JP4909518B2 - Control method of continuous cropping failure - Google Patents

Control method of continuous cropping failure Download PDF

Info

Publication number
JP4909518B2
JP4909518B2 JP2005032289A JP2005032289A JP4909518B2 JP 4909518 B2 JP4909518 B2 JP 4909518B2 JP 2005032289 A JP2005032289 A JP 2005032289A JP 2005032289 A JP2005032289 A JP 2005032289A JP 4909518 B2 JP4909518 B2 JP 4909518B2
Authority
JP
Japan
Prior art keywords
soil
microbial material
field
continuous cropping
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005032289A
Other languages
Japanese (ja)
Other versions
JP2006219387A (en
Inventor
修 小山
章 馬目
真由 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Kankyo Engineering Co Ltd
Original Assignee
Nippon Steel Kankyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Kankyo Engineering Co Ltd filed Critical Nippon Steel Kankyo Engineering Co Ltd
Priority to JP2005032289A priority Critical patent/JP4909518B2/en
Publication of JP2006219387A publication Critical patent/JP2006219387A/en
Application granted granted Critical
Publication of JP4909518B2 publication Critical patent/JP4909518B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

本発明は、根菜類に対する連作障害の制御方法に関し、更に詳しくは、根菜の植えつけの前に少なくとも畑の土壌分析を行って、その分析値との関連で、根菜類の病原菌に対して拮抗効果がある微生物資材の施用量をコントロールして、根菜類の連作障害を制御するシステムに関する。   The present invention relates to a method for controlling continuous cropping damage to root vegetables, and more particularly, at least field analysis of soil before planting root vegetables, and antagonizing root vegetable pathogens in relation to the analysis value. The present invention relates to a system that controls the continuous cropping disorder of root vegetables by controlling the application amount of effective microbial materials.

従来より、植物の病原菌に対して拮抗作用を有する微生物(拮抗微生物、以下、拮抗菌と呼ぶ)を積極的に病害の抑制に使用する微生物資材の研究は多くされているが、どれも試験管レベルでの成功例で、実際の農場での成功例は極めて少ない。ここで、拮抗菌とは、特定菌の増殖や活動を抑制する微生物のことであり、病原菌の増殖や活動を抑制し、結果的に植物に対する病害の軽減を可能とできるもののことである。特に、安全性や環境破壊が懸念される農薬の使用量を軽減する有機農業や、減農薬或いは無農薬農業といった生態系活用型(環境保全型)農業への移行が叫ばれている現状においては、かかる拮抗菌を使用して農薬としての機能を果たす微生物資材の技術は夢の技術といっても過言ではなく、その開発が切望されている。   There have been many studies on microbial materials that actively use microorganisms that have an antagonistic action against plant pathogens (antagonist microorganisms, hereinafter referred to as antagonistic bacteria) to control disease. There are very few success stories at the farm level. Here, an antagonistic bacterium is a microorganism that suppresses the growth and activity of a specific bacterium, and can suppress the growth and activity of a pathogenic bacterium, and as a result, can reduce a disease to a plant. In particular, in the current situation where there is a call to shift to organic farming that reduces the use of pesticides that are concerned about safety and environmental destruction, and ecologically utilized (environmental conservation) farming such as reduced or non-pesticide farming It is no exaggeration to say that the technology of microbial materials that function as an agrochemical using such antagonistic bacteria is a dream technology, and its development is eagerly desired.

しかしながら、上記したように、種々の検討が行なわれてはいるものの、実際の農場での成功例は少ないのが現状である。その理由としては、農場土壌中には多種多様のおびただしい数の土壌細菌が存在しており、このような農場に、拮抗菌培養液の状態や(例えば、特許文献1参照)、培養材料中に多量の拮抗菌を繁殖させた状態の拮抗菌(例えば、特許文献2参照)を一時期に多量に蒔いたとしても、他の微生物(従来よりその土壌中に住み着いているもの)との競合に負けてしまい、その土壌中に拮抗菌が根付くことができないことが多いためであると考えられる。   However, as described above, although various studies have been made, there are few successful examples on actual farms. The reason for this is that there are a great variety of soil bacteria in the farm soil. In such farms, the state of the antagonistic culture solution (see, for example, Patent Document 1), the culture material, Even if a large amount of antagonistic bacteria (see, for example, Patent Document 2) in which a large amount of antagonistic bacteria were propagated at a time, they lost the competition with other microorganisms (those that have settled in the soil). This is probably because antagonistic bacteria cannot often take root in the soil.

これに対し、乾燥固定化微生物を得る技術(例えば、特許文献3及び4参照)や、これを利用して、乾燥固定化微生物を実際に農場で使用した場合に、土壌中の水分によって拮抗菌の生命活動を回復して、微生物資材として有効に機能し得ることが開示されている(例えば、特許文献5参照)。   On the other hand, when a dry-immobilized microorganism is actually used on a farm using a technique for obtaining a dry-immobilized microorganism (see, for example, Patent Documents 3 and 4), antagonistic bacteria are caused by moisture in the soil. It has been disclosed that it can recover the life activity of and can effectively function as a microbial material (see, for example, Patent Document 5).

しかしながら、上記したような微生物資材は、拮抗菌の生命活動を利用して植物に対する病害の軽減効果を得るものであるため、実際の畑の植物への適用に対して高い効果を発揮させるためには、対象とする植物の病原菌に対して高い拮抗作用を示す微生物資材を開発することは勿論のこと、種々の環境下にあると考えられる実際の畑において、該微生物資材が対象植物に対して、より確実に、しかも高い効能を長時間に渡って持続させるには、施用の仕方を含めて総合的な検討が必要であると考えられる。   However, since the microbial materials as described above obtain the effect of reducing diseases against plants using the life activity of antagonistic bacteria, in order to exert a high effect on application to plants in actual fields In addition to developing microbial materials that exhibit high antagonism against the pathogenic fungi of the target plant, in an actual field that is considered to be in various environments, the microbial material is In order to maintain high efficacy for a long time with more certainty, it is considered that a comprehensive study including application methods is necessary.

特に、農薬や化学肥料の大量使用等も原因の一つと考えられる連作障害は深刻であり、何年か休耕しなければ次の作物の生育が難しい状態の畑もある。このような連作障害がみられる畑においても微生物資材による安定した効果が発揮され、健全な農作物が収穫率よく得られ、しかも、農薬や化学肥料の使用量を低減することで、連作障害が抑制された環境保全型の農業へと移行できれば、非常に有用である。   In particular, continuous cropping failure, which is considered to be caused by a large amount of use of agricultural chemicals and chemical fertilizers, is serious, and in some fields it is difficult to grow the next crop unless it is fallowed for several years. Stable effects of microbial materials are exerted even in fields with such continuous cropping failures, healthy crops can be obtained with good harvest rate, and continuous cropping failures are suppressed by reducing the use of agricultural chemicals and chemical fertilizers. It would be very useful if we could move on to environmentally friendly agriculture.

特公平7−101815号公報Japanese Examined Patent Publication No. 7-101815 特公平6−192028号公報Japanese Patent Publication No. 6-192028 特公平4−48436号公報Japanese Patent Publication No. 4-48436 特公平6−73451号公報Japanese Examined Patent Publication No. 6-73451 特開2002−308714公報JP 2002-308714 A

従って、本発明の目的は、具体的な植物として根菜をとり上げ、根菜類に有効な微生物資材を開発すると同時に、該微生物資材を実際の畑に適用した場合に、連作障害のみられる畑に適用した場合にも健全な農作物が安定して高い収穫率で得られ、しかも、農薬や化学肥料の使用量を低減できるようにすることで、連作障害の発生が低減され、環境保全型の農業への移行を実現できる技術を提供することにある。   Therefore, the object of the present invention is to take root vegetables as specific plants, develop microbial materials effective for root vegetables, and at the same time, apply them to fields that suffer from continuous cropping failures when applied to actual fields. In some cases, healthy crops can be obtained stably at a high yield, and the use of pesticides and chemical fertilizers can be reduced, reducing the occurrence of continuous cropping failures and promoting environmentally friendly agriculture. It is to provide a technology that can realize the transition.

上記の目的は、下記の本発明によって達成される。即ち、本発明は、[1]根菜の植えつけの前に畑の土壌分析を行って、当該畑におけるそうか病菌の密度をnec−1遺伝子量で測定し、得られたnec−1遺伝子の量によって該畑に施用する微生物資材の量を制御することを特徴とする連作障害の制御方法である。   The above object is achieved by the present invention described below. That is, the present invention [1] performs a soil analysis of a field before planting root vegetables, measures the density of common scabs in the field by the amount of the nec-1 gene, and obtains the obtained nec-1 gene. It is a control method for continuous cropping failure, characterized in that the amount of microbial material applied to the field is controlled by the amount.

又、本発明の好ましい形態は、[2]前記微生物資材が、少なくとも、固体栄養培地と、微生物資材1グラム当たり103〜106cellsの範囲のTrichoderma asperellum F288株(寄託番号:NITE P−53)を含んでなるものである上記[1]に記載の連作障害の制御方法である。 In addition, a preferred form of the present invention is [2] the microbial material is at least a solid nutrient medium and Trichoderma asperellum F288 strain (deposit number: NITE P-53) in the range of 10 3 to 10 6 cells per gram of microbial material. ) Is a continuous crop failure control method according to the above [1].

更に、本発明の好ましい形態としては、下記のものが挙げられる。[3]更に、前記土壌分析の際に、当該畑におけるリン酸濃度の測定を行い、リン酸濃度が高いと判定された畑の場合にはリン肥料の施肥を行わない上記[1]又は[2]に記載の連作障害の制御方法。[4]更に、肥料として硫酸アンモニウムを施肥する上記[1]〜[3]に記載の連作障害の制御方法。[5]上記植えつける根菜が種芋である場合に、予め種芋におけるそうか病菌の有無の分析を行って、種芋にそうか病菌が存在している場合は、該種芋の消毒を行った後に植えつけを行う上記[1]〜[4]のいずれかに記載の連作障害の制御方法。[6]更に、前記土壌分析の際に、土壌のpHを測定し、土壌のpH値が5.5より高い場合に硫酸アンモニウムを畑に施し、その状態で前記微生物資材を施用する上記[1]〜[5]のいずれかに記載の連作障害の制御方法。   Furthermore, the following are mentioned as a preferable form of this invention. [3] Further, in the soil analysis, the phosphoric acid concentration in the field is measured, and in the case of a field determined to have a high phosphoric acid concentration, the fertilizer is not fertilized [1] or [ [2] The method for controlling a continuous cropping failure according to [2]. [4] The method for controlling a continuous cropping disorder according to the above [1] to [3], further comprising applying ammonium sulfate as a fertilizer. [5] When the root vegetable to be planted is a seed pod, the presence or absence of the scab on the seed pod is analyzed in advance. The method for controlling a continuous cropping disorder according to any one of the above [1] to [4], wherein attaching is performed. [6] Further, in the soil analysis, the pH of the soil is measured, and when the pH value of the soil is higher than 5.5, ammonium sulfate is applied to the field, and the microbial material is applied in that state [1] The control method of the continuous cropping disorder in any one of-[5].

本発明によれば、根菜類の病原菌に対して拮抗作用を示す微生物資材を、畑の状態や、更には種芋の状態に応じて的確に施用することで、健全な農作物を安定して収穫率よく得ることができ、しかも、農薬や化学肥料の使用量を低減することで連作障害を抑制できる実用価値の高い連作障害の制御システムが提供される。   According to the present invention, a microbial material that has an antagonistic action against root vegetables pathogens is accurately applied according to the state of the field and further the state of the seed pod, so that a healthy crop can be stably harvested. It is possible to provide a control system for continuous cropping failures that can be obtained well and that has high practical value and can reduce continuous cropping failures by reducing the use of agricultural chemicals and chemical fertilizers.

次に、好ましい形態を挙げて、本発明を詳細に説明する。本発明者らは、上記した従来技術の課題を解決すべく鋭意検討の結果、活性を維持した状態で固定されて、使用の際に土壌中の水分で膨潤して拮抗菌の生命活動が回復し、いわゆる農薬としての高い機能が発揮される微生物資材に有効に利用可能できる新規な拮抗微生物である、Trichoderma asperellum F288株を見いだした。そして、更に、該微生物資材を実際の畑に施用する場合の最適な条件について鋭意検討した結果、少なくとも土壌環境に応じて上記微生物資材を施用すること、更には、土壌環境を整えた状態で施用することが重要であり、このような施用システムを採用することで、連作障害のみられる畑においても健全な農作物を安定して収穫率よく得ることができるようになることを見いだして、本発明に至った。   Next, the present invention will be described in detail with reference to preferred embodiments. As a result of intensive studies to solve the above-described problems of the prior art, the present inventors are fixed in a state where the activity is maintained, and swell with moisture in the soil during use to recover the life activity of the antagonistic bacteria. And we found Trichoderma asperellum F288 strain, a novel antagonistic microorganism that can be used effectively for microbial materials that exhibit high functions as so-called pesticides. Further, as a result of intensive studies on optimum conditions for applying the microbial material to an actual field, applying the microbial material according to at least the soil environment, and further applying the microbial material in a state in which the soil environment is prepared It is important to adopt such an application system, and it has been found that healthy crops can be obtained stably and with a good harvest rate even in fields where continuous cropping failures occur. It came.

先ず、本発明を特徴づけるTrichoderma asperellum F288株(寄託番号:NITE P−53)について説明する。該微生物は、トリコデルマ属のカビであるが、本発明者らは、この新規微生物について鋭意検討した結果、上記微生物は、じゃがいものそうか病の病原菌であるStreptomyces scabiesに対して高い拮抗作用があることを見いだした。そして、本発明者らの更なる検討によれば、この微生物は、じゃがいもに限らず根菜類の病原菌に対して高い拮抗作用を示す。更に、少なくとも固体栄養培地を含んでなる微生物資材は、活性を維持した状態で固定され、使用の際には土壌中の水分で膨潤してその生命活動が回復し、しかも上記の拮抗作用が高いレベルで発揮され、いわゆる農薬として有効に利用できる。
First, the Trichoderma asperellum F288 strain (deposit number: NITE P-53) that characterizes the present invention will be described. The microorganism is a fungus belonging to the genus Trichoderma. As a result of intensive studies on the novel microorganism, the present microorganism has a high antagonism against Streptomyces s cabies, which is a pathogen of potato scab. I found something. Further, according to further studies by the present inventors, this microorganism exhibits a high antagonistic action against root pathogen pathogens as well as potatoes. Furthermore, the microbial material comprising at least the solid nutrient medium is fixed in a state where the activity is maintained, and when used, it swells with moisture in the soil and recovers its life activity, and the above-described antagonistic action is high. It can be used effectively as a so-called pesticide.

本発明で使用する微生物資材は、最終的に得られる微生物資材1グラム当たりに、このTrichoderma asperellum F288株が103〜106cells程度の範囲で含まれるものである。又、本発明で使用する微生物資材の調製の際には、予め微生物学的に純粋培養されたTrichoderma asperellum F288株を使用することが好ましい。拮抗菌の培養方法としては、従来公知の微生物学的純粋培養方法を使用すればよいが、特に、食品工場から排出される有機性植物残渣を使用した固体培養方法を用いることが好ましい。具体的には、例えば、フスマ、米ヌカ、オカラ及び小豆カスといった有機性植物残渣からなる固体栄養培地を用いて培養させる方法が好ましい。 The microbial material used in the present invention contains the Trichoderma asperellum F288 strain in a range of about 10 3 to 10 6 cells per gram of the finally obtained microbial material. In preparing the microbial material to be used in the present invention, it is preferable to use Trichoderma asperellum F288 strain that has been cultivated purely microbiologically in advance. As a method for culturing antagonistic bacteria, a conventionally known microbiologically pure culture method may be used. In particular, it is preferable to use a solid culture method using an organic plant residue discharged from a food factory. Specifically, for example, a method of culturing using a solid nutrient medium composed of organic plant residues such as bran, rice bran, okara and red bean residue is preferable.

本発明で使用する微生物資材は、例えば、上記のようにして予め固体培養方法等で培養したTrichoderma asperellum F288株を、更に固体栄養培地とを混合させることで得ることができるが、特に、Trichoderma asperellum F288株の培養に使用する固体培地と、更に混合させる固体栄養培地とを同一のものとしたものが好ましい。   The microbial material used in the present invention can be obtained, for example, by further mixing Trichoderma asperellum F288 strain previously cultured by a solid culture method or the like as described above with a solid nutrient medium, in particular, Trichoderma asperellum. A solid medium used for culturing the F288 strain and a solid nutrient medium to be further mixed are preferably the same.

本発明で使用する微生物資材は、上記に加えて粘土鉱物であるバーミキュライト資材を含有させたものであってもよい。バーミキュライトは多孔質であるため、拮抗菌の良好な固定材料となる。上記したバーミキュライトを含有する微生物資材は、微生物の生命活動を利用するものであるにもかかわらず、一定の品質が維持され、より効果が持続する製品となる。本発明者らは、その理由を、資材中のバーミキュライトが、あたかもフスマ等の有機性植物残渣の表面をコーティングしているような状態になるため、微生物資材を構成している有機性植物残渣が、土壌中に存在している他の種々の微生物のエサとなることを有効に抑制でき、微生物資材中に含有させた拮抗菌が選択的に発育・増殖する環境を与えることができることによると考えている。   The microbial material used in the present invention may contain a vermiculite material which is a clay mineral in addition to the above. Since vermiculite is porous, it is a good fixing material for antagonistic bacteria. The above-described microbial material containing vermiculite is a product that maintains a certain quality and maintains its effect even though it utilizes the life activity of microorganisms. The present inventors, for the reason, vermiculite in the material is as if the surface of the organic plant residue such as bran is coated, the organic plant residue constituting the microbial material is It is thought that it is possible to effectively suppress the feeding of other various microorganisms present in the soil, and to provide an environment in which antagonistic bacteria contained in the microbial material can selectively grow and proliferate. ing.

本発明に使用できる取り扱い易い微生物資材の具体的なものとしては、固体培地で培養したTrichoderma asperellum F288株と、小麦フスマのような有機性植物残渣とを含有してなる混合物、或いは、更にこれにバーミキュライト資材のような粘土鉱物を加えた混合物を、造粒或いはペレット化したものが挙げられる。これらの微生物資材は、上記微生物が活性を維持した状態で固定されたものであり、これと同時に、農作物の苗や種や種芋とともに土壌中に蒔かれると該微生物は膨潤して土壌中で良好に生育し、その高い拮抗作用を発揮し得る。該拮抗菌による植物に対する病害の軽減効果は、安定し且つ長期間持続される。   Specific examples of easy-to-handle microbial materials that can be used in the present invention include a mixture containing Trichoderma asperellum F288 strain cultured in a solid medium and an organic plant residue such as wheat bran, or a mixture thereof. A mixture obtained by granulating or pelletizing a mixture of clay minerals such as vermiculite material may be used. These microbial materials are fixed in a state where the above microorganisms maintain their activity. At the same time, when microbial materials are sown together with crop seedlings, seeds and seed pods, the microorganisms swell and are good in the soil. It can grow and exhibits its high antagonism. The disease-reducing effect on plants by the antagonistic bacteria is stable and sustained for a long time.

上記微生物資材は、Trichoderma asperellum F288株とともに、例えば、フスマ、米ヌカ、オカラ及び小豆カス等から選択された有機性植物残渣からなる固体栄養培地が含まれているため、微生物資材を土壌中に施した場合に、拮抗菌の基質(エサ)がより十分にある拮抗菌が生育し易い状態になり、その効果がより長期間持続される。本発明者らの検討によれば、特にフスマを用いてなる微生物資材は、土壌中に含有させ、土壌中に住み着いている他の微生物と競合した状態となった場合にも、拮抗菌の繁殖に優れ、しかも長期間にわたって拮抗菌の効果が持続するものとなる。   The above microbial material includes Trichoderma asperellum F288 strain and a solid nutrient medium composed of organic plant residues selected from, for example, bran, rice bran, okara, and red bean residue. In such a case, the antagonistic bacteria having a sufficient substrate (food) of the antagonistic bacteria are likely to grow, and the effect is maintained for a longer period of time. According to the study by the present inventors, the microbial material particularly using the bran is contained in the soil, and even when it is in a state of competing with other microorganisms living in the soil, the propagation of antagonistic bacteria In addition, the effect of the antagonistic bacteria is sustained over a long period of time.

粒状の微生物資材は、Trichoderma asperellum F288株を培養した固体培地、及び固体栄養培地等の原料を用いて、転動造粒式の造粒機等を使用する公知の方法で製造することができる。具体的には、上記した粉状の原料に水を加えて得た湿潤粉体原料を、造粒機によって転動、振動、撹拌などにより運動させて凝集して造粒する方法、或いは、流動層中の乾燥粉体に凝集用のバインダーや水をスプレーすることによって生じる凝集現象を利用して造粒する方法等が挙げられる。   The granular microbial material can be produced by a known method using a tumbling granulator or the like using raw materials such as a solid medium in which Trichoderma asperellum F288 strain is cultured and a solid nutrient medium. Specifically, a wet powder raw material obtained by adding water to the above-mentioned powdery raw material is agglomerated and granulated by moving it with a granulator by rolling, vibration, stirring, etc. Examples thereof include a granulation method utilizing an agglomeration phenomenon caused by spraying an aggregating binder or water onto the dry powder in the layer.

上記した場合に使用する凝集用のバインダーとしては、例えば、粘結力・給水力・保水力の強い、コーンスターチ、小麦粉、加工澱粉等の澱粉類や、CMC(カルボキシメチルセルロース)、ポリビニールアルコール(ポバール)等を使用することができる。これらのバインダーを用いる場合には、粉体原料中にバインダーを混合しておき、該混合物に回転や振動を与えながら水を噴霧してもよいし、粉体原料に回転や振動を与えながらバインダー水溶液を噴霧してもよい。   Examples of the aggregating binder used in the above case include starches such as corn starch, wheat flour, processed starch, CMC (carboxymethylcellulose), polyvinyl alcohol (Poval), which have strong caking power / water supply capacity / water retention capacity. ) Etc. can be used. In the case of using these binders, the binder may be mixed in the powder raw material, and water may be sprayed while applying rotation or vibration to the mixture, or the binder may be applied while rotating or vibrating the powder raw material. An aqueous solution may be sprayed.

上記のようにして原料混合物を成形して粒状やペレット状とした後に、乾燥処理すれば、強度の高い固形状の微生物資材製品ができる。乾燥温度としては、やや高めの常温、例えば、40℃以下の温度で、除湿及び乾燥処理することが好ましい。具体的な乾燥温度は、微生物の温度耐性に応じて適宜に決定すればよい。   If the raw material mixture is formed into granules or pellets as described above and then dried, a solid microbial material product with high strength can be obtained. As the drying temperature, it is preferable to perform dehumidification and drying treatment at a slightly higher ordinary temperature, for example, a temperature of 40 ° C. or lower. A specific drying temperature may be appropriately determined according to the temperature resistance of the microorganism.

上記した微生物資材は、畑に蒔かれた際に、土壌中の水分と接触して膨潤し、膨潤することで固体栄養培地やバーミキュライト中に固定されていたTrichoderma asperellum F288株が再び活性を取り戻し、畑の土壌中で、農作物に対する病原菌の増殖や活動を抑制する拮抗作用を発揮して農作物に対する病害の軽減に効果を示す。これは、土壌中で活性を取り戻した菌株の周囲には固体栄養培地である有機性植物残渣が併存し、拮抗菌の基質(エサ)が十分に存在する状態となるので、土壌中に既に存在している多量の病原菌等の微生物と競合した場合にも拮抗菌が死滅することなく良好に生育し、拮抗菌が土壌中に常に存在する状態を形成させることができたものと考えられる。ペレット状の微生物資材は、十分な強度を有し、農場に蒔く場合の取り扱い性に優れるのみならず、土壌中の水分によって表面から内部に向かって徐々に膨潤していくので、単に混合されたものや、粒状のものに比較して、拮抗作用をより長期間に渡って維持できるものとなる。   When the above microbial material is sown in the field, it swells in contact with moisture in the soil, and by swelling, the Trichoderma asperellum F288 strain that has been fixed in the solid nutrient medium and vermiculite regains activity, In the field soil, it exerts an antagonism that suppresses the growth and activity of pathogenic bacteria on the crops, and is effective in reducing diseases against the crops. This is because organic plant residues, which are solid nutrient media, coexist around the strain that has regained its activity in the soil, and the substrate of the antagonistic bacteria (food) is sufficiently present. Even when competing with a large amount of microorganisms such as pathogenic bacteria, it is considered that the antagonistic bacteria grew well without being killed, and the antagonistic bacteria were always able to form a state in the soil. Pellet-like microbial materials not only have sufficient strength and are easy to handle when going to the farm, but also swell gradually from the surface to the inside due to moisture in the soil, so they are simply mixed Compared with the thing and granular thing, an antagonistic action can be maintained over a long period of time.

本発明において、用いる微生物資材は、上記した特性に鑑みて、対象とする植物によって、その原料の選択、形状の選択(粒状或いはペレット化するか否か、或いは大きさ)をすればよい。例えば、粒状或いはペレット状に成形された微生物資材は、上記原料を単に混合したものに比べて取り扱い性に優れる。又、微生物資材がペレット状である場合は、適用した土壌中において、より長期間に渡って拮抗菌の効果が持続するようになるので、効果を持続させる必要がある植物に対して使用することが好ましい。   In the present invention, in view of the above characteristics, the microorganism material to be used may be selected according to the target plant by selecting the raw material and selecting the shape (whether or not to be granulated or pelletized, or the size). For example, a microbial material formed into a granular shape or a pellet shape is excellent in handleability as compared with a material obtained by simply mixing the above raw materials. Also, if the microbial material is in the form of pellets, the effect of antagonistic bacteria will last for a longer time in the applied soil, so use it for plants that need to maintain the effect. Is preferred.

本発明にかかる方法は、上記した微生物資材を根菜の栽培に使用することを特徴とするが、更に、その際に、植えつけの前に畑の土壌分析を行って、当該畑におけるそうか病菌の密度をnec−1遺伝子量で測定し、得られたnec−1遺伝子の量によって該畑に施用する微生物資材の量を下記のように制御することを特徴とする。   The method according to the present invention is characterized in that the above-mentioned microbial material is used for cultivation of root vegetables. In this case, the soil analysis of the field is performed before planting, and the common scab in the field The amount of microbial material applied to the field is controlled as follows according to the amount of the nec-1 gene.

本発明における、そうか病菌の密度をnec−1遺伝子量で測定する具体的な方法としては、土壌中のそうか病菌の密度を定量化できればいずれの分析方法でもよく、限定されるものではない。土壌中におけるnec−1遺伝子量を測定する方法としては、内部標準遺伝子を用いた競合的QP−PCR法を利用することができる。この方法は、土壌から抽出した核酸と既知濃度の内部標準遺伝子をnec−1遺伝子検出用のプライマーを用いて競合的にPCR増幅し、nec−1遺伝子と内部標準遺伝子のそれぞれに特異的な蛍光消光プローブを用いて相補的な増幅産物を検出することにより得られる蛍光量および添加した内部標準遺伝子量からnec−1遺伝子量を定量するものである。具体的には、根菜の植えつけを予定する畑の土壌を採取し、該土壌中に棲息する菌を培養し、上記の方法によってnec−1遺伝子量を定量すればよい。尚、本発明で利用できる上記した特定遺伝子の定量方法については、特開2002−275公報等に詳細な記載がある。   In the present invention, as a specific method for measuring the density of scab pathogen by the amount of nec-1 gene, any analysis method may be used as long as the density of scab pathogen in the soil can be quantified, and is not limited. . As a method for measuring the amount of nec-1 gene in soil, a competitive QP-PCR method using an internal standard gene can be used. In this method, nucleic acid extracted from soil and an internal standard gene at a known concentration are competitively PCR amplified using primers for detecting the nc-1 gene, and fluorescence specific to each of the nc-1 gene and the internal standard gene is detected. The amount of nec-1 gene is quantified from the amount of fluorescence obtained by detecting a complementary amplification product using a quenching probe and the amount of added internal standard gene. Specifically, soil of a field where planting of root vegetables is planned is collected, bacteria that live in the soil are cultured, and the amount of nec-1 gene is quantified by the above method. The above-described specific gene quantification method that can be used in the present invention is described in detail in JP-A-2002-275 and the like.

本発明者らは、検討していく過程で、前記した微生物資材を畑に施用した効果は、施用しない畑と比較した場合に必ず認められるものの、該微生物資材を同じように畑に施用した場合であっても、その効果の程度が異なる場合があることを確認した。そして、その原因について鋭意検討した結果、植え付けをする畑の土壌中に棲息するそうか病菌の量に応じて施用する微生物資材の量を適宜に制御することが、安定した効果を得るために有効であるとの結論に至った。   In the process of studying the present inventors, although the effect of applying the above-mentioned microbial material to the field is always recognized when compared with a field not applied, when the microbial material is applied to the field in the same way Even so, it was confirmed that the degree of the effect may be different. And as a result of earnestly examining the cause, it is effective to obtain a stable effect by appropriately controlling the amount of microbial material to be applied according to the amount of common scab inhabiting the soil of the planting field. It came to the conclusion that it is.

本発明者らは、先ず、植え付けをする土壌中のそうか病菌の量を、そのnec−1遺伝子量を測定することで定量した。そして、この値と、当該畑でできた作物の発病率について検討した結果、図2に示したように、植え付けをする土壌中のそうか病菌のnec−1遺伝子量と、作物の発病率との間には相関があることを確認した。更に、測定したそうか病菌のnec−1遺伝子量に応じて、先に述べた、施用した場合に根菜のそうか病に対して有効な結果が得られる微生物資材の量を、どの程度変化させれば、安定した結果が得られるかについて検討した。この結果、土壌中のそうか病菌のnec−1遺伝子量によって、該菌が10000コピー未満と少ない場合には、前記微生物資材の量を20kg以上70kg未満程度とすればよく、nec−1遺伝子量が10000コピー以上である場合には、70kg以上400kg未満程度の多めの微生物資材を、混合施用或いは播種時に作条施用するようにすることが有効であるとの結論に至った。上記のように、先ず植えつける畑の土壌のnec−1遺伝子量を分析し、この分析値に応じて施用する微生物資材の量を制御すれば、安定して、根菜類のそうか病の発病率を低減させることができる。   The present inventors first quantified the amount of common scab in the soil to be planted by measuring the amount of the nec-1 gene. And as a result of examining this value and the disease incidence of the crops made in the field, as shown in FIG. 2, the amount of nec-1 gene of scab in the soil to be planted, and the disease incidence of the crops It was confirmed that there is a correlation. Furthermore, depending on the amount of nec-1 gene of the scab of the scab, the amount of the microbial material, which is effective as described above for the root scab, when applied, is changed as described above. Then, we examined whether stable results could be obtained. As a result, the amount of the microbial material may be about 20 kg or more and less than 70 kg when the bacterium is less than 10000 copies due to the amount of nec-1 gene of scab in the soil. It was concluded that it was effective to apply a large amount of microbial material of about 70 kg or more and less than 400 kg at the time of mixing application or sowing at a time of 10,000 copies or more. As described above, if the amount of nec-1 gene in the soil of the field to be planted is first analyzed, and the amount of microbial material applied is controlled according to the analysis value, the root disease common scab pathogenesis The rate can be reduced.

本発明者らの検討によれば、上記の結果、常に、土壌中に棲息するそうか病菌に対して微生物資材が有効に機能できる状況になり、いずれの畑においても安定してそうか病の発病率を低減でき、良好な農作物が収穫率よく得られ、畑の連作障害を克服することができる。更に、収穫後の畑は、本発明で使用する微生物資材を使用しない場合と比べて、連作障害の発生が抑制される状態になる。畑に微生物資材を施用する方法としては、畑を耕耘機等で耕した後、畑の全面に均一に施用してもよいし、植え溝内に均一に施用してもよい。又、施用する時期は、植え付けの1週間前としたり、化成肥料等の施肥の際に同時に施用することもできる。   According to the study by the present inventors, as a result of the above, the microbial material can always function effectively against common scabs inhabiting the soil, and stable scabs in any field. The disease rate can be reduced, good crops can be obtained with a good harvest rate, and continuous cropping obstacles in the field can be overcome. Furthermore, the field after harvest is in a state in which the occurrence of continuous cropping failures is suppressed as compared with the case where the microbial material used in the present invention is not used. As a method of applying the microbial material to the field, after cultivating the field with a cultivator or the like, it may be applied uniformly to the entire surface of the field, or may be applied uniformly to the planting groove. Moreover, the application time can be one week before planting, or can be applied simultaneously with application of chemical fertilizer or the like.

更に、本発明者らは、検討の過程でpH値によって畑の土壌中のそうか病菌のnec−1遺伝子量が異なる傾向にあることを見いだした。即ち、図4に示したように、pHが5.5以上であると、土壌中のそうか病菌のnec−1遺伝子量が多くなる。これに対しては、施用の前に畑の土壌のpH値を測定し、pHが5.5以上である場合にはpHを下げて、その後に微生物資材を施用することが有効であることを確認した。更に、pH調整には、特に、硫安を使用することが好ましいことを見いだした。一方、土壌のpH値が4.0より低い場合には、石灰又は苦土石灰(粉)を1反当たり40〜80kgを加えることで、微生物資材中の拮抗菌がより有効に機能できる環境にすることが好ましい。   Furthermore, the present inventors have found that the amount of nec-1 gene of scab in the field soil tends to differ depending on the pH value during the examination process. That is, as shown in FIG. 4, when the pH is 5.5 or more, the amount of nec-1 gene of scab in the soil increases. For this, it is effective to measure the pH value of the soil in the field before application, and if the pH is 5.5 or higher, lower the pH and then apply the microbial material. confirmed. Furthermore, it has been found that it is particularly preferable to use ammonium sulfate for pH adjustment. On the other hand, when the pH value of the soil is lower than 4.0, by adding 40 to 80 kg of lime or mashed lime (powder) per piece, an environment in which antagonistic bacteria in the microbial material can function more effectively is obtained. It is preferable to do.

更に、本発明者らの検討によれば、土壌中のリン酸濃度を最適な範囲に制御することも、微生物資材中の拮抗菌をより有効に機能させる環境要素となり得る。即ち、本発明者らの検討によれば、本発明で使用する微生物資材は、土壌中のリン濃度によって影響を受け、肥料中のリン濃度が高過ぎると微生物資材中の拮抗菌の作用が低減し、その効果が十分に発揮されない場合があった。従って、本発明の好ましい形態としては、上記土壌分析の際に土壌中のリン酸濃度を測定し、畑の状態を判定し、該判定に従ってリン肥料を施肥し、その後、該畑に微生物資材を施用する。このようにすることで、使用する微生物資材に対して土壌中のリン濃度を最適な状態にすることができる。尚、土壌中のリン酸濃度の判定は、土壌中におけるリン酸濃度或いは水溶性リン酸濃度を公知の方法で測定する等の方法で行えばよい。   Further, according to the study by the present inventors, controlling the phosphoric acid concentration in the soil to an optimum range can be an environmental element that allows the antagonistic bacteria in the microbial material to function more effectively. That is, according to the study by the present inventors, the microbial material used in the present invention is affected by the phosphorus concentration in the soil, and if the phosphorus concentration in the fertilizer is too high, the action of antagonistic bacteria in the microbial material is reduced. However, the effect may not be fully exhibited. Therefore, as a preferred form of the present invention, the phosphoric acid concentration in the soil is measured at the time of the soil analysis, the state of the field is determined, and the fertilizer is fertilized according to the determination, and then the microbial material is applied to the field. Apply. By doing in this way, the phosphorus density | concentration in soil can be made into an optimal state with respect to the microbial material to be used. In addition, what is necessary is just to perform the determination of the phosphoric acid concentration in soil by methods, such as measuring the phosphoric acid concentration or water-soluble phosphoric acid concentration in soil by a well-known method.

具体的には、例えば、下記のようにする。土壌中のリン酸濃度は、一般的に、土壌1g中に20〜40mg程度が必要であるとされているので、土壌中のリン酸濃度を測り、これよりもリン酸濃度が確実に高いと判定された場合にはリン肥料を施肥しないようにして、その状態で微生物資材を施用するようにすることが好ましい。土壌中のリン酸濃度が上記の範囲よりも低いと判定された場合には勿論、従来の場合と同様にリン肥料を施肥する必要がある。土壌中のリン酸濃度が上記の範囲に達しているか否が微妙な場合には、リン肥料を通常の半分量施肥するようにする。   Specifically, for example, the following is performed. The phosphate concentration in the soil is generally required to be about 20 to 40 mg in 1 g of soil. Therefore, the phosphate concentration in the soil is measured, and if the phosphate concentration is surely higher than this, When judged, it is preferable not to fertilize the phosphorus fertilizer and to apply the microbial material in that state. Of course, when it is determined that the phosphoric acid concentration in the soil is lower than the above range, it is necessary to fertilize the phosphorus fertilizer as in the conventional case. When it is delicate whether the phosphoric acid concentration in the soil has reached the above range, the fertilizer is applied in half the normal amount.

更に、本発明者らの検討によれば、植えつける根菜が種芋であるような場合には、予め種芋におけるそうか病菌の有無の分析を行って、種芋にそうか病菌が存在している場合は、種芋の消毒を行い、該種芋を植えつけるようにすることも好ましい。例えば、土壌中に、そうか病のnec−1遺伝子が存在しない畑で、nec−1遺伝子が5000コピー存在する種芋と、nec−1遺伝子が存在しない種芋とで、本発明で使用する微生物資材の効果を検討したところ、nec−1遺伝子が存在しない種芋を用いた場合は発病率が0であったのに対して、nec−1遺伝子が5000コピー存在する種芋を使用した場合には発病率が30%程度みられ、種芋の消毒が有効であることが確認できた。種芋のnec−1遺伝子の有無の判定には、先に説明したnec−1遺伝子の定量分析方法を勿論使用することができるが、この場合には、nec−1遺伝子の存在が確認できれば足りるため、前記の方法に限らず、nec−1遺伝子を定性できる分析方法であればいずれも利用できる。   Further, according to the study by the present inventors, when the root vegetable to be planted is a seed pod, the presence or absence of the scab on the seed pod is analyzed in advance, and the scab on the seed pod is present. It is also preferable to disinfect the seed pods and plant the seed pods. For example, in a field where the nec-1 gene of common scab is not present in the soil, the microbial material used in the present invention is a seed pod having 5000 copies of the nec-1 gene and a seed potato having no ec-1 gene. As a result of the examination of the effect, the disease incidence was 0 when using the seed pods without the nec-1 gene, whereas the disease incidence was obtained when using the seed pods with 5000 copies of the nec-1 gene. About 30%, and it was confirmed that disinfection of seed potatoes was effective. For the determination of the presence or absence of the nec-1 gene in the seed pod, the quantitative analysis method for the nec-1 gene described above can of course be used. However, in this case, it is sufficient to confirm the presence of the nec-1 gene. Any analysis method that can qualify the nec-1 gene can be used, not limited to the above method.

種芋の消毒は、アグリマイシン等で40倍希釈したものを5〜10秒浸漬処理で行えばよいが、本発明は、特にこれに限定されるものではない。   Disinfection of seed husks may be carried out by immersion for 10 to 10 times with agrimycin or the like, but the present invention is not particularly limited thereto.

収穫率をより高めるためには、通常の場合と同様に畑に施肥することが好ましい。目的とする作物によって肥料の種類や成分比率は異なるが、例えば、鶏糞堆肥と、対象とする根菜類に適した通常の配合の化学肥料を用いることができる。しかしながら、先に述べたように、化学肥料成分の中でも、リン成分を最適な状態に制御することが、本発明で使用する微生物資材による高い効果を得るために重要であるので、リン肥料の量は、先に述べたように、土壌中におけるリン酸濃度との関連において決定することが好ましい。更に、本発明の方法では、本発明で使用する微生物資材によって高い効果を得るための要素として、硫安を併用することが挙げられる。このため、先に説明したように、畑の土壌のpHを調整するには、硫安によってすることが好ましいが、硫安を使用した場合には、肥料中の窒素成分は、総窒素量として15〜26kg/反になるように配合を決定することが好ましい。   In order to further increase the harvest rate, it is preferable to fertilize the field in the same manner as in a normal case. For example, chicken manure compost and a chemical fertilizer with a normal composition suitable for the target root vegetable can be used, although the fertilizer type and component ratio differ depending on the target crop. However, as described above, among the chemical fertilizer components, it is important to control the phosphorus component to an optimum state in order to obtain a high effect by the microbial material used in the present invention. Is preferably determined in relation to the phosphate concentration in the soil, as described above. Furthermore, in the method of the present invention, use of ammonium sulfate as an element for obtaining a high effect by the microbial material used in the present invention can be mentioned. For this reason, as explained above, in order to adjust the pH of the soil in the field, it is preferable to use ammonium sulfate. However, when ammonium sulfate is used, the nitrogen component in the fertilizer is 15 to as the total nitrogen amount. It is preferable to determine the formulation so as to be 26 kg / reverse.

図1に、上記で述べた構成を一連のものとする本発明にかかる連作障害の制御方法の一例のシステムフローを示した。このような構成とすることで、本発明で使用する微生物資材を使用しない場合と比較して、そうか病の発病率を格段に減少させることができる。図1のシステムフローを説明すると、先ず、各畑の土壌を採取し、次に、土壌診断を行う。本発明にかかる方法は、その際に、少なくとも土壌中のそうか病菌の密度を測定し、該値に応じて本発明で使用する微生物資材の量を決定して施用することを基本とする。そして、更に好ましい形態として、必要に応じて更なる土壌診断或いは種芋の診断を行って、必要な施肥や種芋の消毒等を決定し、該決定に従って、畑の土壌の状態を整備したり種芋の処置を行ったりして、その後、本発明で使用する微生物資材を施用する。   FIG. 1 shows a system flow of an example of a method for controlling a continuous failure according to the present invention in which the configuration described above is a series. By setting it as such a structure, compared with the case where the microorganism material used by this invention is not used, the onset rate of common scab can be reduced markedly. The system flow of FIG. 1 will be described. First, soil in each field is collected, and then soil diagnosis is performed. In this case, the method according to the present invention is based on measuring at least the density of scab in the soil and determining the amount of the microbial material to be used in the present invention according to the value. Further, as a more preferable form, further soil diagnosis or seed potato diagnosis is performed as necessary, and necessary fertilization, seed sterilization, etc. are determined. After treatment, the microbial material used in the present invention is applied.

以下に、好ましい実施例及び比較例を挙げて本発明を更に詳細に説明する。
<種芋>
播種する種芋としてジャガイモ(品種:ニシユタカ)を用いた。そして、該種芋のそうか病菌の有無を先に説明した内部標準遺伝子を用いたnec−1分析で測定し、そうか病菌が検出されなかった種芋を用いて栽培試験を行った。
Hereinafter, the present invention will be described in more detail with reference to preferred examples and comparative examples.
<Seeds>
Potatoes (variety: Nishitaka) were used as seed seeds for sowing. And the presence or absence of the scab of the seed potato was measured by the nec-1 analysis using the internal standard gene demonstrated previously, and the cultivation test was done using the seed potato in which the scab was not detected.

<畑の土壌>
(1)上記ジャガイモを使用しての栽培試験を行う畑として、前記した知見に基づき、pHが5.0である畑を数箇所選択した。
(2)更に、上記した畑の土壌分析をそれぞれ行って、当該畑におけるそうか病菌の密度をnec−1遺伝子量で測定した。そして、nec−1遺伝子量が8,000コピー程度である畑Aと、nec−1遺伝子量が50,000コピー程度のAの畑よりも菌の多い畑B、nec−1遺伝子量が5,000コピー程度である菌の少ない畑Cの3箇所の畑を選び、各栽培試験を行った。
<Soil in the field>
(1) Based on the above-mentioned knowledge, several fields with a pH of 5.0 were selected as fields for conducting the cultivation test using the potato.
(2) Furthermore, the soil analysis of the above-mentioned field was performed, respectively, and the density of scab in the field was measured by the nec-1 gene amount. A field A having a nec-1 gene amount of about 8,000 copies, a field B having more fungi than a field A having a nec-1 gene amount of about 50,000 copies, and a nec-1 gene amount of 5, Three fields, field C, which has about 000 copies and few bacteria were selected, and each cultivation test was conducted.

<微生物資材>
Trichoderma asperellum F288株を、滅菌した10kgの小麦フスマを固体培地として103cells/gになるように植菌し、2週間培養した。次に、得られた培養物と、上記で培養に使用したと同様の小麦フスマと、バーミキュライト(ヒルイシ化学製)とを、質量比で、それぞれが約1:5:1の配合割合となるように秤量し、水道水を加えて混合した後、造粒したものを微生物資材として使用した。微生物資材は、種芋播種時に作条施用した。
<Microbial materials>
Trichoderma asperellum F288 strain was inoculated with 10 kg of wheat bran as a solid medium to 10 3 cells / g and cultured for 2 weeks. Next, the obtained culture, the wheat bran similar to that used in the above culture, and vermiculite (manufactured by Hiruishi Chemical) are mixed at a mass ratio of about 1: 5: 1. Then, tap water was added and mixed, and the granulated product was used as a microbial material. Microbial materials were applied at the time of sowing seeds.

(試験A)
<試験方法>
先ず、前記した知見に基づき、前記した畑A及びBの土壌のリン酸濃度を判定したところ、通常よりも少ないことが確認された。これらの畑を区切り、それぞれ1a(アール)の試験区に上記の微生物資材を表1に示した量をそれぞれ施用し、その後、前記したジャガイモの種芋を植えた。又、その際に、鶏糞肥料1,000kg/反と、化学肥料[N:P:K=16:15:15kg(有効成分で反あたりの投入量)]とを用いた。そして、8月下旬に種芋を播種し、12月下旬に収穫を行った。そして、収穫したジャガイモの数と、そうか病が発病したジャガイモの数を数え、発病率を求めた。その結果を表1に示した。尚、発病率は、そうか病により市販できないものを発病したとみなして算出した。
(Test A)
<Test method>
First, when the phosphoric acid concentration of the soil of the above-mentioned field A and B was determined based on the above-mentioned knowledge, it was confirmed that it was less than usual. These fields were divided, and the amounts of the above-mentioned microbial materials shown in Table 1 were applied to each of the 1a test areas, and then the above-mentioned potato seeds were planted. At that time, 1,000 kg of chicken manure fertilizer / anti and fertilizer [N: P: K = 16: 15: 15 kg (input amount per anti-active ingredient)] were used. Then, seed pods were sown in late August and harvested in late December. Then, the number of harvested potatoes and the number of potatoes that developed common scab were counted, and the disease incidence was determined. The results are shown in Table 1. The onset rate was calculated by assuming that those that were not commercially available due to common scabs.

<試験結果>
表1に示したように、微生物資材を施用した場合としない場合では明らかに発病率に差があり、微生物資材の有効性が確認できた。又、nec−1遺伝子量が多い場合には微生物資材の量を多くすることが有効であることが確認できた。
<Test results>
As shown in Table 1, there was a clear difference in the incidence rate between the cases where the microbial material was applied and the case where the microbial material was not applied, and the effectiveness of the microbial material was confirmed. Moreover, when the amount of nec-1 gene was large, it has confirmed that it was effective to increase the quantity of microbial materials.

Figure 0004909518
Figure 0004909518

(試験B)
<試験方法>
先述したnce−1遺伝子量が5000コピーである畑Cについて土壌のリン酸濃度を判定したところ、リン酸濃度は、A及びBの畑と比べて高めであることが確認された。この畑Cを仕切り、それぞれ1a(アール)の試験区D及びEとした。そして、この試験区D及びEに、先述した微生物資材をそれぞれ50kg施用し、更に、各試験区に施肥する肥料をそれぞれ下記のように変えて栽培試験を行った。試験区Dには、鶏糞肥料1,000kg/反と、化学肥料[N:P:K=16:15:15kg(有効成分で反あたりの投入量)]とを施肥し、畑Eには、鶏糞肥料1,000kg/反と、化学肥料[N:P:K=16:7:15kg(有効成分で反あたりの投入量)]とを施肥した。そして、上記のような試験区D及びEに対し、8月下旬に種芋を播種し、12月下旬に収穫を行った。そして、収穫したジャガイモの数と、そうか病が発病したジャガイモの数を数え、発病率を求めた。その結果を表2に示した。比較のため、nce−1遺伝子量が同じであった畑Aで行った試験Aの結果を併せて示した。尚、発病率は、そうか病により市販できないものを発病したとみなして算出した。
(Test B)
<Test method>
When the phosphoric acid concentration of the soil was determined for the field C in which the ance-1 gene amount was 5000 copies, the phosphoric acid concentration was confirmed to be higher than that of the A and B fields. This field C was divided into test sections D and E of 1a. Then, 50 kg of the above-described microbial material was applied to each of the test sections D and E, and further, the fertilizer to be applied to each test section was changed as follows, and a cultivation test was performed. The test area D was fertilized with 1,000 kg of chicken manure fertilizer and chemical fertilizer [N: P: K = 16: 15: 15 kg (input amount of the active ingredient in the opposite direction)]. The fertilizer was applied with 1,000 kg of chicken manure fertilizer and chemical fertilizer [N: P: K = 16: 7: 15 kg (input amount of the active ingredient per anti)]. Then, seed pods were sown in late August for the test sections D and E as described above, and harvested in late December. Then, the number of harvested potatoes and the number of potatoes that developed common scab were counted, and the disease incidence was determined. The results are shown in Table 2. For comparison, the results of the test A performed in the field A where the nce-1 gene amount was the same were also shown. The onset rate was calculated by assuming that those that were not commercially available due to common scabs.

<試験結果>
表2に示したように、微生物資材を施用した場合としない場合では明らかに発病率に差があり、微生物資材の有効性が確認できた。土壌中のリン酸濃度が高くなると発病率が高くなり、又、微生物資材の効果が低減する傾向があることが確認できた。
<Test results>
As shown in Table 2, there was a clear difference in the incidence rate between when the microbial material was applied and when it was not applied, confirming the effectiveness of the microbial material. It was confirmed that when the phosphoric acid concentration in the soil increases, the disease incidence increases and the effect of the microbial material tends to decrease.

Figure 0004909518
Figure 0004909518

本発明の活用例は、ジャガイモ等の根菜類に適用可能な、連作障害のみられる畑に適用した場合にも健全な農作物が安定して高い収穫率で得られ、しかも、農薬や化学肥料の使用量が低減されるので連作障害の発生が低減され、環境保全型の農業への移行を実現することが可能な連作障害の制御方法が挙げられる。本発明は、微生物資材の利用技術として他の植物への展開に応用できる可能性がある。   The application example of the present invention is applicable to root vegetables such as potato, and when applied to a field with continuous cropping failure, a healthy crop can be stably obtained at a high yield, and the use of agricultural chemicals and chemical fertilizers Since the amount is reduced, the occurrence of continuous cropping failures is reduced, and there is a control method for continuous cropping failures that can realize a shift to environmentally friendly agriculture. The present invention may be applicable to the development of other plants as a technique for utilizing microbial materials.

本発明にかかる方法のシステムフロー。The system flow of the method concerning this invention. 不健全イモの割合とそうか病菌数(nec−1遺伝子数)の関係を示すグラフ。The graph which shows the relationship between the ratio of unhealthy potato and the number of common scabs (nec-1 gene number). 不健全イモの割合とリン酸濃度の関係を示すグラフ。The graph which shows the relationship between the ratio of unhealthy potato and phosphoric acid concentration. nec−1遺伝子数とpHの関係を示すグラフ。The graph which shows the relationship between the number of nec-1 genes and pH.

Claims (6)

じゃがいものそうか病の病原菌であるStreptomyces scabiesに対して拮抗作用を示すTrichoderma asperellum F288株(寄託番号:NITE P−53)。 Trichoderma asperellum F288 strain (deposit number: NITE P-53) showing antagonistic action against Streptomyces s cabies, a pathogen of potato scab. 根菜の植えつけの前に畑の土壌分析を行って、当該畑におけるそうか病菌の密度をnec−1遺伝子量で測定し、得られたnec−1遺伝子の量によって該畑に施用する微生物資材の量を制御する連作障害の制御方法であって、上記微生物資材が、少なくとも、Trichoderma asperellum F288株(寄託番号:NITE P−53)を含んでなるものであることを特徴とする連作障害の制御方法。   Microbial material to be applied to the field according to the amount of nec-1 gene obtained by conducting soil analysis of the field before planting root vegetables, measuring the density of scab in the field with the amount of nec-1 gene A control method for continuous cropping disorders, wherein the microbial material comprises at least Trichoderma asperellum F288 strain (deposit number: NITE P-53). Method. 根菜の植えつけの前に畑の土壌分析を行って、当該畑におけるそうか病菌の密度をnec−1遺伝子量で測定し、得られたnec−1遺伝子の量によって該畑に施用する微生物資材の量を制御する連作障害の制御方法であって、上記微生物資材が、少なくとも、固体栄養培地と、微生物資材1グラム当たり103〜106cellsの範囲のTrichoderma asperellum F288株(寄託番号:NITE P−53)を含んでなるものであることを特徴とする連作障害の制御方法。 Microbial material to be applied to the field according to the amount of nec-1 gene obtained by conducting soil analysis of the field before planting root vegetables, measuring the density of scab in the field with the amount of nec-1 gene A method for controlling continuous cropping disorders, wherein the microbial material comprises at least a solid nutrient medium and a Trichoderma asperellum F288 strain (deposit number: NITE P) in the range of 10 3 to 10 6 cells per gram of microbial material. -53). A method for controlling a continuous cropping disorder, comprising: 更に、肥料として硫酸アンモニウムを施肥する請求項2又は3に記載の連作障害の制御方法。   Furthermore, the control method of the continuous cropping disorder of Claim 2 or 3 which fertilizes ammonium sulfate as a fertilizer. 前記植えつける根菜が種芋である場合に、予め種芋におけるそうか病菌の有無の分析を行って、種芋にそうか病菌が存在している場合は、該種芋の消毒を行った後に植えつけを行う請求項2〜4のいずれか1項に記載の連作障害の制御方法。   When the root vegetable to be planted is a seed pod, the presence or absence of the scab on the seed pod is analyzed in advance, and if the scab is present in the seed pod, the pod is sterilized and then planted. The control method of the continuous cropping disorder of any one of Claims 2-4. 更に、前記土壌分析の際に、土壌のpHを測定し、土壌のpH値が5.5より高い場合に硫酸アンモニウムを畑に施し、その状態で前記微生物資材を施用する請求項2〜5のいずれか1項に記載の連作障害の制御方法。   Furthermore, in the case of the said soil analysis, when the pH of soil is measured, when the pH value of soil is higher than 5.5, ammonium sulfate is applied to a field and the said microbial material is applied in that state. The control method of the continuous cropping failure of any one item | term.
JP2005032289A 2005-02-08 2005-02-08 Control method of continuous cropping failure Expired - Fee Related JP4909518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005032289A JP4909518B2 (en) 2005-02-08 2005-02-08 Control method of continuous cropping failure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005032289A JP4909518B2 (en) 2005-02-08 2005-02-08 Control method of continuous cropping failure

Publications (2)

Publication Number Publication Date
JP2006219387A JP2006219387A (en) 2006-08-24
JP4909518B2 true JP4909518B2 (en) 2012-04-04

Family

ID=36981932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005032289A Expired - Fee Related JP4909518B2 (en) 2005-02-08 2005-02-08 Control method of continuous cropping failure

Country Status (1)

Country Link
JP (1) JP4909518B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4566757B2 (en) * 2005-01-18 2010-10-20 日鉄環境エンジニアリング株式会社 Microbial materials
EP2223600A1 (en) * 2009-02-19 2010-09-01 Urea Casale S.A. Granules containing filamentary fungi and method of preparation thereof
JP2015065865A (en) * 2013-09-27 2015-04-13 小松精練株式会社 Plant growth method using plant growth unit
CN112715302B (en) * 2020-12-28 2022-06-07 四川农业大学 Method for planting plants by using fly sand
CN115486226B (en) * 2022-09-16 2023-07-18 中国热带农业科学院橡胶研究所 Method for determining tropical continuous cropping obstacle soil obstacle factors and improving technology

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01193203A (en) * 1988-01-28 1989-08-03 Akio Tanii Control of common scab of potato by bacterium
JPH04346903A (en) * 1991-05-24 1992-12-02 Mitsubishi Kasei Polytec Co Composition for preventing agricultural crop disease caused by actinomyces
JPH06287097A (en) * 1993-03-31 1994-10-11 Towa Kagaku Kk Soil disease damage control agent selectively promoting growth of microorganism antagonistic to soil-pathogenic organism and utilization thereof
JP2002138005A (en) * 2000-10-27 2002-05-14 Idemitsu Kosan Co Ltd Material for controlling soil pest and method for controlling the same
JP2004002390A (en) * 2002-04-18 2004-01-08 National Institute Of Advanced Industrial & Technology Microbial material and production method of material
JP4460228B2 (en) * 2002-04-22 2010-05-12 日鉄環境エンジニアリング株式会社 New method for measuring nucleic acids
ES2358261T3 (en) * 2002-08-26 2011-05-09 Riken FORMULATION CONTAINING COPPER FOR THE CONTROL OF PLANT DISEASES.
JP2004131422A (en) * 2002-10-10 2004-04-30 Bio Oriented Technol Res Advancement Inst Controller for soil disease damage and method for controlling soil disease damage
JP2004137239A (en) * 2002-10-21 2004-05-13 Bio Oriented Technol Res Advancement Inst Agent and method for controlling soil blight

Also Published As

Publication number Publication date
JP2006219387A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
Järvan et al. Soil microbial communities and dehydrogenase activity depending on farming systems.
Nagar et al. Effect of organic manures and crop residue management on physical, chemical and biological properties of soil under pigeonpea based intercropping system
Kristensen et al. Crop density, sowing pattern, and nitrogen fertilization effects on weed suppression and yield in spring wheat
RU2711042C2 (en) Microbial consortia
Coskan et al. Symbiotic nitrogen fixation in soybean
Bilalis et al. Performance of wheat varieties (Triticum aestivum L.) under conservation tillage practices in organic agriculture
US20190077721A1 (en) Method of manufacturing organic fertilizers by using organic raw material, antagonistic microorganism, fermentative microorganism, and synthetic microorganism, and organic fertilizers manufactured by said manufacturing method
JP4909518B2 (en) Control method of continuous cropping failure
CN107849516A (en) Microorganism consortium
Swędrzyńska et al. Microbiological parameters of soil under sugar beet as a response to the long-term application of different tillage systems
Asfaw Effects of animal manures on growth and yield of maize (Zea mays L.)
CN107787360A (en) Microorganism consortium
US20090105075A1 (en) Method for the use of distiller&#39;s grain as herbicide and fertilizer
Chhokar et al. Suitable wheat cultivars and seeding machines for conservations agriculture in rice-wheat and sugarcane-wheat cropping system
Hatti et al. Soil properties and productivity of rainfed finger millet under conservation tillage and nutrient management in Eastern dry zone of Karnataka
Haider et al. Performance and Nitrogen Use of Wheat Cultivars in Response to Application of Allelopathic Crop Residues and 3, 4-dimethylpyrazole Phosphate.
JPH06107511A (en) Controlling agent against plant pathogenic fungus and organic fertilizer having the same controlling effect
Sibagatullin et al. Results of practical use of fertilizers from chicken manure in winter wheat cultivation
Bhatt et al. Yield performance of maize (Zea mays L.) under different combinations of organic and inorganic nutrient management during spring at Rampur, Chitwan, Nepal
CN114793783A (en) Method for eliminating continuous cropping obstacles of arched greenhouse hot pepper by associated combination of biochar
Rani et al. Weed dynamics and nutrient uptake of maize as influenced by different weed management practices
CN107586229B (en) Biochar-based peanut continuous cropping soil conditioner and preparation method and application thereof
RU2667159C1 (en) Organomineral fertiliser
Ichsan et al. Mitigation of drought disaster in sorghum (Sorghum bicolor l. Moench) in Ultisol soil with application of soil amendments and NPK for diversification and improvement of food security
Jhala et al. Integrated effect of seed rates and weed management treatments in wheat (Triticum aestivum L.)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4909518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees