114641121B (en) * 2022-03-22 2023-01-06 清华大学 Method for tuning field stability

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4194105B2 (en) * 2005-09-26 2008-12-10 独立行政法人放射線医学総合研究所 H-mode drift tube linear accelerator and design method thereof
JP2007157400A (en) * 2005-12-01 2007-06-21 Sumitomo Heavy Ind Ltd Linear accelerator
JP5010846B2 (en) * 2006-04-19 2012-08-29 株式会社日立製作所 Accelerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111526655A (en) * 2019-02-02 2020-08-11 清华大学 Tuning method and device for radio frequency quadrupole accelerator and storage medium
CN111526655B (en) * 2019-02-02 2021-06-29 清华大学 Tuning method and device for radio frequency quadrupole accelerator and storage medium

Also Published As

Publication number Publication date
JP2010040462A (en) 2010-02-18

Similar Documents

Publication Publication Date Title
JP4911477B2 (en) IH type drift tube linear accelerator
JP4898316B2 (en) Magnetron
KR20080056717A (en) Design of high power pulser flash lamps
JP4904877B2 (en) Magnetron
US8159137B2 (en) Magnetron
JP4991266B2 (en) Multi-beam klystron
JP2016225201A (en) Klystron
JP3732729B2 (en) Magnetron
KR101679518B1 (en) Magnetron
JP5016904B2 (en) Multi-beam klystron
JP2009267702A (en) High-frequency component
JP5162880B2 (en) Magnetron
KR102526862B1 (en) plasma source
JP5055872B2 (en) Magnetron
JP4869374B2 (en) H-mode drift tube linear accelerator
EP4310881A1 (en) Klystron device
US7973621B2 (en) Hom damped high-frequency resonator
US6879616B2 (en) Diffusion-cooled laser system
JP7157510B2 (en) Klystron
JP2010192353A (en) Electron tube
JP2010153095A (en) Ion gun
JP2007035368A (en) Magnetron and manufacturing method of the same
JP3729645B2 (en) Circular particle accelerator
JP5055877B2 (en) Magnetron
CN116997987A (en) Klystron device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4911477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250