JP4910361B2 - Vehicle driving force control device - Google Patents

Vehicle driving force control device Download PDF

Info

Publication number
JP4910361B2
JP4910361B2 JP2005306983A JP2005306983A JP4910361B2 JP 4910361 B2 JP4910361 B2 JP 4910361B2 JP 2005306983 A JP2005306983 A JP 2005306983A JP 2005306983 A JP2005306983 A JP 2005306983A JP 4910361 B2 JP4910361 B2 JP 4910361B2
Authority
JP
Japan
Prior art keywords
driving force
target driving
target
force
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005306983A
Other languages
Japanese (ja)
Other versions
JP2007113723A (en
Inventor
宏忠 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005306983A priority Critical patent/JP4910361B2/en
Publication of JP2007113723A publication Critical patent/JP2007113723A/en
Application granted granted Critical
Publication of JP4910361B2 publication Critical patent/JP4910361B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、車輌の駆動力制御装置に係り、更に詳細には乗員の運転操作状況及び車輌の走行状況に基づいて車輌の駆動力を制御する駆動力制御装置に係る。   The present invention relates to a vehicle driving force control device, and more particularly, to a driving force control device that controls the driving force of a vehicle based on the driving operation status of a passenger and the traveling status of the vehicle.

自動車等の車輌の駆動力制御装置の一つとして、例えば本願出願人の出願にかかる下記の特許文献1に記載されている如く、運転者の加速要求に応じて車輌の目標駆動力を演算し、目標駆動力に基づいてエンジンの目標スロットル開度及びトランスミッションの目標変速段を決定し、目標スロットル開度に基づいてエンジンの出力を制御すると共に目標変速段に基づいてトランスミッションの変速段を制御するよう構成された駆動力制御装置が従来より知られている。
特開2003−191774号公報
As one of driving force control devices for vehicles such as automobiles, for example, as described in the following Patent Document 1 relating to the application of the present applicant, the target driving force of the vehicle is calculated in response to the driver's acceleration request. The engine target throttle opening and the transmission target gear are determined based on the target driving force, the engine output is controlled based on the target throttle opening, and the transmission gear is controlled based on the target gear. A driving force control device configured as described above is conventionally known.
JP 2003-191774 A

上述の如き従来の駆動力制御装置に於いては、トランスミッションの目標変速段は車輌の目標駆動力及び予め設定された変速線により一義的に決定されるため、例えば車輌が一時的にマンホールや部分凍結部の如き低摩擦係数の路面を通過する際に瞬間的に過大な駆動スリップが生じ、トラクション制御によりトランスミッションの変速段がシフトアップされてしまい、車輌が低摩擦係数の路面を通過した直後に於ける車輌の加速が不十分になることがある。   In the conventional driving force control apparatus as described above, the target shift speed of the transmission is uniquely determined by the target driving force of the vehicle and a preset shift line. Immediately after passing a low friction coefficient road surface such as a frozen part, an excessive drive slip occurs momentarily, the traction control shifts up the transmission speed, and immediately after the vehicle passes the low friction coefficient road surface. Vehicle acceleration may be insufficient.

本発明は、運転者の加速要求に応じて目標駆動力が演算され、トランスミッションの目標変速段が目標駆動力及び予め設定された変速線により決定されるよう構成された従来の駆動力制御装置に於ける上述の如き問題に鑑みてなされたものであり、本発明の主要な課題は、トランスミッションの目標変速段の決定に供される目標駆動力の低下を抑制することにより、車輌が一時的に低摩擦係数の路面を通過する際にトランスミッションの変速段がシフトアップされることを防止し、車輌が低摩擦係数の路面を通過した直後に於ける車輌の加速が不十分になることを防止することである。   The present invention provides a conventional driving force control apparatus configured such that a target driving force is calculated in response to a driver's acceleration request, and a target gear position of the transmission is determined by the target driving force and a preset shift line. The present invention has been made in view of the above-described problems, and a main object of the present invention is to suppress a decrease in target driving force used for determining a target gear position of the transmission, thereby temporarily Prevents transmission gears from being shifted up when passing through a low friction coefficient road surface and prevents the vehicle from becoming insufficiently accelerated immediately after passing through a low friction coefficient road surface. That is.

上述の主要な課題は、本発明によれば、請求項1の構成、即ち乗員の運転操作状況及び車輌の走行状況に基づき目標駆動力を演算する手段と、前記目標駆動力に比して低下変化が小さい低下制限目標駆動力を演算する手段と、前記目標駆動力に基づいて駆動源の駆動力を制御する手段と、前記低下制限目標駆動力に基づいてトランスミッションの変速比を制御する手段とを有する車輌の駆動力制御装置に於いて、車輌は駆動輪の駆動スリップを抑制する駆動スリップ抑制目標駆動力を演算する手段と、各車輪の制駆動力の制御により車輌の走行運動を安定化させるための走行運動制御目標駆動力を演算する手段とを有し、前記低下制限目標駆動力を演算する手段は前記駆動スリップ抑制目標駆動力に比して低下変化が小さい低下制限駆動スリップ抑制目標駆動力を演算する手段と、前記走行運動制御目標駆動力に比して低下変化が小さい低下制限走行運動制御目標駆動力を演算する手段とを有し、前記低下制限駆動スリップ抑制目標駆動力及び前記低下制限走行運動制御目標駆動力のうち大きい方の値を低下制限目標駆動力に設定することを特徴とする車輌の駆動力制御装置によって達成される。 According to the present invention, the above-mentioned main problem is that the configuration of claim 1, that is, means for calculating the target driving force based on the driving operation status of the occupant and the driving status of the vehicle, and lower than the target driving force. Means for calculating a lower limit target driving force having a small change; means for controlling a driving force of a driving source based on the target driving force; and means for controlling a transmission gear ratio based on the lower limit target driving force. In the vehicle driving force control apparatus, the vehicle stabilizes the traveling motion of the vehicle by calculating the driving slip suppression target driving force for suppressing the driving slip of the driving wheel and the braking / driving force of each wheel. Means for calculating a travel motion control target driving force for reducing the reduction limiting target driving force, and the means for calculating the reduction limiting target driving force has a reduction change smaller than the driving slip suppression target driving force. And a means for calculating a lower limit travel motion control target drive force having a smaller decrease in comparison with the travel motion control target drive force, and the lower limit drive slip suppression target. The vehicle driving force control device is characterized in that the larger value of the driving force and the lower limit travel motion control target driving force is set as the lower limit target driving force .

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1の構成に於いて、前記低下制限スリップ抑制目標駆動力を演算する手段は低下変化の応答性が増加変化の応答性よりも低いフィルタ処理を前記駆動スリップ抑制目標駆動力に対し行うことにより前記低下制限駆動スリップ抑制目標駆動力を演算し、前記低下制限走行運動制御目標駆動力を演算する手段は低下変化の応答性が増加変化の応答性よりも低いフィルタ処理を前記走行運動制御目標駆動力に対し行うことにより前記低下制限走行運動制御目標駆動力を演算するよう構成される(請求項2の構成)。 According to the present invention, the means for calculating the lower limit slip suppression target driving force increases the responsiveness of the lower change in the configuration of claim 1 so as to effectively achieve the main problem described above. filtering lower than the response of the change calculating the reduction limiting drive slip suppression target driving force by performing relative to the drive slip suppression target driving force, means for calculating the reduction limited driving dynamics control target driving force is reduced The lower limit travel motion control target driving force is configured to be calculated by performing a filtering process on the travel motion control target driving force with a change responsiveness lower than the increase change responsiveness. ).

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1又は2の構成に於いて、前記低下制限スリップ抑制目標駆動力を演算する手段及び前記低下制限走行運動制御目標駆動力を演算する手段は乗員の加速要求が高いときには乗員の加速要求が低いときに比してそれぞれ前記低下制限スリップ抑制目標駆動力及び前記低下制限走行運動制御目標駆動力の低下制限度合を高くするよう構成される(請求項3の構成)。 According to the present invention, in order to effectively achieve the above main problems, in the configuration of claim 1 or 2, the means for calculating the lower limit slip suppression target driving force and the lower limit travel motion lowering limit degree of the control target driving force means for computing each said reduced limit slip suppression target driving force than when the occupant of the acceleration demand is low when the occupant of the acceleration demand is high and the decrease limited driving dynamics control target driving force Is configured to be high (configuration of claim 3).

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1乃至3の構成に於いて、記目標駆動力を演算する手段は前記駆動スリップ抑制目標駆動力及び前記走行運動制御目標駆動力が演算されているときには、それらのうちの小さい方の値に基づいて目標駆動力を演算するよう構成される(請求項4の構成)。 According to the invention, to the aspect of the effective, in the configuration of the claims 1 to 3, it means for calculating the pre-Symbol target driving force is the drive slip suppression target driving force and When the travel motion control target driving force is calculated, the target driving force is calculated based on the smaller one of them (configuration of claim 4).

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項の構成に於いて、前記低下制限目標駆動力を演算する手段は、前記走行運動制御目標駆動力が演算されているとき又は車輌が高横力旋回状態にあるときに駆動輪のタイヤ発生力に比して低下変化が小さい旋回制御目標駆動力を演算する手段を有し、前記低下制限駆動スリップ抑制目標駆動力、前記低下制限走行運動制御目標駆動力、前記旋回制御目標駆動力のうちの最大値を前記低下制限目標駆動力に設定するよう構成される(請求項5の構成)。 According to the present invention, in order to effectively achieve the main problems described above, in the configuration of claim 1 , the means for calculating the lower limit target driving force includes the traveling motion control target driving force. or when the vehicle is computed has a means to calculating the decrease change is small turning control target driving force than the tire force of the driving wheels when in the high lateral force turning state, before Symbol drop-limiting drive A maximum value among the slip suppression target drive force, the lower limit travel motion control target drive force, and the turning control target drive force is set as the lower limit target drive force (configuration of claim 5).

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1乃至5の構成に於いて、記低下制限走行運動制御目標駆動力の低下制限度合は前記低下制限駆動スリップ抑制目標駆動力の低下制限度合よりも低いよう構成される(請求項6の構成)。 According to the invention, to the aspect of the effective, in the configuration of the claims 1 to 5, decreased limited degree before Symbol drop limited driving dynamics control target driving force is the reduction limit It is comprised so that it may be lower than the fall restriction | limiting limit of a driving slip suppression target driving force (structure of Claim 6).

上記請求項1の構成によれば、乗員の運転操作状況及び車輌の走行状況に基づいて目標駆動力が演算され、駆動輪の駆動スリップを抑制する駆動スリップ抑制目標駆動力が演算され、各車輪の制駆動力の制御により車輌の走行運動を安定化させるための走行運動制御目標駆動力が演算される。また駆動スリップ抑制目標駆動力に比して低下変化が小さい低下制限駆動スリップ抑制目標駆動力が演算され、走行運動制御目標駆動力に比して低下変化が小さい低下制限走行運動制御目標駆動力が演算され、低下制限駆動スリップ抑制目標駆動力及び低下制限走行運動制御目標駆動力のうち大きい方の値が低下制限目標駆動力に設定される。そして目標駆動力に基づいて駆動源の駆動力が制御されると共に、低下制限目標駆動力に基づいてトランスミッションの変速比が制御される。従ってトランスミッションの変速比も目標駆動力に基づいて制御される従来の駆動力制御装置の場合に比して、トランスミッションのシフトアップを抑制することができ、これにより車輌が一時的に低摩擦係数の路面を通過する際にトランスミッションの変速段がシフトアップされることを防止し、車輌が低摩擦係数の路面を通過した直後に於ける車輌の加速が不十分になることを防止することができる。 According to the configuration of the first aspect, the target driving force is calculated based on the driving operation state of the occupant and the traveling state of the vehicle, the driving slip suppression target driving force for suppressing the driving slip of the driving wheel is calculated, and each wheel is calculated. A travel motion control target drive force for stabilizing the travel motion of the vehicle is calculated by controlling the braking / driving force. In addition, a lower limit driving slip suppression target driving force having a smaller decrease compared to the driving slip suppression target driving force is calculated, and a lower limiting traveling motion control target driving force having a lower decrease compared to the traveling motion control target driving force is obtained. The larger one of the lower limit drive slip suppression target drive force and the lower limit travel motion control target drive force is calculated and set as the lower limit target drive force. Then, the driving force of the driving source is controlled based on the target driving force, and the transmission gear ratio is controlled based on the lower limit target driving force . Therefore , transmission shift-up can be suppressed as compared with the conventional driving force control device in which the transmission gear ratio is also controlled based on the target driving force, which makes the vehicle temporarily have a low friction coefficient. It is possible to prevent the shift stage of the transmission from being shifted up when passing through the road surface, and to prevent the vehicle from being insufficiently accelerated immediately after passing through the road surface having a low coefficient of friction.

また上記請求項2の構成によれば、低下変化の応答性が増加変化の応答性よりも低いフィルタ処理を駆動スリップ抑制目標駆動力に対し行うことにより低下制限駆動スリップ抑制目標駆動力が演算され、また低下変化の応答性が増加変化の応答性よりも低いフィルタ処理を走行運動制御目標駆動力に対し行うことにより低下制限走行運動制御目標駆動力が演算されるので、目標駆動力に対し低下が制限された低下制限駆動スリップ抑制目標駆動力及び低下制限走行運動制御目標駆動力それぞれ駆動スリップ抑制目標駆動力及び走行運動制御目標駆動力に基づいて確実に演算することができる。 According to the second aspect of the present invention, the lower limit driving slip suppression target driving force is calculated by performing filtering processing on the driving slip suppression target driving force in which the responsiveness of the decrease change is lower than the responsiveness of the increase change. and the operation is lowered limited driving dynamics control target driving force by performing a filter processing lower than the response of the increase change in responsiveness of the reduced variation with respect to the driving dynamics control target driving force Runode, reduced to the target driving force There can be reliably calculated based on the limited reduction limiting drive slip suppression target driving force and lowering limited driving dynamics control target driving force of each driving slip suppression target driving force and vehicle dynamics control target driving force.

また上記請求項3の構成によれば、乗員の加速要求が高いときには乗員の加速要求が低いときに比して低下制限スリップ抑制目標駆動力及び低下制限走行運動制御目標駆動力の低下制限度合が高くされる。従って乗員の加速要求が高いときには乗員の加速要求が低いときに比して低下制限目標駆動力の低下を抑制することができ、これにより乗員の加速要求が高いときにはトランスミッションのシフトアップが効果的に行われ難くし、駆動力の低下を抑制して乗員の加速要求をできるだけ充足すると共に、乗員の加速要求が低いときにはトランスミッションのシフトアップが比較的行われ易くし、駆動力を速やかに低下させることができる。 According to the third aspect of the present invention, when the occupant's acceleration request is high, the lower limit slip suppression target drive force and the lower limit travel motion control target drive force are less limited than when the occupant's acceleration request is low. Be raised . Therefore, when the occupant's acceleration request is high, it is possible to suppress a decrease in the lower limit target driving force compared to when the occupant's acceleration request is low. To reduce the driving force and to satisfy the occupant's acceleration request as much as possible, and when the occupant's acceleration request is low, the transmission is shifted up relatively easily and the driving force is quickly reduced. Can do.

また上記請求項4の構成によれば、目標駆動力を演算する手段は駆動スリップ抑制目標駆動力及び走行運動制御目標駆動力が演算されているときには、それらのうちの小さい方の値に基づいて目標駆動力を演算する。従って駆動輪の駆動スリップが過大であり且つ車輌の駆動力が過大であることに起因して車輌の走行運動が不安定である場合にも、駆動スリップを低減し車輌の走行運動を安定化させるに必要な駆動力に車輌の駆動力を確実に低下させることができる。 According to the foregoing aspect 4, the means for calculating the goals driving force when the drive slip suppression target driving force and vehicle dynamics control target driving force is calculated, the basis of the value of the smaller of those among To calculate the target driving force . Therefore, even when the driving slip of the driving wheel is excessive and the driving force of the vehicle is excessive, the driving slip is reduced and the driving motion of the vehicle is stabilized even when the driving motion of the vehicle is unstable. The driving force of the vehicle can be reliably reduced to the driving force required for the vehicle.

また上記請求項5の構成によれば、低下制限目標駆動力を演算する手段は、走行運動制御目標駆動力が演算されているとき又は車輌が高横力旋回状態にあるときに駆動輪のタイヤ発生力に比して低下変化が小さい旋回制御目標駆動力を演算する手段を有し、低下制限駆動スリップ抑制目標駆動力、低下制限走行運動制御目標駆動力、旋回制御目標駆動力のうちの最大値を低下制限目標駆動力に設定する。従って駆動スリップが過大である場合、駆動力が過大であることに起因して車輌の走行運動が不安定である場合、車輌が高横力旋回状態にある場合の何れの場合にもトランスミッションのシフトアップを抑制することができ、特に車輌が高横力旋回状態にある場合にトランスミッションのシフトアップによる車輌駆動力の急変及びこれに起因する駆動輪の横力の急変を効果的に抑制することができる。 In the above-described configuration according to claim 5, means for calculating a reduced limit target driving force, run line or when vehicle motion control target driving force is operation of the drive wheel when in the high lateral force turning state has a means to calculating the decrease change is small turning control target driving force than the tire force, low lower limiting drive slip suppression target driving force, reduction limited driving dynamics control target driving force, the turning control target driving force The maximum value is set as the reduction limit target driving force . Therefore, if the driving slip is excessive, the driving movement of the vehicle is unstable due to excessive driving force, or the transmission shifts in any case where the vehicle is in a high lateral force turning state. In particular, when the vehicle is in a high lateral force turning state, it is possible to effectively suppress a sudden change in vehicle driving force due to a shift-up of the transmission and a sudden change in lateral force of the driving wheel resulting from this. it can.

また上記請求項6の構成によれば、低下制限走行運動制御目標駆動力の低下制限度合は低下制限駆動スリップ抑制目標駆動力の低下制限度合よりも低い。従って同一の目標駆動力について見て低下制限走行運動制御目標駆動力の低下勾配を低下制限駆動スリップ抑制目標駆動力の低下勾配よりも大きくし、これにより駆動力が過大であることに起因して車輌の走行運動が不安定である場合に車輌の駆動力を速やかに低下させて走行運動の安定化を効果的に行うことができる。 In the above-described configuration according to claim 6, lowering limit the degree of low lower limit vehicle dynamics control target driving force is less than the decrease limit the degree of reduction limiting drive slip suppression target driving force. Therefore, the decrease gradient of the lower limit travel motion control target drive force is made larger than the decrease gradient of the lower limit drive slip suppression target drive force with respect to the same target drive force, and thereby the drive force is excessive. When the running motion of the vehicle is unstable, the driving force of the vehicle can be quickly reduced to effectively stabilize the running motion.

[課題解決手段の好ましい態様]
本発明の一つの好ましい態様によれば、上記請求項2の構成に於いて、低下制限スリップ抑制目標駆動力を演算する手段はフィルタ処理後の目標駆動力及びフィルタ処理前の目標駆動力のうちの大きい方の値を低下制限駆動スリップ抑制目標駆動力とし、低下制限走行運動制御目標駆動力を演算する手段はフィルタ処理後の目標駆動力及びフィルタ処理前の目標駆動力のうちの大きい方の値を低下制限走行運動制御目標駆動力とするよう構成される(好ましい態様)。
[Preferred embodiment of problem solving means]
According to one preferred embodiment of the invention, the claims at the construction of claim 2, means for calculating the reduced limit slip suppression target driving force is the target driving force及beauty filtering process before the target driving after filter processing The larger value of the forces is set as the lower limit driving slip suppression target driving force, and the means for calculating the lower limit driving motion control target driving force is the target driving force after filtering and the target driving force before filtering. The larger value is configured to be the lower limit travel motion control target driving force (preferred aspect 1 ).

本発明の他の一つの好ましい態様によれば、上記請求項の構成に於いて、乗員の加速要求が高いときには乗員の加速要求が低いときに比してフィルタ処理の変化低減度合を高くするよう構成される(好ましい態様)。 According to the aspect of the present invention, in the configuration of the second aspect, when high-ride membered acceleration demand high variation reduction degree of filtering than when the occupant of the acceleration request is lower (Preferred embodiment 2 ).

本発明の他の一つの好ましい態様によれば、上記請求項4の構成に於いて、目標駆動力を演算する手段は駆動スリップ抑制目標駆動力及び走行運動制御目標駆動力の何れも演算されていないときには乗員の駆動要求に基づいて目標駆動力を演算し、駆動スリップ抑制目標駆動力が演算されているときには駆動スリップ抑制目標駆動力を目標駆動力とし、走行運動制御目標駆動力が演算されているときには走行運動制御目標駆動力を目標駆動力とし、駆動スリップ抑制目標駆動力及び走行運動制御目標駆動力が演算されているときには駆動スリップ抑制目標駆動力及び走行運動制御目標駆動力のうちの小さい方の値を目標駆動力とするよう構成される(好ましい態様)。 According to another preferred aspect of the present invention, in the configuration of claim 4, the means for calculating the target driving force calculates both the driving slip suppression target driving force and the travel motion control target driving force. If not, the target driving force is calculated based on the occupant's driving request, and when the driving slip suppression target driving force is calculated, the driving slip suppression target driving force is set as the target driving force, and the travel motion control target driving force is calculated. The driving motion control target driving force is used as the target driving force when the driving slip control target driving force is calculated. When the driving slip suppression target driving force and the driving motion control target driving force are calculated, the driving slip control target driving force and the driving motion control target driving force are small. One of the values is set as the target driving force (preferred aspect 3 ).

以下に添付の図を参照しつつ、本発明を好ましい実施例について詳細に説明する。   The present invention will now be described in detail with reference to the accompanying drawings.

図1は後輪駆動車に適用された本発明による車輌の駆動力制御装置の一つの実施例を示す概略構成図、図2は実施例1の制御系を示すブロック図である。   FIG. 1 is a schematic configuration diagram showing one embodiment of a vehicle driving force control apparatus according to the present invention applied to a rear wheel drive vehicle, and FIG. 2 is a block diagram showing a control system of the first embodiment.

図1に於いて、10はエンジンを示しており、エンジン10の駆動力はトルクコンバータ12及びトランスミッション14を含む自動変速機16を介してプロペラシャフト18へ伝達される。プロペラシャフト18の駆動力はディファレンシャル20により左後輪車軸22L及び右後輪車軸22Rへ伝達され、これにより駆動輪である左右の後輪24RL及び24RRが回転駆動される。   In FIG. 1, reference numeral 10 denotes an engine, and the driving force of the engine 10 is transmitted to a propeller shaft 18 via an automatic transmission 16 including a torque converter 12 and a transmission 14. The driving force of the propeller shaft 18 is transmitted to the left rear wheel axle 22L and the right rear wheel axle 22R by the differential 20, whereby the left and right rear wheels 24RL and 24RR which are driving wheels are rotationally driven.

一方左右の前輪24FL及び24FRは従動輪であると共に操舵輪であり、図1には示されていないが、運転者によるステアリングホイールの転舵に応答して駆動されるラック・アンド・ピニオン式のパワーステアリング装置によりタイロッドを介して操舵される。   On the other hand, the left and right front wheels 24FL and 24FR are both driven wheels and steered wheels, which are not shown in FIG. 1, but are rack and pinion type driven in response to steering of the steering wheel by the driver. It is steered via a tie rod by a power steering device.

左右の前輪24FL、24FR及び左右の後輪24RL、24RRの制動力は制動装置26の油圧回路28により対応するホイールシリンダ30FL、30FR、30RL、30RRの制動圧が制御されることによって制御される。図1には示されていないが、油圧回路28はオイルリザーバ、オイルポンプ、種々の弁装置等を含んでいる。   The braking forces of the left and right front wheels 24FL, 24FR and the left and right rear wheels 24RL, 24RR are controlled by controlling the braking pressures of the corresponding wheel cylinders 30FL, 30FR, 30RL, 30RR by the hydraulic circuit 28 of the braking device 26. Although not shown in FIG. 1, the hydraulic circuit 28 includes an oil reservoir, an oil pump, various valve devices, and the like.

車輌の制駆動力は統合制御電子制御装置32により制御される。統合制御電子制御装置32は通常時には運転者によるアクセルぺダル34の操作やエンジン負荷等に応じてエンジン10の出力及びトランスミッション14の変速段を制御すると共に、運転者によるブレーキペダル36の踏み込み操作に応じて油圧回路28を制御し、また必要に応じて車輌の走行運動を制御すべくエンジン10の出力及びトランスミッション14の変速段を制御すると共に、油圧回路28を制御し、これにより車輌の制駆動力を制御する。   The braking / driving force of the vehicle is controlled by the integrated control electronic control unit 32. The integrated control electronic control unit 32 normally controls the output of the engine 10 and the gear position of the transmission 14 according to the operation of the accelerator pedal 34 by the driver, the engine load, etc., and allows the driver to depress the brake pedal 36. The hydraulic circuit 28 is controlled accordingly, and if necessary, the output of the engine 10 and the gear stage of the transmission 14 are controlled to control the running movement of the vehicle, and the hydraulic circuit 28 is controlled, thereby controlling the braking / driving of the vehicle. Control the power.

図2に示されている如く、統合制御電子制御装置32は駆動力制御電子制御装置40と車輌運動制御電子制御装置42とを含み、駆動力制御電子制御装置40及び車輌運動制御電子制御装置42は相互に必要な情報の授受を行い、互いに共働して運転者の駆動要求及び制動要求に応じて車輌の制駆動力を制御すると共に、各車輪の制駆動力の制御によって車輌の走行運動を安定化させる。尚図2には詳細に示されていないが、駆動力制御電子制御装置40及び車輌運動制御電子制御装置42はそれぞれCPUとROMとRAMと入出力ポート装置とを有し、これらが双方向性のコモンバスにより互いに接続されたマイクロコンピュータ及び駆動回路よりなっていてよい。   As shown in FIG. 2, the integrated control electronic control device 32 includes a driving force control electronic control device 40 and a vehicle motion control electronic control device 42, and the driving force control electronic control device 40 and the vehicle motion control electronic control device 42. Exchanges necessary information with each other, and cooperates with each other to control the braking / driving force of the vehicle according to the driving request and braking request of the driver, and also to control the vehicle driving motion by controlling the braking / driving force of each wheel. To stabilize. Although not shown in detail in FIG. 2, each of the driving force control electronic control device 40 and the vehicle motion control electronic control device 42 has a CPU, a ROM, a RAM, and an input / output port device, which are bidirectional. The microcomputer and the drive circuit may be connected to each other by a common bus.

図2に示されている如く、駆動力制御電子制御装置40は運転者要求目標駆動力演算部44、調停部46、分配部48、発生駆動力演算部50を有し、車輌運動制御電子制御装置42は運動状態推定部54、制駆動力分配部56、低下抑制目標駆動力演算部58を有している。   As shown in FIG. 2, the driving force control electronic control unit 40 includes a driver request target driving force calculation unit 44, an arbitration unit 46, a distribution unit 48, and a generated driving force calculation unit 50. The apparatus 42 includes a motion state estimation unit 54, a braking / driving force distribution unit 56, and a decrease suppression target driving force calculation unit 58.

運転者要求目標駆動力演算部44にはアクセルペダル34に設けられたアクセル開度センサの如く駆動操作量検出センサ62より運転者の駆動操作量Aを示す信号が入力される。運転者要求目標駆動力演算部44は運転者の駆動操作量Aに基づいて運転者要求目標駆動力Fp_dvmを演算し、運転者要求目標駆動力Fp_dvmを示す信号を調停部46へ出力すると共に、車輌運動制御電子制御装置42の運動状態推定部54及び低下抑制目標駆動力演算部58へ出力する。   A signal indicating the driving operation amount A of the driver is input to the driver request target driving force calculation unit 44 from the driving operation amount detection sensor 62 such as an accelerator opening sensor provided in the accelerator pedal 34. The driver required target driving force calculating unit 44 calculates the driver required target driving force Fp_dvm based on the driving operation amount A of the driver, and outputs a signal indicating the driver required target driving force Fp_dvm to the arbitrating unit 46. This is output to the motion state estimation unit 54 and the decrease suppression target driving force calculation unit 58 of the vehicle motion control electronic control unit 42.

調停部46には上記運転者要求目標駆動力Fp_dvmを示す信号に加えて、車輌運動制御電子制御装置42の制駆動力分配部56より制駆動力分配後の目標駆動力Fp_t_nowを示す信号及び制駆動力分配後の目標駆動力Fp_t_nowがあるか否か(ONのとき「あり」、OFFのとき「なし」)を示すフラグF_FP_NOW信号が入力され、また低下抑制目標駆動力演算部58より低下制限目標駆動力Fp_t_futureを示す信号及び低下制限目標駆動力Fp_t_futureがあるか否か(ONのとき「あり」、OFFのとき「なし」)を示すフラグF_FP_FUTURE信号が入力される。   In addition to the signal indicating the driver required target driving force Fp_dvm, the arbitration unit 46 also includes a signal indicating the target driving force Fp_t_now after the braking / driving force distribution from the braking / driving force distributing unit 56 of the vehicle motion control electronic control device 42 and the control. A flag F_FP_NOW signal indicating whether or not the target driving force Fp_t_now after the driving force distribution is present (“Yes” when ON, “No” when OFF) is input, and the reduction suppression target driving force calculation unit 58 limits the reduction. A signal indicating the target driving force Fp_t_future and a flag F_FP_FUTURE signal indicating whether or not there is a lower limit target driving force Fp_t_future ("ON" when ON, "NO" when OFF) are input.

調停部46は、フラグF_FP_NOW信号がOFFであるときには、調停後の目標駆動力Fp_nowを運転者要求目標駆動力Fp_dvmに設定し、フラグF_FP_FUTURE信号がOFFであるときには、調停後の低下制限目標駆動力Fp_futureを運転者要求目標駆動力Fp_dvmに設定する。これに対し調停部46は、フラグF_FP_NOW信号がONであるときには、調停後の目標駆動力Fp_nowを制駆動力分配後の目標駆動力Fp_t_nowに設定し、フラグF_FP_FUTURE信号がONであるときには、調停後の低下制限目標駆動力Fp_futureを低下制限目標駆動力Fp_t_futureに設定する。   When the flag F_FP_NOW signal is OFF, the arbitration unit 46 sets the target driving force Fp_now after the arbitration to the driver request target driving force Fp_dvm, and when the flag F_FP_FUTURE signal is OFF, the reduction limiting target driving force after arbitration is set. Fp_future is set to the driver request target driving force Fp_dvm. On the other hand, the arbitration unit 46 sets the target driving force Fp_now after the arbitration to the target driving force Fp_t_now after the braking / driving force distribution when the flag F_FP_NOW signal is ON, and after the arbitration when the flag F_FP_FUTURE signal is ON. The lower limit target driving force Fp_future is set to the lower limit target driving force Fp_t_future.

分配部48には調停部46より調停後の目標駆動力Fp_nowを示す信号及び調停後の低下制限目標駆動力Fp_futureを示す信号が入力され、分配部48は調停後の目標駆動力Fp_nowに基づいて目標エンジン出力トルクTetを演算すると共に目標エンジン出力トルクTetを示す信号をエンジン制御装置64へ出力し、また調停後の低下制限目標駆動力Fp_futureに基づいてトランスミッションの目標変速段Stを演算すると共に目標変速段Stを示す信号を自動変速機制御装置66へ出力し、これにより車輌の駆動トルクFp、即ちエンジン10及び自動変速機16よりなる駆動源の出力トルクが調停後の目標駆動力Fp_nowになるよう制御する。   A signal indicating the target driving force Fp_now after the arbitration and a signal indicating the lower limit target driving force Fp_future after the arbitration are input to the distributing unit 48 from the arbitrating unit 46, and the distributing unit 48 is based on the target driving force Fp_now after the arbitrating. The target engine output torque Tet is calculated, a signal indicating the target engine output torque Tet is output to the engine control device 64, and the transmission target shift stage St is calculated based on the reduction limited target driving force Fp_future after arbitration. A signal indicating the gear stage St is output to the automatic transmission control device 66, whereby the driving torque Fp of the vehicle, that is, the output torque of the driving source consisting of the engine 10 and the automatic transmission 16, becomes the target driving force Fp_now after the arbitration. Control as follows.

発生駆動力演算部50にはエンジン制御装置64より現在のエンジン出力トルクTeaを示す信号が入力され、また自動変速機制御装置66より現在の変速段Saを示す信号が入力され、発生駆動力演算部50は現在のエンジン出力トルクTea及び現在の変速段Saに基づいて車輌の現在の駆動トルクFp_currentを演算し、車輌の現在の駆動トルクFp_currentを示す信号を車輌運動制御電子制御装置42の運動状態推定部54へ出力する。   A signal indicating the current engine output torque Tea is input from the engine control device 64 to the generated driving force calculation unit 50, and a signal indicating the current gear stage Sa is input from the automatic transmission control device 66 to generate the generated driving force. The unit 50 calculates the current driving torque Fp_current of the vehicle based on the current engine output torque Tea and the current shift speed Sa, and outputs a signal indicating the current driving torque Fp_current of the vehicle to the motion state of the vehicle motion control electronic control unit 42. It outputs to the estimation part 54.

運動状態推定部54は車輪速度センサ68i(i=fl、fr、rl、rr)により検出される各車輪の車輪速度Vwi(i=fl、fr、rl、rr)に基づき当技術分野に於いて公知の要領にて車体速度Vbを演算すると共に、左右後輪の加速スリップ量SArl、SArrを演算し、加速スリップ量SArl、SArrがトラクション制御(TRC制御)開始の基準値よりも大きくなり、トラクション制御の開始条件が成立すると、トラクション制御の終了条件が成立するまで、当該車輪の加速スリップ量を所定の範囲内にするためのトラクション制御の目標駆動力Fp_t_now_trcを演算する。   The motion state estimation unit 54 is based on the wheel speed Vwi (i = fl, fr, rl, rr) of each wheel detected by the wheel speed sensor 68i (i = fl, fr, rl, rr). The vehicle speed Vb is calculated in a known manner, and the acceleration slip amounts SArl and SArr of the left and right rear wheels are calculated. The acceleration slip amounts SArl and SArr become larger than the reference value for starting the traction control (TRC control), and the traction When the control start condition is satisfied, the traction control target driving force Fp_t_now_trc for keeping the acceleration slip amount of the wheel within a predetermined range is calculated until the traction control end condition is satisfied.

また運動状態推定部54には駆動力制御電子制御装置40の運転者要求目標駆動力演算部44よりの運転者要求目標駆動力Fp_dvmを示す信号及び発生駆動力演算部50よりの車輌の現在の駆動トルクFp_currentを示す信号に加えて、図2には示されていないが、図1に示されている如く車輪速度センサ68i(i=fl、fr、rl、rr)より各車輪の車輪速度Vwi(i=fl、fr、rl、rr)を示す信号が入力され、また操舵角センサ、前後加速度センサ、横加速度センサ、ヨーレートセンサの如き車輌状態量検出センサ70より操舵角θ、車輌の前後加速度Gx、車輌の横加速度Gy、車輌のヨーレートγを示す信号等が入力される。   The motion state estimation unit 54 also includes a signal indicating the driver required target driving force Fp_dvm from the driver required target driving force calculation unit 44 of the driving force control electronic control unit 40 and the current vehicle state from the generated driving force calculation unit 50. In addition to the signal indicating the driving torque Fp_current, although not shown in FIG. 2, the wheel speed Vwi of each wheel is obtained from the wheel speed sensor 68i (i = fl, fr, rl, rr) as shown in FIG. (I = fl, fr, rl, rr) is input, and the steering angle θ and the vehicle longitudinal acceleration are detected by the vehicle state quantity detection sensor 70 such as a steering angle sensor, a longitudinal acceleration sensor, a lateral acceleration sensor, and a yaw rate sensor. A signal indicating Gx, a lateral acceleration Gy of the vehicle, a yaw rate γ of the vehicle, and the like are input.

運動状態推定部54は各車輪の車輪速度に基づく車速V及び操舵角θに基づいて当技術分野に於いて公知の要領にて車輌の目標ヨーレートγtを演算し、車輌の実際のヨーレートγと目標ヨーレートγtとの偏差Δγに基づいて車輌の挙動を判定し、ヨーレート偏差Δγの大きさが大きく車輌の挙動の制御が必要であるときには、ヨーレート偏差Δγの大きさを小さくするための目標駆動力として目標駆動力Fp_t_now_vscを演算する。   The motion state estimation unit 54 calculates the target yaw rate γt of the vehicle based on the vehicle speed V based on the wheel speed of each wheel and the steering angle θ in a manner known in the art, and calculates the actual yaw rate γ and the target of the vehicle. The vehicle behavior is determined based on the deviation Δγ from the yaw rate γt, and when the yaw rate deviation Δγ is large and the vehicle behavior needs to be controlled, the target driving force for reducing the yaw rate deviation Δγ A target driving force Fp_t_now_vsc is calculated.

尚運動状態推定部54は制動時には車輌の前後加速度Gx等の車輌状態量に基づき当技術分野に於いて公知の要領にて車輌のスピンの程度を示すスピン状態量SS及び車輌のドリフトアウトの程度を示すドリフトアウト状態量DSを演算し、スピン状態量SS及びドリフトアウト状態量DSに基づき車輌の挙動を判定し、車輌の挙動がスピン状態又はドリフトアウト状態であるときにはこれらを抑制するための挙動制御の各車輪の目標制動力Fbvti(i=fl、fr、rl、rr)を演算する。   It should be noted that the motion state estimation unit 54 at the time of braking is based on the vehicle state quantity such as the longitudinal acceleration Gx of the vehicle and the spin state quantity SS indicating the degree of vehicle spin and the degree of vehicle drift-out in a manner known in the art. Is calculated, and the behavior of the vehicle is determined based on the spin state amount SS and the drift-out state amount DS. When the vehicle behavior is in the spin state or the drift-out state, a behavior for suppressing these is shown. The target braking force Fbvti (i = fl, fr, rl, rr) of each wheel for control is calculated.

尚車輌挙動の判定及び車輌の走行運動を安定化させるための挙動制御の目標駆動力Fp_t_now_vscや目標制動力Fbvtiの演算自体は本発明の要旨をなすものではなく、当技術分野に於いて公知の任意の要領にて行われてよい。   Note that the calculation of the target driving force Fp_t_now_vsc and the target braking force Fbvti for determining the vehicle behavior and for controlling the behavior for stabilizing the traveling motion of the vehicle itself does not form the gist of the present invention, and is well known in the art. It may be performed in any manner.

また運動状態推定部54は当技術分野に於いて公知の要領にて路面の摩擦係数μ及び各車輪の横力Fwyi(i=fl、fr、rl、rr)を推定し、路面の摩擦係数μがその基準値μo(正の定数)よりも大きく且つ何れかの車輪の横力Fwyiが基準値Fwyo(正の定数)よりも大きいときには、車輌が高横力旋回状態にあると判定する。   The motion state estimation unit 54 estimates the road surface friction coefficient μ and the lateral force Fwyi (i = fl, fr, rl, rr) of each wheel in a manner known in the art, and the road surface friction coefficient μ. Is greater than the reference value μo (positive constant) and the lateral force Fwyi of any wheel is greater than the reference value Fwyo (positive constant), it is determined that the vehicle is in a high lateral force turning state.

また運動状態推定部54は車輌の挙動が安定しておりトラクション制御も挙動制御も不要であり車輌が高横力旋回状態にはないときには、車輌の目標制駆動力F_tを運転者要求目標駆動力Fp_dvmに設定して車輌の目標制駆動力F_tを示す信号を制駆動力分配部56へ出力する。これに対し運動状態推定部54は、トラクション制御が必要であると判定したときには、車輌の目標制駆動力F_tをトラクション制御の目標駆動力Fp_t_now_trcに設定すると共に、トラクション制御の判定結果及び車輌の目標制駆動力F_tを示す信号を制駆動力分配部56へ出力する。また運動状態推定部54は、挙動制御が必要であると判定したときには、車輌の目標制駆動力F_tを挙動制御の目標駆動力Fp_t_now_vscに設定すると共に、車輌挙動の判定結果及び車輌の目標制駆動力F_tを示す信号を制駆動力分配部56へ出力する。   Further, when the behavior of the vehicle is stable, traction control and behavior control are unnecessary, and the vehicle is not in a high lateral force turning state, the motion state estimation unit 54 uses the target braking / driving force F_t of the vehicle as the driver requested target driving force. A signal indicating the target braking / driving force F_t of the vehicle set to Fp_dvm is output to the braking / driving force distribution unit 56. On the other hand, when it is determined that the traction control is necessary, the motion state estimation unit 54 sets the target braking / driving force F_t of the vehicle to the target driving force Fp_t_now_trc of the traction control, and the determination result of the traction control and the target of the vehicle. A signal indicating the braking / driving force F_t is output to the braking / driving force distribution unit 56. When the motion state estimation unit 54 determines that the behavior control is necessary, it sets the target braking / driving force F_t of the vehicle to the target driving force Fp_t_now_vsc of the behavior control, and also determines the vehicle behavior determination result and the target braking / driving of the vehicle. A signal indicating the force F_t is output to the braking / driving force distribution unit 56.

更に運動状態推定部54はトラクション制御及び挙動制御が必要であるときには、下記の式1に従ってトラクション制御の目標駆動力Fp_t_now_trc及び挙動制御の目標駆動力Fp_t_now_vscのうちの小さい方の値を車輌の目標駆動力F_tとして演算し、トラクション制御及び車輌挙動の判定結果及び車輌の目標制駆動力F_tを示す信号を制駆動力分配部56へ出力する。
F_t=MIN(Fp_t_now_trc,Fp_t_now_vsc) ……(1)
Further, when traction control and behavior control are required, the motion state estimation unit 54 uses the smaller value of the target drive force Fp_t_now_trc for traction control and the target drive force Fp_t_now_vsc for behavior control according to the following equation (1). The signal is calculated as the force F_t, and a signal indicating the determination result of the traction control and the vehicle behavior and the target braking / driving force F_t of the vehicle is output to the braking / driving force distribution unit 56.
F_t = MIN (Fp_t_now_trc, Fp_t_now_vsc) (1)

制駆動力分配部56は車輌の目標制駆動力F_tが正の値であり駆動力であるときには、目標制駆動力F_tを制駆動力分配後の目標駆動力Fp_t_nowとし、制駆動力分配後の目標駆動力Fp_t_nowを示す信号を駆動力制御電子制御装置40の調停部46及び低下抑制目標駆動力演算部58へ出力し、制駆動力分配後の目標駆動力Fp_t_nowがあるか否かを示すフラグF_FP_NOW信号を調停部46へ出力する。   The braking / driving force distribution unit 56 sets the target braking / driving force F_t as the target driving force Fp_t_now after distributing the braking / driving force when the target braking / driving force F_t of the vehicle is a positive value and is a driving force. A signal indicating the target driving force Fp_t_now is output to the arbitration unit 46 and the decrease suppression target driving force calculation unit 58 of the driving force control electronic control unit 40, and a flag indicating whether or not there is the target driving force Fp_t_now after the braking / driving force distribution The F_FP_NOW signal is output to the arbitration unit 46.

また制駆動力分配部56は各車輪の車輪速度Vwiに基づき当技術分野に於いて公知の要領にて車体速度Vbを演算すると共に、各車輪の制動スリップ量SBi(i=fl、fr、rl、rr)を演算し、制動スリップ量SBiがアンチスキッド制御(ABS制御)開始の基準値よりも大きくなり、アンチスキッド制御の開始条件が成立すると、アンチスキッド制御の終了条件が成立するまで、当該車輪の制動スリップ量を所定の範囲内にするためのアンチスキッド制御の目標制動力Fbvti(i=fl、fr、rl、rr)を演算する。   Further, the braking / driving force distribution unit 56 calculates the vehicle body speed Vb based on the wheel speed Vwi of each wheel in a manner known in the art, and the braking slip amount SBi (i = fl, fr, rl) of each wheel. , Rr), and when the braking slip amount SBi becomes larger than the reference value for starting anti-skid control (ABS control) and the anti-skid control start condition is satisfied, the anti-skid control end condition is satisfied. A target braking force Fbvti (i = fl, fr, rl, rr) for anti-skid control for bringing the braking slip amount of the wheel into a predetermined range is calculated.

また制駆動力分配部56はトラクション制御若しくは挙動制御が必要であるときには、それらの各判定結果に基づいて各車輪の目標制動力Fbvtiを演算する。そして制駆動力分配部56は目標制動力Fbvtiがあるときには、目標制動力Fbvtiを示す信号を制動力制御装置72へ出力する。   When the traction control or the behavior control is necessary, the braking / driving force distribution unit 56 calculates the target braking force Fbvti of each wheel based on each determination result. The braking / driving force distribution unit 56 outputs a signal indicating the target braking force Fbvti to the braking force control device 72 when the target braking force Fbvti is present.

制動力制御装置72にはブレーキペダル36に設けられた制動操作量検出センサ74により検出された運転者の制動操作量Fbを示す信号が入力され、また圧力センサ76i(i=fl、fr、rl、rr)により検出されたホイールシリンダ30FL〜30RRの制動圧Pbi(i=fl、fr、rl、rr)を示す信号が入力される。制動力制御装置72は運転者の制動操作量Fbiに基づいて各車輪の目標制動力Fbti(i=fl、fr、rl、rr)を演算し、トラクション制御若しくは挙動制御若しくはアンチスキッド制御の目標制動力Fbvtiがあるときには、当該車輪の目標制動力Fbtiを目標制動力Fbvtiに置き換える。   A signal indicating the driver's braking operation amount Fb detected by a braking operation amount detection sensor 74 provided on the brake pedal 36 is input to the braking force control device 72, and the pressure sensor 76i (i = fl, fr, rl). , Rr), a signal indicating the braking pressure Pbi (i = fl, fr, rl, rr) of the wheel cylinders 30FL to 30RR detected is input. The braking force control device 72 calculates the target braking force Fbti (i = fl, fr, rl, rr) of each wheel based on the driver's braking operation amount Fbi, and the target control for traction control, behavior control or anti-skid control. When there is power Fbvti, the target braking force Fbti of the wheel is replaced with the target braking force Fbvti.

そして制動力制御装置72は目標制動力Fbtiに基づいて各車輪の目標制動圧Pbti(i=fl、fr、rl、rr)を演算し、各車輪の制動圧Pbiがそれぞれ対応する目標制動圧Pbtiになるよう油圧回路28を制御することにより、各車輪の制動力Fbi(i=fl、fr、rl、rr)がそれぞれ対応する目標制動力Fbtiになるよう制御する。   Then, the braking force control device 72 calculates the target braking pressure Pbti (i = fl, fr, rl, rr) of each wheel based on the target braking force Fbti, and the target braking pressure Pbti corresponding to the braking pressure Pbi of each wheel respectively. The hydraulic circuit 28 is controlled so that the braking force Fbi (i = fl, fr, rl, rr) of each wheel becomes the corresponding target braking force Fbti.

低下抑制目標駆動力演算部58には運転者要求目標駆動力演算部44より運転者要求目標駆動力Fp_dvmを示す信号が入力され、また制駆動力分配部56より制駆動力分配後の目標駆動力Fp_t_nowを示す信号が入力される。   A signal indicating the driver required target driving force Fp_dvm is input from the driver required target driving force calculating unit 44 to the decrease suppression target driving force calculating unit 58, and the target driving after the braking / driving force distribution by the braking / driving force distributing unit 56 is performed. A signal indicating the force Fp_t_now is input.

低下抑制目標駆動力演算部58は制駆動力分配後の目標駆動力Fp_t_nowがトラクション制御の目標駆動力Fp_t_now_trcであるときには、下記の式2に従ってフィルタ処理後のトラクション制御の目標駆動力Fp_t_now_trcfを演算すると共に、下記の式3に従って一次遅れのフィルタ処理後のトラクション制御の目標駆動力Fp_t_now_trcf及びトラクション制御の目標駆動力Fp_t_now_trcのうちの大きい方の値をトラクション制御の低下抑制目標駆動力Fp_t_future_trcとする。
Fp_t_now_trcf=(1‐K1)/(1‐K1Z-1)Fp_t_now_trc ……(2)
Fp_t_future_trc=MAX(Fp_t_now_trcf,Fp_t_now_trc) ……(3)
When the target driving force Fp_t_now after distributing the braking / driving force is the target driving force Fp_t_now_trc after the distribution of the braking / driving force, the decrease suppressing target driving force calculating unit 58 calculates the target driving force Fp_t_now_trcf of the traction control after the filter processing according to the following equation 2. At the same time, the larger one of the target driving force Fp_t_now_trcf for traction control after the first-order lag filtering and the target driving force Fp_t_now_trc for traction control according to the following equation 3 is set as the target driving force Fp_t_future_trc for reducing the traction control.
Fp_t_now_trcf = (1-K1) / (1-K1Z- 1 ) Fp_t_now_trc (2)
Fp_t_future_trc = MAX (Fp_t_now_trcf, Fp_t_now_trc) (3)

例えば図3は運転者の加速要求が増加し、運転者要求目標駆動力Fp_dvmが増加する過程に於いてトラクション制御が実行される場合に於ける運転者要求目標駆動力Fp_dvm、トラクション制御の目標駆動力Fp_t_now_trc、トラクション制御の低下抑制目標駆動力Fp_t_future_trcの変化の一例を示している。図3に示されている如く、トラクション制御によりトラクション制御の目標駆動力Fp_t_now_trcが運転者要求目標駆動力Fp_dvmよりも小さい値に演算されるが、トラクション制御の低下抑制目標駆動力Fp_t_future_trcは急激には低下せず、トラクション制御の開始後徐々に低下する。   For example, FIG. 3 shows that when the traction control is executed in the process in which the driver's acceleration request increases and the driver's required target driving force Fp_dvm increases, the driver's required target driving force Fp_dvm, the target drive of the traction control An example of changes in the force Fp_t_now_trc and the traction control decrease suppression target driving force Fp_t_future_trc is shown. As shown in FIG. 3, the traction control target driving force Fp_t_now_trc is calculated to be smaller than the driver required target driving force Fp_dvm by traction control, but the traction control decrease suppression target driving force Fp_t_future_trc It does not decrease, but gradually decreases after the start of traction control.

また低下抑制目標駆動力演算部58は制駆動力分配後の目標駆動力Fp_t_nowが挙動制御の目標駆動力Fp_t_now_vscであるときには、下記の式4に従って一次遅れのフィルタ処理後の挙動制御の目標駆動力Fp_t_now_vscfを演算すると共に、下記の式5に従ってフィルタ処理後の挙動制御の目標駆動力Fp_t_now_vscf及び挙動制御の目標駆動力Fp_t_now_vscのうちの大きい方の値を挙動制御の低下抑制目標駆動力Fp_t_future_vscとする。 Fp_t_now_vscf=(1‐K2)/(1‐K2Z-1)Fp_t_now_vsc ……(4)
Fp_t_future_vsc=MAX(Fp_t_now_vscf,Fp_t_now_vsc) ……(5)
Further, when the target driving force Fp_t_now after distribution of the braking / driving force is the target driving force Fp_t_now_vsc for behavior control, the lowering suppression target driving force calculation unit 58 performs the target driving force for behavior control after first-order lag filtering according to the following equation 4. Fp_t_now_vscf is calculated, and the larger one of the behavior control target driving force Fp_t_now_vscf and the behavior control target driving force Fp_t_now_vsc according to the following equation 5 is set as the behavior control decrease suppression target driving force Fp_t_future_vsc. Fp_t_now_vscf = (1-K2) / (1-K2Z- 1 ) Fp_t_now_vsc (4)
Fp_t_future_vsc = MAX (Fp_t_now_vscf, Fp_t_now_vsc) (5)

例えば図4は運転者の加速要求が増加し、運転者要求目標駆動力Fp_dvmが増加する過程に於いて挙動制御が実行される場合に於ける運転者要求目標駆動力Fp_dvm、挙動制御の目標駆動力Fp_t_now_vsc、挙動制御の低下抑制目標駆動力Fp_t_future_vscの変化の一例を示している。図4に示されている如く、挙動制御により挙動制御の目標駆動力Fp_t_now_vscが運転者要求目標駆動力Fp_dvmよりも小さい値に演算されるが、挙動制御の低下抑制目標駆動力Fp_t_future_vscは急激には低下せず、挙動制御の開始後徐々に低下する。   For example, FIG. 4 shows that the driver required target driving force Fp_dvm and the behavior control target drive when behavior control is executed in the process where the driver's acceleration demand increases and the driver required target driving force Fp_dvm increases. An example of changes in the force Fp_t_now_vsc and the behavior control decrease suppression target driving force Fp_t_future_vsc is shown. As shown in FIG. 4, the behavior control target driving force Fp_t_now_vsc is calculated to be smaller than the driver required target driving force Fp_dvm by behavior control, but the behavior control decrease suppression target driving force Fp_t_future_vsc is abruptly increased. It does not decrease, but gradually decreases after the start of behavior control.

また低下抑制目標駆動力演算部58は、挙動制御の目標駆動力Fp_t_now_vscが演算されており挙動制御が必要であるとき又は車輌が高横力旋回状態にあると判定されているときには、当技術分野に於いて公知の要領にて各車輪の発生前後力Fwxi及び発生横力Fwyi(i=fl、fr、rl、rr)を演算する。そして低下抑制目標駆動力演算部58は、左右の後輪について発生前後力Fwxi及び発生横力Fwyiの二乗和平方根として左右後輪のタイヤ発生力F_current_tire_rl、F_current_tire_rrを演算し、それらの和を駆動輪のタイヤ発生力Fp_current_tireとする。   Further, when the behavior control target driving force Fp_t_now_vsc is calculated and the behavior control is required or when it is determined that the vehicle is in a high lateral force turning state, the decrease suppression target driving force calculation unit 58 Then, the generated longitudinal force Fwxi and the generated lateral force Fwyi (i = fl, fr, rl, rr) of each wheel are calculated in a known manner. The reduction suppression target driving force calculation unit 58 calculates the left and right rear wheel tire generating forces F_current_tire_rl and F_current_tire_rr as the square sum of squares of the generated front / rear force Fwxi and the generated lateral force Fwyi for the left and right rear wheels, and calculates the sum of them as driving wheels. Tire generating force Fp_current_tire.

尚車輌が前輪駆動車である場合には、駆動輪のタイヤ発生力Fp_current_tireは左右前輪のタイヤ発生力の和に設定され、車輌が四輪駆動車である場合には、駆動輪のタイヤ発生力Fp_current_tireは左右前輪及び左右後輪のタイヤ発生力の和に設定される。   When the vehicle is a front-wheel drive vehicle, the tire generation force Fp_current_tire of the drive wheel is set to the sum of the tire generation forces of the left and right front wheels. When the vehicle is a four-wheel drive vehicle, the tire generation force of the drive wheel is set. Fp_current_tire is set to the sum of the tire generating forces of the left and right front wheels and the left and right rear wheels.

また低下抑制目標駆動力演算部58は、駆動輪のタイヤ発生力Fp_current_tireに対し下記の式6に従ってフィルタ処理後の駆動輪のタイヤ発生力Fp_current_tirefを演算すると共に、下記の式7に従ってフィルタ処理後の駆動輪のタイヤ発生力Fp_current_tiref及び駆動輪のタイヤ発生力Fp_current_tireのうちの大きい方の値を高横力旋回制御の目標駆動力Fp_t_future_tireとする。
Fp_current_tiref=(1‐K3)/(1‐K3Z-1)Fp_current_tire ……(6)
Fp_current_tire=MAX(Fp_current_tiref,Fp_current_tire) ……(7)
Further, the reduction suppression target driving force calculating unit 58 calculates the tire generating force Fp_current_tiref of the drive wheel after the filtering process according to the following formula 6 with respect to the tire generating force Fp_current_tire of the driving wheel, and after the filtering process according to the following formula 7. The larger value of the tire generating force Fp_current_tiref of the driving wheel and the tire generating force Fp_current_tire of the driving wheel is set as the target driving force Fp_t_future_tire of the high lateral force turning control.
Fp_current_tiref = (1-K3) / (1-K3Z- 1 ) Fp_current_tire (6)
Fp_current_tire = MAX (Fp_current_tiref, Fp_current_tire) (7)

尚上記式2、4、6に於けるフィルタ時定数K1、K2、K3は相互に異なる値であり、時にK2はK1、K3よりも大きい値に設定される。またフィルタ時定数K1、K2、K3は定数であってもよいが、図示の実施例に於いては駆動操作量検出センサ62により検出される運転者の駆動操作量Aが高いほど大きくなるよう、運転者の駆動操作量Aに応じて可変設定される。   The filter time constants K1, K2, and K3 in the above formulas 2, 4, and 6 are different from each other, and sometimes K2 is set to a value that is larger than K1 and K3. The filter time constants K1, K2, and K3 may be constants. However, in the illustrated embodiment, the higher the driver's driving operation amount A detected by the driving operation amount detection sensor 62, the larger the time constants. It is variably set according to the driving operation amount A of the driver.

また低下抑制目標駆動力演算部58は、下記の式8に従ってトラクション制御の低下抑制目標駆動力Fp_t_future_trc、挙動制御の低下抑制目標駆動力Fp_t_future_vsc、高横力旋回制御の低下抑制目標駆動力Fp_t_future_tireのうちの最も大きい値をその後の車輪及び車輌の運動状態の変化に備えてトランスミッション14の変速段を決定するための低下抑制目標駆動力Fp_t_futureとする。
Fp_t_future=MAX(Fp_t_future_trc,Fp_t_future_vsc,Fp_t_future_tire)
……(8)
Further, the reduction suppression target driving force calculation unit 58 includes a reduction suppression target driving force Fp_t_future_trc for traction control, a reduction suppression target driving force Fp_t_future_vsc for behavior control, and a reduction suppression target driving force Fp_t_future_tire for high lateral force turning control according to Equation 8 below. Is set as a decrease suppression target driving force Fp_t_future for determining the gear position of the transmission 14 in preparation for the subsequent change in the motion state of the wheels and the vehicle.
Fp_t_future = MAX (Fp_t_future_trc, Fp_t_future_vsc, Fp_t_future_tire)
...... (8)

更に低下抑制目標駆動力演算部58は、トラクション制御中又は挙動制御中又は高横力旋回状態にあると判定されているときには、低下抑制目標駆動力Fp_t_futureがあるか否かを示すフラグF_FP_FUTUREをONに設定すると共に、低下抑制目標駆動力Fp_t_futureを示す信号及びフラグF_FP_FUTURE信号を駆動力制御電子制御装置40の調停部46へ出力し、トラクション制御及び挙動制御の何れも実行されておらず高横力旋回状態にあると判定されていないときには、低下抑制目標駆動力Fp_t_futureがあるか否かを示すフラグF_FP_FUTUREをOFFに設定し、低下抑制目標駆動力Fp_t_futureを0に設定すると共に、低下抑制目標駆動力Fp_t_futureを示す信号及びフラグF_FP_FUTURE信号を駆動力制御電子制御装置40の調停部46へ出力する。   Further, the reduction suppression target driving force calculation unit 58 turns on the flag F_FP_FUTURE indicating whether or not there is a reduction suppression target driving force Fp_t_future when it is determined that the traction control or the behavior control is in progress or the high lateral force turning state. In addition, a signal indicating the reduction suppression target driving force Fp_t_future and a flag F_FP_FUTURE signal are output to the arbitration unit 46 of the driving force control electronic control unit 40, and neither traction control nor behavior control is executed. When it is not determined that the vehicle is in the turning state, the flag F_FP_FUTURE indicating whether or not there is a decrease suppression target drive force Fp_t_future is set to OFF, the decrease suppression target drive force Fp_t_future is set to 0, and the decrease suppression target drive force A signal indicating Fp_t_future and a flag F_FP_FUTURE signal are output to the arbitration unit 46 of the driving force control electronic control unit 40.

尚トラクション制御及び挙動制御の何れも実行されておらず高横力旋回状態にあると判定されていないときには、低下抑制目標駆動力Fp_t_futureが運転者要求目標駆動力Fp_dvmに設定されてもよい。   When neither the traction control nor the behavior control is executed and it is determined that the vehicle is in the high lateral force turning state, the decrease suppression target driving force Fp_t_future may be set to the driver required target driving force Fp_dvm.

次に上述の如く構成された図示の実施例の作動を車輌の様々な走行状況について説明する。   Next, the operation of the illustrated embodiment configured as described above will be described in various traveling situations of the vehicle.

(1)トラクション制御も挙動制御も不要である場合
車輌の挙動が安定しておりトラクション制御も挙動制御も不要であり車輌が高横力旋回状態にはないときには、フラグF_FP_NOW及びF_FP_FUTUREはOFFであり、調停後の目標駆動力Fp_now及び調停後の低下制限目標駆動力Fp_futureが運転者要求目標駆動力Fp_dvmに設定されるので、目標エンジン出力トルクTet及びトランスミッション14の目標変速段Stは運転者要求目標駆動力Fp_dvmに基づいて演算され、これにより従来の駆動力制御装置の場合と同様、エンジン10の出力及びトランスミッション14の変速比は運転者の駆動要求に応じて制御される。
(1) When neither traction control nor behavior control is required When the vehicle's behavior is stable and neither traction control nor behavior control is required and the vehicle is not in a high lateral force turning state, the flags F_FP_NOW and F_FP_FUTURE are OFF. Since the target driving force Fp_now after the arbitration and the lower limit target driving force Fp_future after the arbitration are set to the driver required target driving force Fp_dvm, the target engine output torque Tet and the target shift stage St of the transmission 14 are the driver required target. Calculation is performed based on the driving force Fp_dvm, and as in the case of the conventional driving force control device, the output of the engine 10 and the gear ratio of the transmission 14 are controlled in accordance with the driving request of the driver.

(2)トラクション制御は必要であるが挙動制御は不要である場合
駆動輪の駆動スリップが過大でありトラクション制御は必要であるが、車輌の走行運動は安定的であり挙動制御は不要である場合には、制駆動力分配後の目標駆動力Fp_t_nowがトラクション制御の目標駆動力Fp_t_now_trcに基づいて設定され、トラクション制御の目標駆動力Fp_t_now_trcに基づいてトラクション制御の低下抑制目標駆動力Fp_t_future_trcが演算され、フラグF_FP_NOW及びF_FP_FUTUREがONに設定され、調停後の目標駆動力Fp_now及び調停後の低下制限目標駆動力Fp_futureがそれぞれトラクション制御の目標駆動力Fp_t_now_trc、トラクション制御の低下抑制目標駆動力Fp_t_future_trcに設定される。
(2) When traction control is required but behavior control is not required When drive slip of the drive wheels is excessive and traction control is required, but the vehicle's running motion is stable and behavior control is not required Is set based on the target driving force Fp_t_now_trc of the traction control after the braking / driving force distribution, and the reduction driving target driving force Fp_t_future_trc of the traction control is calculated based on the target driving force Fp_t_now_trc of the traction control. The flags F_FP_NOW and F_FP_FUTURE are set to ON, and the target driving force Fp_now after arbitration and the reduction limited target driving force Fp_future after arbitration are set to the target driving force Fp_t_now_trc for traction control and the reduction suppression target driving force Fp_t_future_trc for traction control, respectively. .

従ってこの場合にはトラクション制御の目標駆動力Fp_t_now_trcに基づいて目標エンジン出力トルクTetを演算し、エンジン10の出力を確実に低下させて駆動輪の駆動スリップを効果的に低減することができると共に、目標駆動力Fp_t_now_trcよりも低下変化が小さいトラクション制御の低下抑制目標駆動力Fp_t_future_trcに基づいてトランスミッション14の目標変速段Stを演算することができ、これにより車輌が一時的にマンホールの如き低摩擦係数の路面を通過する際にもトラクション制御によりトランスミッション14の変速段がシフトアップされること及びこれに起因して車輌が低摩擦係数の路面を通過した直後に於ける加速不足を効果的に防止することができる。   Therefore, in this case, the target engine output torque Tet is calculated based on the target drive force Fp_t_now_trc of traction control, and the output slip of the engine 10 can be reliably reduced to effectively reduce the drive slip of the drive wheels. The target shift stage St of the transmission 14 can be calculated based on the traction control decrease suppression target drive force Fp_t_future_trc in which the decrease change is smaller than the target drive force Fp_t_now_trc, so that the vehicle temporarily has a low friction coefficient such as a manhole. Even when passing on the road surface, the gear stage of the transmission 14 is shifted up by traction control, and due to this, insufficient acceleration immediately after the vehicle passes the road surface with a low friction coefficient is effectively prevented. Can do.

尚車輌が氷雪路の如き低摩擦係数が低い長い路面を走行する場合には、トラクション制御の低下抑制目標駆動力Fp_t_future_trcが変速線まで低下した段階でトランスミッション14の変速段がシフトアップされるので、駆動輪の駆動スリップが過大な状況が長時間に亘り継続することはない。   When the vehicle travels on a long road surface with a low coefficient of friction, such as an icy and snowy road, the gear stage of the transmission 14 is shifted up when the traction control lowering suppression target driving force Fp_t_future_trc decreases to the shift line. The situation in which the drive slip of the drive wheels is excessive does not continue for a long time.

(3)トラクション制御は不要であるが挙動制御は必要である場合
駆動輪の駆動力は過剰ではなくトラクション制御は不要であるが、車輌の走行運動は不安定であり車輌の駆動力の低減制御による挙動制御は必要である場合には、制駆動力分配後の目標駆動力Fp_t_nowが挙動制御の目標駆動力Fp_t_now_vscに基づいて設定され、挙動制御の目標駆動力Fp_t_now_vscに基づいて挙動制御の低下抑制目標駆動力Fp_t_future_vscが演算され、フラグF_FP_NOW及びF_FP_FUTUREがONに設定され、調停後の目標駆動力Fp_now及び調停後の低下制限目標駆動力Fp_futureがそれぞれ挙動制御の目標駆動力Fp_t_now_vsc、挙動制御の低下抑制目標駆動力Fp_t_future_vscに設定される。
(3) When traction control is not necessary but behavior control is necessary The driving force of the drive wheels is not excessive and traction control is not necessary, but the vehicle's running motion is unstable and the vehicle driving force is reduced. When the behavior control by is required, the target driving force Fp_t_now after the distribution of the braking / driving force is set based on the target driving force Fp_t_now_vsc of the behavior control, and the decrease in the behavior control is suppressed based on the target driving force Fp_t_now_vsc of the behavior control The target driving force Fp_t_future_vsc is calculated, the flags F_FP_NOW and F_FP_FUTURE are set to ON, and the target driving force Fp_now after arbitration and the reduction limited target driving force Fp_future after arbitration are the target driving force Fp_t_now_vsc for behavior control, and the suppression suppression of the behavior control, respectively. The target driving force Fp_t_future_vsc is set.

従ってこの場合には挙動制御の目標駆動力Fp_t_now_vscに基づいて目標エンジン出力トルクTetを演算し、エンジン10の出力を確実に低下させて車輌の走行運動を効果的に安定化させることができると共に、挙動制御の目標駆動力Fp_t_now_vscよりも低下変化が小さい挙動制御の低下抑制目標駆動力Fp_t_future_vscに基づいてトランスミッション14の目標変速段Stを演算することができ、これにより車輌の走行運動の不安定化が一時的である場合に挙動制御によりトランスミッション14の変速段が不必要にシフトアップされること及びこれに起因して一時的な挙動制御が完了した直後に於ける加速不足を効果的に防止することができる。   Therefore, in this case, the target engine output torque Tet can be calculated based on the behavior control target driving force Fp_t_now_vsc, and the output of the engine 10 can be reliably reduced to effectively stabilize the running motion of the vehicle. The target shift stage St of the transmission 14 can be calculated on the basis of the decrease suppression target drive force Fp_t_future_vsc of the behavior control whose change in decrease is smaller than the target drive force Fp_t_now_vsc of the behavior control, thereby destabilizing the running motion of the vehicle. Effectively preventing the speed change of the transmission 14 from being unnecessarily shifted up by the behavior control when it is temporary and insufficient acceleration immediately after the temporary behavior control is completed due to this. Can do.

尚車輌の走行運動の不安定な状況が長く継続するような場合には、挙動制御の低下抑制目標駆動力Fp_t_future_vscが変速線まで低下した段階でトランスミッション14の変速段がシフトアップされるので、不安定な走行状態が長く継続するような場合にも駆動力が過大な状況が長時間に亘り継続することはない。   If the unstable state of the running motion of the vehicle continues for a long time, the shift stage of the transmission 14 is shifted up when the target drive force Fp_t_future_vsc for suppressing the decrease in behavior control is lowered to the shift line. Even when a stable running state continues for a long time, a situation in which the driving force is excessive does not continue for a long time.

(4)トラクション制御及び挙動制御が必要である場合
駆動輪の駆動力は過剰であり車輌の走行運動も不安定であることによりトラクション制御及び挙動制御の何れも必要である場合には、制駆動力分配後の目標駆動力Fp_t_nowがトラクション制御の目標駆動力Fp_t_now_trc及び挙動制御の目標駆動力Fp_t_now_vscのうちの小さい方の値に設定され、低下抑制目標駆動力Fp_t_futureがトラクション制御の目標駆動力Fp_t_now_trc、挙動制御の低下抑制目標駆動力Fp_t_future_vsc、高横力旋回制御の低下抑制目標駆動力Fp_t_future_tireのうちの最も大きい値に設定され、フラグF_FP_NOW及びF_FP_FUTUREがONに設定され、調停後の目標駆動力Fp_now及び調停後の低下制限目標駆動力Fp_futureがそれぞれ目標駆動力Fp_t_now、低下抑制目標駆動力Fp_t_futureに設定される。
(4) When traction control and behavior control are necessary When both the traction control and behavior control are necessary because the driving force of the driving wheels is excessive and the running motion of the vehicle is unstable, braking / driving is required. The target driving force Fp_t_now after force distribution is set to the smaller value of the target driving force Fp_t_now_trc for traction control and the target driving force Fp_t_now_vsc for behavior control, and the target driving force Fp_t_now_trc for reducing traction control is set as the target driving force Fp_t_now_trc for traction control. Decrease suppression target drive force Fp_t_future_vsc for behavior control and decrease suppression target drive force Fp_t_future_tire for high lateral force turning control are set to the largest value, flags F_FP_NOW and F_FP_FUTURE are set to ON, and target drive force Fp_now after arbitration is set The reduction limited target driving force Fp_future after the arbitration is set to the target driving force Fp_t_now and the reduction suppressing target driving force Fp_t_future, respectively.

従ってこの場合には目標駆動力Fp_t_nowに基づいて目標エンジン出力トルクTetを演算し、エンジン10の出力を確実に低下させて駆動輪の駆動スリップを効果的に低減すると共に車輌の走行運動を効果的に安定化させることができ、また目標駆動力Fp_t_nowよりも低下変化が小さい低下抑制目標駆動力Fp_t_futureに基づいてトランスミッション14の目標変速段Stを演算することができ、これにより駆動輪の過大な駆動スリップや車輌の走行運動の不安定化が一時的である場合にトラクション制御や挙動制御によりトランスミッション14の変速段が不必要にシフトアップされること及びこれに起因して一時的なトラクション制御や挙動制御が完了した直後に於ける加速不足を効果的に防止することができる。   Therefore, in this case, the target engine output torque Tet is calculated based on the target driving force Fp_t_now, and the output of the engine 10 is surely reduced to effectively reduce the driving slip of the driving wheels, and the vehicle traveling motion is effectively reduced. The target shift stage St of the transmission 14 can be calculated based on the decrease suppression target drive force Fp_t_future whose decrease change is smaller than the target drive force Fp_t_now. If slip or instability of the running motion of the vehicle is temporary, the gear stage of the transmission 14 is unnecessarily shifted up by traction control or behavior control, and temporary traction control or behavior due to this. It is possible to effectively prevent insufficient acceleration immediately after the control is completed.

特に図示の実施例によれば、フィルタ時定数K1、K2、K3は駆動操作量検出センサ62により検出される運転者の駆動操作量Aが高いほど大きくなるよう、運転者の駆動操作量Aに応じて可変設定されるので、運転者の駆動要求が高いほど低下抑制目標駆動力Fp_t_futureの低下勾配を小さくしてトランスミッション14の変速段のシフトアップが行われ難くし、これにより車輌が低摩擦係数の路面を一時的に通過した直後に於ける加速不足を効果的に防止して運転者の駆動要求を充足することができると共に、また運転者の駆動要求が高くないときには低下抑制目標駆動力Fp_t_futureの低下勾配を大きくしてトランスミッション14の変速段のシフトアップが行われ易くし、これにより車輌の駆動力の低減を速やかに実行することができる。   Particularly, according to the illustrated embodiment, the filter time constants K1, K2, and K3 are set to the driver's driving operation amount A so that the higher the driver's driving operation amount A detected by the driving operation amount detection sensor 62 is, the higher the driver time operation amount A is. Accordingly, the higher the driver's drive request is, the smaller the decrease gradient of the decrease suppression target drive force Fp_t_future is made, making it difficult for the transmission 14 to shift up, thereby reducing the vehicle friction coefficient. It is possible to effectively prevent shortage of acceleration immediately after passing the road surface to satisfy the driver's drive request, and to reduce the reduction target drive force Fp_t_future when the driver's drive request is not high. The reduction gradient of the transmission 14 is increased so that the shift stage of the transmission 14 can be easily shifted up, whereby the driving force of the vehicle can be quickly reduced.

また図示の実施例によれば、運動状態推定部54により車輌が高横力旋回状態にあるか否かが判定され、低下抑制目標駆動力演算部58により駆動輪のタイヤ発生力Fp_current_tireが演算されると共に、タイヤ発生力Fp_current_tireよりも低下勾配が小さい高横力旋回制御の目標駆動力Fp_t_future_tireが演算され、トランスミッション14の変速段を決定するための低下抑制目標駆動力Fp_t_futureは上記式8に従ってトラクション制御の低下抑制目標駆動力Fp_t_future_trc、挙動制御の低下抑制目標駆動力Fp_t_future_vsc、高横力旋回制御の低下抑制目標駆動力Fp_t_future_tireのうちの最も大きい値に設定されるので、車輌の高横力旋回状態が考慮されない場合に比して、車輌が高横力旋回状態にある状況に於いてトランスミッション14がアップシフトされ難くすることができ、従って車輌が高横力旋回状態にある状況に於いてトランスミッション14のアップシフトが行われることにより駆動輪の駆動力が急激に低下し、これに起因して駆動輪の横力が急激に変化し車輌の挙動が急変する虞れを確実に低減することができる。   Further, according to the illustrated embodiment, it is determined whether or not the vehicle is in a high lateral force turning state by the motion state estimation unit 54, and the tire generation force Fp_current_tire of the drive wheel is calculated by the decrease suppression target drive force calculation unit 58. In addition, the target driving force Fp_t_future_tire of the high lateral force turning control having a lower gradient than the tire generating force Fp_current_tire is calculated, and the reduction suppressing target driving force Fp_t_future for determining the gear position of the transmission 14 is traction controlled according to the above equation 8. Is set to the largest value among the lower suppression target driving force Fp_t_future_trc, the lower suppression target driving force Fp_t_future_vsc of the behavior control, and the lower suppression target driving force Fp_t_future_tire of the high lateral force turning control. The transmission 14 is upshifted in situations where the vehicle is in a high lateral force turning state, compared to when not considered. Therefore, when the vehicle is in a high lateral force turning state, the transmission 14 is upshifted, so that the driving force of the driving wheel is abruptly reduced. It is possible to reliably reduce the possibility that the force changes suddenly and the behavior of the vehicle suddenly changes.

また図示の実施例によれば、フィルタ時定数K2はフィルタ時定数K1、K3よりも大きい値に設定されており、同一の目標駆動力の変化について見て挙動制御の低下抑制目標駆動力Fp_t_future_vscの低下勾配はトラクション制御の低下抑制目標駆動力Fp_t_future_trc及び高横力旋回制御の低下抑制目標駆動力Fp_t_future_tireの低下勾配よりも大きいので、車輌の走行運動が不安定である場合には駆動輪の駆動力が過剰である場合に比してトランスミッション14のアップシフトを早期に行わせることができ、これにより駆動輪の駆動力が過剰であることに起因する車輌の不安定な走行状態を効果的に安定化させることができる。   Further, according to the illustrated embodiment, the filter time constant K2 is set to a value larger than the filter time constants K1 and K3, and the behavior control lowering suppression target driving force Fp_t_future_vsc of the same target driving force is seen. Since the decrease gradient is larger than the decrease gradient of the traction control decrease suppression target drive force Fp_t_future_trc and the high lateral force turning control decrease suppression target drive force Fp_t_future_tire, the drive force of the drive wheel is generated when the vehicle traveling motion is unstable. As a result, the transmission 14 can be upshifted early compared to when the vehicle is excessive, thereby effectively stabilizing the unstable running state of the vehicle due to the excessive driving force of the drive wheels. It can be made.

以上に於いては本発明を特定の実施例について詳細に説明したが、本発明は上述の実施例に限定されるものではなく、本発明の範囲内にて他の種々の実施例が可能であることは当業者にとって明らかであろう。   Although the present invention has been described in detail with reference to specific embodiments, the present invention is not limited to the above-described embodiments, and various other embodiments are possible within the scope of the present invention. It will be apparent to those skilled in the art.

例えば上述の実施例に於いては、低下抑制目標駆動力Fp_t_future_trc、Fp_t_future_vsc、Fp_t_future_tireはそれぞれ目標駆動力Fp_t_future_trc、Fp_t_future_vsc、Fp_current_tireに対しフィルタ処理を施すことにより演算されるようになっているが、低下抑制目標駆動力Fp_t_future_trc、Fp_t_future_vsc、Fp_t_future_tireはそれぞれ目標駆動力Fp_t_future_trc、Fp_t_future_vsc、Fp_current_tireよりも低下勾配が小さい限り、それぞれ目標駆動力Fp_t_future_trc、Fp_t_future_vsc、Fp_current_tireに基づいて任意の要領にて演算されてよい。   For example, in the above-described embodiment, the reduction suppression target driving forces Fp_t_future_trc, Fp_t_future_vsc, and Fp_t_future_tire are calculated by filtering the target driving forces Fp_t_future_trc, Fp_t_future_vsc, and Fp_current_tire, respectively. The target driving forces Fp_t_future_trc, Fp_t_future_vsc, and Fp_t_future_tire are calculated based on the target driving forces Fp_t_future_trc and Fp_t_future, respectively, as long as the decrease gradient is smaller than the target driving forces Fp_t_future_trc, Fp_t_future_vsc, and Fp_current_tire.

また上述の実施例に於いては、低下抑制目標駆動力演算部58により高横力旋回制御の目標駆動力Fp_t_future_tireが演算され、トラクション制御の低下抑制目標駆動力Fp_t_future_trc、挙動制御の低下抑制目標駆動力Fp_t_future_vsc、高横力旋回制御の低下抑制目標駆動力Fp_t_future_tireのうちの最も大きい値がトランスミッションの変速段を決定するための低下抑制目標駆動力Fp_t_futureとされるようになっているが、高横力旋回制御の目標駆動力Fp_t_future_tireが省略され、低下抑制目標駆動力Fp_t_futureはトラクション制御の低下抑制目標駆動力Fp_t_future_trc及び挙動制御の低下抑制目標駆動力Fp_t_future_vscのうちの大きい方の値に設定されるよう修正されてもよい。   Further, in the above-described embodiment, the target driving force Fp_t_future_tire for the high lateral force turning control is calculated by the reduction suppressing target driving force calculating unit 58, the traction control decreasing suppressing target driving force Fp_t_future_trc, the behavior control decreasing suppressing target drive. The maximum value of the force Fp_t_future_vsc and the reduction suppression target driving force Fp_t_future_tire of the high lateral force turning control is set as the reduction suppression target driving force Fp_t_future for determining the transmission gear stage. The target drive force Fp_t_future_tire for turning control is omitted, and the decrease suppression target drive force Fp_t_future is set to the larger value of the decrease suppression target drive force Fp_t_future_trc for traction control and the decrease suppression target drive force Fp_t_future_vsc for behavior control May be.

また上述の実施例に於いては、車輌は後輪駆動車であるが、本発明の駆動力制御装置は前輪駆動車や四輪駆動車に適用されてもよく、また駆動力発生源はエンジンであるが、本発明の駆動力制御装置は駆動力発生源がハイブリッドシステムである車輌に適用されてもよい。   In the above embodiment, the vehicle is a rear wheel drive vehicle, but the drive force control device of the present invention may be applied to a front wheel drive vehicle or a four wheel drive vehicle, and the drive force generation source is an engine. However, the driving force control apparatus of the present invention may be applied to a vehicle whose driving force generation source is a hybrid system.

また上述の実施例に於いては、トランスミッションの変速機は自動変速機であるが、変速機は無段変速機であってもよく、その場合には低下抑制目標駆動力Fp_t_futureに基づいて無段変速機の目標変速比が演算される。   In the above-described embodiment, the transmission transmission is an automatic transmission. However, the transmission may be a continuously variable transmission, and in that case, the transmission is continuously variable based on the reduction suppression target driving force Fp_t_future. A target gear ratio of the transmission is calculated.

後輪駆動車に適用された本発明による車輌の駆動力制御装置の一つの実施例を示す概略構成図である。It is a schematic block diagram which shows one Example of the driving force control apparatus of the vehicle by this invention applied to the rear-wheel drive vehicle. 実施例の制御系を示すブロック図である。It is a block diagram which shows the control system of an Example. 運転者の加速要求が増加し、運転者要求目標駆動力Fp_dvmが増加する過程に於いてトラクション制御が実行される場合に於ける運転者要求目標駆動力Fp_dvm、トラクション制御の目標駆動力Fp_t_now_trc、トラクション制御の低下抑制目標駆動力Fp_t_future_trcの変化の一例を示すグラフである。The driver requested target driving force Fp_dvm, the traction control target driving force Fp_t_now_trc, the traction control when the traction control is executed in the process where the driver's acceleration request increases and the driver requested target driving force Fp_dvm increases. It is a graph which shows an example of change of control fall control target drive force Fp_t_future_trc. 運転者の加速要求が増加し、運転者要求目標駆動力Fp_dvmが増加する過程に於いて挙動制御が実行される場合に於ける運転者要求目標駆動力Fp_dvm、挙動制御の目標駆動力Fp_t_now_vsc、挙動制御の低下抑制目標駆動力Fp_t_future_vscの変化の一例を示すグラフである。The driver required target driving force Fp_dvm, the behavior control target driving force Fp_t_now_vsc, the behavior when the behavior control is executed in the process where the driver's acceleration demand increases and the driver required target driving force Fp_dvm increases. It is a graph which shows an example of change of control fall suppression target drive force Fp_t_future_vsc.

符号の説明Explanation of symbols

10 エンジン
16 自動変速機
26 制動装置
32 統合制御電子制御装置
34 アクセルぺダル
36 ブレーキぺダル
40 駆動力制御電子制御装置
42 制動力制御電子制御装置
64 エンジン制御装置
66 自動変速機制御装置
68i 車輪速度センサ
70 車輌状態量検出センサ
72 制動力制御装置
DESCRIPTION OF SYMBOLS 10 Engine 16 Automatic transmission 26 Braking device 32 Integrated control electronic control device 34 Accelerator pedal 36 Brake pedal 40 Driving force control electronic control device 42 Braking force control electronic control device 64 Engine control device 66 Automatic transmission control device 68i Wheel speed Sensor 70 Vehicle state quantity detection sensor 72 Braking force control device

Claims (6)

乗員の運転操作状況及び車輌の走行状況に基づき目標駆動力を演算する手段と、前記目標駆動力に比して低下変化が小さい低下制限目標駆動力を演算する手段と、前記目標駆動力に基づいて駆動源の駆動力を制御する手段と、前記低下制限目標駆動力に基づいてトランスミッションの変速比を制御する手段とを有する車輌の駆動力制御装置に於いて、
車輌は駆動輪の駆動スリップを抑制する駆動スリップ抑制目標駆動力を演算する手段と、各車輪の制駆動力の制御により車輌の走行運動を安定化させるための走行運動制御目標駆動力を演算する手段とを有し、
前記低下制限目標駆動力を演算する手段は前記駆動スリップ抑制目標駆動力に比して低下変化が小さい低下制限駆動スリップ抑制目標駆動力を演算する手段と、前記走行運動制御目標駆動力に比して低下変化が小さい低下制限走行運動制御目標駆動力を演算する手段とを有し、前記低下制限駆動スリップ抑制目標駆動力及び前記低下制限走行運動制御目標駆動力のうち大きい方の値を低下制限目標駆動力に設定する
ことを特徴とする車輌の駆動力制御装置。
Based on the target driving force, means for calculating a target driving force based on the driving operation status of the occupant and the traveling state of the vehicle, a means for calculating a lower limit target driving force with a lower change compared to the target driving force, and In a vehicle driving force control device, comprising: means for controlling the driving force of the driving source; and means for controlling the transmission gear ratio based on the lower limit target driving force.
The vehicle calculates the driving slip suppression target driving force for suppressing the driving slip of the driving wheel, and the driving motion control target driving force for stabilizing the traveling motion of the vehicle by controlling the braking / driving force of each wheel. Means,
The means for calculating the lower limit target driving force is a means for calculating a lower limit driving slip suppression target driving force whose change in reduction is smaller than that of the driving slip suppression target driving force. Means for calculating a lower limit travel motion control target driving force with a smaller lower change, and lowering the larger value of the lower limit driving slip suppression target driving force and the lower limit travel motion control target driving force. A driving force control apparatus for a vehicle, wherein the driving force control device is set to a target driving force .
前記低下制限スリップ抑制目標駆動力を演算する手段は低下変化の応答性が増加変化の応答性よりも低いフィルタ処理を前記駆動スリップ抑制目標駆動力に対し行うことにより前記低下制限駆動スリップ抑制目標駆動力を演算し、前記低下制限走行運動制御目標駆動力を演算する手段は低下変化の応答性が増加変化の応答性よりも低いフィルタ処理を前記走行運動制御目標駆動力に対し行うことにより前記低下制限走行運動制御目標駆動力を演算することを特徴とする請求項1に記載の車輌の駆動力制御装置。 The means for calculating the lower limit slip suppression target drive force performs the lower limit response slip suppression target drive by performing a filtering process on the drive slip suppression target drive force in which the response of the lower change is lower than the response of the increase change. The means for calculating force and calculating the lower limit travel motion control target drive force is obtained by performing a filtering process on the travel motion control target drive force, wherein the response of the lower change is lower than the response of the increase change. The vehicle driving force control device according to claim 1, wherein a limited driving motion control target driving force is calculated. 前記低下制限スリップ抑制目標駆動力を演算する手段及び前記低下制限走行運動制御目標駆動力を演算する手段は乗員の加速要求が高いときには乗員の加速要求が低いときに比してそれぞれ前記低下制限スリップ抑制目標駆動力及び前記低下制限走行運動制御目標駆動力の低下制限度合を高くすることを特徴とする請求項1又は2に記載の車輌の駆動力制御装置。 The means for calculating the lower limit slip suppression target driving force and the means for calculating the lower limit travel motion control target driving force are respectively the lower limit slip when the occupant acceleration request is high compared to when the occupant acceleration request is low. suppression target driving force and the vehicle driving force control apparatus according to claim 1 or 2, characterized in that to increase the reduction limit degree of the lowering limit driving dynamics control target driving force. 記目標駆動力を演算する手段は前記駆動スリップ抑制目標駆動力及び前記走行運動制御目標駆動力が演算されているときには、それらのうちの小さい方の値に基づいて目標駆動力を演算することを特徴とする請求項1乃至3に記載の車輌の駆動力制御装置。 When prior Symbol target driving force means for computing the said drive slip suppression target driving force and the vehicle dynamics control target driving force is computed, the computing the target driving force based on the value of the smaller of those among The vehicle driving force control device according to any one of claims 1 to 3. 前記低下制限目標駆動力を演算する手段は、前記走行運動制御目標駆動力が演算されているとき又は車輌が高横力旋回状態にあるときに駆動輪のタイヤ発生力に比して低下変化が小さい旋回制御目標駆動力を演算する手段を有し、前記低下制限駆動スリップ抑制目標駆動力、前記低下制限走行運動制御目標駆動力、前記旋回制御目標駆動力のうちの最大値を前記低下制限目標駆動力に設定することを特徴とする請求項に記載の車輌の駆動力制御装置。 Means for calculating the reduction limit target driving force is lowered changes compared to tire force of the driving wheels when or the vehicle when the vehicle dynamics control target driving force is calculated is in the high lateral force turning state It has a means to calculating the small turning control target driving force, before Symbol drop-limiting drive slip suppression target driving force, the lowering limit driving dynamics control target driving force, the lower the maximum value of the turning control target driving force 2. The vehicle driving force control device according to claim 1 , wherein the driving force control device is set to a limited target driving force. 記低下制限走行運動制御目標駆動力の低下制限度合は前記低下制限駆動スリップ抑制目標駆動力の低下制限度合よりも低いことを特徴とする請求項1乃至5に記載の車輌の駆動力制御装置。 Vehicle driving force control apparatus according lowering limit the degree of pre-Symbol drop limited driving dynamics control target driving force to claim 1, wherein the lower than the decrease limit the degree of the reduction limiting drive slip suppression target driving force .
JP2005306983A 2005-10-21 2005-10-21 Vehicle driving force control device Expired - Fee Related JP4910361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005306983A JP4910361B2 (en) 2005-10-21 2005-10-21 Vehicle driving force control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005306983A JP4910361B2 (en) 2005-10-21 2005-10-21 Vehicle driving force control device

Publications (2)

Publication Number Publication Date
JP2007113723A JP2007113723A (en) 2007-05-10
JP4910361B2 true JP4910361B2 (en) 2012-04-04

Family

ID=38096094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005306983A Expired - Fee Related JP4910361B2 (en) 2005-10-21 2005-10-21 Vehicle driving force control device

Country Status (1)

Country Link
JP (1) JP4910361B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4937860B2 (en) * 2007-08-21 2012-05-23 日立オートモティブシステムズ株式会社 Brake control device
JP6226710B2 (en) * 2013-11-18 2017-11-08 オートリブ日信ブレーキシステムジャパン株式会社 Vehicle control device and vehicle brake control device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660681B2 (en) * 1989-06-26 1994-08-10 マツダ株式会社 Shift control device for automatic transmission
JP3703635B2 (en) * 1998-09-28 2005-10-05 住友電気工業株式会社 Vehicle behavior control device
JP2001334841A (en) * 2000-05-25 2001-12-04 Nissan Motor Co Ltd Drive control device for vehicle

Also Published As

Publication number Publication date
JP2007113723A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
US8548706B2 (en) Device operable to control turning of vehicle
JP4636062B2 (en) Vehicle behavior control device
KR101697809B1 (en) Method and braking system for influencing driving dynamics by means of braking and driving operations
JP4386171B2 (en) Power transmission device for four-wheel drive vehicles
JP4938542B2 (en) Vehicle speed control device for vehicle
US20050004738A1 (en) Method for modifying a driving stability control of a vehicle
JP5800092B2 (en) Braking / driving force control device
US20100056338A1 (en) Method for Compensating the Braking Deceleration in a Vehicle Control
JP6844500B2 (en) Vehicle behavior control device
JP6653085B2 (en) Vehicle driving force control device
US10744875B2 (en) Control device for torque distributor
JP2016537261A (en) Vehicle control system and method
EP1400390A2 (en) Power distribution control apparatus for four wheel drive vehicle
JP4501343B2 (en) Braking force control device for vehicle
JP4950052B2 (en) Method and apparatus for controlling the lock level of an electronically controllable differential lock mechanism
US8315774B2 (en) Vehicle driving-force control device
JP2015231825A (en) Vehicular travel control apparatus
KR20210071133A (en) Electronic stability control method for vehicle
EP2289746B1 (en) System for enhancing cornering performance of a vehicle controlled by a safety system
JP2012096610A (en) Braking force control apparatus for vehicle
US8818667B2 (en) Method for producing a differential torque acting on the vehicle wheels of a vehicle
JP4910361B2 (en) Vehicle driving force control device
JP4114065B2 (en) Four-wheel drive vehicle behavior control device
JP4784741B2 (en) Vehicle driving force control device
JP3832499B2 (en) Vehicle driving force control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

R151 Written notification of patent or utility model registration

Ref document number: 4910361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees