JP4907794B2 - Method for producing synthetic layered silicate - Google Patents

Method for producing synthetic layered silicate Download PDF

Info

Publication number
JP4907794B2
JP4907794B2 JP2001244244A JP2001244244A JP4907794B2 JP 4907794 B2 JP4907794 B2 JP 4907794B2 JP 2001244244 A JP2001244244 A JP 2001244244A JP 2001244244 A JP2001244244 A JP 2001244244A JP 4907794 B2 JP4907794 B2 JP 4907794B2
Authority
JP
Japan
Prior art keywords
layered silicate
synthetic
type
melt
mica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001244244A
Other languages
Japanese (ja)
Other versions
JP2003054936A (en
Inventor
俊一 太田
剛芳 林
信三 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topy Industries Ltd
Original Assignee
Topy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topy Industries Ltd filed Critical Topy Industries Ltd
Priority to JP2001244244A priority Critical patent/JP4907794B2/en
Publication of JP2003054936A publication Critical patent/JP2003054936A/en
Application granted granted Critical
Publication of JP4907794B2 publication Critical patent/JP4907794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
この発明は、合成層状ケイ酸塩の新規製造方法に係り、詳記すれば、夾雑鉱物の生成を減少させ、合成層状ケイ酸塩の生成率を向上させた新規合成層状ケイ酸塩の製造方法に関する。
【0002】
【従来の技術】
合成層状ケイ酸塩としては、合成雲母、合成スメクタイト及び合成バーミキュライト等が挙げられる。このうち合成雲母は、周知のように。塗料、樹脂、化粧料等の原料として広く使用されている。
【0003】
従来熔融法による合成層状ケイ酸塩の合成は、所定の組成に配合した合成層状ケイ酸塩原料を、内熱若しくは外熱によって融かし、生成した熔融体を耐熱容器中に取り出し、冷却過程で結晶化させることにより行っていた。
【0004】
しかしながら、このような方法では、層状ケイ酸塩合成時に、テクトケイ酸塩であるクリストバライトや鎖状ケイ酸塩であるリヒテライト等の、層状ケイ酸塩とは別種のケイ酸塩夾雑鉱物の生成や非晶質部分の発生が起こるため、回収物単位重量当りの層状ケイ酸塩純分の生成率が低くなり、品質上の問題があった。
【0005】
生成率を向上させるために、添加物としてAlを加えCECを向上させる方法(特願2001−102959)、及び夾雑鉱物の生成が少ない組成に変更することも提案されているが、いずれも鉱種が限定されてしまう難点があった。そのため、化学組成にかかわらず、生成率を向上させる層状ケイ酸塩の製造方法が強く求められている。
【0006】
特公昭37−8587号公報に、偏平な容器に種結晶を添加して大型結晶を得る方法が開示され、特公昭34−2230号公報には、種結晶による雲母大型結晶製造法が開示されている。しかしながら、これら種結晶を用いた製造方法は、雲母結晶を大きく成長させるために用いられるものであるが、これを層状ケイ酸塩の生成率の向上に応用できるとは、全く考えられていなかった。
【0007】
【発明が解決しようとする課題】
この発明は、このような点に鑑みなされたものであり、熔融法での合成層状ケイ酸塩の製造法において、夾雑鉱物の生成を抑制し、目的物の生成率を向上させる層状ケイ酸塩の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明者等は鋭意研究を重ねた結果、熔融法で融かした合成層状ケイ酸塩に、同じ結晶構造を持つ層状ケイ酸塩を、結晶核材として添加することによって、夾雑鉱物の生成を抑制し、合成層状ケイ酸塩の収率が向上するという驚くべき事実を見出し、本発明に到達した。
【0009】
即ち本発明は、所定の組成に配合した合成膨潤型層状ケイ酸塩の原料を加熱して熔融体とし、該熔融体を冷却して合成膨潤型層状ケイ酸塩を得る製造方法において、合成膨潤型層状ケイ酸塩が雲母族、バーミキュライト族又はスメクタイト族であり、前記熔融体に、生成物と同じ結晶構造を持つ層状ケイ酸塩を、夾雑鉱物の生成を抑えて合成膨潤型層状ケイ酸塩の生成率を向上させる結晶核材として、前記熔融体中に存在させることを特徴とする。
【0010】
【発明の実施の形態】
次に、本発明の実施の形態を説明する。
【0011】
本発明の合成層状ケイ酸塩は、次の一般式で表される。
【0012】
/ 6〜12〜310
上記式中、X、Y、Zの位置に置換可能な元素を、イオンの形で示すと次のとうりである。
【0013】
X:Na、Li、K、Ca2+、Sr2+、Ba2+
Y:Mg2+、Li、Ni2+、B3+、Co2+、Zn2+、Mn3+、Al3+、Cr3+、Ti4+
Z:Al3+、Si4+、Ge4+、B3+
合成層状ケイ酸塩には、SiO等の四面体層2枚が、MgO等の八面体を挟んでいる2:1型構造のものと、上記四面体層と八面体層が1:1に並ぶ1:1型構造と、2:1型と1:1型の鉱物が組み合わされている構造があるが、本発明には、2:1型構造のものが好ましい。
【0014】
本発明の合成層状ケイ酸塩としては、徐冷しても結晶が大きく成長することが無く、複数種の夾雑鉱物の生成を伴うものが好適である。このようなものとしては、例えば、2:1型構造の層状ケイ酸塩としては、雲母族の膨潤性雲母、スメクタイト族及びバーミキュライト族が挙げられる。なお、上記の膨潤性雲母としてはNa型四珪素雲母、Li型四珪素雲母、Na型テニオライト、Li型テニオライト等が挙げられる。逆に、元々夾雑鉱物の生成が少なく、徐冷すると結晶が大きく成長するものは、本発明にはあまり効果的でない、このようなものとしては、金雲母が挙げられる。
【0015】
本発明に使用する合成層状ケイ酸塩原料としては、内燃式熔融法で使用されている従来公知のものを使用することができる。例えば、SiO、MgO、Al、KCO、NaCO、LiCO及びフッ化物や珪フッ化物(NaF、LiF、KF、MgF、NaSiF、KSiF、LiSiF等)等を、目的とする化学組成に応じて混合使用すれば良い。また、長石、かんらん石、タルク等の天然鉱物を、Si、Al、Mg源として使用しても差し支えない。X、Y、Zを他の元素で置換した場合は、上記のような混合物に、置換する元素の酸化物、フッ化物、炭酸塩等を配合して熔融すれば良い。
【0016】
添加する結晶核材としては、生成物と同じ結晶構造を持つ層状ケイ酸塩である必要があるが、熱分解しない合成層状フッ素ケイ酸塩が望ましい。生成物が合成雲母、合成スメクタイト及び合成バーミキュライト等の2:1型構造を持つ合成フィロケイ酸塩の場合、結晶核材としては、熱分解しない合成フッ素雲母または合成フッ素スメクタイト若しくは合成フッ素バーミキュライトが望ましい。生成物の純度の問題が生じる場合も多いので、同一の鉱物種であるのがより好ましい。
【0017】
結晶核剤の添加量は、合成層状ケイ酸塩原料に対して外割で、望ましくは0.1〜10重量%であり、更に望ましくは0.5〜5重量%である。
【0018】
結晶核剤を添加するには、次のような方法で行うことができる。
溶融量が少ない場合は、予め熔融原料に結晶核剤を混ぜておいて、一緒に溶融する方法をとることができる。この場合は、結晶核剤が完全に融解しないように、加熱速度、溶解速度及び保持時間を制御する必要がある。
また、溶融量が多いため、保持時間が長く、予め混ぜておくと結晶核剤が溶解してしまう場合は、予め結晶核剤を鋳型容器の中に入れておいて、その中に熔融体を流し込みながら、均等に混ぜ合わせる方法をとることができる。
溶融体を受けた鋳型内に、結晶核剤の粉体を吹き込んだり、結晶塊を押し込む方法をとることもできる。
【0019】
本発明に使用する熔融方法としては、一般的な内燃式熔融炉、外熱式熔融炉及び誘電加熱炉等を使用する方法が挙げられる。加熱融解温度は、目的とする生成物によるが一般には、1200℃〜1600℃好ましくは1400℃〜1500℃である。加熱融解した熔融体は、通常0.01℃/分〜50℃/分の冷却速度で冷却して結晶化させる。
【0020】
本発明の方法により得られた鉱塊には、通常の方法で得られるものより、所期の層状ケイ酸塩以外の夾雑鉱物は、大幅に減少する。即ち、鉱塊中の所期層状ケイ酸塩純度を大幅に向上させることができる。
【0021】
【実施例】
次に、実施例、比較例を挙げて本発明を更に説明するが、本発明はこれら実施例に限定されない。
【0022】
実施例及び比較例においては、生成率を陽イオン交換容量(CEC)によって評価した。夾雑鉱物は、CEC=0であるので、CECが大きいことは、夾雑鉱物が少なく、目的物の生成率が高いことを意味するものである。
【0023】
実施例 1
Na型四珪素雲母の化学組成に配合した熔融原料に、結晶核剤として、外割で0.5%のNa型四珪素雲母を添加した。結晶核剤添加後の原料100gをマグネシア坩堝に入れ、電気炉を用いて昇温速度毎分約12℃で加熱し、1450℃にて20分間保持して融解させ、冷却速度10℃/分にて結晶化させた。得られた鉱塊を金槌を用いて粗砕した後、めのう乳鉢で粉砕して試料とした。同試料は、陽イオン交換容量(CEC)を用いてその純度を評価した。結果を後記表1に示す。
【0024】
実施例 2〜4
結晶核剤としてのNa型四珪素雲母の添加量を、1%(実施例2)、3%(実施例3)、5%(実施例4)とした以外は、実施例1と同様にして得た試料を、同様にCECを用いてその純度を評価した。結果を後記表1に示す。
【0025】
実施例 5〜6
結晶核剤である層状ケイ酸塩を、雲母族のNa型テニオライト(実施例5)、スメクタイト族のNa型ヘクトライト(実施例6)とし、添加量を1%とした以外は、実施例1と同様にして得た試料を、同様にCECを用いてその純度を評価した。結果を後記表1に示す。
【0026】
実施例 7〜10
配合組成を、Na型テニオライト(実施例7)、Li型テニオライト(実施例8)、Na型ヘクトライト(実施例9)、バーミキュライト族のNa型バーミキュライト(実施例10)とし、結晶核剤としてそれぞれ同一の層状ケイ酸塩を1%添加した以外は、実施例1と同様にして得た試料を、同様にCECを用いてその純度を評価した。結果を後記表1に示す。
【0027】
実施例 11
Na型四珪素雲母の化学組成に配合した熔融原料100kgを、内燃式電気炉を用いて、約1500℃にて融解させた。予め結晶核剤として1kgのNa型四珪素雲母粉体を底に敷き詰めておいた鉄製の鋳型に同熔融体を注ぎ込み、流れの勢いでほぼ均一に結晶核剤を混ぜ込んだ。同混合熔融体を冷却速度20℃/分にて結晶化させた。得られた鉱塊をジョークラッシャーを用いて粗砕した後、レイモンドミルで粉砕して試料とした。同試料は、陽イオン交換容量(CEC)を用いてその純度を評価した。結果を後記表1に示す。
【0028】
比較例 1〜5
Na型四珪素雲母(比較例1)、Na型テニオライト(比較例2)、Li型テニオライト(比較例3)、Na型ヘクトライト(比較例4)、Na型バーミキュライト(比較例5)の化学組成に配合した熔融原料を、結晶核剤を添加しない以外は、実施例1と同様に融解、結晶化させて得た試料を、同様にそれぞれCECを用いてその純度を評価した。結果を後記表1に示す。
【0029】
比較例 6
鋳型に結晶核剤を入れない以外は、実施例10と同様にして、Na型四珪素雲母試料を得た。同試料を同様にCECを用いてその純度を評価した。結果を後記表1に示す。
【0030】
【表1】

Figure 0004907794
上記表1に示した結果から、実施例1〜4では、比較例1と比べて、CECは15〜27%高くなっていることがわかる。実施例5及び6から明らかなように、目的とする鉱物種と結晶核剤とが異なる鉱物種であっても、CECは向上する。実施例7〜10から明らかなように、鉱物種を、Na型テニオライト、Li型テニオライト、Na型ヘクトライト及びNa型バーミキュライトに変えても、同様にCECが向上する。実施例11と比較例6から、結晶核剤と熔融体を鋳型の中で混ぜ合わせる方法も、十分効果があることがわかる。
【0031】
【発明の効果】
本発明による層状ケイ酸塩の製造方法は、熔融原料に結晶核剤を添加する以外は、従来の熔融合成法をそのまま用いることができるので、新たな設備投資無しで、夾雑鉱物の減少と目的物の生成率の向上を達することができるから、工業的製造における利点は極めて大きい。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel method for producing a synthetic layered silicate, more specifically, a method for producing a novel synthetic layered silicate that reduces the production of contaminated minerals and improves the production rate of the synthetic layered silicate. About.
[0002]
[Prior art]
Examples of the synthetic layered silicate include synthetic mica, synthetic smectite, and synthetic vermiculite. Of these, synthetic mica is well known. Widely used as a raw material for paints, resins and cosmetics.
[0003]
In the synthesis of synthetic layered silicate by the conventional melting method, the synthetic layered silicate raw material blended in a predetermined composition is melted by internal or external heat, and the resulting melt is taken out into a heat-resistant container and cooled. By crystallizing with.
[0004]
However, in such a method, during the synthesis of the layered silicate, the generation or non-generation of silicate-contaminated minerals different from the layered silicate, such as cristobalite, which is the tectosilicate, and lithiumite, which is the chain silicate, is performed. Since the generation of the crystalline part occurs, the production rate of pure layered silicate per unit weight of the recovered product is lowered, and there is a problem in quality.
[0005]
In order to improve the production rate, a method for improving the CEC by adding Al as an additive (Japanese Patent Application No. 2001-102959) and changing to a composition with less generation of contaminating minerals have been proposed. There was a difficulty that would be limited. Therefore, there is a strong demand for a method for producing a layered silicate that improves the production rate regardless of the chemical composition.
[0006]
Japanese Patent Publication No. 37-8487 discloses a method for obtaining a large crystal by adding a seed crystal to a flat container. Japanese Patent Publication No. 34-2230 discloses a method for producing a mica large crystal using a seed crystal. Yes. However, the production method using these seed crystals is used to greatly grow mica crystals, but it has not been thought at all that it can be applied to improve the rate of formation of layered silicates. .
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above points, and in the method for producing a synthetic layered silicate by a melting method, a layered silicate that suppresses the formation of contaminated minerals and improves the production rate of the target product. It aims at providing the manufacturing method of.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have conducted intensive research, and as a result, added a layered silicate having the same crystal structure as a crystal nucleus material to a synthetic layered silicate melted by the melting method. As a result, the inventors have found the surprising fact that the production of contaminated minerals is suppressed and the yield of the synthetic layered silicate is improved, and the present invention has been achieved.
[0009]
That is, the present invention is to heat the raw material of the synthetic swelling type layered silicate blended into a predetermined composition and melting body, in a manufacturing method for obtaining the synthetic swelling type layered silicate was cooled該熔melt, synthetic swelling Type layered silicate is a mica group, vermiculite group or smectite group, and a layered silicate having the same crystal structure as the product is added to the melt, and a synthetic swollen type layered silicate with suppressed generation of contaminating minerals It is characterized by being present in the melt as a crystal nucleus material for improving the production rate.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described.
[0011]
The synthetic layered silicate of the present invention is represented by the following general formula.
[0012]
X 1 / 6-1 Y 2-3 Z 4 O 10 F 2
In the above formula, elements that can be substituted at the X, Y, and Z positions are shown in the form of ions as follows.
[0013]
X: Na + , Li + , K + , Ca 2+ , Sr 2+ , Ba 2+
Y: Mg 2+, Li +, Ni 2+, B 3+, Co 2+, Zn 2+, Mn 3+, Al 3+, Cr 3+, Ti 4+
Z: Al 3+ , Si 4+ , Ge 4+ , B 3+
In the synthetic layered silicate, two tetrahedral layers such as SiO 2 sandwich the octahedron such as MgO, and the tetrahedral layer and the octahedral layer are 1: 1. There are a 1: 1 type structure and a structure in which 2: 1 type and 1: 1 type minerals are combined. In the present invention, a 2: 1 type structure is preferable.
[0014]
As the synthetic layered silicate of the present invention, those which do not grow large crystals even after slow cooling and are accompanied by the generation of plural kinds of contaminated minerals are suitable. Examples of such a layered silicate having a 2: 1 type structure include swellable mica of the mica group, smectite group, and vermiculite group. Examples of the swellable mica include Na-type tetrasilicon mica, Li-type tetrasilicon mica, Na-type teniolite, Li-type teniolite, and the like. On the other hand, those in which the generation of contaminated minerals is originally small and the crystals grow greatly upon slow cooling are not very effective for the present invention. Examples of such materials include phlogopite.
[0015]
As the synthetic layered silicate material used in the present invention, a conventionally known material used in the internal combustion melting method can be used. For example, SiO 2 , MgO, Al 2 O 3 , K 2 CO 3 , Na 2 CO 3 , Li 2 CO 3 and fluorides or silicofluorides (NaF, LiF, KF, MgF 2 , Na 2 SiF 6 , K 2 SiF 6 , Li 2 SiF 6, etc.) may be mixed and used depending on the target chemical composition. Natural minerals such as feldspar, olivine and talc may be used as the Si, Al and Mg sources. When X, Y, and Z are substituted with other elements, an oxide, fluoride, carbonate, or the like of the element to be substituted may be added to the above mixture and melted.
[0016]
The crystal nucleus material to be added needs to be a layered silicate having the same crystal structure as the product, but is preferably a synthetic layered fluorosilicate that does not thermally decompose. When the product is a synthetic phyllosilicate having a 2: 1 type structure such as synthetic mica, synthetic smectite and synthetic vermiculite, the crystal nucleus material is preferably synthetic fluorine mica, synthetic fluorine smectite or synthetic fluorine vermiculite which is not thermally decomposed. Often, the same mineral species is more preferred, as product purity problems often arise.
[0017]
The amount of the crystal nucleating agent added is preferably 0.1 to 10% by weight, more preferably 0.5 to 5% by weight, based on the synthetic layered silicate raw material.
[0018]
The crystal nucleating agent can be added by the following method.
When the amount of melting is small, a method can be used in which a crystal nucleating agent is mixed in advance with the melting raw material and melted together. In this case, it is necessary to control the heating rate, dissolution rate and holding time so that the crystal nucleating agent is not completely melted.
Also, since the melting amount is large, the holding time is long, and if the crystal nucleating agent dissolves when mixed in advance, put the crystal nucleating agent in the mold container in advance and put the melt in it. While pouring, it can be mixed evenly.
It is also possible to take a method of blowing a crystal nucleating agent powder or pushing a crystal lump into a mold that has received a melt.
[0019]
Examples of the melting method used in the present invention include a method using a general internal combustion furnace, an external heating furnace, a dielectric heating furnace, and the like. The heating and melting temperature depends on the desired product, but is generally 1200 ° C to 1600 ° C, preferably 1400 ° C to 1500 ° C. The melt melted by heating is usually crystallized by cooling at a cooling rate of 0.01 ° C./min to 50 ° C./min.
[0020]
In the ore obtained by the method of the present invention, impurities other than the desired layered silicate are greatly reduced from those obtained by the usual method. That is, the desired layered silicate purity in the ore can be greatly improved.
[0021]
【Example】
Next, although an example and a comparative example are given and the present invention is further explained, the present invention is not limited to these examples.
[0022]
In the examples and comparative examples, the production rate was evaluated by cation exchange capacity (CEC). Since contaminated minerals have CEC = 0, a large CEC means that there are few contaminated minerals and the production rate of the target product is high.
[0023]
Example 1
As a crystal nucleating agent, 0.5% of Na-type tetrasilicon mica was added to the melt raw material blended with the chemical composition of Na-type tetrasilicon mica. 100 g of the raw material after the addition of the crystal nucleating agent is put in a magnesia crucible, heated at a heating rate of about 12 ° C. per minute using an electric furnace, held at 1450 ° C. for 20 minutes to melt, and cooled at a cooling rate of 10 ° C./min. And crystallized. The obtained ore was coarsely crushed using a hammer and then ground in an agate mortar to prepare a sample. The purity of the sample was evaluated using cation exchange capacity (CEC). The results are shown in Table 1 below.
[0024]
Examples 2-4
Except that the addition amount of Na-type tetrasilicic mica as a crystal nucleating agent was 1% (Example 2), 3% (Example 3), and 5% (Example 4), the same as Example 1 The purity of the obtained sample was similarly evaluated using CEC. The results are shown in Table 1 below.
[0025]
Examples 5-6
Example 1 except that the layered silicate as the crystal nucleating agent was mica group Na-type teniolite (Example 5) and smectite group Na-type hectorite (Example 6), and the addition amount was 1%. The purity of the sample obtained in the same manner as above was evaluated using CEC in the same manner. The results are shown in Table 1 below.
[0026]
Examples 7-10
The compounding composition was Na type teniolite (Example 7), Li type teniolite (Example 8), Na type hectorite (Example 9), vermiculite group Na type vermiculite (Example 10), and crystal nucleating agents, respectively. A sample obtained in the same manner as in Example 1 except that 1% of the same layered silicate was added was similarly evaluated for purity using CEC. The results are shown in Table 1 below.
[0027]
Example 11
100 kg of a melt raw material blended with the chemical composition of Na-type tetrasilicon mica was melted at about 1500 ° C. using an internal combustion electric furnace. The melt was poured into an iron mold in which 1 kg of Na-type tetrasilicic mica powder was previously spread as a crystal nucleating agent, and the crystal nucleating agent was mixed almost uniformly with the flow. The mixed melt was crystallized at a cooling rate of 20 ° C./min. The obtained ore was coarsely crushed using a jaw crusher and then pulverized with a Raymond mill to prepare a sample. The purity of the sample was evaluated using cation exchange capacity (CEC). The results are shown in Table 1 below.
[0028]
Comparative Examples 1-5
Chemical composition of Na-type tetrasilicon mica (Comparative Example 1), Na-type teniolite (Comparative Example 2), Li-type teniolite (Comparative Example 3), Na-type hectorite (Comparative Example 4), Na-type vermiculite (Comparative Example 5) Samples obtained by melting and crystallizing the melt raw material blended in No. 1 with the same procedure as in Example 1 except that the crystal nucleating agent was not added were similarly evaluated using CEC. The results are shown in Table 1 below.
[0029]
Comparative Example 6
A Na-type tetrasilicon mica sample was obtained in the same manner as in Example 10 except that the crystal nucleating agent was not added to the template. The purity of the sample was similarly evaluated using CEC. The results are shown in Table 1 below.
[0030]
[Table 1]
Figure 0004907794
From the results shown in Table 1, it can be seen that in Examples 1 to 4, the CEC is 15 to 27% higher than that in Comparative Example 1. As is clear from Examples 5 and 6, CEC is improved even if the target mineral species and the crystal nucleating agent are different. As is clear from Examples 7 to 10, CEC is similarly improved even when the mineral species are changed to Na-type teniolite, Li-type teniolite, Na-type hectorite and Na-type vermiculite. From Example 11 and Comparative Example 6, it can be seen that the method of mixing the crystal nucleating agent and the melt in the mold is sufficiently effective.
[0031]
【Effect of the invention】
The method for producing a layered silicate according to the present invention can use the conventional fusion fusion method as it is, except for adding a crystal nucleating agent to the melt raw material, so that it is possible to reduce impurities and reduce the object without any new capital investment. Since the improvement of the product production rate can be achieved, the advantage in industrial production is very large.

Claims (4)

所定の組成に配合した合成膨潤型層状ケイ酸塩の原料を加熱して熔融体とし、該熔融体を冷却して合成膨潤型層状ケイ酸塩を得る製造方法において、合成膨潤型層状ケイ酸塩が雲母族、バーミキュライト族又はスメクタイト族であり、前記熔融体に、生成物と同じ結晶構造を持つ層状ケイ酸塩を、夾雑鉱物の生成を抑えて合成膨潤型層状ケイ酸塩の生成率を向上させる結晶核材として、前記熔融体中に存在させることを特徴とする合成膨潤型層状ケイ酸塩の製造方法。Heating the raw material of the synthetic swelling type layered silicate blended into a predetermined composition and melting body, in a manufacturing method for obtaining the synthetic swelling type layered silicate was cooled該熔melt, synthetic swelling type layered silicate Is a mica group, vermiculite group or smectite group, and a layered silicate with the same crystal structure as the product is added to the melt, and the production rate of synthetic swollen layered silicate is improved by suppressing the formation of contaminated minerals. A method for producing a synthetic swollen layered silicate, wherein the crystal nucleus material is present in the melt. 前記結晶核材の添加量が、外割で0.1〜10重量%である請求項1記載の製造方法。  The manufacturing method according to claim 1, wherein the addition amount of the crystal nucleus material is 0.1 to 10% by weight on an external basis. 前記層状ケイ酸塩が、2:1型構造の層状ケイ酸塩である請求項1又は2記載の製造方法。  The manufacturing method according to claim 1 or 2, wherein the layered silicate is a layered silicate having a 2: 1 type structure. 前記熔融体中に前記結晶核材が混合されて存在することを特徴とする請求項1〜の何れかに記載の製造方法。The method according to any one of claims 1 to 3, characterized in that there the is crystal nucleus material is mixed into the molten body.
JP2001244244A 2001-08-10 2001-08-10 Method for producing synthetic layered silicate Expired - Fee Related JP4907794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001244244A JP4907794B2 (en) 2001-08-10 2001-08-10 Method for producing synthetic layered silicate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001244244A JP4907794B2 (en) 2001-08-10 2001-08-10 Method for producing synthetic layered silicate

Publications (2)

Publication Number Publication Date
JP2003054936A JP2003054936A (en) 2003-02-26
JP4907794B2 true JP4907794B2 (en) 2012-04-04

Family

ID=19074210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001244244A Expired - Fee Related JP4907794B2 (en) 2001-08-10 2001-08-10 Method for producing synthetic layered silicate

Country Status (1)

Country Link
JP (1) JP4907794B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089089A1 (en) * 2010-01-20 2011-07-28 Bayer Materialscience Ag Method for producing phyllosilicate discs having a high aspect ratio

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2889837B2 (en) * 1995-01-27 1999-05-10 トピー工業株式会社 Pall gloss pigment and coating composition, cosmetic, ink and plastic containing the pigment

Also Published As

Publication number Publication date
JP2003054936A (en) 2003-02-26

Similar Documents

Publication Publication Date Title
US3940255A (en) Process for making cordierite glass-ceramic having nucleating agent and increased percent cordierite crystallinity
JPH0672008B2 (en) Method for producing crystalline sodium silicate
CN105060682A (en) Process for preparing glass ceramics with melting method
US4177235A (en) Method of manufacturing electrically fused corundum
CN109279617A (en) A kind of chemical synthesis process of mica
CN110194456A (en) A method of utilizing discarded silicon mud metal smelting silicon
JP4907794B2 (en) Method for producing synthetic layered silicate
EP3715013A1 (en) Wollastonite substitute
KR100683834B1 (en) Manufacturing method of glass-ceramics using steel dust in furnace
US1087705A (en) Method of producing abrasive compounds.
KR20170133157A (en) Friction material comprising potassium titanate and method for preparing the same by melting method
JPS6015562B2 (en) Production method of yellow phosphorus and mold additive for steelmaking
JP4216510B2 (en) Layered silicate and method for producing the same
EP0745559A1 (en) A process for preparing crystalline sodium disilicate having a layered structure
JPH05306115A (en) Production of mica particles
KR101488905B1 (en) Sodium titanate for welding material and method for preparing the same
KR101905713B1 (en) Potassium titanate and method for producing thereof
JP4814435B2 (en) Synthetic swellable fluorinated mica containing aluminum
JP3217373B2 (en) Method for producing crystalline inorganic ion exchanger
JP3337182B2 (en) Method for producing crystalline inorganic builder
JPH09194210A (en) Production of synthetic mica
JPH0558621A (en) Production of amorphous boron powder
JP2682458B2 (en) Method for growing rare earth vanadate single crystal
CN114455594A (en) Cristobalite prepared by electric melting method
KR101610712B1 (en) manufacturing method of slag coagulant for cast iron and slag coagulant thereby

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees