JP4908109B2 - Seismic disaster measurement system using maximum response member angle measuring device of viaduct column - Google Patents

Seismic disaster measurement system using maximum response member angle measuring device of viaduct column Download PDF

Info

Publication number
JP4908109B2
JP4908109B2 JP2006228683A JP2006228683A JP4908109B2 JP 4908109 B2 JP4908109 B2 JP 4908109B2 JP 2006228683 A JP2006228683 A JP 2006228683A JP 2006228683 A JP2006228683 A JP 2006228683A JP 4908109 B2 JP4908109 B2 JP 4908109B2
Authority
JP
Japan
Prior art keywords
viaduct
maximum response
member angle
response member
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006228683A
Other languages
Japanese (ja)
Other versions
JP2008051676A (en
Inventor
達也 仁平
正道 曽我部
幸裕 谷村
卓慈 岡本
則幸 宮本
弘志 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2006228683A priority Critical patent/JP4908109B2/en
Publication of JP2008051676A publication Critical patent/JP2008051676A/en
Application granted granted Critical
Publication of JP4908109B2 publication Critical patent/JP4908109B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

本発明は、高架橋柱の最大応答部材角測定装置を用いた地震災害計測システムに係り、特に、高架橋柱の最大応答部材角と損傷レベルを計測するシステムに関するものである。   The present invention relates to an earthquake disaster measurement system using a maximum response member angle measuring device for a viaduct column, and more particularly to a system for measuring a maximum response member angle and a damage level of a viaduct column.

現在、地震そのものを検知するシステムとして加速度センサーを用いて得られたデータより柱の損傷状況を推定し、列車運行等の可否を判断するシステムは存在しているが、部材の損傷を直接的に把握するシステムは存在していない。
また、最大ひずみ記憶センサーを用いた橋梁の診断技術(下記非特許文献1)が提案されている。
下見成明,松井義昌、新川秀一、中泉義政:「最大ひずみ記憶センサーを用いた橋梁の診断技術」,「耐震補強・補修技術,耐震診断技術に関するシンポジウム」講演論文集,Vol.3,pp.143−150,1999
Currently, there is a system for estimating the damage status of a column from data obtained by using an acceleration sensor as a system to detect the earthquake itself, and judging whether or not train operation is possible. There is no system to grasp.
Further, a bridge diagnosis technique using the maximum strain memory sensor (the following Non-Patent Document 1) has been proposed.
Shimoaki Shimoaki, Yoshimasa Matsui, Shuichi Shinkawa, Yoshimasa Nakaizumi: “Diagnosis Technology of Bridges Using Maximum Strain Memory Sensor”, “Symposium on Seismic Reinforcement / Repair Technology, Seismic Diagnosis Technology”, Vol. 3, pp. 143-150, 1999

加速度データでは、実際の損傷状態を把握するには精度が落ちるため、柱の損傷を直接的に把握するシステムが求められている。その指標として最大応答部材角があり、高架橋柱の最大応答部材角を安価で、かつ高精度に測定し、広域の地震災害を計測できるシステムが望まれている。
本発明は、上記状況に鑑みて、安価で、かつ高精度の高架橋柱の最大応答部材角を測定するシステム測定装置を用いた地震災害計測システムを提供することを目的とする。
Acceleration data is inaccurate in grasping the actual damage state, so a system for directly grasping column damage is required. There is a maximum response member angle as an index, and a system that can measure the earthquake response in a wide area by measuring the maximum response member angle of a viaduct column with low cost and high accuracy is desired.
In view of the above situation, an object of the present invention is to provide an earthquake disaster measurement system using a system measurement device that measures the maximum response member angle of a viaduct pillar that is inexpensive and highly accurate.

本発明は、上記目的を達成するために、
〔1〕高架橋柱の最大応答部材角測定装置を用いた地震災害計測システムにおいて、
(a)高架橋柱(11)のX方向とY方向の2方向の最大応答部材角を測定するセンサーシステムと、
(b)該センサーシステムからの計測データを伝送する無線LAN方式もしくはRF−IDタグ方式の伝送システムと、
(c)該伝送システムから伝送される計測データを取込み、前記高架橋柱(11)の損傷度評価を行う評価システムとを具備する、高架橋柱の最大応答部材角測定装置を用いた地震災害計測システムであって、
前記センサーシステムが、
(i)前記高架橋柱(11)に支持される上層梁(12)に取り付けられる第1の治具(14)によって前記X方向に配置される第1のピークセンサー(13A)と、
(ii) 前記Y方向に配置される、前記第1のピークセンサー(13A)と同様の構造を有する第2のピークセンサー(13B)と、
(iii)前記高架橋柱(11)に取り付けられる第2の治具(17)の先端に形成された穴に先端が係合し、2層のボールベアリングで構成されるアーム揺動部(18)が前記上層梁(12)への接続部に設けられるアーム(16)であって、前記ピークセンサー(13A,13B)の先端部にそれぞれ固定された2個の円筒状体の間に係合するようにされたアーム(16)とを備えることを特徴とする。
In order to achieve the above object, the present invention provides
[1] In the earthquake disaster measurement system using the maximum response member angle measurement device for viaducts,
(A) a sensor system that measures the maximum response member angle in two directions of the viaduct column (11) in the X direction and the Y direction ;
(B) a wireless LAN transmission system or an RF-ID tag transmission system for transmitting measurement data from the sensor system;
(C) An earthquake disaster measurement system using a measurement device for measuring the maximum response member angle of a viaduct, which includes an evaluation system that takes measurement data transmitted from the transmission system and evaluates the degree of damage of the viaduct (11). Because
The sensor system is
(I) a first peak sensor (13A) arranged in the X direction by a first jig (14) attached to an upper beam (12) supported by the viaduct pillar (11);
(Ii) a second peak sensor (13B) disposed in the Y direction and having the same structure as the first peak sensor (13A);
(Iii) An arm swinging portion (18) constituted by a two-layer ball bearing with the tip engaged with a hole formed at the tip of the second jig (17) attached to the viaduct pillar (11). Is an arm (16) provided at a connection portion to the upper beam (12), and engages between two cylindrical bodies respectively fixed to the tip portions of the peak sensors (13A, 13B). And an arm (16) adapted to the above .

〔2〕上記〔1〕記載の高架橋柱の最大応答部材角測定装置を用いた地震災害計測システムにおいて、前記センサーシステムは、前記高架橋柱(11)のブロック毎に1個程度配置することを特徴とする。
〔3〕上記〔2〕記載の高架橋柱の最大応答部材角測定装置を用いた地震災害計測システムにおいて、前記センサーシステムから、測定データを短距離無線LAN送信部へ送り、次いで、短距離無線LAN受信部へ送り、さらに、長距離無線LANの送受信によりリレー形式で指令所へと伝送することを特徴とする。
[2] In the earthquake disaster measurement system using the maximum response member angle measuring device for a viaduct column described in [1] above, about one sensor system is arranged for each block of the viaduct column (11). And
In earthquake measurement system using the maximum response member angle measuring device (3) high pillars supporting of the above-mentioned [2], wherein, from the sensor system sends the measurement data to Tan距Hanaremu line LAN transmission unit, then a short distance sent to the wireless LAN reception unit, further characterized by transmitting to the control center in relay form by sending and receiving long distance Hanaremu line LAN.

〔4〕上記〔2〕記載の高架橋柱の最大応答部材角測定装置を用いた地震災害計測システムにおいて、前記センサーシステムから、測定データをRF−IDタグ方式を用いて指令所へ伝送することを特徴とする。
〔5〕上記〔1〕記載の高架橋柱の最大応答部材角測定装置を用いた地震災害計測システムにおいて、前記評価システムは、前記高架橋柱(11)の最大応答部材角と前記高架橋柱(11)の損傷レベルとの関係を把握することを特徴とする。
[4] In the earthquake disaster measurement system using the maximum response member angle measuring device for a viaduct column described in [2] above, transmitting measurement data from the sensor system to a command center using an RF-ID tag method. Features.
In earthquake measurement system using the [5] [1] maximum response member angle measuring device viaduct pillars, wherein the evaluation system, the maximum response member angle of the viaduct pillars (11) said high pillars supporting (11) It is characterized by grasping the relationship with the damage level.

本発明によれば、次のような効果を奏することができる。
(1)機械式ピークセンサーにより簡便に高架橋柱の最大応答部材角を測定し、広範な地域の高架橋柱の地震災害の計測を実施することができる。
(2)1つの装置で、2方向の高架橋柱の最大応答部材角の測定を高精度に行うとともに、各高架橋柱の損傷レベルを把握することができる。
According to the present invention, the following effects can be achieved.
(1) The maximum response member angle of a viaduct column can be easily measured by a mechanical peak sensor, and the earthquake disaster of a viaduct column in a wide area can be measured.
(2) It is possible to measure the maximum response member angle of the viaduct pillars in two directions with high accuracy and to grasp the damage level of each viaduct pillar with one apparatus.

(3)センサーシステムは、高架橋柱のブロック毎に1個配置することにより、高架橋全体の損傷レベルを計測することができる。   (3) By disposing one sensor system for each block of the viaduct pillar, it is possible to measure the damage level of the entire viaduct.

本発明の高架橋柱の最大応答部材角測定装置を用いた地震災害計測システムは、高架橋柱(11)のX方向とY方向の2方向の最大応答部材角を測定するセンサーシステムと、このセンサーシステムからの計測データを伝送する無線LAN方式もしくはRF−IDタグ方式の伝送システムと、この伝送システムから伝送される計測データを取込み、前記高架橋柱(11)の損傷度評価を行う評価システムとを具備する、高架橋柱の最大応答部材角測定装置を用いた地震災害計測システムであって、前記センサーシステムが、前記高架橋柱(11)に支持される上層梁(12)に取り付けられる第1の治具(14)によって前記X方向に配置される第1のピークセンサー(13A)と、前記Y方向に配置される、前記第1のピークセンサー(13A)と同様の構造を有する第2のピークセンサー(13B)と、前記高架橋柱(11)に取り付けられる第2の治具(17)の先端に形成された穴に先端が係合し、2層のボールベアリングで構成されるアーム揺動部(18)が前記上層梁(12)への接続部に設けられるアーム(16)であって、前記ピークセンサー(13A,13B)の先端部にそれぞれ固定された2個の円筒状体の間に係合するようにされたアーム(16)とを備えることを特徴とする。 The earthquake disaster measurement system using the apparatus for measuring the maximum response member angle of a viaduct according to the present invention includes a sensor system for measuring the maximum response member angle in two directions of the viaduct column (11) in the X direction and the Y direction, and the sensor system. A wireless LAN system or RF-ID tag system transmission system for transmitting measurement data from the system, and an evaluation system for taking the measurement data transmitted from the transmission system and evaluating the damage level of the viaduct pillar (11) An earthquake disaster measurement system using a maximum response member angle measuring device for a viaduct, wherein the sensor system is attached to an upper beam (12) supported by the viaduct (11). The first peak sensor (13A) arranged in the X direction according to (14) and the first peak sensor (1 The tip engages with a hole formed in the tip of the second jig (17) attached to the second peak sensor (13B) having the same structure as A) and the viaduct pillar (11), and 2 An arm swinging part (18) composed of a ball bearing of a layer is an arm (16) provided at a connection part to the upper beam (12), and is provided at the tip of the peak sensor (13A, 13B). And an arm (16) adapted to engage between two fixed cylindrical bodies.

以下、本発明の実施の形態について詳細に説明する。
図1は本発明の実施例を示す高架橋柱の最大応答部材角を測定するシステム測定装置を用いた地震災害計測システムの模式図である。
この図において、1は高架橋柱、2はその高架橋柱1の天端部に設置される高架橋のX方向(線路方向)とY方向(線路直角方向)の2方向の最大応答部材角θを測定可能なセンサーシステム、3はセンサーシステム2からの計測データを伝送する伝送システム、4はその伝送システム3を介して伝送された計測データを取込み、評価する評価システムである。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a schematic diagram of an earthquake disaster measuring system using a system measuring apparatus for measuring the maximum response member angle of a viaduct column showing an embodiment of the present invention.
In this figure, 1 is a viaduct pillar, and 2 is a maximum response member angle θ measured in two directions of the viaduct in the X direction (line direction) and the Y direction (line direction perpendicular to the line) installed at the top end of the viaduct pillar 1. possible sensor system, 3 is a transmission system for transmitting measurement data from the sensor system 2, 4 takes in the measurement data transmitted through the transmission system 3, Ru evaluation system der to evaluate.

評価システム4設置位置データAと応答最大部材角Bと損傷レベルCとを取得できるようにしている。その高架橋柱1の場合、1ブロックに1個のセンサーシステムを配置することにより、高架橋の損傷レベルを正確に把握することができる。
まず、本発明にかかる地震災害計測システムのセンサーシステムについて説明する。
図2は本発明の実施例を示すセンサーシステムの模式図、図3は図2における機械式センサーとしてのピークセンサーの模式図、図4はその最大応答部材角測定装置の外観を示す代用図面としての写真である。
In the evaluation system 4, so that it acquires the installation position data A and response maximum member angle B and the level of injury C. In the case of the viaduct pillar 1, it is possible to accurately grasp the damage level of the viaduct by arranging one sensor system in one block.
First, the sensor system of the earthquake disaster measurement system according to the present invention will be described.
2 is a schematic diagram of a sensor system showing an embodiment of the present invention, FIG. 3 is a schematic diagram of a peak sensor as a mechanical sensor in FIG. 2, and FIG. 4 is a substitute drawing showing an appearance of the maximum response member angle measuring device. It is a photograph of.

この図において、11は高架橋柱、11Aはその高架橋柱における塑性ヒンジ区間(RC柱部材の基部付近の損傷が集中する箇所)、12はその高架橋柱11に支持される上層梁、13AはX方向に配置される第1のピークセンサー、13BはそのX方向に直交するY方向に配置される第2のピークセンサー〔Y方向に設けられた治具(図示なし)により配置される、第1のピークセンサー13Aと同様の構造のピークセンサー14はピークセンサーを取りつけた第1の治具、15は第1の治具14と上層梁12との接続箇所、16はアーム、17はそのアーム16の先端と高架橋柱11との間に設けられる第2の治具、18はアーム揺動部、19はアーム揺動部18を構成する2層のボールベアリング、20は第2の治具17と高架橋柱11との接続箇所である。 In this figure, 11 is a viaduct column, 11A is a plastic hinge section in the viaduct column (where damage is concentrated near the base of the RC column member), 12 is an upper beam supported by the viaduct column 11, and 13A is the X direction. The first peak sensor 13B is disposed in the Y direction perpendicular to the X direction, and the first peak sensor 13B is disposed by a jig (not shown) provided in the Y direction. peak sensor] of similar structure to the peak sensor 13A, 14 the first jig fitted with peak sensor, 15 connecting portion between the first jig 14 and the upper beam 12, 16 is the arm, its arm 17 A second jig provided between the tip of 16 and the viaduct pillar 11, 18 is an arm swinging part, 19 is a two-layer ball bearing constituting the arm swinging part 18, and 20 is a second jig 17. And elevated Which is a connection point between the pillars 11.

なお、第2の治具17の先端には、穴(図示なし)が形成されており、その穴にアーム16の先端が貫通し係合するようにしている。また、アーム16とは、例えば、ピークセンサー13A,13Bの先端部にそれぞれ固定された2個の円筒状体の間に係合するようにしている(図4参照)。
表1にはピークセンサーの仕様が示されており、ピークセンサーの寸法は、例えば、127×18×32mm、重量は155g、検出範囲±10mm、分解能は2μmである。
A hole (not shown) is formed at the tip of the second jig 17 so that the tip of the arm 16 penetrates and engages with the hole. Further, the arm 16, for example, so as to engage between the two cylindrical bodies, which are respectively fixed peak sensor 13A, the distal end of the 13B (see FIG. 4).
Table 1 shows the specifications of the peak sensor. The dimensions of the peak sensor are, for example, 127 × 18 × 32 mm, the weight is 155 g, the detection range is ± 10 mm, and the resolution is 2 μm.

図3において、21はケース部分、22は第1の可動部分、23は第2の可動部分、24は正側、25は負側、26は第1の可動部分22に接続される正側最大値検出機構、27は正側最大値検出機構26にかかるポテンショメータ、28は第2の可動部分23に接続される負側最大値検出機構、29は負側最大値検出機構28にかかるポテンショメータである。   In FIG. 3, 21 is a case part, 22 is a first movable part, 23 is a second movable part, 24 is a positive side, 25 is a negative side, and 26 is a positive side maximum connected to the first movable part 22. A value detecting mechanism 27 is a potentiometer applied to the positive maximum value detecting mechanism 26, 28 is a negative maximum value detecting mechanism connected to the second movable part 23, and 29 is a potentiometer applied to the negative maximum value detecting mechanism 28. .

このように、ピークセンサー13A,13Bは正側24と負側25の両方の最大変位量を検知し、記憶することが可能である。ここで、ピークセンサー13の検出範囲は±10mmであるため、図2に示すように、幾何学的な相似の関係を利用して部材角θを測定できる第1の治具14を用いた。ただし、高架橋柱11の柱端部では、地震により全方位に振動することが予測される。そこで、図4に示すように、アーム16とピークセンサー13A(X方向に配置),ピークセンサー13B(Y方向に配置)とは、例えば、ピークセンサー13A,13Bの先端部にそれぞれ固定された2個の円筒状体の間にアーム16を係合するように構成されているので、任意方向の変位量をX方向(路線方向)とY方向(路線直角方向)成分に分解し、1つの装置で2方向の最大応答部材角を測定する機構を提供することができる。 Thus, the peak sensors 13A and 13B can detect and store the maximum displacement amounts of both the positive side 24 and the negative side 25. Here, since the detection range of the peak sensor 13 is ± 10 mm, as shown in FIG. 2, the first jig 14 capable of measuring the member angle θ using the geometrical similarity relationship was used. However, it is predicted that the column end portion of the viaduct pillar 11 vibrates in all directions due to an earthquake. Therefore, as shown in FIG. 4, the arm 16, the peak sensor 13A (arranged in the X direction), and the peak sensor 13B (arranged in the Y direction) are, for example, 2 fixed to the tip portions of the peak sensors 13A and 13B , respectively. Since the arm 16 is configured to be engaged between the cylindrical bodies, the amount of displacement in an arbitrary direction is decomposed into components in the X direction (route direction) and the Y direction (direction perpendicular to the route). A mechanism for measuring the maximum response member angle in two directions can be provided.

この最大応答部材角測定装置を実構造物に設置する場合、第1の治具14と上層梁12の接続箇所15、および第2の治具17と高架橋柱11の接続箇所20は、塑性ヒンジ区間(RC柱部材の基部付近の損傷が集中する箇所)11Aを避ける位置となるようにした。
最大応答部材角測定装置に生じるガタつきおよび機械的な歪みは、測定精度に大きく影響する可能性がある。そのため、正弦波加振や円加振による予備実験結果をもとに、アーム揺動部18のボールベアリング19を2層に設置したり、ピークセンサー13を取りつけた第1の治具14の剛性を高める等、最大応答部材角測定装置の改善を図っている。
When this maximum response member angle measuring device is installed in an actual structure, the connection place 15 between the first jig 14 and the upper beam 12 and the connection place 20 between the second jig 17 and the viaduct pillar 11 are plastic. It was made to be a position to avoid the hinge section (location where damage near the base of the RC column member is concentrated) 11A.
The backlash and mechanical distortion that occur in the maximum response member angle measurement device can greatly affect the measurement accuracy. Therefore, the rigidity of the first jig 14 to which the ball bearing 19 of the arm swinging portion 18 is installed in two layers or the peak sensor 13 is attached based on the preliminary experiment result by sine wave vibration or circular vibration. For example, the maximum response member angle measuring device is improved.

次に、本発明の地震災害計測システムの伝送システムについて説明する。
図5は本発明にかかる無線LANの伝送システム例を示す代用図面としての写真である。
データの即効性を求められる伝送システム(無線LAN)を構築し、被災直後、測定データを指令所(例えば、土木技術センター等)に伝送する。
Next, the transmission system of the earthquake disaster measurement system of the present invention will be described.
FIG. 5 is a photograph as a substitute drawing showing an example of a wireless LAN transmission system according to the present invention.
A transmission system (wireless LAN) that requires immediate data is constructed, and immediately after the disaster, measurement data is transmitted to a command center (for example, civil engineering center).

なお、無線LAN方式のデータ転送システムの試作を実施し(図5参照)、センサーシステム2より得られたデータについて、送信機と受信機の距離が100m程度、障害物が少ない箇所では最大300m程度転送可能であることを確認した。
図6は本発明にかかる無線LANの伝送システム例を示す図である。
この図において、31はセンサーシステム、32はセンサーシステム31からの測定データを短距離(数10m程度)送信する短距離無線LAN送信部、33は無線LAN送信部32から送信された測定データを受信する短距離無線LAN受信部、34は指令所、35はセンサーシステム31と指令所34に接続される電源である。
In addition, a wireless LAN data transfer system was prototyped (see FIG. 5), and the data obtained from the sensor system 2 was about 100 m at a distance between the transmitter and the receiver of about 100 m and a small number of obstacles. Confirmed that transfer is possible.
FIG. 6 is a diagram showing an example of a wireless LAN transmission system according to the present invention.
In this figure, 31 is a sensor system, 32 is a short-range wireless LAN transmission unit that transmits measurement data from the sensor system 31 over a short distance (about several tens of meters), and 33 receives measurement data transmitted from the wireless LAN transmission unit 32. A short-range wireless LAN receiving unit 34, a command station 34, and a power source 35 connected to the sensor system 31 and the command station 34.

ここでは、センサーシステム31から、測定データを短距離(数10m程度)無線LAN送信部32へ送り、次いで、短距離無線LAN受信部33へ送る。さらに、長距離(数100m程度)無線LANの送受信によりリレー形式で指令所34まで伝送する。
また、無線LAN方式に代えて、RF−IDタグ方式を用いた伝送システムを用いるようにしてもよい。
Here, the measurement data is sent from the sensor system 31 to the short distance (about several tens of meters) wireless LAN transmitter 32 and then to the short distance wireless LAN receiver 33. Further, it is transmitted to the command station 34 in a relay form by transmission / reception of a long distance (about several hundreds of meters) wireless LAN.
Further, a transmission system using an RF-ID tag method may be used instead of the wireless LAN method.

図7は本発明にかかるRF−IDタグの伝送システム例を示す図である。
この図において、41はセンサーシステムであり、ここでは、センサーはそれぞれIDタグを備えている。42はセンサーシステム41からそのセンサーのID情報とともに、測定データを送信するRF−IDタグ送信部、43はRF−IDタグ送信部42から送信されたID情報と測定データを受信する携帯用RF−IDタグ受信部である。
FIG. 7 is a diagram showing an example of a transmission system for an RF-ID tag according to the present invention.
In this figure, reference numeral 41 denotes a sensor system. Here, each sensor has an ID tag. 42 is an RF-ID tag transmitter that transmits measurement data together with ID information of the sensor from the sensor system 41, and 43 is a portable RF-receiver that receives ID information and measurement data transmitted from the RF-ID tag transmitter 42. An ID tag receiving unit.

ここでは、それぞれのセンサーシステム41からのID情報と測定データをRF−IDタグ送信部42を介してRF−IDタグ受信部43で収集するようにしている。
次に、本発明にかかる評価システムについて説明する。
評価システムでは損傷度評価手法の構築を行う。具体的には、最大応答部材角と損傷レベルとの関係をパラメータより把握し、簡易な標準値の数表として表す。この標準値を用いて、各柱の損傷レベルの閾値とする。
Here, ID information and measurement data from each sensor system 41 are collected by the RF-ID tag receiver 43 via the RF-ID tag transmitter 42.
Next, the evaluation system according to the present invention will be described.
In the evaluation system, a damage evaluation method is constructed. Specifically, the relationship between the maximum response member angle and the damage level is ascertained from parameters and represented as a simple standard number table. This standard value is used as a threshold for the damage level of each column.

表2に入力パラメータの種類を示す。   Table 2 shows the types of input parameters.

このようにして、損傷レベル閾値の設定から評価システムのアウトプットの概念(表3)〜(表5)が示される。   In this way, the concept of the output of the evaluation system (Table 3) to (Table 5) is shown from the setting of the damage level threshold.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の高架橋柱の最大応答部材角測定装置を用いた地震災害計測システムは、高架橋柱の損傷度合を広範囲に精確に測定することができる。   The earthquake disaster measurement system using the maximum response member angle measuring device for a viaduct of the present invention can accurately measure the degree of damage of the viaduct in a wide range.

本発明の実施例を示す高架橋柱の最大応答部材角を測定するシステム測定装置を用いた地震災害計測システムの模式図である。It is a schematic diagram of the earthquake disaster measurement system using the system measuring apparatus which measures the maximum response member angle of the viaduct pillar which shows the Example of this invention. 本発明の実施例を示すセンサーシステムの模式図である。It is a schematic diagram of a sensor system showing an embodiment of the present invention. 図2における機械式センサーとしてのピークセンサーの模式図である。It is a schematic diagram of the peak sensor as a mechanical sensor in FIG. 本発明の実施例を示す最大応答部材角測定装置の外観を示す代用図面としての写真である。It is the photograph as a substitute drawing which shows the external appearance of the maximum response member angle measuring apparatus which shows the Example of this invention. 本発明にかかる無線LANの伝送システム例を示す代用図面としての写真である。It is the photograph as a substitute drawing which shows the example of the transmission system of the wireless LAN concerning this invention. 本発明にかかる無線LANの伝送システム例を示す図である。It is a figure which shows the example of the transmission system of the wireless LAN concerning this invention. 本発明にかかるRF−IDタグの伝送システム例を示す図である。It is a figure which shows the transmission system example of the RF-ID tag concerning this invention.

1 高架橋柱
2,31,41 センサーシステム
3 伝送システム
4 評価システム
11 高架橋柱
11A 塑性ヒンジ区間
12 上層梁
13A 第1のピークセンサー(X方向に配置)
13B 第2のピークセンサー(Y方向に配置)
14 第1の治具
15 センサー部と上層梁との接続箇所
16 アーム
17 第2の治具
18 アーム揺動部
19 2層のボールベアリング
20 第2の治具と高架橋柱との接続箇所
21 ケース部分
22 第1の可動部分
23 第2の可動部分
24 正側
25 負側
26 正側最大値検出機構
27,29 ポテンショメータ
28 負側最大値検出機構
32 短距離無線LAN送信部
33 短距離無線LAN受信部
34 指令所
35 電源
42 RF−IDタグ送信部
43 携帯用RF−IDタグ受信部
DESCRIPTION OF SYMBOLS 1 Viaduct pillar 2,31,41 Sensor system 3 Transmission system 4 Evaluation system 11 Viaduct pillar 11A Plastic hinge area 12 Upper beam 13A 1st peak sensor (arranged in X direction)
13B Second peak sensor (arranged in the Y direction)
DESCRIPTION OF SYMBOLS 14 1st jig | tool 15 Connection location of sensor part and upper layer beam 16 Arm 17 2nd jig | tool 18 Arm rocking | fluctuation part 19 2 layer ball bearing 20 Connection location of 2nd jig | tool and viaduct pillar 21 Case Part 22 First movable part 23 Second movable part 24 Positive side 25 Negative side 26 Positive side maximum value detection mechanism 27, 29 Potentiometer 28 Negative side maximum value detection mechanism 32 Short-range wireless LAN transmitter 33 Short-range wireless LAN reception Unit 34 Command station 35 Power supply 42 RF-ID tag transmission unit 43 Portable RF-ID tag reception unit

Claims (5)

(a)高架橋柱(11)のX方向とY方向の2方向の最大応答部材角を測定するセンサーシステムと、
(b)該センサーシステムからの計測データを伝送する無線LAN方式もしくはRF−IDタグ方式の伝送システムと、
(c)該伝送システムから伝送される計測データを取込み、前記高架橋柱(11)の損傷度評価を行う評価システムとを具備する、高架橋柱の最大応答部材角測定装置を用いた地震災害計測システムであって、
前記センサーシステムが、
(i)前記高架橋柱(11)に支持される上層梁(12)に取り付けられる第1の治具(14)によって前記X方向に配置される第1のピークセンサー(13A)と、
(ii) 前記Y方向に配置される、前記第1のピークセンサー(13A)と同様の構造を有する第2のピークセンサー(13B)と、
(iii)前記高架橋柱(11)に取り付けられる第2の治具(17)の先端に形成された穴に先端が係合し、2層のボールベアリングで構成されるアーム揺動部(18)が前記上層梁(12)への接続部に設けられるアーム(16)であって、前記ピークセンサー(13A,13B)の先端部にそれぞれ固定された2個の円筒状体の間に係合するようにされたアーム(16)とを備えることを特徴とする高架橋柱の最大応答部材角測定装置を用いた地震災害計測システム。
(A) a sensor system that measures the maximum response member angle in two directions of the viaduct column (11) in the X direction and the Y direction ;
(B) a wireless LAN transmission system or an RF-ID tag transmission system for transmitting measurement data from the sensor system;
(C) An earthquake disaster measurement system using a measurement device for measuring the maximum response member angle of a viaduct, which includes an evaluation system that takes measurement data transmitted from the transmission system and evaluates the degree of damage of the viaduct (11). Because
The sensor system is
(I) a first peak sensor (13A) arranged in the X direction by a first jig (14) attached to an upper beam (12) supported by the viaduct pillar (11);
(Ii) a second peak sensor (13B) disposed in the Y direction and having the same structure as the first peak sensor (13A);
(Iii) An arm swinging portion (18) constituted by a two-layer ball bearing with the tip engaged with a hole formed at the tip of the second jig (17) attached to the viaduct pillar (11). Is an arm (16) provided at a connection portion to the upper beam (12), and engages between two cylindrical bodies respectively fixed to the tip portions of the peak sensors (13A, 13B). An earthquake disaster measurement system using a maximum response member angle measuring device for a viaduct column, comprising: an arm (16) configured as described above .
請求項1記載の高架橋柱の最大応答部材角測定装置を用いた地震災害計測システムにおいて、前記センサーシステムは、前記高架橋柱(11)のブロック毎に1個程度配置することを特徴とする高架橋柱の最大応答部材角測定装置を用いた地震災害計測システム。 The seismic disaster measurement system using the maximum response member angle measuring device of a viaduct according to claim 1, wherein the sensor system is arranged about one for each block of the viaduct (11). Earthquake disaster measurement system using the maximum response member angle measuring device. 請求項2記載の高架橋柱の最大応答部材角測定装置を用いた地震災害計測システムにおいて、前記センサーシステムから、測定データを短距離無線LAN送信部へ送り、次いで、短距離無線LAN受信部へ送り、さらに、長距離無線LANの送受信によりリレー形式で指令所へと伝送することを特徴とする高架橋柱の最大応答部材角測定装置を用いた地震災害計測システム。 In earthquake measurement system using the maximum response member angle measuring device viaduct pillars according to claim 2, from the sensor system sends the measurement data to Tan距Hanaremu line LAN transmission unit, then a short-range wireless LAN reception unit to feed further earthquake measurement system using the maximum response member angle measuring device viaduct pillars, characterized by transmitting to the control center in relay form by sending and receiving long distance Hanaremu line LAN. 請求項2記載の高架橋柱の最大応答部材角測定装置を用いた地震災害計測システムにおいて、前記センサーシステムから、測定データをRF−IDタグ方式を用いて指令所へ伝送することを特徴とする高架橋柱の最大応答部材角測定装置を用いた地震災害計測システム。   The earthquake disaster measurement system using the maximum response member angle measuring device for a viaduct according to claim 2, wherein measurement data is transmitted from the sensor system to a command center using an RF-ID tag system. Earthquake disaster measurement system using the column maximum response member angle measurement device. 請求項1記載の高架橋柱の最大応答部材角測定装置を用いた地震災害計測システムにおいて、前記評価システムは、前記高架橋柱(11)の最大応答部材角と前記高架橋柱(11)の損傷レベルとの関係を把握することを特徴とする高架橋柱の最大応答部材角測定装置を用いた地震災害計測システム。 In earthquake measurement system using the maximum response member angle measuring device viaduct pillars of claim 1, wherein the evaluation system, the maximum damage level responsive member angle of the viaduct pillars (11) of the viaduct pillars (11) Seismic disaster measurement system using the maximum response member angle measuring device of viaduct pillars, characterized by grasping the relationship between
JP2006228683A 2006-08-25 2006-08-25 Seismic disaster measurement system using maximum response member angle measuring device of viaduct column Active JP4908109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006228683A JP4908109B2 (en) 2006-08-25 2006-08-25 Seismic disaster measurement system using maximum response member angle measuring device of viaduct column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006228683A JP4908109B2 (en) 2006-08-25 2006-08-25 Seismic disaster measurement system using maximum response member angle measuring device of viaduct column

Publications (2)

Publication Number Publication Date
JP2008051676A JP2008051676A (en) 2008-03-06
JP4908109B2 true JP4908109B2 (en) 2012-04-04

Family

ID=39235866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006228683A Active JP4908109B2 (en) 2006-08-25 2006-08-25 Seismic disaster measurement system using maximum response member angle measuring device of viaduct column

Country Status (1)

Country Link
JP (1) JP4908109B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106769157A (en) * 2017-02-23 2017-05-31 上海喆之信息科技有限公司 A kind of bridge structure reliability assessment system based on wireless network

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5586175B2 (en) * 2008-12-05 2014-09-10 住友大阪セメント株式会社 Method for detecting water in structure, member for structure, and water detection device in structure
JP5638266B2 (en) * 2010-03-15 2014-12-10 公益財団法人鉄道総合技術研究所 Structure displacement sensor and structure displacement measurement system using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3537250B2 (en) * 1996-01-31 2004-06-14 松下電器産業株式会社 Elevated walkway misalignment information collection system and its information transmission device
JP2000337803A (en) * 1999-05-31 2000-12-08 Sumitomo Forestry Co Ltd Auxiliary tool for measuring interlayer displacement
JP2000346633A (en) * 1999-06-03 2000-12-15 Koden Electronics Co Ltd Distance variation sensor
JP2001338382A (en) * 2000-05-29 2001-12-07 Takenaka Komuten Co Ltd Measuring instrument and monitoring system
JP4264891B2 (en) * 2004-01-22 2009-05-20 清水建設株式会社 Structure condition inspection system
JP2005316633A (en) * 2004-04-28 2005-11-10 Hitachi Ltd Inspection and monitoring method for building, structure or equipment accompanying them
JP4575736B2 (en) * 2004-09-28 2010-11-04 三井造船株式会社 Collapse detection apparatus and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106769157A (en) * 2017-02-23 2017-05-31 上海喆之信息科技有限公司 A kind of bridge structure reliability assessment system based on wireless network

Also Published As

Publication number Publication date
JP2008051676A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
Das et al. A review of some advanced sensors used for health diagnosis of civil engineering structures
CN101272887B (en) Method and apparatus for measurement and/or calibration of position of an object in space
JP4811347B2 (en) Calibration robot system and distance sensor calibration method
Dong et al. Bridges structural health monitoring and deterioration detection-synthesis of knowledge and technology
US20110175745A1 (en) Embedded arm strain sensors
KR101672777B1 (en) Apparatus and system for inspecting concrete electric pole using vision
KR102024803B1 (en) SMART CRACK MONITORING APPARATUS USING IoT
US20180322624A1 (en) Imaging support device and imaging support method
Zarate Garnica et al. Monitoring structural responses during load testing of reinforced concrete bridges: A review
JP4908109B2 (en) Seismic disaster measurement system using maximum response member angle measuring device of viaduct column
CN103017672A (en) Non-contact nondestructive testing method for bridge structure
TR201816240T4 (en) Measuring system and method for measuring an angle.
CN201354440Y (en) Three-dimensional restraining and measuring device for track with portable laser rangefinder
CN106018094B (en) Concrete temperature stress testing machine and test method of creeping
CN102288149B (en) Brake disc camber angle detection device and brake disc production line device
CN109282785A (en) A kind of deformation monitoring method of the elastically supported plate based on strain monitoring
JP5064740B2 (en) Maximum response member angle measuring device for viaduct columns
CN102818547B (en) Tool for measuring travel of vehicular clutch pedal
CN206223096U (en) For large scale structure composition deformation or the self-calibration measurement apparatus of displacement parameter
CN113701968A (en) Bridge dynamic deflection monitoring system
CN101487211B (en) Existing line three-dimensional restriction measuring method
Grosse et al. Initial development of wireless acoustic emission sensor Motes for civil infrastructure state monitoring
CN104615080A (en) Accurate positioning type photoelectric detection device
CN202109859U (en) Tool for measuring stroke of vehicle clutch pedal
JP2008164515A (en) Crack length detection method and crack length detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4908109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350