JP4908299B2 - Superconducting magnet device - Google Patents

Superconducting magnet device Download PDF

Info

Publication number
JP4908299B2
JP4908299B2 JP2007110314A JP2007110314A JP4908299B2 JP 4908299 B2 JP4908299 B2 JP 4908299B2 JP 2007110314 A JP2007110314 A JP 2007110314A JP 2007110314 A JP2007110314 A JP 2007110314A JP 4908299 B2 JP4908299 B2 JP 4908299B2
Authority
JP
Japan
Prior art keywords
superconducting
superconducting coils
magnetic field
coil
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007110314A
Other languages
Japanese (ja)
Other versions
JP2008270463A (en
Inventor
努 来栖
廣久 高野
勉 下之園
義広 小口
義史 長本
祐二 峯元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007110314A priority Critical patent/JP4908299B2/en
Publication of JP2008270463A publication Critical patent/JP2008270463A/en
Application granted granted Critical
Publication of JP4908299B2 publication Critical patent/JP4908299B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

本発明は、比較的大きな空間に均一な磁場を提供する超電導マグネット装置に関する。特に、コンピュータのメモリ等に用いられる半導体ウェハを製造するための単結晶引き上げ装置に適用する超電導マグネット装置に関する。   The present invention relates to a superconducting magnet device that provides a uniform magnetic field in a relatively large space. In particular, the present invention relates to a superconducting magnet device applied to a single crystal pulling apparatus for manufacturing a semiconductor wafer used for a memory of a computer or the like.

シリコンやガリウム砒素などの半導体は、小型から大型までのコンピュータのメモリ等に利用されており、記憶装置の大容量化、低コスト化、高品質化が要求されている。   Semiconductors such as silicon and gallium arsenide are used for memory of computers from small to large, and there is a demand for large capacity, low cost, and high quality storage devices.

単結晶引き上げ方法としては、坩堝内の融解した半導体材料から単結晶を引き上げるチョクラルスキー(CZ)法が広く知られている。近年では、CZ法から発展して、溶解した半導体材料に磁場を印加させることで半導体材料の対流を抑制し、大口径かつ高品質の半導体ウェハが製造されるようになっている。   As a single crystal pulling method, a Czochralski (CZ) method for pulling a single crystal from a molten semiconductor material in a crucible is widely known. In recent years, the CZ method has been developed, and a magnetic field is applied to a melted semiconductor material to suppress convection of the semiconductor material, and a large-diameter and high-quality semiconductor wafer is manufactured.

半導体材料への磁場印加は、磁場分布のタイプにより一般に2種類に大別される。ひとつは、単結晶の引き上げ方向に対して横方向の磁場を与えるヘルムホルツ型であり、もうひとつは、単結晶引き上げ位置の上下それぞれから、打ち消し合うように逆向きの磁場を与えるカスプ型である。一般に、大きな起磁力が必要となるヘルムホルツ型では超電導マグネット装置が適用される場合が多い。   The application of a magnetic field to a semiconductor material is generally roughly divided into two types depending on the type of magnetic field distribution. One is a Helmholtz type that applies a magnetic field transverse to the pulling direction of the single crystal, and the other is a cusp type that applies a reverse magnetic field so as to cancel each other above and below the single crystal pulling position. In general, a superconducting magnet device is often applied to a Helmholtz type that requires a large magnetomotive force.

ヘルムホルツ型の超電導マグネット装置では、特許文献1に記載のように、坩堝を挟むように超電導コイルを対向させて配置する。最も単純な構成は、2個の円形ソレノイドコイルを対向配置する構成であり、超電導コイルの製作および組立が容易である。一方、鞍型のコイルを対向配置させる構成も知られている。
特開2004−51475号公報
In the Helmholtz type superconducting magnet device, as described in Patent Document 1, superconducting coils are arranged to face each other so as to sandwich a crucible. The simplest configuration is a configuration in which two circular solenoid coils are arranged opposite to each other, and the superconducting coil can be easily manufactured and assembled. On the other hand, a configuration in which saddle-shaped coils are arranged to face each other is also known.
JP 2004-51475 A

ところが、前述の超電導マグネット装置において、ヘルムホルツ型の磁場を印加するために、超電導コイルとして円形ソレノイドコイルを対向配置する場合には、引き上げる単結晶が大口径化すると、超電導コイルが坩堝中心から遠ざかることになり、この坩堝中心に必要な磁場を確保するためには、超電導コイルの起磁力や経験磁場を著しく大きくしなければならないという課題があった。   However, in the above-described superconducting magnet device, in order to apply a Helmholtz-type magnetic field, when a circular solenoid coil is disposed opposite to the superconducting coil, the superconducting coil moves away from the center of the crucible when the single crystal to be pulled up becomes large. Thus, in order to secure a necessary magnetic field at the center of the crucible, there has been a problem that the magnetomotive force and empirical magnetic field of the superconducting coil must be significantly increased.

また、超電導コイルの形状を鞍型等に工夫した場合には、同条件の円形ソレノイドコイルに比較すると、装置の外形寸法を小さくでき、同時に、鞍型の超電導コイル自身の起磁力や経験磁場が円形ソレノイドコイルほどは大きくならないという利点はあるものの、鞍型の超電導コイルが、三次元曲面に導線を巻き付けて製作されるため、その製作が複雑で手間がかかってしまう課題があった。   In addition, when the shape of the superconducting coil is devised to be a saddle type, the external dimensions of the device can be reduced compared to a circular solenoid coil of the same condition, and at the same time, the magnetomotive force and empirical magnetic field of the saddle type superconducting coil itself can be reduced. Although there is an advantage that it does not become as large as a circular solenoid coil, a saddle-type superconducting coil is manufactured by winding a conductive wire around a three-dimensional curved surface, so that there is a problem that the manufacturing is complicated and troublesome.

本発明の目的は、上述の事情を考慮してなされたものであり、超電導コイルの経験磁場や起磁力を抑制でき、且つ製作性が良好な超電導マグネット装置を提供することにある。   An object of the present invention is to provide a superconducting magnet device that can suppress the empirical magnetic field and magnetomotive force of a superconducting coil and has good manufacturability.

本発明は、複数の超電導コイルで構成される超電導マグネット装置において、少なくとも2個の超電導コイルが対を成し、この対を成す超電導コイルは、いずれか一方の内側に他方が貫入し、それぞれの赤道面が交差するよう傾斜配置されて構成されると共に、それぞれが発生する磁場が水平方向に相互に強め合い、鉛直方向に相互に弱め合うよう構成されまた、対を成す前記超電導コイルは、それぞれが囲む面積が異なって形成され、それぞれが発生する磁場の強さを略同一とすべくそれぞれの起磁力が異なって構成され、更に、対を成す前記超電導コイルは、交差角度が直角に設定される共に、これらの超電導コイルに囲まれる空間に常温ボアが設けられ、また、対を成す前記超電導コイルのそれぞれは、同軸上に隣接または離間して配置された径の異なる複数の超電導コイルにて構成されたことを特徴とするものである。 The present invention relates to a superconducting magnet device composed of a plurality of superconducting coils, wherein at least two superconducting coils form a pair, and the superconducting coils that form the pair are inserted inside one of the other, Rutotomoni equatorial plane is constructed are inclined arranged to intercept, respectively constructive mutually magnetic field is a horizontal direction generated, is configured to weaken each other in the vertical direction, the superconducting coil pairs are Each of the superconducting coils that are formed in different areas, each having a different magnetomotive force so that the strength of the generated magnetic field is substantially the same, and the pair of superconducting coils set at a right angle In addition, a room temperature bore is provided in a space surrounded by these superconducting coils, and each of the superconducting coils forming a pair is adjacent to or separated from the same axis. Is characterized in that it has been configured differently by a plurality of superconducting coils of location has been diameters.

本発明によれば、対を成す超電導コイルは、いずれか一方の内側に他方が貫入し、それぞれの赤道面が交差するよう傾斜配置されて構成されたことから、この対を成す超電導コイルに囲まれた空間内において、各超電導コイルが発生する磁場の成分を相互に強め合うことが可能となる。従って、この空間において必要な磁場の強さを得るために、各超電導コイルに発生する磁場を増大させる必要がない。この結果、各超電導コイルの起磁力及び経験磁場を抑制することができる。   According to the present invention, the superconducting coils forming a pair are arranged so as to be inclined so that the other penetrates inside one and the equator planes intersect each other. Therefore, the superconducting coils are surrounded by the pair of superconducting coils. It is possible to mutually intensify the components of the magnetic field generated by each superconducting coil within the defined space. Accordingly, it is not necessary to increase the magnetic field generated in each superconducting coil in order to obtain the required magnetic field strength in this space. As a result, the magnetomotive force and empirical magnetic field of each superconducting coil can be suppressed.

また、対を成す超電導コイルのそれぞれは、三次元曲面に導線が巻き付けられて形成される鞍型コイルのような特殊なコイルではなく、通常のコイルで足りるので、超電導コイルの製造が容易となり、装置の製作性を良好にすることができる。   In addition, each of the superconducting coils forming a pair is not a special coil such as a saddle-shaped coil formed by winding a conducting wire around a three-dimensional curved surface, but a normal coil is sufficient. The manufacturability of the apparatus can be improved.

以下、本発明を実施するための最良の形態を、図面に基づき説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

[A]第1の実施の形態(図1〜図9)
図1は、本発明に係る超電導マグネット装置の第1の実施の形態を示す斜視図である。図2は、図1のII−II線に沿う断面図である。図3は、図1のIII−III線に沿う断面図である。
[A] First embodiment (FIGS. 1 to 9)
FIG. 1 is a perspective view showing a first embodiment of a superconducting magnet apparatus according to the present invention. 2 is a cross-sectional view taken along line II-II in FIG. 3 is a cross-sectional view taken along line III-III in FIG.

図1〜図3に示す超電導マグネット装置10は、半導体ウェハを製造するための単結晶引き上げ装置11に水平磁場(横磁場)を印加するヘルムホルツ型の超電導マグネット装置であり、上述の磁場の印加により、単結晶引き上げ装置11の坩堝内における溶融した半導体材料に対流の発生を抑制して、大口径かつ高品質な半導体ウェハを製造可能とするものである。   A superconducting magnet apparatus 10 shown in FIGS. 1 to 3 is a Helmholtz type superconducting magnet apparatus that applies a horizontal magnetic field (transverse magnetic field) to a single crystal pulling apparatus 11 for manufacturing a semiconductor wafer. The generation of convection in the molten semiconductor material in the crucible of the single crystal pulling apparatus 11 is suppressed, and a large-diameter and high-quality semiconductor wafer can be manufactured.

この超電導マグネット装置10は、リング形状の真空容器12内に、同形状の冷媒容器13が収容され、この冷媒容器13内に少なくとも2個、例えば2個の超電導コイル14Aと14Bとが対を成して配置されて構成される。これらの超電導コイル14A及び14Bは共に円形状であり、例えば超電導コイル14Bが超電導コイル14Aの内側に貫入し、それぞれの赤道面15(図4)が交差するように傾斜配置される。ここでは、超電導コイル14A、14Bのそれぞれをコイル軸方向に2分するコイル中央面を赤道面15と定義する。   In this superconducting magnet device 10, a ring-shaped vacuum container 12 houses a refrigerant container 13 having the same shape, and at least two, for example, two superconducting coils 14A and 14B form a pair in the refrigerant container 13. Arranged. These superconducting coils 14A and 14B are both circular, and for example, the superconducting coil 14B penetrates into the inside of the superconducting coil 14A and is inclined so that the respective equatorial planes 15 (FIG. 4) intersect. Here, the coil center plane that bisects each of the superconducting coils 14A and 14B in the coil axis direction is defined as the equator plane 15.

冷媒容器13には、液体ヘリウムまたは液体窒素などの冷媒Rが充填され、超電導コイル14A及び14Bはこれらの冷媒に浸漬されて冷却される。超電導コイル14A及び14Bのこのような冷却構造が確保されたことで、真空容器12の内側空間として鉛直方向に貫通して形成されるボア16が常温に保持され、常温ボアとして機能する。前述の単結晶引き上げ装置11は、このボア16内に配置される。   The refrigerant container 13 is filled with a refrigerant R such as liquid helium or liquid nitrogen, and the superconducting coils 14A and 14B are immersed in these refrigerants and cooled. By securing such a cooling structure for the superconducting coils 14A and 14B, the bore 16 formed through the vertical direction as the inner space of the vacuum vessel 12 is maintained at room temperature and functions as a room temperature bore. The above-described single crystal pulling apparatus 11 is disposed in the bore 16.

真空容器12には、図示を省略するが、超電導コイル14A、14Bのそれぞれへ電流を導入する電流リードと、冷媒容器13内へ冷媒を注入する注入口及び冷媒を放出する放出口を備えたポートとが設置されている。また、真空容器12と冷媒容器13との間に、これらの真空容器12及び冷媒容器13と同様なリング形状の輻射シールド(不図示)が配設されている。   Although not shown, the vacuum vessel 12 has a current lead for introducing current into each of the superconducting coils 14A and 14B, a port having an inlet for injecting refrigerant into the refrigerant vessel 13 and an outlet for discharging the refrigerant. And are installed. A ring-shaped radiation shield (not shown) similar to the vacuum container 12 and the refrigerant container 13 is disposed between the vacuum container 12 and the refrigerant container 13.

上記電流リードを介して超電導コイル14A、14Bのそれぞれへ矢印α、β方向の電流が通電され(図1及び図4参照)、これにより超電導コイル14Aに磁場B1が、超電導コイル14Bに磁場B2がそれぞれ発生する。これらの磁場B1、B2は、水平方向の成分B1x、B2xを互いに強め合い、鉛直方向の成分B1z、B2zを互いに弱め合うように設けられ、水平方向の成分B1xとB2xとが合算されて水平磁場Bが発生する。   Currents in the directions of arrows α and β are supplied to the superconducting coils 14A and 14B through the current leads (see FIGS. 1 and 4), whereby the magnetic field B1 is applied to the superconducting coil 14A and the magnetic field B2 is applied to the superconducting coil 14B. Each occurs. These magnetic fields B1 and B2 are provided so as to strengthen the horizontal components B1x and B2x and weaken the vertical components B1z and B2z, and the horizontal components B1x and B2x are added together to generate a horizontal magnetic field. B is generated.

この水平磁場Bは、交差する一対の超電導コイル14A及び14Bに囲まれた、鉛直方向に貫通する空間17に発生し、この空間17内に真空容器12の前記ボア16が設けられる。従って、ボア16に配置される単結晶引き上げ装置11に上述の水平磁場Bが、単結晶引き上げ方向に対し直交する水平方向(横方向)に印加されることになる。   The horizontal magnetic field B is generated in a vertical space 17 surrounded by a pair of intersecting superconducting coils 14A and 14B, and the bore 16 of the vacuum vessel 12 is provided in the space 17. Therefore, the horizontal magnetic field B described above is applied to the single crystal pulling apparatus 11 disposed in the bore 16 in the horizontal direction (lateral direction) orthogonal to the single crystal pulling direction.

超電導コイル14Aの内側に貫入される超電導コイル14Bは、超電導コイル14Aよりも小径に形成されるので、超電導コイル14Bが囲む面積は、超電導コイル14Aが囲む面積よりも小さく設けられる。ここで、超電導コイル14A、14Bが発生する磁場B1、B2の強さHは、超電導コイル14A、14Bの起磁力をΦ、超電導コイル14A、14Bが囲む面積をSとすると、
[数1]
H=Φ/S
となる。従って、小径の超電導コイル14Bの起磁力を大径の超電導コイル14Aの起磁力よりも小さくすることで、超電導コイル14Aと14Bとがそれぞれ発生する磁場B1、B2の強さHを略同一に設定することが可能となる。例えば、大径の超電導コイル14Aの起磁力を1MAに、小径の14Bの起磁力を0.95MAにそれぞれ設定する。
Since the superconducting coil 14B penetrating inside the superconducting coil 14A is formed to have a smaller diameter than the superconducting coil 14A, the area surrounded by the superconducting coil 14B is provided smaller than the area surrounding the superconducting coil 14A. Here, the strength H of the magnetic fields B1 and B2 generated by the superconducting coils 14A and 14B is defined as Φ as the magnetomotive force of the superconducting coils 14A and 14B, and S as the area surrounded by the superconducting coils 14A and 14B.
[Equation 1]
H = Φ / S
It becomes. Therefore, by setting the magnetomotive force of the small-diameter superconducting coil 14B to be smaller than the magnetomotive force of the large-diameter superconducting coil 14A, the strengths H of the magnetic fields B1 and B2 generated by the superconducting coils 14A and 14B are set substantially the same. It becomes possible to do. For example, the magnetomotive force of the large-diameter superconducting coil 14A is set to 1 MA, and the magnetomotive force of the small-diameter 14B is set to 0.95 MA.

超電導コイル14A、14Bの導線の巻き数をN、超電導コイル14A、14Bに流れる電流をIとすると、超電導コイル14A、14Bの起磁力Φが、
[数2]
Φ=I×N
で表せることから、超電導コイル14Aと14Bとにおいて起磁力Φを異ならせる方法としては、例えば超電導コイル14A、14Bの導線の巻き数Nやコイル形状を異ならせ、これらの超電導コイル14A、14Bへ導入される電流Iの値を同一にする方法が好ましい。
When the number of windings of the superconducting coils 14A and 14B is N and the current flowing through the superconducting coils 14A and 14B is I, the magnetomotive force Φ of the superconducting coils 14A and 14B is
[Equation 2]
Φ = I × N
Therefore, as a method of making the magnetomotive force Φ different between the superconducting coils 14A and 14B, for example, the number of windings N and the coil shape of the conducting wires of the superconducting coils 14A and 14B are made different and introduced into these superconducting coils 14A and 14B. A method of making the values of the current I to be the same is preferable.

上述のように、超電導コイル14Aと14Bとのそれぞれに発生する磁場B1、B2の強さが略同一になったことで、超電導コイル14Aにより発生する磁場B1の鉛直方向の成分B1zと、超電導コイル14Bにより発生する磁場B2の鉛直方向の成分B2zとが打ち消され、超電導コイル14Aと14Bのそれぞれが晒される磁場(以下、経験磁場と称する)が抑制される。   As described above, since the strengths of the magnetic fields B1 and B2 generated in the superconducting coils 14A and 14B are substantially the same, the vertical component B1z of the magnetic field B1 generated by the superconducting coil 14A and the superconducting coil The vertical component B2z of the magnetic field B2 generated by 14B is canceled out, and the magnetic field (hereinafter referred to as empirical magnetic field) to which each of the superconducting coils 14A and 14B is exposed is suppressed.

また、超電導コイル14Aと14Bとのそれぞれに発生する磁場B1、B2の強さが略同一となったことで、超電導コイル14Aにより発生する磁場B1の水平方向の成分B1xと、超電導コイル14Bにより発生する磁場B2の水平方向の成分B2xとを合算した水平磁場Bは、均一性及び対称性の高い磁場分布となる。図5は、超電導コイル14Aと14Bとが交差する点における水平面18(図4)内の磁場分布の一例を示す。この図5において、交差する一対の超電導コイル14Aと14Bとが囲む空間17における中心軸Oを中心として、同心円状の等分布磁場が形成されていることがわかる。尚、図5中のx軸、y軸は、上記水平面18において直交する2軸を示す。   Further, since the strengths of the magnetic fields B1 and B2 generated in the superconducting coils 14A and 14B are substantially the same, the horizontal component B1x of the magnetic field B1 generated by the superconducting coil 14A and the superconducting coil 14B generate. The horizontal magnetic field B, which is the sum of the horizontal components B2x of the magnetic field B2, is a highly uniform and symmetric magnetic field distribution. FIG. 5 shows an example of the magnetic field distribution in the horizontal plane 18 (FIG. 4) at the point where the superconducting coils 14A and 14B intersect. In FIG. 5, it can be seen that a concentric uniform magnetic field is formed around the central axis O in the space 17 surrounded by the pair of intersecting superconducting coils 14A and 14B. Note that the x-axis and y-axis in FIG. 5 indicate two axes orthogonal to each other in the horizontal plane 18.

上述の交差する一対の超電導コイル14Aと14Bの交差角度θ(図4)は、任意の角度であっても構わないが、これらの超電導コイル14Aと14Bとが水平面18に対してそれぞれ約45度傾斜し、上記交差角度θが直角に設定されることが好ましい。超電導コイル14A及び14Bにより発生する水平磁場Bと、超電導コイル14A及び14Bにより囲まれる空間17とはそれぞれ、図6に示すように、交差角度θに対して三角関数の依存性があり、いずれか一方が大きくなると、他方が小さくなる関係にある。この図6に示すように、水平磁場Bと空間17とを共に大きく設定するためには、交差角度θが直角(90度)であることが最も妥当となる。これにより、十分なスペースの空間17に水平磁場Bを効率良く発生させることが可能となる。   The crossing angle θ (FIG. 4) between the pair of superconducting coils 14A and 14B intersecting with each other may be any angle, but these superconducting coils 14A and 14B are approximately 45 degrees with respect to the horizontal plane 18, respectively. It is preferable that the angle of inclination is set to be a right angle. As shown in FIG. 6, the horizontal magnetic field B generated by the superconducting coils 14A and 14B and the space 17 surrounded by the superconducting coils 14A and 14B each have a trigonometric function dependency on the crossing angle θ. When one is larger, the other is smaller. As shown in FIG. 6, in order to set both the horizontal magnetic field B and the space 17 large, it is most appropriate that the crossing angle θ is a right angle (90 degrees). Thereby, the horizontal magnetic field B can be efficiently generated in the space 17 having a sufficient space.

従って、本実施の形態によれば、次の効果(1)〜(7)を奏する。   Therefore, according to the present embodiment, the following effects (1) to (7) are obtained.

(1)対を成す超電導コイル14A及び14Bは、大径の超電導コイル14Aの内側に小径の超電導コイル14Bが貫入し、それぞれの赤道面15が交差するよう傾斜配置されて構成されたことから、この対を成す超電導コイル14A及び14Bに囲まれた空間17内において、各超電導コイル14A、14Bが発生する磁場B1、B2の水平方向の成分B1x、B2xを相互に強め合って水平磁場Bを発生することが可能となる。従って、この空間17において必要な磁場の強さを得るために、各超電導コイル14A、14Bにて発生する磁場B1、B2を増大させる必要がない。この結果、各超電導コイル14A、14Bの経験磁場及び起磁力を抑制することができる。   (1) The superconducting coils 14A and 14B forming a pair are configured such that the small-diameter superconducting coil 14B penetrates inside the large-diameter superconducting coil 14A and the equator planes 15 intersect with each other. In a space 17 surrounded by the pair of superconducting coils 14A and 14B, the horizontal components B1x and B2x of the magnetic fields B1 and B2 generated by the superconducting coils 14A and 14B are strengthened to generate a horizontal magnetic field B. It becomes possible to do. Therefore, it is not necessary to increase the magnetic fields B1 and B2 generated in the superconducting coils 14A and 14B in order to obtain the required magnetic field strength in the space 17. As a result, the empirical magnetic field and magnetomotive force of each superconducting coil 14A, 14B can be suppressed.

このように、超電導コイル14A、14Bの経験磁場を抑制できるので、これらの超電導コイル14A、14Bに電流が流れた場合の電磁応力を小さくできる。この結果、剛性の高い導線を使用して超電導コイル14A、14Bを製作する必要がないので、自由度の高いコイル設計を実現できる。   Thus, since the empirical magnetic field of the superconducting coils 14A and 14B can be suppressed, the electromagnetic stress when a current flows through these superconducting coils 14A and 14B can be reduced. As a result, since it is not necessary to manufacture the superconducting coils 14A and 14B using a highly rigid conductive wire, a highly flexible coil design can be realized.

更に、超電導コイル14A、14Bの経験磁場が抑制されたので、経験磁場の関数となる超電導コイル14A、14Bの上限温度を高く設定できる。この結果、超電導コイル14A、14Bの運転時の温度と上記上限温度との差である温度マージンを拡大することができる。   Furthermore, since the empirical magnetic field of the superconducting coils 14A and 14B is suppressed, the upper limit temperature of the superconducting coils 14A and 14B, which is a function of the empirical magnetic field, can be set high. As a result, the temperature margin that is the difference between the temperature during operation of the superconducting coils 14A and 14B and the upper limit temperature can be expanded.

また、超電導コイル14A、14Bの起磁力を抑制できることで、これらの超電導コイル14A、14Bにおける導線の巻き数を減少でき、コイル構造を簡素化できる。   Further, since the magnetomotive force of the superconducting coils 14A and 14B can be suppressed, the number of windings of the conducting wires in these superconducting coils 14A and 14B can be reduced, and the coil structure can be simplified.

(2)対を成す超電導コイル14A、14Bのそれぞれは、3次元曲面に導線が巻き付けられて形成される鞍型コイルのような特殊なコイルではなく、通常のコイルで足りるので、超電導コイル14A、14Bの製造が容易となり、超電導マグネット装置10の製作性を良好にすることができる。   (2) Each of the superconducting coils 14A and 14B forming a pair is not a special coil such as a saddle coil formed by winding a conductive wire around a three-dimensional curved surface, but a normal coil is sufficient. 14B can be easily manufactured, and the superconducting magnet device 10 can be manufactured with good quality.

(3)超電導コイル14Aの内側に貫入される超電導コイル14Bが、超電導コイル14Aに比べて小径となるため、この超電導コイル14Bの起磁力を大径の超電導コイル14Aに比べて小さくして、これらの超電導コイル14Aと14Bとでそれぞれ発生する磁場B1、B2の強さを略同一としている。このため、磁場B1、B2のそれぞれの鉛直方向の成分B1z、B2zが互いに打ち消されて、超電導コイル14A、14Bの経験磁場を良好に抑制できる。と同時に、磁場B1、B2のそれぞれの水平方向の成分B1x、B2xが合算された水平磁場Bの均一性及び対称性を向上させることができる。   (3) Since the superconducting coil 14B penetrating inside the superconducting coil 14A has a smaller diameter than the superconducting coil 14A, the magnetomotive force of the superconducting coil 14B is made smaller than that of the large-diameter superconducting coil 14A. The strengths of the magnetic fields B1 and B2 generated by the superconducting coils 14A and 14B are substantially the same. Therefore, the vertical components B1z and B2z of the magnetic fields B1 and B2 cancel each other, and the empirical magnetic field of the superconducting coils 14A and 14B can be suppressed satisfactorily. At the same time, it is possible to improve the uniformity and symmetry of the horizontal magnetic field B obtained by adding the horizontal components B1x and B2x of the magnetic fields B1 and B2.

(4)超電導コイル14Aと14Bとの交差角度θが直角に設定されたので、これらの超電導コイル14Aと14Bにより囲まれた空間17に水平磁場Bを効率良く発生させることができると共に、この空間17のスペースを十分に確保できる。   (4) Since the crossing angle θ between the superconducting coils 14A and 14B is set at a right angle, the horizontal magnetic field B can be efficiently generated in the space 17 surrounded by the superconducting coils 14A and 14B. A sufficient space of 17 can be secured.

(5)超電導コイル14Aと14Bが、冷媒容器13内に充填された冷媒に浸漬されて冷却されることから、特別な冷却構造ではなく、単純な冷却構造となるので、冷却構造を簡素化できる。   (5) Since the superconducting coils 14A and 14B are immersed and cooled in the refrigerant filled in the refrigerant container 13, the cooling structure can be simplified because it is not a special cooling structure but a simple cooling structure. .

(6)超電導コイル14A、14Bが冷媒に浸漬されて良好に冷却されるので、真空容器12のボア16を低温空間に設定する必要がなく、常温空間に保持できる。このため、水平磁場Bが存在する磁場空間となるボア16の利用に制限がなく、ボア16の自由な利用を実現できる。   (6) Since the superconducting coils 14A and 14B are immersed in the coolant and cooled well, it is not necessary to set the bore 16 of the vacuum vessel 12 in a low temperature space, and the superconducting coils 14A and 14B can be held in a room temperature space. For this reason, there is no restriction | limiting in the utilization of the bore 16 used as the magnetic field space in which the horizontal magnetic field B exists, and free utilization of the bore 16 is realizable.

(7)水平磁場Bが発生する真空容器12のボア16に単結晶引き上げ装置11が配置されて、この単結晶引き上げ装置11の坩堝内における溶融状態の半導体材料に磁場を印加できる。このため、単結晶引き上げ装置11による単結晶引き上げ径が大きくなった場合にも、超電導コイル14A及び14Bの経験磁場や起磁力を過大に増大させることがなく、且つ超電導コイル14A及び14Bの製作性の複雑化を回避しつつ、高品質な半導体ウェハを製造することができる。   (7) The single crystal pulling device 11 is disposed in the bore 16 of the vacuum vessel 12 where the horizontal magnetic field B is generated, and a magnetic field can be applied to the molten semiconductor material in the crucible of the single crystal pulling device 11. Therefore, even when the single crystal pulling diameter by the single crystal pulling apparatus 11 is increased, the empirical magnetic field and magnetomotive force of the superconducting coils 14A and 14B are not excessively increased, and the superconducting coils 14A and 14B can be manufactured. It is possible to manufacture a high-quality semiconductor wafer while avoiding the complication of.

尚、本実施の形態においては、図7に示すように、超電導コイル14Aは同軸上に配置された複数個(例えば2個)の超電導コイル19、20が隣接して、または離間して配置されて構成されてもよい。同様に、超電導コイル14Bも、同軸上に配置された複数個(例えば2個)の超電導コイル21、22が配置されて構成されてもよい。超電導コイル14A、14Bでは、内側ほど経験磁場が強くなるので、外側の超電導コイル20、22を剛性のより低い導線で構成することが可能となり、コストを低減できる。   In the present embodiment, as shown in FIG. 7, the superconducting coil 14A is arranged such that a plurality of (for example, two) superconducting coils 19 and 20 arranged on the same axis are adjacent to or separated from each other. May be configured. Similarly, the superconducting coil 14B may be configured by arranging a plurality of (for example, two) superconducting coils 21 and 22 arranged on the same axis. In the superconducting coils 14A and 14B, since the empirical magnetic field becomes stronger toward the inner side, the outer superconducting coils 20 and 22 can be configured with lower-rigidity conducting wires, and the cost can be reduced.

また、本実施の形態においては、超電導コイル14A、14Bを、図8に示す楕円形状、図9に示すレーストラック形状、または矩形状に形成してもよい。このような形状の超電導コイル14A、14Bも、3次元曲面に導線を巻いて製作される鞍型コイルに比べて製作が容易で、且つ超電導コイル14A、14Bを交差させるための組立作業も容易であるため、製作性の良好な超電導マグネット装置を実現できる。   In the present embodiment, superconducting coils 14A and 14B may be formed in an elliptical shape shown in FIG. 8, a race track shape shown in FIG. 9, or a rectangular shape. Superconducting coils 14A and 14B having such a shape are also easier to manufacture than a saddle coil manufactured by winding a conducting wire around a three-dimensional curved surface, and an assembly operation for crossing superconducting coils 14A and 14B is also easy. Therefore, a superconducting magnet device with good manufacturability can be realized.

[B]第2の実施の形態(図10)
図10は、本発明に係る超電導マグネット装置の第2の実施の形態を示す縦断面図である。この第2の実施の形態において、前記第1の実施の形態と同様な部分は、同一の符号を付して説明を簡略化し、または省略する。
[B] Second embodiment (FIG. 10)
FIG. 10 is a longitudinal sectional view showing a second embodiment of the superconducting magnet apparatus according to the present invention. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description will be simplified or omitted.

本実施の形態の超電導マグネット装置25が前記第1の実施の形態の超電導マグネット装置10と異なる点は、超電導マグネット装置10の冷媒容器13及び冷媒Rが省略され、超電導コイル14A及び14Bが、真空容器12内の真空雰囲気において、冷凍機26により伝熱部材27を介して間接に冷却された点である。冷凍機26は、真空容器12に1台または複数台設置される。   The superconducting magnet device 25 of the present embodiment is different from the superconducting magnet device 10 of the first embodiment in that the refrigerant container 13 and the refrigerant R of the superconducting magnet device 10 are omitted, and the superconducting coils 14A and 14B are vacuumed. In the vacuum atmosphere in the container 12, the refrigerant is indirectly cooled by the refrigerator 26 via the heat transfer member 27. One or more refrigerators 26 are installed in the vacuum vessel 12.

本実施の形態における超電導マグネット装置25においても、前記第1の実施の形態の効果(1)〜(7)と同様な効果を奏するほか、次の効果(8)を奏する。   The superconducting magnet device 25 according to the present embodiment also has the following effects (8) in addition to the same effects as the effects (1) to (7) of the first embodiment.

(8)超電導コイル14A及び14Bが冷凍機26により冷却され、真空容器12内に冷媒容器13及び冷媒Rが不要となったので、冷媒容器13のためのスペースを削減して超電導マグネット装置25の小型化を実現できると共に、冷媒容器13及び冷媒Rの省略による超電導マグネット装置25の軽量化を実現できる。   (8) Since the superconducting coils 14A and 14B are cooled by the refrigerator 26, and the refrigerant container 13 and the refrigerant R are no longer required in the vacuum container 12, the space for the refrigerant container 13 is reduced, and the superconducting magnet device 25 It is possible to realize a reduction in size and to realize a weight reduction of the superconducting magnet device 25 by omitting the refrigerant container 13 and the refrigerant R.

[C]第3の実施の形態(図11、図12)
図11は、本発明に係る超電導マグネット装置の第3の実施の形態を示す縦断面図である。この第3の実施の形態において、前記第1の実施の形態と同様な部分は、同一の符号を付して説明を簡略化し、または省略する。
[C] Third embodiment (FIGS. 11 and 12)
FIG. 11 is a longitudinal sectional view showing a third embodiment of the superconducting magnet apparatus according to the present invention. In the third embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description will be simplified or omitted.

本実施の形態の超電導マグネット装置30が前記第1の実施の形態の超電導マグネット装置10と異なる点は、超電導コイル14A及び14Bの外側である真空容器12の外側に、この真空容器16の外側へ漏洩する漏洩磁場32を捕捉する磁性体としての鉄ヨーク31が設置された点である。この鉄ヨーク31は、円筒形状に形成されて、真空容器12の外側に配置される。磁性体としては、鉄製の鉄ヨーク31以外に、コバルトまたはニッケルにて構成された円筒形状のヨークであってもよい。   The superconducting magnet device 30 of the present embodiment is different from the superconducting magnet device 10 of the first embodiment in that it is outside the vacuum vessel 12 outside the superconducting coils 14A and 14B. This is the point where an iron yoke 31 as a magnetic body for capturing the leaking magnetic field 32 is installed. The iron yoke 31 is formed in a cylindrical shape and is disposed outside the vacuum vessel 12. In addition to the iron yoke 31 made of iron, the magnetic body may be a cylindrical yoke made of cobalt or nickel.

従って、本実施の形態によれば、前記第1の実施の形態の効果(1)〜(7)と同様な効果を奏するほか、次の効果(9)を奏する。   Therefore, according to this embodiment, in addition to the same effects (1) to (7) as in the first embodiment, the following effect (9) is achieved.

(9)超電導コイル14A及び14Bの外側である真空容器12の外側に鉄ヨーク31が設置されて、真空容器12の外側へ漏洩する漏洩磁場32が捕捉されることから、超電導マグネット装置30の外側への漏洩磁場32を低減できる。   (9) Since the iron yoke 31 is installed outside the vacuum vessel 12 outside the superconducting coils 14A and 14B and the leakage magnetic field 32 leaking outside the vacuum vessel 12 is captured, the outside of the superconducting magnet device 30 The leakage magnetic field 32 can be reduced.

尚、真空容器12の外側に鉄ヨーク31を設置する代わりに、真空容器12の一部を磁性体にて構成してもよい。   Instead of installing the iron yoke 31 outside the vacuum vessel 12, a part of the vacuum vessel 12 may be made of a magnetic material.

[D]第4の実施の形態(図13、図14)
図13は、本発明に係る超電導マグネット装置の第4の実施の形態を示す縦断面図である。この第3の実施の形態において、前記第1の実施の形態と同様な部分は、同一の符号を付して説明を簡略化し、または省略する。
[D] Fourth embodiment (FIGS. 13 and 14)
FIG. 13 is a longitudinal sectional view showing a fourth embodiment of the superconducting magnet apparatus according to the present invention. In the third embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description will be simplified or omitted.

本実施の形態の超電導マグネット装置40が前記第1の実施の形態の超電導マグネット装置10と異なる点は、冷媒容器13内において超電導コイル14A及び14Bの外側にキャンセルコイル41が配置された点である。このキャンセルコイル41は、超電導コイル14A及び14Bの外側である真空容器12の外側へ漏洩する漏洩磁場43を相殺する磁場42を発生して、この漏洩磁場43を低減する。   The superconducting magnet device 40 of the present embodiment differs from the superconducting magnet device 10 of the first embodiment in that a cancel coil 41 is disposed outside the superconducting coils 14A and 14B in the refrigerant container 13. . The cancel coil 41 generates a magnetic field 42 that cancels out the leakage magnetic field 43 that leaks to the outside of the vacuum vessel 12 that is outside the superconducting coils 14A and 14B, and reduces the leakage magnetic field 43.

従って、本実施の形態によれば、前記第1の実施の形態の効果(1)〜(7)と同様な効果を奏するほか、次の効果(10)を奏する。   Therefore, according to the present embodiment, in addition to the same effects (1) to (7) as in the first embodiment, the following effect (10) is achieved.

(10)超電導コイル14A及び14Bの外側である真空容器12の外側にキャンセルコイル41が配置され、このキャンセルコイル41が発生する磁場42により、真空容器12の外側へ漏洩する漏洩磁場43が相殺されるので、超電導マグネット装置40の外側への漏洩磁場43を低減できる。特に、鉄ヨーク31を備えた超電導マグネット装置30の場合に比べて、超電導マグネット装置40の軽量化を実現できる。   (10) The cancel coil 41 is disposed outside the vacuum vessel 12 that is outside the superconducting coils 14A and 14B. The magnetic field 42 generated by the cancel coil 41 cancels out the leakage magnetic field 43 that leaks outside the vacuum vessel 12. Therefore, the leakage magnetic field 43 to the outside of the superconducting magnet device 40 can be reduced. In particular, the weight of the superconducting magnet device 40 can be reduced as compared with the case of the superconducting magnet device 30 including the iron yoke 31.

以上、本発明を上記実施の形態に基づいて説明したが、本発明はこれに限定されるものではない。   As mentioned above, although this invention was demonstrated based on the said embodiment, this invention is not limited to this.

例えば、第2〜第4の実施の形態においても、前記第1の実施の形態と同様に、超電導コイル14A、14Bのそれぞれが、同軸上に配置された径の異なる複数個の超電導コイル19及び20等、超電導コイル21及び22等にて構成されてもよい。更に、超電導コイル14A及び14Bは円形状に限らず、楕円形状、レーストラック形状または矩形状に形成されてもよい。   For example, also in the second to fourth embodiments, as in the first embodiment, each of the superconducting coils 14A and 14B includes a plurality of superconducting coils 19 arranged on the same axis and having different diameters. 20 or the like, and may be constituted by superconducting coils 21 and 22 or the like. Furthermore, the superconducting coils 14A and 14B are not limited to a circular shape, and may be formed in an elliptical shape, a race track shape, or a rectangular shape.

本発明に係る超電導マグネット装置の第1の実施の形態を示す斜視図。The perspective view which shows 1st Embodiment of the superconducting magnet apparatus which concerns on this invention. 図1のII−II線に沿う断面図。Sectional drawing which follows the II-II line | wire of FIG. 図1のIII−III線に沿う断面図。Sectional drawing which follows the III-III line of FIG. (A)が図1における対を成す超電導コイルのIV矢視断面図、(B)が同コイルが発生する磁場の向きを説明する説明図。(A) is IV arrow sectional drawing of the superconducting coil which makes the pair in FIG. 1, (B) is explanatory drawing explaining the direction of the magnetic field which the coil produces | generates. 図1〜図4の対を成す超電導コイルが交差する位置における水平面内の磁場の分布を示す磁場分布図。The magnetic field distribution figure which shows distribution of the magnetic field in the horizontal surface in the position where the superconducting coil which makes the pair of FIGS. 図1〜図4における対を成す超電導コイルの交差角度と、これらの超電導コイルに囲まれる空間、超電導コイルにより発生する水平磁場との関係を示すグラフ。The graph which shows the relationship between the crossing angle of the superconducting coil which makes a pair in FIGS. 1-4, the space surrounded by these superconducting coils, and the horizontal magnetic field generated by a superconducting coil. 図1〜図4の対を成す超電導コイルの他の第1態様であり、(A)が斜視図、(B)が図7(A)のVII矢視断面図。It is another 1st aspect of the superconducting coil which comprises the pair of FIGS. 1-4, (A) is a perspective view, (B) is VII arrow sectional drawing of FIG. 7 (A). 図1〜図4の対を成す超電導コイルの他の第2態様を示す斜視図。The perspective view which shows the other 2nd aspect of the superconducting coil which makes the pair of FIGS. 1-4. 図1〜図4の対を成す超電導コイルの他の第3態様を示す斜視図。The perspective view which shows the other 3rd aspect of the superconducting coil which makes the pair of FIGS. 1-4. 本発明に係る超電導マグネット装置の第2の実施の形態を示す縦断面図。The longitudinal cross-sectional view which shows 2nd Embodiment of the superconducting magnet apparatus which concerns on this invention. 本発明に係る超電導マグネット装置の第3の実施の形態を示す縦断面図。The longitudinal cross-sectional view which shows 3rd Embodiment of the superconducting magnet apparatus which concerns on this invention. 図11のXII−XII線に沿う断面図。Sectional drawing which follows the XII-XII line | wire of FIG. 本発明に係る超電導マグネット装置の第4の実施の形態を示す縦断面図。The longitudinal cross-sectional view which shows 4th Embodiment of the superconducting magnet apparatus which concerns on this invention. 図13のXIV−XIV線に沿う断面図。Sectional drawing which follows the XIV-XIV line | wire of FIG.

符号の説明Explanation of symbols

10 超電導マグネット装置
11 単結晶引き上げ装置
14A、14B 超電導コイル
15 赤道面
16 ボア
17 空間
19、20、21、22 超電導コイル
25 超電導マグネット装置
26 冷凍機
30 超電導マグネット装置
31 鉄ヨーク(磁性体)
32 漏洩磁場
40 超電導マグネット装置
41 キャンセルコイル
42 磁場
43 漏洩磁場
B 水平磁場
B1、B2 磁場
R 冷媒
θ 交差角度
DESCRIPTION OF SYMBOLS 10 Superconducting magnet apparatus 11 Single crystal pulling apparatus 14A, 14B Superconducting coil 15 Equatorial plane 16 Bore 17 Spaces 19, 20, 21, 22 Superconducting coil 25 Superconducting magnet apparatus 26 Refrigerator 30 Superconducting magnet apparatus 31 Iron yoke (magnetic material)
32 Leakage magnetic field 40 Superconducting magnet device 41 Cancel coil 42 Magnetic field 43 Leakage magnetic field B Horizontal magnetic field B1, B2 Magnetic field R Refrigerant θ Crossing angle

Claims (2)

複数の超電導コイルで構成される超電導マグネット装置において、
少なくとも2個の超電導コイルが対を成し、この対を成す超電導コイルは、いずれか一方の内側に他方が貫入し、それぞれの赤道面が交差するよう傾斜配置されて構成されると共に、それぞれが発生する磁場が水平方向に相互に強め合い、鉛直方向に相互に弱め合うよう構成され
また、対を成す前記超電導コイルは、それぞれが囲む面積が異なって形成され、それぞれが発生する磁場の強さを略同一とすべくそれぞれの起磁力が異なって構成され、
更に、対を成す前記超電導コイルは、交差角度が直角に設定される共に、これらの超電導コイルに囲まれる空間に常温ボアが設けられ、
また、対を成す前記超電導コイルのそれぞれは、同軸上に隣接または離間して配置された径の異なる複数の超電導コイルにて構成されたことを特徴とする超電導マグネット装置。
In a superconducting magnet device composed of a plurality of superconducting coils,
Form at least two superconducting coils pair, superconducting coils constituting the pair, either to one of the other penetration inside, is configured by inclined arranged so that each of the equatorial plane intersecting Rutotomoni, respectively The generated magnetic fields are configured to strengthen each other in the horizontal direction and to weaken each other in the vertical direction .
Further, the superconducting coils forming a pair are formed with different areas surrounding each other, and each magnetomotive force is configured to be substantially the same as the strength of the magnetic field generated by each,
Furthermore, the superconducting coils that form a pair have a crossing angle set at a right angle, and a room temperature bore is provided in a space surrounded by these superconducting coils.
Further, each of the superconducting coils forming a pair is composed of a plurality of superconducting coils having different diameters arranged adjacent to or spaced apart from each other on the same axis .
対を成す前記超電導コイルのそれぞれは、円形形状、楕円形状、矩形状またはレーストラック形状に形成されたことを特徴とする請求項1に記載の超電導マグネット装置。 2. The superconducting magnet device according to claim 1, wherein each of the superconducting coils forming a pair is formed in a circular shape, an elliptical shape, a rectangular shape, or a racetrack shape.
JP2007110314A 2007-04-19 2007-04-19 Superconducting magnet device Expired - Fee Related JP4908299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007110314A JP4908299B2 (en) 2007-04-19 2007-04-19 Superconducting magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007110314A JP4908299B2 (en) 2007-04-19 2007-04-19 Superconducting magnet device

Publications (2)

Publication Number Publication Date
JP2008270463A JP2008270463A (en) 2008-11-06
JP4908299B2 true JP4908299B2 (en) 2012-04-04

Family

ID=40049590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007110314A Expired - Fee Related JP4908299B2 (en) 2007-04-19 2007-04-19 Superconducting magnet device

Country Status (1)

Country Link
JP (1) JP4908299B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100050929A1 (en) * 2008-08-27 2010-03-04 Accel Instruments Gmbh Coil Arrangement for Crystal Pulling and Method of Forming a Crystal
CN111243821A (en) * 2020-03-13 2020-06-05 中国科学院电工研究所 Magnetic control czochralski single crystal superconducting magnet system
KR102176531B1 (en) * 2020-06-03 2020-11-09 (주)금룡테크 Superconducting magnet
CN113871133A (en) * 2021-11-05 2021-12-31 西安聚能超导磁体科技有限公司 Magnetic control single crystal pulling superconducting magnet coil and superconducting magnet device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217096A (en) * 1985-07-12 1987-01-26 Toshiba Corp Magnetic field impressing device for drawing up single crystal
JPH021291A (en) * 1988-02-29 1990-01-05 Mitsubishi Electric Corp Magnetic induction position control apparatus and magnetic treatment apparatus
AUPP008197A0 (en) * 1997-10-29 1997-11-20 Paragon Medical Limited Improved targeted hysteresis hyperthermia as a method for treating diseased tissue
JP3824412B2 (en) * 1998-02-17 2006-09-20 株式会社東芝 Superconducting magnet device for crystal pulling device
JP2003063891A (en) * 2001-08-29 2003-03-05 Mitsubishi Electric Corp Device for pulling single crystal of semiconductor
US7769427B2 (en) * 2002-07-16 2010-08-03 Magnetics, Inc. Apparatus and method for catheter guidance control and imaging
JP4749661B2 (en) * 2003-10-15 2011-08-17 住友重機械工業株式会社 Refrigerator mounting structure and maintenance method of superconducting magnet device for single crystal pulling device
JP2006186139A (en) * 2004-12-28 2006-07-13 Tamakawa Co Ltd Magnetic-field generator

Also Published As

Publication number Publication date
JP2008270463A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP5534713B2 (en) Superconducting magnet
US7714574B2 (en) Superconducting magnet with refrigerator and magnetic resonance imaging apparatus using the same
KR100562260B1 (en) Single crystal pulling device, single crystal pulling method and superconductivity magnet
JP4908299B2 (en) Superconducting magnet device
WO2011040157A1 (en) Gradient magnetic field coil and magnetic resonance imaging device
EP3009854B1 (en) Magnetic resonance imaging apparatus comprising a superconducting magnet
US6909348B2 (en) Low-leakage magnetic-field magnet and shield coil assembly
JP6094233B2 (en) Superconducting magnet
US20160180996A1 (en) Superconducting magnet system
JP3698099B2 (en) Magnet for magnetic resonance imaging equipment
JP4921935B2 (en) Electromagnet apparatus and magnetic resonance imaging apparatus
JP6001499B2 (en) Magnetic resonance imaging system
JP2008125841A (en) Superconducting magnet apparatus and nuclear magnetic resonance imaging apparatus
JP6172371B2 (en) Superconducting magnet
JP2008130947A (en) Superconducting magnet device and magnetic resonance imaging device using the same
WO2013122202A1 (en) Gradient coil and magnetic resonance imaging device
JP2014086457A (en) Superconducting magnet
JP4866215B2 (en) Superconducting magnet apparatus and nuclear magnetic resonance imaging apparatus
JP2014179439A (en) Superconducting magnet
JP7356934B2 (en) Superconducting magnet device and bending electromagnet device
JPH10135027A (en) Superconducting magnet device
JP4023703B2 (en) Magnetic resonance imaging system
JP5145451B2 (en) Electromagnet apparatus and magnetic resonance imaging apparatus
JP2006326177A (en) Superconductive magnet device for mri
JP2021027258A (en) Superconducting coil and superconducting magnet device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091104

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees