JP4907207B2 - Vehicle travel safety device - Google Patents

Vehicle travel safety device Download PDF

Info

Publication number
JP4907207B2
JP4907207B2 JP2006091464A JP2006091464A JP4907207B2 JP 4907207 B2 JP4907207 B2 JP 4907207B2 JP 2006091464 A JP2006091464 A JP 2006091464A JP 2006091464 A JP2006091464 A JP 2006091464A JP 4907207 B2 JP4907207 B2 JP 4907207B2
Authority
JP
Japan
Prior art keywords
collision time
vehicle
calculated
detected
road surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006091464A
Other languages
Japanese (ja)
Other versions
JP2007261497A (en
Inventor
修五 近藤
公二 谷田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006091464A priority Critical patent/JP4907207B2/en
Publication of JP2007261497A publication Critical patent/JP2007261497A/en
Application granted granted Critical
Publication of JP4907207B2 publication Critical patent/JP4907207B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は車両の走行安全装置に関し、より具体的には先行車などの物体との衝突を回避するようにした装置に関する。   The present invention relates to a vehicle travel safety device, and more specifically to a device that avoids a collision with an object such as a preceding vehicle.

近時、夜間走行時に見え難い前方の歩行者の存在を運転者に警告する歩行者警報装置や、周囲死角モニタなどの情報提供装置などが商品化されている。これらの技術は運転者が対象を認識していると否とに関わらず情報を提供することから、運転者が認識している場合、認識している事実を警告されることで、運転者は煩瑣感を受ける不都合がある。   Recently, pedestrian warning devices that warn the driver of the presence of pedestrians that are difficult to see when driving at night, and information providing devices such as a surrounding blind spot monitor have been commercialized. These technologies provide information whether or not the driver is aware of the object, so if the driver is aware, the driver is warned of the fact that it is aware, There is an inconvenience of being bothered.

その点、例えば下記の特許文献1記載の技術においては、減速開始時の車間距離検出値を相対速度で除算して余裕時間を算出すると共に、減速ごとに余裕時間を記憶し、記憶した余裕時間から当該運転者の予測時間を推定し、相対速度検出値に予測時間推定値を乗じて得た値を車間距離検出値に加算して車間距離予測値を算出し、車間距離予測値が警報距離より短い場合、警報するように構成している。このように、特許文献1記載の技術にあっては、運転者の個性に適合した領域で適切に警報するように構成することで、運転者に煩瑣感を与えることはない。
特開平7−159525号公報
In this regard, for example, in the technique described in Patent Document 1 below, the margin time is calculated by dividing the detected distance between vehicles at the start of deceleration by the relative speed, and the margin time is stored for each deceleration, and the stored margin time is stored. The estimated time of the driver is estimated from the above, and the value obtained by multiplying the estimated relative time value by the estimated relative time value is added to the detected inter-vehicle distance value to calculate the estimated inter-vehicle distance. If it is shorter, it is configured to warn. As described above, the technique disclosed in Patent Document 1 does not give the driver a sense of inconvenience by appropriately configuring the alarm in a region suitable for the individuality of the driver.
JP-A-7-159525

しかしながら、特許文献1記載の技術にあっては、運転者は安全に停止するためのマージンを大目にとることはあっても、ぎりぎりで減速することは少ないなどの理由から、予測時間として余裕時間の最小値を推定しているため、走行安全性の点で必ずしも満足し難いものであった。   However, in the technique described in Patent Document 1, although the driver may take a large margin for safely stopping the vehicle, the estimated time is not enough because the driver rarely decelerates. Since the minimum time is estimated, it is not always satisfactory in terms of driving safety.

従って、この発明の目的は上記した課題を解決し、煩瑣感を与えることなく、各運転者が必要とする情報を精度良く提供できると共に、走行安全性の点でも欠けることがないようにした車両の走行安全装置を提供することにある。   Therefore, the object of the present invention is to solve the above-described problems, provide the information required by each driver with high accuracy without giving a sense of inconvenience, and prevent the vehicle from lacking in terms of driving safety. It is to provide a traveling safety device.

上記の目的を解決するために、請求項1にあっては、車両の周囲に存在する物体を検知する物体検知手段と、前記物体検知手段によって前記物体が検知されたとき、前記車両と物体の相対距離と相対速度とからなる相対関係を算出する相対関係算出手段と、前記車両と物体との衝突回避を支援する衝突回避支援手段と、前記相対関係に基づいて前記衝突回避支援手段を作動させる支援作動手段とを備えた車両の走行安全装置において、減速意思と車線変更意思の少なくともいずれかからなる運転者意思を検出する運転者意思検出手段と、および前記運転者意思が検出される度に前記相対関係に基づいて前記車両が前記物体に衝突するまでに要すると予想される予想衝突時間を算出する予想衝突時間算出手段と、前記予想衝突時間算出手段が算出した予想衝突時間の中で算出頻度が最も多い予想衝突時間を最多算出予想衝突時間として記憶する最多算出予想衝突時間記憶手段とを備えると共に、前記最多算出予想衝突時間記憶手段は、前記予想衝突時間算出手段が算出した予想衝突時間を前記最多算出予想衝突時間と比較し、その差が所定時間以上となる予想衝突時間の算出回数が所定回数に達したとき、前記最多予想衝突時間を増加補正し、前記支援作動手段は、前記算出された予想衝突時間が前記記憶された最多算出予想衝突時間以下であると共に、前記運転者意思が検出されないときのみ、前記衝突回避支援手段を作動させる如く構成した。 In order to solve the above-mentioned object, in claim 1, when the object is detected by the object detecting means, the object detecting means for detecting an object existing around the vehicle, the vehicle and the object are detected. Relative relationship calculating means for calculating a relative relationship consisting of relative distance and relative speed, collision avoidance supporting means for supporting collision avoidance between the vehicle and an object, and operating the collision avoidance supporting means based on the relative relationship In a vehicle travel safety device provided with support operating means, driver intention detecting means for detecting driver intention comprising at least one of a deceleration intention and a lane change intention, and each time the driver intention is detected An expected collision time calculation means for calculating an expected collision time expected to be required until the vehicle collides with the object based on the relative relationship, and an expected collision time calculation means. With and a largest calculated estimated collision time storage means for storing a predicted collision predicted collision time calculation frequency is highest among the time that the most calculated estimated collision time, the largest calculated estimated collision time storage means, the estimated collision time The predicted collision time calculated by the calculating means is compared with the maximum calculated predicted collision time, and when the calculated number of predicted collision times at which the difference is equal to or greater than the predetermined time reaches a predetermined number, the maximum predicted collision time is increased and corrected. the support actuating means, together with the calculated predicted collision time is less than the stored largest calculated estimated collision time, only when the driver's intention is not detected, and constructed as actuating the collision avoidance assistance means .

請求項に係る車両の走行安全装置にあっては、前記支援作動手段は、前記物体検知手段によって前記車両の斜め後方に存在する物体が検知された場合、前記予想衝突時間算出手段が算出した予想衝突時間が前記最多算出予想衝突時間以下であると共に、前記物体に接近する方向への前記車線変更意思が検出されたとき、前記衝突回避支援手段を作動させる如く構成した。 In the vehicle travel safety device according to claim 2, when the object detection unit detects an object that is present obliquely behind the vehicle, the assist operation unit calculates the expected collision time calculation unit. When the predicted collision time is equal to or shorter than the maximum calculated predicted collision time and the intention to change the lane in the direction approaching the object is detected, the collision avoidance support means is configured to operate.

請求項に係る車両の走行安全装置にあっては、前記車両が走行する路面の状況を検出する路面状況検出手段を備えると共に、前記最多算出予想衝突時間記憶手段は、前記路面状況検出手段によって前記路面が低摩擦係数路面と検出されたとき、前記最多算出予想衝突時間を増加補正する如く構成した。 In the vehicle safety device according to claim 3 , the vehicle safety device includes road surface condition detecting means for detecting a road surface condition on which the vehicle travels, and the maximum calculation predicted collision time storage means is provided by the road surface condition detecting means. When the road surface is detected as a low friction coefficient road surface, the maximum calculation expected collision time is increased and corrected.

請求項に係る車両の走行安全装置にあっては、前記車両が走行する路面の勾配を検出する路面勾配検出手段を備えると共に、前記最多算出予想衝突時間記憶手段は、前記路面勾配検出手段の検出結果に基づいて前記最多算出予想衝突時間を補正する如く構成した。 The vehicle safety device according to claim 4 includes road surface gradient detection means for detecting a gradient of a road surface on which the vehicle travels, and the most frequently calculated predicted collision time storage means includes the road surface gradient detection means. Based on the detection result, the most frequently calculated expected collision time is corrected.

請求項に係る車両の走行安全装置にあっては、前記車両の減速度を検出する減速度検出手段と、前記車両の操舵角速度を検出する操舵角検出手段とを備えると共に、前記最多算出予想衝突時間記憶手段は、所定値以上の減速度または所定値以上の操舵角速度が検出された時点で前記予想衝突時間算出手段によって算出された前記予想衝突時間を、前記最多算出予想衝突時間として記憶される対象から除外する如く構成した。 The vehicle travel safety device according to claim 5 includes deceleration detection means for detecting deceleration of the vehicle and steering angle detection means for detecting a steering angular speed of the vehicle, and the maximum calculation prediction. The collision time storage means stores the predicted collision time calculated by the predicted collision time calculation means when the deceleration greater than a predetermined value or the steering angular velocity greater than a predetermined value is detected as the most frequently calculated predicted collision time. Configured to be excluded from the target.

請求項1にあっては、減速意思と車線変更意思の少なくともいずれかからなる運転者意思を検出し、運転者意思が検出される度に車両の周囲に存在する物体との相対距離と相対速度とからなる相対関係に基づいて車両が物体に衝突するまでに要すると予想される予想衝突時間を算出し、算出した予想衝突時間の中で算出頻度が最も多い予想衝突時間を最多算出予想衝突時間として記憶すると共に、算出した予想衝突時間を最多算出予想衝突時間と比較し、その差が所定時間以上となる予想衝突時間の算出回数が所定回数に達したとき、最多予想衝突時間を増加補正し、算出された予想衝突時間が記憶された最多算出予想衝突時間以下であると共に、減速意思が検出されないときのみ、物体の衝突回避を支援する衝突回避支援手段を作動させる如く構成、換言すれば、通常の運転と異なる運転データから運転者の焦燥感といった心理状態まで推定し、通常とは異なる心理状態にあると推定される場合には、最多算出予想衝突時間を増加補正して早期に衝突回避支援手段を作動させると共に、運転者が通常行っている運転操作のタイミングを記憶し、そのタイミングを考慮して衝突回避支援手段を作動させる如く構成したので、煩瑣感を与えることなく、各運転者が必要とする情報を精度良く提供できると共に、走行安全性を向上させることができるAccording to claim 1, a driver's intention comprising at least one of a deceleration intention and a lane change intention is detected, and a relative distance and a relative speed with an object existing around the vehicle each time the driver's intention is detected. Calculate the expected collision time that is expected to be required for the vehicle to collide with the object based on the relative relationship consisting of And the calculated predicted collision time is compared with the maximum calculated predicted collision time, and when the calculated number of predicted collision times at which the difference is equal to or greater than the predetermined time reaches the predetermined number, the maximum predicted collision time is increased and corrected. , together with the calculated predicted collision time is less than the stored largest calculated estimated collision time, only when the deceleration intention is not detected, actuating the collision avoidance assist means for supporting the collision avoidance of objects Ku configuration, in other words, when estimated from the normal operation and different operating data to the psychological state such frustration of the driver is estimated to be in a different psychological states and usually increases the most calculating estimated collision time Since the collision avoidance support means is operated at an early stage after correction, the timing of the driving operation normally performed by the driver is stored, and the collision avoidance support means is operated in consideration of the timing. Without giving, the information which each driver | operator needs can be provided accurately, and driving safety can be improved .

請求項に係る車両の走行安全装置にあっては、車両の斜め後方に存在する物体が検知された場合、予想衝突時間が最多算出予想衝突時間以下であると共に、物体に接近する方向への車線変更意思が検出されたとき、衝突回避支援手段を作動させる如く構成、換言すれば、運転者が通常行っている車線変更操作のタイミングを記憶し、そのタイミングが徒過してから車線変更操作が行われた場合に衝突回避支援手段を作動させる如く構成したので、煩瑣感を与えることなく、衝突を回避することができる。 In the vehicle travel safety device according to claim 2, when an object that is present obliquely behind the vehicle is detected, the predicted collision time is less than or equal to the maximum calculated predicted collision time, and in a direction approaching the object. When the intention to change lanes is detected, the collision avoidance support means is configured to operate, in other words, the timing of the lane change operation normally performed by the driver is stored, and the lane change operation is performed after the timing has passed. Since the collision avoidance support means is configured to operate when the operation is performed, the collision can be avoided without giving a sense of inconvenience.

請求項に係る車両の走行安全装置にあっては、車両が走行する路面の状況を検出し、路面が低摩擦係数路面と検出されたとき、最多算出予想衝突時間を増加補正する如く構成したので、濡れるなどして乾燥路面よりも制動距離が増加する低摩擦係数路面を走行するときは、然らざる場合に比して早期に、衝突回避支援手段を作動させることから、上記した効果に加え、路面状況に合致した一層適切なタイミングで情報を提供することができる。 The vehicle safety device according to claim 3 is configured to detect the condition of the road surface on which the vehicle travels, and to increase and correct the most frequently calculated predicted collision time when the road surface is detected as a low friction coefficient road surface. Therefore, when driving on a low friction coefficient road surface where the braking distance increases compared to the dry road surface due to getting wet, the collision avoidance support means is activated earlier than in the case of the other case, so the above effect is achieved. In addition, information can be provided at a more appropriate timing that matches the road surface condition.

請求項に係る車両の走行安全装置にあっては、車両が走行する路面の勾配を検出し、その検出結果に基づいて最多算出予想衝突時間を補正する如く構成したので、例えば、り勾配のときは減少補正して衝突回避支援手段を遅めに作動させる、あるいは下り勾配のときは増加補正して早めに作動させることも可能となることから、上記した効果に加え、路面状況に合致した一層適切なタイミングで情報を提供することができる。 In the travel safety apparatus for a vehicle according to claim 4, to detect the gradient of the road surface on which the vehicle travels, since as configured to correct the most calculating estimated collision time on the basis of the detection result, for example, upper Ri gradient It is possible to operate the collision avoidance support means later by correcting the decrease at the time of driving, or to increase the speed by correcting the increase at the time of descending slope. Information can be provided at a more appropriate timing.

請求項に係る車両の走行安全装置にあっては、車両の減速度と操舵角速度を検出すると共に、所定値以上の減速度または所定値以上の操舵角速度が検出された時点で算出された予想衝突時間を最多算出予想衝突時間として記憶される対象から除外する如く構成、換言すれば、通常の運転と異なる運転データを最多算出予想衝突時間として記憶される対象から除外する如く構成したので、上記した効果に加え、一過的な事象の影響を受けるのを防止することができ、最多算出予想衝突時間を正確に算出することができる。 In the vehicle travel safety device according to claim 5 , the vehicle deceleration and the steering angular velocity are detected, and the prediction calculated when the deceleration greater than a predetermined value or the steering angular velocity greater than the predetermined value is detected. Since the configuration is such that the collision time is excluded from the object stored as the most frequently calculated predicted collision time, in other words, the operation data different from the normal operation is excluded from the object stored as the most frequently calculated predicted collision time. In addition to the effect, it is possible to prevent the influence of a transient event from being affected, and it is possible to accurately calculate the most frequently calculated predicted collision time.

以下、添付図面に即してこの発明に係る車両の走行安全装置を実施するための最良の形態について説明する。   The best mode for carrying out a vehicle travel safety device according to the present invention will be described below with reference to the accompanying drawings.

図1は、この発明の第1実施例に係る車両の走行安全装置を全体的に示す概略図である。   FIG. 1 is a schematic diagram generally showing a vehicle travel safety device according to a first embodiment of the present invention.

図1において、符号10は車両を示し、その前部には4気筒の内燃機関(図1で「ENG」と示し、以下「エンジン」という)12が搭載される。エンジン12の出力は自動変速機(図1で「T/M」と示す)14に入力される。自動変速機14は前進5速、後進1速の有段式であり、エンジン12の出力はそこで適宜変速されて左右の前輪16に伝えられ、左右の前輪16を駆動しつつ、左右の後輪20を従動させて車両10を走行させる。   In FIG. 1, reference numeral 10 denotes a vehicle, and a four-cylinder internal combustion engine (shown as “ENG” in FIG. 1, hereinafter referred to as “engine”) 12 is mounted on the front thereof. The output of the engine 12 is input to an automatic transmission (shown as “T / M” in FIG. 1) 14. The automatic transmission 14 is a stepped type with 5 forward speeds and 1 reverse speed, and the output of the engine 12 is appropriately shifted there and transmitted to the left and right front wheels 16, driving the left and right front wheels 16, and the left and right rear wheels. 20 is driven and the vehicle 10 is driven.

車両10の運転席にはオーディオスピーカとインディケータからなる警報装置22が設けられ、音声と視覚によって運転者に警報する(後述)。車両10の運転席床面に配置されたブレーキペダル24は、マスタバック26、マスタシリンダ30およびブレーキ油圧機構32を介して左右の前輪16と後輪20のそれぞれに装着されたブレーキ(ディスクブレーキ)34に接続される。   The driver's seat of the vehicle 10 is provided with an alarm device 22 including an audio speaker and an indicator, and alerts the driver by voice and vision (described later). A brake pedal 24 disposed on the driver's seat floor of the vehicle 10 is a brake (disc brake) mounted on each of the left and right front wheels 16 and rear wheels 20 via a master back 26, a master cylinder 30 and a brake hydraulic mechanism 32. 34.

運転者がブレーキペダル24を操作すると(踏み込むと)、その踏み込み力(踏力)はマスタバック26で増力され、マスタシリンダ30は増力された踏み込み力で制動圧を発生し、ブレーキ油圧機構32を介して前輪16と後輪20のそれぞれに装着されたブレーキ34を動作させ、車両10を減速させる(制動する)。ブレーキペダル24の付近にはブレーキスイッチ36が配置され、運転者によってブレーキペダル24が操作されるとき、オン信号を出力する。   When the driver operates (depresses) the brake pedal 24, the depressing force (depressing force) is increased by the master back 26, and the master cylinder 30 generates a braking pressure with the increased depressing force, via the brake hydraulic mechanism 32. Then, the brakes 34 attached to the front wheels 16 and the rear wheels 20 are operated to decelerate (brake) the vehicle 10. A brake switch 36 is disposed in the vicinity of the brake pedal 24 and outputs an ON signal when the driver operates the brake pedal 24.

ブレーキ油圧機構32は、リザーバに接続される油路に介挿された電磁ソレノイドバルブ群、油圧ポンプ、および油圧ポンプを駆動する電動モータ(全て図示せず)などを備える。電磁ソレノイドバルブ群は駆動回路(図示せず)を介してECU(電子制御ユニット)40に接続され、よって4個のブレーキ34は、運転者によるブレーキペダル24の操作とは別に、ECU40によって相互に独立して作動するように構成される。   The brake hydraulic mechanism 32 includes an electromagnetic solenoid valve group inserted in an oil passage connected to a reservoir, a hydraulic pump, and an electric motor (all not shown) that drives the hydraulic pump. The electromagnetic solenoid valve group is connected to an ECU (Electronic Control Unit) 40 via a drive circuit (not shown). Therefore, the four brakes 34 are mutually connected by the ECU 40 separately from the operation of the brake pedal 24 by the driver. Configured to operate independently.

車両10の前部には第1のミリ波レーダ42が設けられて前方(車両進行方向)に向けて変調波を発信すると共に、車両10の後部には第2のミリ波レーダ44が設けられて後方に向けて変調波を発信する。第1、第2のミリ波レーダ42,44の出力は共にマイクロコンピュータからなる、第1、第2のレーダ出力処理ECU(電子制御ユニット)42a,44aにそれぞれ送られる。   A first millimeter wave radar 42 is provided at the front portion of the vehicle 10 to transmit a modulated wave toward the front (vehicle traveling direction), and a second millimeter wave radar 44 is provided at the rear portion of the vehicle 10. Then, the modulated wave is transmitted backward. The outputs of the first and second millimeter wave radars 42 and 44 are sent to first and second radar output processing ECUs (electronic control units) 42a and 44a, both of which are microcomputers.

第1、第2のレーダ出力処理ECU42a,44aにおいて、第1、第2のミリ波レーダ42,44から発信された変調波はアンテナ(図示せず)を介して受信された受信波とミキシングされて車両10の前方あるいは後方の検知エリア内に存在する、即ち、車両10の周囲に存在する、先行車あるいは後行車などの物体の有無が検知される。第1、第2のレーダ出力処理ECU42a,44aの出力は、ECU(電子制御ユニット)40に送られる。尚、第1実施例および後述する第2実施例以下において、検知対象である物体は、車両に限られるものではなく、人、自転車、構造物なども含む。   In the first and second radar output processing ECUs 42a and 44a, the modulated waves transmitted from the first and second millimeter wave radars 42 and 44 are mixed with the received waves received via the antenna (not shown). Thus, the presence or absence of an object such as a preceding vehicle or a following vehicle existing in a detection area in front of or behind the vehicle 10, that is, around the vehicle 10, is detected. The outputs of the first and second radar output processing ECUs 42 a and 44 a are sent to an ECU (electronic control unit) 40. In the first embodiment and the second embodiment and later described below, the object to be detected is not limited to the vehicle, but includes a person, a bicycle, a structure, and the like.

図示は省略するが、ECU40は、CPU,RAM,ROM、入出力回路などからなるマイクロコンピュータから構成される。ECU40は、エンジン12が始動されるとき、通電されて動作を開始すると共に、エンジン12が停止されるとき、通電を遮断されて動作を停止する。ECU40は、RAM,ROMに加え、EEPROM40aを備える。EEPROM40aは書き込み自在な不揮発性メモリであり、ECU40が動作を停止した後も書き込まれたデータを保持(記憶)する。   Although illustration is omitted, the ECU 40 is constituted by a microcomputer including a CPU, a RAM, a ROM, an input / output circuit, and the like. The ECU 40 is energized to start operation when the engine 12 is started, and stops operating when the engine 12 is stopped. The ECU 40 includes an EEPROM 40a in addition to the RAM and ROM. The EEPROM 40a is a writable nonvolatile memory, and holds (stores) the written data even after the ECU 40 stops its operation.

前輪16と後輪20の付近には車輪速センサ46がそれぞれ配置され(前後輪について1個ずつ示す)、各車輪の所定回転角度ごとにパルス信号を出力する。車両10の運転席に設けられたステアリングホイール50の付近には操舵角センサ52が配置され、運転者によって入力されたステアリングホイール50の操舵角に比例する出力を生じる。   Wheel speed sensors 46 are arranged in the vicinity of the front wheels 16 and the rear wheels 20 (one for each of the front and rear wheels), and output a pulse signal for each predetermined rotation angle of each wheel. A steering angle sensor 52 is disposed in the vicinity of the steering wheel 50 provided in the driver's seat of the vehicle 10 and generates an output proportional to the steering angle of the steering wheel 50 input by the driver.

また、ステアリングホイール50の付近に配置されたウインカ(方向指示器)スイッチ(図示せず)にはウインカ操作センサ54が接続され、運転者によるウインカ操作方向、即ち、車線変更などで進路が変更されたとき、その変更された方向を示す出力を生じると共に、車両10の適宜位置には光度センサと湿度センサと温度センサからなる路面状況検出センサ56が配置される。   In addition, a turn signal operation sensor 54 is connected to a turn signal (direction indicator) switch (not shown) disposed in the vicinity of the steering wheel 50, and the direction of the turn is changed by the driver's turn signal operation direction, that is, a lane change or the like. When this occurs, an output indicating the changed direction is generated, and a road surface condition detection sensor 56 including a light intensity sensor, a humidity sensor, and a temperature sensor is disposed at an appropriate position of the vehicle 10.

また、エンジン12のクランクシャフト(図示せず)の付近にはクランク角センサ60が配置されてクランク角度信号などのパルス信号を出力すると共に、吸気管(図示せず)には吸気管絶対圧センサ62が配置され、吸気管内絶対圧(エンジン負荷)に応じた信号を出力する。また、スロットルバルブ(図示せず)の付近にはスロットル開度センサ64が配置され、スロットル開度に応じた信号を出力する。   A crank angle sensor 60 is disposed near the crankshaft (not shown) of the engine 12 to output a pulse signal such as a crank angle signal, and an intake pipe absolute pressure sensor is provided to an intake pipe (not shown). 62 is arranged and outputs a signal corresponding to the absolute pressure (engine load) in the intake pipe. A throttle opening sensor 64 is disposed near a throttle valve (not shown) and outputs a signal corresponding to the throttle opening.

上記したセンサ群の出力も、ECU40に送出される。ECU40は4個の車輪速センサ46の出力をカウントし、その平均値を算出するなどして車両10の走行速度を示す車速を検出すると共に、クランク角センサ60の出力をカウントしてエンジン回転数NEを検出する。   The output of the sensor group described above is also sent to the ECU 40. The ECU 40 counts the outputs of the four wheel speed sensors 46, detects the vehicle speed indicating the traveling speed of the vehicle 10 by calculating an average value thereof, and counts the output of the crank angle sensor 60 to measure the engine speed. NE is detected.

また、ECU40は、光度センサと湿度センサと温度センサからなる路面状況検出センサ56に関し、各センサの出力から車両10が走行する路面の状況を検出、より具体的には摩擦係数推定値を算出する。   Further, regarding the road surface condition detection sensor 56 including the light intensity sensor, the humidity sensor, and the temperature sensor, the ECU 40 detects the road surface condition on which the vehicle 10 travels from the output of each sensor, and more specifically calculates the estimated coefficient of friction. .

図2は、図1に示す装置の動作を示すフロー・チャートである。尚、図示のプログラムはECU40によって100msecごとに実行される。   FIG. 2 is a flowchart showing the operation of the apparatus shown in FIG. The illustrated program is executed by the ECU 40 every 100 msec.

以下説明すると、S10において物体が存在するか否か判断(検知)する。図3はその処理(検知動作)を示す説明図であるが、図示の如く、S10においては第1のレーダ出力処理ECU42a(および第2のレーダ出力処理ECU44a)の出力に基づき、車両(自車)10の周囲に先行車(あるいは後行車)などの物体100が存在するか否か判断(検知)する。図3は車両10の前方を検知する場合を示すが、S12の処理においては車両10の後方に後行車などの物体100が存在するか否かも判断(検知)する。   In the following, it is determined (detected) in S10 whether or not an object exists. FIG. 3 is an explanatory diagram showing the processing (detection operation). As shown in FIG. 3, in S10, the vehicle (own vehicle) is based on the output of the first radar output processing ECU 42a (and the second radar output processing ECU 44a). ) It is determined (detected) whether or not an object 100 such as a preceding vehicle (or a following vehicle) exists around 10. FIG. 3 shows a case in which the front of the vehicle 10 is detected. In the process of S12, it is also determined (detected) whether or not an object 100 such as a following vehicle is present behind the vehicle 10.

S10で否定されるときは以降の処理をスキップすると共に、肯定されるときはS12に進み、車両10と検知された物体100との相対距離と相対速度を検出する。相対距離は車両10から物体100までの離間距離を、相対速度は車両10に対する物体100の相対的な移動速度を示すことから、相対距離と相対速度は車両10と物体100の相対関係を意味する。   When the result in S10 is negative, the subsequent processing is skipped. When the result is affirmative, the process proceeds to S12, and the relative distance and relative speed between the vehicle 10 and the detected object 100 are detected. Since the relative distance indicates the separation distance from the vehicle 10 to the object 100 and the relative speed indicates the relative moving speed of the object 100 with respect to the vehicle 10, the relative distance and the relative speed mean a relative relationship between the vehicle 10 and the object 100. .

次いでS14に進み、減速意思または車線変更意思が検出されたか否か判断する。減速意思は運転者が車両10を減速しようとする意思であり、ブレーキスイッチ36の出力から運転者がブレーキ34を操作したか否か検出することで判断する。車線変更意思は運転者が車線を変更しようとする意思であり、ウインカ操作センサ54の出力から判断する。このように、S14では減速意思と車線変更意思からなる運転者意思の有無が検出される。   Next, in S14, it is determined whether or not a deceleration intention or a lane change intention is detected. The intention to decelerate is the intention of the driver to decelerate the vehicle 10, and is determined by detecting whether or not the driver has operated the brake 34 from the output of the brake switch 36. The intention to change the lane is the intention of the driver to change the lane, and is determined from the output of the blinker operation sensor 54. Thus, in S14, the presence or absence of the driver's intention comprising the intention to decelerate and the intention to change lanes is detected.

S14で否定されるときは以降の処理をスキップすると共に、肯定されるときはS16に進み、予想衝突時間TTCを算出する。図3に予想衝突時間TTCを示すが、この予想衝突時間TTCは、S12で検出された相対距離を相対速度で除算して算出する。このように、S16においては、S14で運転者意思が検出される度に、S12で検出された相対速度と相対距離からなる相対関係に基づき、運転者が減速意思または車線変更意思で示される回避行動をとったとき、もしその回避行動がなかったと仮定した場合、車両10が物体100に衝突するまでに要すると予想される予想衝突時間TTCを算出する。   When the result in S14 is negative, the subsequent processing is skipped. When the result is affirmative, the process proceeds to S16 to calculate an expected collision time TTC. FIG. 3 shows an expected collision time TTC. The predicted collision time TTC is calculated by dividing the relative distance detected in S12 by the relative speed. As described above, in S16, whenever the driver's intention is detected in S14, the avoidance is indicated by the driver's intention to decelerate or change lane based on the relative relationship formed by the relative speed and the relative distance detected in S12. When an action is taken, if it is assumed that there is no avoidance action, an expected collision time TTC that is expected to be required until the vehicle 10 collides with the object 100 is calculated.

次いでS18に進み、算出回数カウンタNの値を1つインクリメントし、S20に進んでカウンタNの値が100以上か否か判断する。尚、算出回数カウンタNはイグニションスイッチがオンされたときに零にリセットされ、イグニションスイッチがオフされるまでカウント値を積算する。S20で否定されるときは以降の処理をスキップすると共に、肯定されるときはS22に進み、最多算出予想衝突時間TOを判定し、S24に進んで判定された最多算出予想衝突時間TOをEEPROM40aに記憶する。   Next, in S18, the value of the calculation number counter N is incremented by one, and in S20, it is determined whether or not the value of the counter N is 100 or more. Note that the calculation number counter N is reset to zero when the ignition switch is turned on, and accumulates the count value until the ignition switch is turned off. When the result in S20 is negative, the subsequent processing is skipped, and when the result is affirmative, the process proceeds to S22, where the most frequently calculated predicted collision time TO is determined, and the process proceeds to S24 where the determined maximum calculated predicted collision time TO is stored in the EEPROM 40a. Remember.

図4は、最多算出予想衝突時間TOの判定作業を示す説明図である。図示の如く、横軸に予想衝突時間TTCを、縦軸にその算出頻度をとってヒストグラムで示すと、算出頻度が最も多いTTCの値を求めることができる。このように、算出された予想衝突時間TTCの中で算出頻度が最も多い予想衝突時間を最多算出予想衝突時間TOとして判定して記憶する。ここで算出頻度が最も多い値を判定するのは、その値は当該運転者が通常行う回避動作までの時間、即ち、その運転者は平常、最多算出予想衝突時間TOを目安に回避行動をとると考えられるからである。   FIG. 4 is an explanatory diagram showing the determination work of the most frequently calculated predicted collision time TO. As shown in the figure, when the expected collision time TTC is plotted on the horizontal axis and the calculation frequency is plotted on the vertical axis, the TTC value having the highest calculation frequency can be obtained. In this way, the predicted collision time having the highest calculation frequency in the calculated predicted collision time TTC is determined and stored as the maximum calculated predicted collision time TO. Here, the value with the highest calculation frequency is determined because the value is the time until the avoidance operation normally performed by the driver, that is, the driver normally takes the avoidance action based on the maximum estimated collision time TO. Because it is considered.

図5は同様に図1に示す装置の動作を示すフロー・チャートであり、図2の処理と平行してECU40によって100msecごとに実行される。   FIG. 5 is a flowchart showing the operation of the apparatus shown in FIG. 1 in the same manner, and is executed every 100 msec by the ECU 40 in parallel with the processing of FIG.

以下説明すると、S100において物体100が存在するか否かS12で述べたと同様の手法で判断し、否定されるときは以降の処理をスキップすると共に、肯定されるときはS102に進み、車両10と検知された物体100との相対距離と相対速度、即ち、相対関係を再び検出する。次いでS104に進み、予想衝突時間TTCをS16で述べたと同様の手法で算出する。   In the following description, whether or not the object 100 exists in S100 is determined by the same method as described in S12. When the result is negative, the subsequent processing is skipped, and when the result is positive, the process proceeds to S102. The relative distance and relative speed with respect to the detected object 100, that is, the relative relationship is detected again. Next, in S104, the expected collision time TTC is calculated by the same method as described in S16.

次いでS106に進み、図2フロー・チャートのS24で記憶された最多算出予想衝突時間TOを読み出し、S108に進み、予想衝突時間TTCが最多算出予想衝突時間TO以下であるか否か判断する。即ち、S100で物体100が存在すると判断されてから、最多算出予想衝突時間TO以上の時間が経過したか否か判断する。   Next, the process proceeds to S106, where the most frequently calculated predicted collision time TO stored in S24 of the flow chart of FIG. 2 is read, and the process proceeds to S108, where it is determined whether or not the predicted collision time TTC is less than or equal to the most frequently calculated predicted collision time TO. That is, it is determined whether or not a time equal to or longer than the maximum calculation expected collision time TO has elapsed since it was determined in S100 that the object 100 exists.

S108で否定されるときは以降の処理をスキップすると共に、肯定されるときはS110に進み、減速意思または車線変更意思が検出されたか否かS14で述べたと同様な手法で判断する。S110で肯定されるときは、当該運転者が通常行う回避動作までの時間内に回避動作意思(運転者意思)が検出されたことから、以降の処理をスキップする。   When the result in S108 is negative, the subsequent processing is skipped. When the result is affirmative, the process proceeds to S110, and it is determined by the same method as described in S14 whether or not the intention to decelerate or the lane change is detected. When the result in S110 is affirmative, the following process is skipped because the avoidance action intention (driver intention) is detected within the time until the avoidance action that the driver normally performs.

他方、S110で否定されるときは、当該運転者が通常行う回避動作までの時間内に回避動作意思が検出されていないことから、換言すれば、最多算出予想衝突時間TOが経過すると共に、運転者意思が検出されないことから、S112に進み、そのまま放置すると衝突危険度大と判断し、S114に進み、警報を実行する。S114の処理は具体的には、前記した警報装置22を作動させて音声または視覚で運転者に報知することで行う。   On the other hand, when the result in S110 is negative, the intention of avoidance operation is not detected within the time until the avoidance operation normally performed by the driver. In other words, the maximum calculation expected collision time TO elapses and the driving is performed. Since the person's intention is not detected, the process proceeds to S112, and if it is left as it is, it is determined that the risk of collision is large, the process proceeds to S114, and an alarm is executed. Specifically, the process of S114 is performed by operating the alarm device 22 and notifying the driver by voice or vision.

第1実施例に係る車両の走行安全装置にあっては、上記した如く、減速意思と車線変更意思の少なくともいずれかからなる運転者意思を検出し、運転者意思が検出される度に車両10の周囲に存在する物体100との相対距離と相対速度とからなる相対関係に基づいて車両10が物体100に衝突するまでに要すると予想される予想衝突時間TTCを算出し、算出された予想衝突時間の中で算出頻度が最も多い予想衝突時間を最多算出予想衝突時間TOとして記憶すると共に、記憶された最多算出予想衝突時間TOに基づいて物体100との衝突回避を支援する警報装置(衝突回避支援手段)22を作動させる如く構成、より具体的には予想衝突時間TTCが最多算出予想衝突時間TO以下であると共に、運転者意思が検出されないとき、警報装置22を作動させる如く構成した。   In the vehicle travel safety device according to the first embodiment, as described above, the driver's intention comprising at least one of the intention to decelerate and the intention to change lanes is detected, and the vehicle 10 is detected each time the driver's intention is detected. An expected collision time TTC that is expected to be required for the vehicle 10 to collide with the object 100 is calculated based on a relative relationship consisting of a relative distance and a relative speed with the object 100 existing around the vehicle, and the calculated expected collision is calculated. The predicted collision time with the highest calculation frequency in time is stored as the maximum calculated predicted collision time TO, and an alarm device (collision avoidance) that supports collision avoidance with the object 100 based on the stored maximum calculated predicted collision time TO Support means) 22 is activated, more specifically, when the predicted collision time TTC is less than or equal to the maximum calculated predicted collision time TO and the driver's intention is not detected. It was constructed as to operate the device 22.

換言すれば、運転者が通常行っている運転操作のタイミング、即ち、回避動作までの時間を記憶し、そのタイミング(時間)を考慮して警報装置22を作動させる如く構成したので、煩瑣感を与えることなく、各運転者が必要とする情報を精度良く提供できると共に、走行安全性の点でも欠けることがない。   In other words, the timing of the driving operation normally performed by the driver, that is, the time until the avoidance operation is stored, and the alarm device 22 is activated in consideration of the timing (time). Without giving it, the information required by each driver can be provided with high accuracy, and there is no lack of driving safety.

図6は、この発明の第2実施例に係る車両の走行安全装置の動作を示す、図5と同様のフロー・チャートである。尚、第2実施例においても、図6フロー・チャートは同様に図2の処理と平行して100msecごとに実行される。   FIG. 6 is a flow chart similar to FIG. 5, showing the operation of the vehicle travel safety apparatus according to the second embodiment of the present invention. In the second embodiment, the flowchart of FIG. 6 is also executed every 100 msec in parallel with the processing of FIG.

以下説明すると、S200において、図7に示す如く、車両(自車)10が走行する車線(L1で示す)に隣接する車線(L2で示す)上の後方に後行車などの物体100が存在するか否か、換言すれば車両10の斜め後方に物体100が存在するか否かS10で述べたと同様の手法で判断(検知)する。   Explained below, in S200, as shown in FIG. 7, an object 100 such as a following vehicle exists behind the lane (indicated by L2) adjacent to the lane (indicated by L1) on which the vehicle (own vehicle) 10 travels. In other words, whether or not the object 100 exists obliquely behind the vehicle 10 is determined (detected) by the same method as described in S10.

S200で否定されるときは以降の処理をスキップすると共に、肯定されるときはS202に進み、車両10と検知された物体100との相対距離と相対速度、即ち、相対関係を検出する。次いでS204に進み、予想衝突時間TTCをS16で述べたと同様の手法で算出し、S206に進み、記憶された最多算出予想衝突時間TOを読み出し、S208に進んで予想衝突時間TTCが最多算出予想衝突時間TO以下であるか否か判断する。   When the result in S200 is negative, the subsequent processing is skipped. When the result is affirmative, the process proceeds to S202, and the relative distance and relative speed between the vehicle 10 and the detected object 100, that is, the relative relationship is detected. Next, the process proceeds to S204, and the predicted collision time TTC is calculated by the same method as described in S16. The process proceeds to S206, the stored maximum calculated predicted collision time TO is read, and the process proceeds to S208, where the predicted collision time TTC is the maximum calculated predicted collision. It is determined whether or not it is less than time TO.

図7に予想衝突時間TTCを示すが、この予想衝突時間TTCは、S202で検出された相対速度と相対距離からなる相対関係に基づき、車両10が車線L2に車線変更したとき、回避行動がないと仮定した場合、車両10が物体100に衝突(より正確には物体100が車両10に追突)するまでに要すると予想される時間を意味する。   FIG. 7 shows an estimated collision time TTC. This estimated collision time TTC is based on the relative relationship consisting of the relative speed and the relative distance detected in S202, and there is no avoidance action when the vehicle 10 changes to the lane L2. Assuming that the vehicle 10 collides with the object 100 (more precisely, the time when the object 100 collides with the vehicle 10) is expected.

図8は、第2実施例における最多算出予想衝突時間TOの判定作業を示す説明図である。第2実施例にあっても算出頻度が最も多い予想衝突時間TTCの値を最多算出予想衝突時間TOとして判定して記憶する。第2実施例では、最多算出予想衝突時間TOは、当該運転者が通常行う車線変更時の、回避行動がなされないと仮定したときの、衝突までの予想時間を意味する。   FIG. 8 is an explanatory diagram showing the determination work of the most frequently calculated predicted collision time TO in the second embodiment. Even in the second embodiment, the value of the predicted collision time TTC having the highest calculation frequency is determined and stored as the maximum calculated predicted collision time TO. In the second embodiment, the most frequently calculated predicted collision time TO means an estimated time until a collision when it is assumed that avoidance action is not performed when the driver normally performs a lane change.

図6フロー・チャートの説明に戻ると、S208で否定されるときは以降の処理をスキップすると共に、肯定されるときはS210に進み、物体100が検知された方向への車線変更意思、即ち、車線L2に向けての車線変更意思が検出されたか否かウインカ操作センサ54の出力から判断する。   Returning to the description of the flow chart in FIG. 6, when the result in S208 is negative, the subsequent processing is skipped, and when the result is positive, the process proceeds to S210, and the intention to change the lane in the direction in which the object 100 is detected, that is, It is determined from the output of the turn signal operation sensor 54 whether or not the intention to change the lane toward the lane L2 is detected.

S210で否定されるときは衝突の可能性がないことから以降の処理をスキップすると共に、肯定されるときはS212に進み、そのまま放置すると、車線変更によって物体100と衝突する危険度大と判断し、S214に進み、警報装置22を作動させて警報を実行する。   When the result in S210 is negative, the following process is skipped because there is no possibility of a collision. When the result is affirmative, the process proceeds to S212, and if left as it is, it is determined that the risk of collision with the object 100 due to the lane change is high. In S214, the alarm device 22 is activated to execute an alarm.

尚、残余の構成は、第1実施例と異ならない。   The remaining configuration is not different from the first embodiment.

第2実施例に係る車両の走行安全装置にあっては、車両10の斜め後方に存在する物体が検知された場合、予想衝突時間TTCが最多算出予想衝突時間TO以下であると共に、物体100に接近する方向への車線変更意思が検出されたとき、警報装置22を作動させる如く構成、換言すれば、運転者が通常行っている車線変更操作のタイミングを記憶し、そのタイミングが徒過してから車線変更操作が行われた場合に警報装置22を作動させる如く構成したので、煩瑣感を与えることなく、衝突を回避することができる。   In the traveling safety device for a vehicle according to the second embodiment, when an object existing obliquely behind the vehicle 10 is detected, the predicted collision time TTC is less than or equal to the maximum calculated predicted collision time TO and When the intention to change the lane in the approaching direction is detected, the alarm device 22 is activated. In other words, the timing of the lane change operation that is normally performed by the driver is stored, and the timing is excessive. Since the alarm device 22 is activated when a lane change operation is performed, a collision can be avoided without giving a sense of inconvenience.

図9は、この発明の第3実施例に係る車両の走行安全装置の動作を示す、図6と同様のフロー・チャートである。   FIG. 9 is a flow chart similar to FIG. 6, showing the operation of the vehicle travel safety apparatus according to the third embodiment of the present invention.

以下説明すると、S300において物体が存在するか否か従前の実施例と同様な手法で判断(検知)する。S300で否定されるときは以降の処理をスキップすると共に、肯定されるときはS302に進み、車両10と検知された物体100との相対距離と相対速度を検出する。   In the following, in S300, whether or not an object exists is determined (detected) in the same manner as in the previous embodiment. When the result in S300 is negative, the subsequent processing is skipped. When the result is affirmative, the process proceeds to S302, and the relative distance and relative speed between the vehicle 10 and the detected object 100 are detected.

次いでS304に進み、減速意思または車線変更意思が検出されたか否か判断し、否定されるときは以降の処理をスキップすると共に、肯定されるときはS306に進み、予想衝突時間TTCを同様に算出する。次いでS308に進み、算出回数カウンタNの値を1つインクリメントし、S310に進んでカウンタNの値が100以上か否か判断する。S310で否定されるときは以降の処理をスキップすると共に、肯定されるときはS312に進み、最多算出予想衝突時間TOをS22で述べたと同様の手法で判定し、S314に進んでそれを記憶する。   Next, the process proceeds to S304, where it is determined whether or not a deceleration intention or a lane change intention has been detected. If the determination is negative, the subsequent processing is skipped. If the determination is affirmative, the process proceeds to S306, and the expected collision time TTC is calculated in the same manner. To do. Next, the process proceeds to S308, where the value of the calculation number counter N is incremented by one, and the process proceeds to S310, where it is determined whether the value of the counter N is 100 or more. When the result in S310 is negative, the subsequent processing is skipped. When the result is affirmative, the process proceeds to S312 and the most frequently calculated predicted collision time TO is determined by the same method as described in S22, and the process proceeds to S314 to store it. .

次いでS316に進み、路面状況、より具体的には車両10が走行する路面の状況を検出する。これは、路面状況検出センサ56の出力、より具体的にはその出力に基づいて摩擦係数推定値を算出することで行う。   Next, the process proceeds to S316, and the road surface condition, more specifically, the road surface state on which the vehicle 10 travels is detected. This is performed by calculating a friction coefficient estimated value based on the output of the road surface condition detection sensor 56, more specifically based on the output.

次いでS318に進み、算出された摩擦係数推定値を適宜設定されたしきい値と比較して走行路面は低摩擦係数路面か否か判断する。S318で否定されるときは以降の処理をスキップすると共に、肯定されるときはS320に進み、記憶された最多算出予想衝突時間TOを増加補正する。   Next, in S318, the calculated friction coefficient estimated value is compared with an appropriately set threshold value to determine whether the traveling road surface is a low friction coefficient road surface. When the result in S318 is negative, the subsequent processing is skipped. When the result is affirmative, the process proceeds to S320, and the stored maximum calculation predicted collision time TO is corrected to be increased.

尚、増加補正された最多算出予想衝突時間TOに基づいて衝突危険度大と判断されるときに警報が実行されるなど、残余の構成は、第1実施例あるいは第2実施例と異ならない。   The remaining configuration is the same as that of the first or second embodiment, for example, an alarm is executed when it is determined that the collision risk level is high based on the maximum corrected predicted collision time TO.

第3実施例に係る車両の走行安全装置にあっては、車両10が走行する路面の状況を検出し、路面が低摩擦係数路面と検出されたとき、最多算出予想衝突時間TOを増加補正する如く構成したので、濡れるなどして乾燥路面よりも制動距離が増加する低摩擦係数路面を走行するときは、然らざる場合に比して早期に、警報装置22を作動させることとなり、上記した効果に加え、路面状況に合致した一層適切なタイミングで運転者に情報を提供することができる。   In the travel safety device for a vehicle according to the third embodiment, the condition of the road surface on which the vehicle 10 travels is detected, and when the road surface is detected as a low friction coefficient road surface, the most frequently calculated predicted collision time TO is corrected to be increased. When driving on a road surface with a low coefficient of friction where the braking distance is increased as compared with a dry road surface due to getting wet, the alarm device 22 is activated earlier than in the case where it does not occur. In addition to the effects, information can be provided to the driver at a more appropriate timing that matches the road surface condition.

図10は、この発明の第4実施例に係る車両の走行安全装置の動作を示す、図9と同様のフロー・チャートである。   FIG. 10 is a flowchart similar to FIG. 9 showing the operation of the vehicle travel safety apparatus according to the fourth embodiment of the present invention.

第3実施例と相違する点に焦点をおいて説明すると、S400からS414まで、第3実施例と同様の処理を行ってS416に進み、車両10が走行する路面の勾配を検出する。   The description will be focused on the differences from the third embodiment. From S400 to S414, the same processing as that of the third embodiment is performed, and the process proceeds to S416 to detect the gradient of the road surface on which the vehicle 10 travels.

第4実施例において、路面の勾配の検出は演算で行う。即ち、検出された車速とスロットル開度から予め設定された特性に従って平坦路を走行するときに車両10に期待される予想加速度を3速について算出する。他方、車速の微分値から車両10が実際に生じている実加速度を算出すると共に、同様のパラメータから予め設定された特性に従って補正係数を算出し、算出された実加速度に乗じて3速相当値に補正する。次いで、予想加速度と実加速度(3速相当値)の差分を求めると共に、その平均値を算出し、その平均値が正値であれば上り勾配の度合いを、負値であれば下り勾配の度合いを示す値とする。尚、その詳細は、本出願人が先に提案した特許第2902177号に詳細に記載されているので、これ以上の説明は省略する。   In the fourth embodiment, the road surface gradient is detected by calculation. That is, the expected acceleration expected for the vehicle 10 when traveling on a flat road according to a preset characteristic from the detected vehicle speed and throttle opening is calculated for the third speed. On the other hand, the actual acceleration actually generated by the vehicle 10 is calculated from the differential value of the vehicle speed, the correction coefficient is calculated according to the preset characteristics from the same parameters, and the calculated actual acceleration is multiplied to obtain a value corresponding to the third speed. To correct. Next, the difference between the predicted acceleration and the actual acceleration (equivalent to the 3rd speed) is obtained, and the average value is calculated. If the average value is a positive value, the degree of the upward gradient is obtained. If the average value is a negative value, the degree of the downward gradient is obtained. Is a value indicating. The details are described in detail in Japanese Patent No. 2902177 previously proposed by the applicant of the present invention, and further description thereof will be omitted.

次いでS418に進み、走行路面は上り勾配か否か判断し、肯定されるときはS420に進み、記憶された最多算出予想衝突時間TOを減少補正する。他方、S418で否定されるときはS422に進み、走行路面は下り勾配か否か判断し、肯定されるときはS424に進み、記憶された最多算出予想衝突時間TOを増加補正する。尚、S422で否定されるときは以降の処理をスキップする。   Next, the process proceeds to S418, in which it is determined whether or not the traveling road surface is an upward slope. If the determination is affirmative, the process proceeds to S420, and the stored maximum calculated predicted collision time TO is corrected to be decreased. On the other hand, when the result in S418 is negative, the program proceeds to S422, where it is determined whether or not the traveling road surface is a downward slope. When the result is affirmative, the program proceeds to S424, and the stored maximum calculated predicted collision time TO is corrected to be increased. If the result in S422 is negative, the subsequent processing is skipped.

尚、補正された最多算出予想衝突時間TOに基づいて衝突危険度大と判断されるときに警報が実行されるなど、残余の構成は、第1実施例あるいは第2実施例と異ならない。その結果、上り勾配のときは警報装置22を遅めに作動させる一方、下り勾配のときは早めに作動させることとなる。   The remaining configuration is the same as that of the first or second embodiment, for example, an alarm is executed when it is determined that the collision risk is high based on the corrected maximum calculated predicted collision time TO. As a result, the alarm device 22 is activated later when the vehicle is going uphill, while it is operated earlier when the vehicle is going downhill.

第4実施例に係る車両の走行安全装置にあっては、車両10が走行する路面の勾配を検出し、その検出結果に基づいて最多算出予想衝突時間TOを補正する、具体的には上り勾配のときは減少補正するように構成したので、警報装置22を遅めに作動させることができ、路面状況に合致した一層適切なタイミングで運転者に情報を提供することができる。また、下り勾配のときは増加補正するように構成したので、警報装置22を早めに作動させることができ、同様に、路面状況に合致した一層適切なタイミングで運転者に情報を提供することができる。   In the vehicle travel safety device according to the fourth embodiment, the gradient of the road surface on which the vehicle 10 travels is detected, and the most frequently calculated predicted collision time TO is corrected based on the detection result. In this case, since the decrease correction is performed, the alarm device 22 can be activated later, and information can be provided to the driver at a more appropriate timing that matches the road surface condition. Further, since the increase correction is made when the vehicle is on a downward slope, the alarm device 22 can be operated early, and similarly, information can be provided to the driver at a more appropriate timing that matches the road surface condition. it can.

図11は、この発明の第5実施例に係る車両の走行安全装置の動作を示す、図2と同様のフロー・チャートである。   FIG. 11 is a flowchart similar to FIG. 2 showing the operation of the vehicle travel safety apparatus according to the fifth embodiment of the present invention.

第1実施例と相違する点に焦点をおいて説明すると、S500からS506まで、第1実施例と同様の処理を行った後、S508に進み、減速度または操舵角速度を検出する。減速度は、検出された車速の微分値を算出し、それが負値か否かで検出する。操舵角速度も同様に、操舵角センサ52の出力から検出された操舵角の微分値を算出することで行う。   The description will focus on the differences from the first embodiment. After performing the same processing as in the first embodiment from S500 to S506, the process proceeds to S508 to detect deceleration or steering angular velocity. The deceleration is detected by calculating a differential value of the detected vehicle speed and determining whether or not it is a negative value. Similarly, the steering angular velocity is calculated by calculating the differential value of the steering angle detected from the output of the steering angle sensor 52.

次いでS510に進み、所定値以上の(絶対値において)減速度または所定値以上の操舵角速度が検出されたか否か判断し、肯定されるときはS512に進み、今回S506で算出された予想衝突時間TTCを削除する。他方、S510で否定されるときはS514に進み、算出回数カウンタNの値を1つインクリメントする。   Next, the process proceeds to S510, where it is determined whether a deceleration greater than a predetermined value (in absolute value) or a steering angular speed greater than a predetermined value has been detected. If the determination is affirmative, the process proceeds to S512, and the expected collision time calculated in S506 this time. Delete TTC. On the other hand, when the result in S510 is NO, the program proceeds to S514, and the value of the calculation number counter N is incremented by one.

次いでS516に進み、カウンタNの値が100以上か否か判断し、否定されるときは以降の処理をスキップすると共に、肯定されるときはS518に進み、最多算出予想衝突時間TOをS22で述べたと同様の処理で判定し、S520に進んでそれを記憶する。   Next, the process proceeds to S516, where it is determined whether the value of the counter N is 100 or more. When the result is negative, the subsequent processing is skipped. When the result is affirmative, the process proceeds to S518, and the most frequently calculated predicted collision time TO is described in S22. The process is the same as that described above, and the process proceeds to S520 to store it.

第5実施例に係る車両の走行安全装置にあっては、所定値以上の減速度または所定値以上の操舵角速度が検出された時点で算出された予想衝突時間TTCを、最多算出予想衝突時間TOとして記憶される対象から除外する如く構成、換言すれば、通常の運転と異なる運転データとみなして最多算出予想衝突時間TOとして記憶される対象から除外する如く構成したので、一過的な事象の影響を受けるのを防止することができ、よって最多算出予想衝突時間TOを正確に算出することができる。   In the vehicle travel safety device according to the fifth embodiment, the predicted collision time TTC calculated when a deceleration greater than a predetermined value or a steering angular velocity greater than a predetermined value is detected is used as the maximum calculated predicted collision time TO. Since it is configured so as to be excluded from the target stored as the most frequently calculated predicted collision time TO, it is regarded as driving data different from the normal driving, in other words, the transient event It is possible to prevent the influence, and therefore the maximum calculation expected collision time TO can be accurately calculated.

尚、記憶された最多算出予想衝突時間TOに基づいて衝突危険度大と判断されるときに警報が実行されるなど、残余の構成は、第1あるいは第2実施例と異ならない。   The remaining configuration is the same as in the first or second embodiment, for example, an alarm is issued when it is determined that the collision risk level is large based on the stored maximum calculated predicted collision time TO.

図12は、この発明の第6実施例に係る車両の走行安全装置の動作を示す、図11と同様のフロー・チャートである。   FIG. 12 is a flowchart similar to FIG. 11 showing the operation of the vehicle travel safety apparatus according to the sixth embodiment of the present invention.

従前の実施例と相違する点に焦点をおいて説明すると、S600からS606まで、第5実施例と同様の処理を行った後、S608に進み、記憶された最多算出予想衝突時間TOを読み出し、S610に進み、今回S606で算出された予想衝突時間TTCとS608で読み出された最多算出予想衝突時間TOを比較し、その差が絶対値において所定時間K以上となるか否か判断する。   When focusing on the differences from the previous embodiment, after performing the same processing as in the fifth embodiment from S600 to S606, the process proceeds to S608, and the stored maximum calculation predicted collision time TO is read out. Proceeding to S610, the predicted collision time TTC calculated in S606 this time is compared with the most frequently calculated predicted collision time TO read in S608, and it is determined whether or not the difference is equal to or greater than the predetermined time K in absolute value.

S610で肯定されるときはS612に進み、算出回数カウンタNの値を1つインクリメントし、S614に進み、カウンタNの値が5(所定回数)に達したか、換言すれば予想衝突時間TTCと最多算出予想衝突時間TOの差が絶対値において所定時間K以上となる予想衝突時間TTCの算出回数が所定回数(5回)に達したか判断する。そして、S614で否定されるときは以降の処理をスキップすると共に、肯定されるときはS616に進み、記憶された最多算出予想衝突時間TOを増加補正する。   When the result in S610 is affirmative, the process proceeds to S612, the value of the calculation number counter N is incremented by one, and the process proceeds to S614, where the value of the counter N has reached 5 (predetermined number), in other words, the expected collision time TTC. It is determined whether the number of times of calculation of the predicted collision time TTC in which the difference in the maximum calculated predicted collision time TO is equal to or greater than the predetermined time K in absolute value has reached a predetermined number (5 times). When the result in S614 is negative, the subsequent processing is skipped. When the result is affirmative, the process proceeds to S616, and the stored maximum calculation predicted collision time TO is increased and corrected.

次いでS618に進み、算出回数カウンタNの値を零にリセットする。尚、S610で否定されるときはS612からS618の処理をスキップする。   Next, in S618, the value of the calculation number counter N is reset to zero. If the determination at S610 is No, the processing from S612 to S618 is skipped.

尚、増加補正された最多算出予想衝突時間TOに基づいて衝突危険度大と判断されるときに警報が実行されるなど、残余の構成は、第1あるいは第2実施例と異ならない。   The remaining configuration is the same as in the first or second embodiment, for example, an alarm is issued when it is determined that the collision risk level is high based on the maximum corrected predicted collision time TO.

第6実施例に係る車両の走行安全装置にあっては、予想衝突時間TTCを最多算出予想衝突時間TOと比較し、その差が所定時間K以上となる予想衝突時間の算出回数が5回(所定回数)以上のとき、最多予想衝突時間を増加補正する如く構成、換言すれば、通常の運転と異なる運転データから運転者の焦燥感といった心理状態まで推定し、通常とは異なる心理状態にあると推定される場合には、最多算出予想衝突時間TOを増加補正して早期に衝突回避支援手段を作動させる如く構成したので、上記した効果に加え、走行安全性を一層向上させることができる。   In the traveling safety device for a vehicle according to the sixth embodiment, the predicted collision time TTC is compared with the maximum calculated predicted collision time TO, and the number of times of calculation of the predicted collision time when the difference is equal to or greater than the predetermined time K is 5 When the number of times is equal to or greater than a predetermined number of times, the maximum expected collision time is configured to be increased and corrected. In other words, a psychological state such as a driver's feeling of frustration is estimated from driving data different from normal driving, and the psychological state is different from normal In the case where it is estimated that the maximum number of predicted predicted collision times TO is increased and corrected so that the collision avoidance support means is activated at an early stage, the driving safety can be further improved in addition to the effects described above.

第1から第6実施例にあっては、上記の如く、車両10の周囲に存在する物体100を検知する物体検知手段(第1のミリ波レーダ42、第1のレーダ出力処理ECU42a、第2のミリ波レーダ44、第2のレーダ出力処理ECU44a、ECU40,S10,S100,S200,S300,S400,S500,S600)と、前記物体検知手段によって前記物体が検知されたとき、前記車両と物体の相対距離と相対速度とからなる相対関係を算出する相対関係算出手段(ECU40,S12,S102,S202,S302,S402,S502,S602)と、前記車両と物体との衝突回避を支援する衝突回避支援手段(警報装置22)と、前記相対関係に基づいて前記衝突回避支援手段を作動させる支援作動手段(ECU40,S114,S214)とを備えた車両の走行安全装置において、減速意思と車線変更意思の少なくともいずれかからなる運転者意思を検出する運転者意思検出手段(ECU40,S14,S110,S210,S304,S404,S504,S604)と、および前記運転者意思が検出される度に前記相対関係に基づいて前記車両が前記物体に衝突するまでに要すると予想される予想衝突時間TTCを算出する予想衝突時間算出手段(ECU40,S16,S104,S204,S306,S406,S506,S606)と、前記予想衝突時間算出手段が算出した予想衝突時間の中で算出頻度が最も多い予想衝突時間を最多算出予想衝突時間として記憶する最多算出予想衝突時間記憶手段(ECU40,S22,S24,S312,S314,S412,S414,S518,S520)とを備えると共に、前記支援作動手段は、前記記憶された最多算出予想衝突時間に基づいて前記衝突回避支援手段を作動させる(ECU40,S114,S214)如く構成した。   In the first to sixth embodiments, as described above, the object detection means (the first millimeter wave radar 42, the first radar output processing ECU 42a, the second radar) detects the object 100 existing around the vehicle 10. When the object is detected by the millimeter wave radar 44, the second radar output processing ECU 44a, the ECU 40, S10, S100, S200, S300, S400, S500, S600) and the object detecting means, the vehicle and the object are detected. Relative relationship calculating means (ECU 40, S12, S102, S202, S302, S402, S502, S602) for calculating a relative relationship consisting of a relative distance and a relative speed, and collision avoidance support for supporting collision avoidance between the vehicle and the object Means (alarm device 22) and support actuating means (ECU 40,) that actuates the collision avoidance support means based on the relative relationship 114, S214), a driver intention detecting means (ECU 40, S14, S110, S210, S304, S404) for detecting a driver intention comprising at least one of a deceleration intention and a lane change intention. , S504, S604) and an expected collision time calculation that calculates an expected collision time TTC that is expected to be required until the vehicle collides with the object based on the relative relationship each time the driver's intention is detected. Meaning (ECU 40, S16, S104, S204, S306, S406, S506, S606) and the predicted collision time with the highest calculation frequency among the predicted collision times calculated by the predicted collision time calculation means is set as the maximum calculated predicted collision time. The most frequently calculated predicted collision time storage means (ECU 40, S22, S24, S312, S3) 4, S 412, S 414, S 518, S 520), and the support operating means is configured to operate the collision avoidance supporting means based on the stored maximum calculated expected collision time (ECU 40, S 114, S 214). did.

第1から第6実施例に係る車両の走行安全装置にあっては、前記支援作動手段は、前記予想衝突時間算出手段が算出した予想衝突時間TTCが前記最多算出予想衝突時間TO以下であると共に、前記運転者意思が検出されないとき、前記衝突回避支援手段を作動させる(ECU40,S108からS114,S208からS214)如く構成した。   In the vehicle travel safety device according to the first to sixth embodiments, the assist activation means has an expected collision time TTC calculated by the expected collision time calculation means that is equal to or less than the maximum calculated expected collision time TO. When the driver's intention is not detected, the collision avoidance support means is operated (ECU 40, S108 to S114, S208 to S214).

第2実施例に係る車両の走行安全装置にあっては、前記支援作動手段は、前記物体検知手段によって車両の斜め後方に存在する物体が検知された場合(ECU40,S200)、前記予想衝突時間算出手段が算出した予想衝突時間TTCが前記最多算出予想衝突時間TO以下であると共に、前記物体に接近する方向への前記車線変更意思が検出されたとき、前記衝突回避支援手段を作動させる(ECU40,S208からS214)如く構成した。   In the vehicle travel safety apparatus according to the second embodiment, when the object detection unit detects an object that is present obliquely behind the vehicle (ECU 40, S200), the support operation unit performs the expected collision time. When the predicted collision time TTC calculated by the calculation means is equal to or less than the maximum calculated predicted collision time TO and the intention to change the lane in the direction approaching the object is detected, the collision avoidance support means is activated (ECU 40 , S208 to S214).

第3実施例に係る車両の走行安全装置にあっては、前記車両が走行する路面の状況を検出する路面状況検出手段(路面状況検出センサ56,ECU40,S316)を備えると共に、前記最多算出予想衝突時間記憶手段は、前記路面状況検出手段によって前記路面が低摩擦係数路面と検出されたとき、前記最多算出予想衝突時間TOを増加補正する(ECU40,S318,S320)如く構成した。   The vehicle travel safety apparatus according to the third embodiment includes road surface condition detection means (road surface condition detection sensor 56, ECU 40, S316) for detecting the condition of the road surface on which the vehicle travels, and the maximum calculation prediction. The collision time storage means is configured to increase and correct the most frequently calculated predicted collision time TO when the road surface condition detection means detects the road surface as a low friction coefficient road surface (ECU 40, S318, S320).

第4実施例に係る車両の走行安全装置にあっては、前記車両が走行する路面の勾配を検出する路面勾配検出手段(車輪速センサ46、スロットル開度センサ64,ECU40,S416)を備えると共に、前記最多算出予想衝突時間記憶手段は、前記路面勾配検出手段の検出結果に基づいて前記最多算出予想衝突時間を補正する(ECU40,S418からS424)如く構成した。   The vehicle travel safety apparatus according to the fourth embodiment includes road surface gradient detection means (wheel speed sensor 46, throttle opening sensor 64, ECU 40, S416) for detecting the gradient of the road surface on which the vehicle travels. The maximum calculation predicted collision time storage unit is configured to correct the maximum calculation predicted collision time (ECU 40, S418 to S424) based on the detection result of the road surface gradient detection unit.

第5実施例に係る車両の走行安全装置にあっては、前記車両の減速度を検出する減速度検出手段(車輪速センサ46、ECU40,S508)と、前記車両の操舵角速度を検出する操舵角検出手段(操舵角センサ52,ECU40,S508)とを備えると共に、前記最多算出予想衝突時間記憶手段は、所定値以上の減速度または所定値以上の操舵角速度が検出された時点で前記予想衝突時間算出手段によって算出された前記予想衝突時間TCCを、前記最多算出予想衝突時間TOとして記憶される対象から除外する(ECU40,S510からS512)如く構成した。   In the vehicle travel safety apparatus according to the fifth embodiment, deceleration detection means (wheel speed sensor 46, ECU 40, S508) for detecting the deceleration of the vehicle, and a steering angle for detecting the steering angular velocity of the vehicle. And detecting means (steering angle sensor 52, ECU 40, S508), and the most frequently calculated predicted collision time storage means detects the predicted collision time when a deceleration greater than a predetermined value or a steering angular speed greater than a predetermined value is detected. The predicted collision time TCC calculated by the calculation means is excluded from the object stored as the most frequently calculated predicted collision time TO (ECU 40, S510 to S512).

第6実施例に係る車両の走行安全装置にあっては、前記最多算出予想衝突時間記憶手段は、前記予想衝突時間算出手段が算出した予想衝突時間TTCを前記最多算出予想衝突時間TOと比較し、その差が所定時間K以上となる予想衝突時間の算出回数が所定回数(5回)に達したとき、前記最多予想衝突時間を増加補正する(ECU40,S610からS618)如く構成した。   In the vehicle travel safety apparatus according to the sixth embodiment, the maximum calculation predicted collision time storage means compares the predicted collision time TTC calculated by the predicted collision time calculation means with the maximum calculation predicted collision time TO. When the number of times of calculation of the expected collision time at which the difference is equal to or greater than the predetermined time K reaches the predetermined number (5 times), the maximum expected collision time is increased and corrected (ECU 40, S610 to S618).

尚、上記において、警報装置22は音声と視覚の双方によって警報するようにしたが、警報装置22は音声と視覚のいずれか一方のみで警報しても良い。さらには、警報装置22に代え、あるいはそれに加え、車両10の運転席(図示せず)を適宜な手段で振動させる、シートベルト(図示せず)を引き込むなどしても良い。   In the above description, the alarm device 22 is alarmed by both sound and vision, but the alarm device 22 may alarm only by either sound or vision. Further, instead of or in addition to the alarm device 22, a driver's seat (not shown) of the vehicle 10 may be vibrated by an appropriate means, or a seat belt (not shown) may be pulled in.

また、ミリ波レーダの出力から物体を検知するようにしたが、それに代え、あるいはそれに加え、レーザレーダあるいはCCDカメラを用いても良い。   Although an object is detected from the output of the millimeter wave radar, a laser radar or a CCD camera may be used instead of or in addition to it.

この発明の第1実施例に係る車両の走行安全装置を全体的に示す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing an overall traveling safety device for a vehicle according to a first embodiment of the present invention. 図1に示す装置の動作を示すフロー・チャートである。It is a flowchart which shows operation | movement of the apparatus shown in FIG. 図2に示す処理のうちの物体の検知動作を示す説明図である。It is explanatory drawing which shows the detection operation | movement of the object among the processes shown in FIG. 図2に示す処理のうちの最多算出予想衝突時間TOの判定作業を示す説明図である。It is explanatory drawing which shows the determination operation | work of the largest calculation estimated collision time TO among the processes shown in FIG. 同様に図1に示す装置の動作を示すフロー・チャートであり、図2の処理と平行して実行されるフロー・チャートである。Similarly, it is a flowchart showing the operation of the apparatus shown in FIG. 1, and is a flowchart executed in parallel with the processing of FIG. この発明の第2実施例に係る車両の走行安全装置の動作を示す、図5と同様のフロー・チャートである。FIG. 6 is a flow chart similar to FIG. 5 illustrating the operation of the vehicle travel safety device according to the second embodiment of the present invention. 図6に示す処理のうちの物体の検知動作を示す説明図である。It is explanatory drawing which shows the detection operation | movement of the object among the processes shown in FIG. 第2実施例における最多算出予想衝突時間TOの判定作業を示す説明図である。It is explanatory drawing which shows the determination operation | work of the maximum calculation estimated collision time TO in 2nd Example. この発明の第3実施例に係る車両の走行安全装置の動作を示す、図6と同様のフロー・チャートである。FIG. 7 is a flow chart similar to FIG. 6, showing the operation of the vehicle travel safety apparatus according to the third embodiment of the present invention. この発明の第4実施例に係る車両の走行安全装置の動作を示す、図9と同様のフロー・チャートである。FIG. 10 is a flow chart similar to FIG. 9 showing the operation of the vehicle travel safety apparatus according to the fourth embodiment of the present invention. FIG. この発明の第5実施例に係る車両の走行安全装置の動作を示す、図2と同様のフロー・チャートである。It is a flowchart similar to FIG. 2 which shows operation | movement of the driving safety device of the vehicle which concerns on 5th Example of this invention. この発明の第6実施例に係る車両の走行安全装置の動作を示す、図11と同様のフロー・チャートである。FIG. 12 is a flow chart similar to FIG. 11 showing the operation of the vehicle travel safety apparatus according to the sixth embodiment of the present invention.

符号の説明Explanation of symbols

10 車両、12 エンジン(内燃機関)、16 前輪、20 後輪、22 警報装置、34 ブレーキ、36 ブレーキスイッチ、40 ECU(電子制御ユニット)、42 第1のミリ波レーダ、42a 第1のレーダ出力処理ECU、44 第2のミリ波レーダ、44a 第2のレーダ出力処理ECU、46 車輪速センサ、50 ステアリングホイール、52 操舵角センサ、54ウインカ操作センサ、56 路面状況検出センサ、60 クランク角センサ、62 吸気管絶対圧センサ、64 スロットル開度センサ   DESCRIPTION OF SYMBOLS 10 Vehicle, 12 engine (internal combustion engine), 16 front wheel, 20 rear wheel, 22 alarm device, 34 brake, 36 brake switch, 40 ECU (electronic control unit), 42 1st millimeter wave radar, 42a 1st radar output Processing ECU, 44 Second millimeter wave radar, 44a Second radar output processing ECU, 46 Wheel speed sensor, 50 Steering wheel, 52 Steering angle sensor, 54 Winker operation sensor, 56 Road surface condition detection sensor, 60 Crank angle sensor, 62 Intake pipe absolute pressure sensor, 64 Throttle opening sensor

Claims (5)

車両の周囲に存在する物体を検知する物体検知手段と、前記物体検知手段によって前記物体が検知されたとき、前記車両と物体の相対距離と相対速度とからなる相対関係を算出する相対関係算出手段と、前記車両と物体との衝突回避を支援する衝突回避支援手段と、前記相対関係に基づいて前記衝突回避支援手段を作動させる支援作動手段とを備えた車両の走行安全装置において、減速意思と車線変更意思の少なくともいずれかからなる運転者意思を検出する運転者意思検出手段と、および前記運転者意思が検出される度に前記相対関係に基づいて前記車両が前記物体に衝突するまでに要すると予想される予想衝突時間を算出する予想衝突時間算出手段と、前記予想衝突時間算出手段が算出した予想衝突時間の中で算出頻度が最も多い予想衝突時間を最多算出予想衝突時間として記憶する最多算出予想衝突時間記憶手段とを備えると共に、前記最多算出予想衝突時間記憶手段は、前記予想衝突時間算出手段が算出した予想衝突時間を前記最多算出予想衝突時間と比較し、その差が所定時間以上となる予想衝突時間の算出回数が所定回数に達したとき、前記最多予想衝突時間を増加補正し、前記支援作動手段は、前記算出された予想衝突時間が前記記憶された最多算出予想衝突時間以下であると共に、前記運転者の意思が検出されないときのみ、前記衝突回避支援手段を作動させることを特徴とする車両の走行安全装置。 An object detection means for detecting an object present around the vehicle, and a relative relationship calculation means for calculating a relative relationship comprising a relative distance and a relative speed between the vehicle and the object when the object is detected by the object detection means; A vehicle traveling safety device comprising: a collision avoidance support unit that supports collision avoidance between the vehicle and an object; and a support operation unit that operates the collision avoidance support unit based on the relative relationship. Driver intention detection means for detecting driver intention comprising at least one of lane change intentions, and required for the vehicle to collide with the object based on the relative relationship each time the driver intention is detected. Then, an expected collision time calculation means for calculating an expected collision time and an expected collision frequency with the highest calculation frequency among the expected collision times calculated by the predicted collision time calculation means. With and a largest calculated estimated collision time storage means for storing a most calculating estimated collision time time, the largest calculated estimated collision time storage means, the most calculating predicted collision predicted collision time the estimated collision time calculation means has calculated compared time, when calculating the number of estimated collision time that the difference is equal to or greater than a predetermined time has reached a predetermined number of times, the largest anticipated collision time and the increase correction, the supporting actuating means, the calculated predicted collision time Is less than the stored maximum calculated expected collision time , and the collision avoidance support means is operated only when the driver's intention is not detected . 前記支援作動手段は、前記物体検知手段によって前記車両の斜め後方に存在する物体が検知された場合、前記予想衝突時間算出手段が算出した予想衝突時間が前記最多算出予想衝突時間以下であると共に、前記物体に接近する方向への前記車線変更意思が検出されたとき、前記衝突回避支援手段を作動させることを特徴とする請求項1記載の車両の走行安全装置。 When the object detection means detects an object that is present obliquely behind the vehicle, the support activation means is less than or equal to the maximum expected collision time calculated by the expected collision time calculation means, when the lane change intention of the direction of approaching to the object is detected, the traveling safety device for a vehicle according to claim 1 Symbol mounting, characterized in that operating the collision avoidance assistance means. 前記車両が走行する路面の状況を検出する路面状況検出手段を備えると共に、前記最多算出予想衝突時間記憶手段は、前記路面状況検出手段によって前記路面が低摩擦係数路面と検出されたとき、前記最多算出予想衝突時間を増加補正することを特徴とする請求項1または2記載の車両の走行安全装置。 The road surface condition detecting means for detecting the condition of the road surface on which the vehicle travels is provided, and the most frequently calculated predicted collision time storage means is configured to detect the maximum when the road surface is detected as a low friction coefficient road surface by the road surface condition detecting means. The vehicle travel safety device according to claim 1 or 2, wherein the calculated predicted collision time is corrected to be increased. 前記車両が走行する路面の勾配を検出する路面勾配検出手段を備えると共に、前記最多算出予想衝突時間記憶手段は、前記路面勾配検出手段の検出結果に基づいて前記最多算出予想衝突時間を補正することを特徴とする請求項1からのいずれかに記載の車両の走行安全装置。 Road surface gradient detecting means for detecting the gradient of the road surface on which the vehicle travels is provided, and the maximum calculation predicted collision time storage means corrects the maximum calculation predicted collision time based on the detection result of the road surface gradient detection means. The vehicle travel safety device according to any one of claims 1 to 3 . 前記車両の減速度を検出する減速度検出手段と、前記車両の操舵角速度を検出する操舵角検出手段とを備えると共に、前記最多算出予想衝突時間記憶手段は、所定値以上の減速度または所定値以上の操舵角速度が検出された時点で前記予想衝突時間算出手段によって算出された前記予想衝突時間を、前記最多算出予想衝突時間として記憶される対象から除外することを特徴とする請求項1からのいずれかに記載の車両の走行安全装置。 The vehicle includes a deceleration detection unit that detects the deceleration of the vehicle and a steering angle detection unit that detects a steering angular velocity of the vehicle, and the most frequently calculated predicted collision time storage unit includes a deceleration greater than a predetermined value or a predetermined value. the estimated collision time calculated by the estimated collision time calculation means when the steering angular velocity is detected in the above claim 1, characterized in that excluded from the subject to be stored as the most calculating estimated collision time 4 The travel safety device for a vehicle according to any one of the above.
JP2006091464A 2006-03-29 2006-03-29 Vehicle travel safety device Expired - Fee Related JP4907207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006091464A JP4907207B2 (en) 2006-03-29 2006-03-29 Vehicle travel safety device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006091464A JP4907207B2 (en) 2006-03-29 2006-03-29 Vehicle travel safety device

Publications (2)

Publication Number Publication Date
JP2007261497A JP2007261497A (en) 2007-10-11
JP4907207B2 true JP4907207B2 (en) 2012-03-28

Family

ID=38634903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006091464A Expired - Fee Related JP4907207B2 (en) 2006-03-29 2006-03-29 Vehicle travel safety device

Country Status (1)

Country Link
JP (1) JP4907207B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4831491B2 (en) * 2007-11-14 2011-12-07 アイシン・エィ・ダブリュ株式会社 Navigation device and program
JP5132304B2 (en) * 2007-12-27 2013-01-30 Udトラックス株式会社 Collision damage reduction device
JP2010191666A (en) * 2009-02-18 2010-09-02 Honda Motor Co Ltd Vehicle periphery monitoring apparatus
JP5593800B2 (en) * 2010-04-14 2014-09-24 トヨタ自動車株式会社 Travel control device
CN104097643B (en) * 2012-03-29 2017-10-17 王大伟 Communications and transportation middle orbit, on-highway motor vehicle be anti-to knock into the back, anticollision method
CN102745194B (en) * 2012-06-19 2015-02-25 东南大学 Self-adaption alarming method for preventing tailgating with front car on expressway
JP2014032453A (en) * 2012-08-01 2014-02-20 Mazda Motor Corp Driving support device for vehicle
CN103350670B (en) * 2013-07-16 2015-08-12 厦门金龙联合汽车工业有限公司 A kind of vehicle forward direction collision-proof alarm method based on car networking technology
JP2017215962A (en) * 2016-05-31 2017-12-07 株式会社Soken Operation assisting device, operation assisting method
CN109664854B (en) * 2017-10-17 2020-11-03 杭州海康威视数字技术股份有限公司 Automobile early warning method and device and electronic equipment
JP7307647B2 (en) * 2019-09-27 2023-07-12 日立Astemo株式会社 VEHICLE CONTROL DEVICE, VEHICLE CONTROL METHOD, AND VEHICLE CONTROL SYSTEM
JP6987167B2 (en) * 2020-02-20 2021-12-22 三菱電機株式会社 Lane change judgment device
CN113815620B (en) * 2021-10-26 2023-03-14 中国第一汽车股份有限公司 Method, device and equipment for evaluating safe driving of vehicle and storage medium

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3143063B2 (en) * 1996-06-07 2001-03-07 株式会社日立製作所 Travel control device for moving objects
JP2001138767A (en) * 1999-11-17 2001-05-22 Nissan Motor Co Ltd Alarm device for vehicle
JP3838005B2 (en) * 2000-08-18 2006-10-25 日産自動車株式会社 Vehicle collision prevention device
JP2003049702A (en) * 2001-08-07 2003-02-21 Mazda Motor Corp On-vehicle automobile control-gain changing device, automobile control-gain changing method and automobile control-gain changing program
JP4295953B2 (en) * 2002-04-26 2009-07-15 パイオニア株式会社 Distance coefficient learning device, method, program, recording medium for recording the program, movement status calculation device, and current position calculation device
JP3933001B2 (en) * 2002-07-24 2007-06-20 日産自動車株式会社 Driver future situation prediction device
JP3882797B2 (en) * 2003-08-08 2007-02-21 日産自動車株式会社 VEHICLE DRIVE OPERATION ASSISTANCE DEVICE AND VEHICLE HAVING VEHICLE DRIVE OPERATION ASSISTANCE DEVICE
JP4385734B2 (en) * 2003-11-17 2009-12-16 日産自動車株式会社 VEHICLE DRIVE OPERATION ASSISTANCE DEVICE AND VEHICLE HAVING VEHICLE DRIVE OPERATION ASSISTANCE DEVICE

Also Published As

Publication number Publication date
JP2007261497A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP4907207B2 (en) Vehicle travel safety device
US10371811B2 (en) Following-start control apparatus
CN111016902B (en) Vehicle speed auxiliary control method and system during lane changing of vehicle and vehicle
JP5715454B2 (en) Vehicle driving support device
JP5572657B2 (en) Vehicle driving support device
US8755983B2 (en) Vehicular control apparatus and method
US9744915B2 (en) Travel control device and travel control method
JP4933144B2 (en) Object detection device
JP6302825B2 (en) Collision avoidance device
JPH11203598A (en) Vehicle safety system
JPH08205306A (en) Alarm device for car
JP2008120288A (en) Driving support device
CN103153743A (en) Obstacle recognition system and method for a vehicle
WO2013098996A1 (en) Vehicle driving assistance device
JP4824511B2 (en) Vehicle travel safety device
CN112292718A (en) Information, warning and brake request generation for steering assist functions
KR101552017B1 (en) Performance enhanced driver assistance systems and controlling method for the same
JP2006256494A (en) Traveling support device for vehicle
JP2010231561A (en) Apparatus for detection of traveling state, and driving support device
JP5761089B2 (en) Vehicle driving support system
JP5582310B2 (en) Vehicle driving support device
JP2015074380A (en) Vehicle travel control device
JP2019038363A (en) Vehicular travelling control device
CN112849133A (en) Driving support device
JP2007216809A (en) Driving evaluation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees