JP4824511B2 - Vehicle travel safety device - Google Patents

Vehicle travel safety device Download PDF

Info

Publication number
JP4824511B2
JP4824511B2 JP2006245286A JP2006245286A JP4824511B2 JP 4824511 B2 JP4824511 B2 JP 4824511B2 JP 2006245286 A JP2006245286 A JP 2006245286A JP 2006245286 A JP2006245286 A JP 2006245286A JP 4824511 B2 JP4824511 B2 JP 4824511B2
Authority
JP
Japan
Prior art keywords
vehicle
contact
recognized
time
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006245286A
Other languages
Japanese (ja)
Other versions
JP2008062873A (en
Inventor
克也 水谷
弘之 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006245286A priority Critical patent/JP4824511B2/en
Publication of JP2008062873A publication Critical patent/JP2008062873A/en
Application granted granted Critical
Publication of JP4824511B2 publication Critical patent/JP4824511B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Traffic Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Description

この発明は車両の走行安全装置に関し、より具体的には車両(自車)の周囲の他車などの障害となる物体を検知し、それとの接触を回避するようにした装置に関する。   The present invention relates to a vehicle travel safety device, and more specifically to an apparatus that detects an obstacle such as another vehicle around the vehicle (own vehicle) and avoids contact with the object.

レーダを用いて車両進行方向の先行車などの物体を検知することは良く行われており、その例として本出願人が先に提案した、下記の特許文献1記載の技術を挙げることができる。その従来技術においては、車両進行方向の複数の方向にビームを放射して物体に反射させて得た反射波の発生源である反射箇所を多数検出し、検出された多数の反射箇所を同一の物体に属すると推定される単一または複数の反射箇所グループに区分すると共に、そこから物体の輪郭を構成する線分を求める。次いでその交点を端点とみなすと共に、端点の位置と自車の横幅とから、先行車などの物体を追い越すときの接触の可能性を判定し、接触の可能性があるときは運転者に警告するように構成される。
特開2000−206241号公報
Detecting an object such as a preceding vehicle in the vehicle traveling direction using a radar is often performed. As an example, the technique described in the following Patent Document 1 previously proposed by the present applicant can be given. In the prior art, a large number of reflected points, which are the sources of reflected waves obtained by radiating beams in a plurality of directions of the vehicle traveling direction and reflected by an object, are detected, and the same number of detected reflected points are detected. The segment is divided into one or a plurality of reflection point groups estimated to belong to the object, and line segments constituting the contour of the object are obtained therefrom. Next, the intersection is regarded as an end point, and the possibility of contact when overtaking an object such as a preceding vehicle is determined from the position of the end point and the width of the host vehicle, and the driver is warned when there is a possibility of contact. Configured as follows.
JP 2000-206241 A

このように、上記した従来技術においては、物体の輪郭を構成する線分の端点(交点)と自車の横幅から追い越し時の接触の可能性を判定し、接触の可能性があるときは警告して接触回避を支援するように構成している。即ち、従来技術は同一方向に移動している先行車などの物体を追い越すときの接触回避を主眼としているが、前方の十字路あるいはT字路で側方から車両(自車)の走行路に接近する車両、いわゆる出会い頭車両などの物体との接触の回避は、必ずしも追い越し時のそれと同一ではない。   Thus, in the above-described prior art, the possibility of contact at the time of overtaking is determined from the end points (intersection points) of the line segment constituting the contour of the object and the width of the own vehicle, and a warning is given if there is a possibility of contact And configured to support contact avoidance. In other words, the prior art focuses on avoiding contact when overtaking an object such as a preceding vehicle that is moving in the same direction, but approaching the traveling path of the vehicle (own vehicle) from the side at the front crossroad or T-shaped road. Avoiding contact with an object such as a so-called encounter vehicle is not necessarily the same as that during overtaking.

側方から自車の走行路内に他車が進入してくる場合、一般的に他車の前面と側面の線分の交点が検出されるが、他車の自車に対する向きや自車の走行路内への進入度合い、またはノイズなどによっては、線分が1つしか検出できず、交点が検出されないこともある。よって、出会い頭車両などの物体との接触の回避においては、交点ではなく、1つの線分から認識される端点に基づいて物体との接触の有無を判定しなければならない場面も考えられる。   When another vehicle enters the vehicle's road from the side, generally the intersection of the front and side line segments of the other vehicle is detected. Depending on the degree of entry into the travel path, noise, or the like, only one line segment can be detected, and the intersection may not be detected. Therefore, in avoiding contact with an object such as an encounter vehicle, there may be a scene where it is necessary to determine whether or not there is contact with an object based on an end point recognized from one line segment instead of an intersection.

従って、この発明の目的は上記した課題を解決し、前方の十字路あるいはT字路で側方から車両(自車)の走行路に接近する、いわゆる出会い頭車両などの物体との接触を効果的に回避するようにした車両用物体検知装置を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems, and to effectively make contact with an object such as a so-called encounter vehicle that approaches the traveling path of the vehicle (own vehicle) from the side at the front cross road or T-shaped road. An object of the present invention is to provide an object detection device for a vehicle which is avoided.

上記の目的を解決するために、請求項1にあっては、車両の進行方向に電磁波を送信すると共に、前記進行方向に存在する一つの物体に反射させて得た反射点に基づいて前記物体を検知する物体検知手段と、前記反射点を2次元平面に投影して得た点群の配列に基づいて前記物体の輪郭を構成する線分を認識する線分認識手段と、前記認識された線分に基づいて前記物体の端点を抽出する端点抽出手段と、前記抽出された端点に基づいて前記物体の前記車両に対する相対速度を含む、前記物体との相対関係を算出する相対関係算出手段と、前記算出された相対関係に基づいて前記車両が前記物体と接触する可能性の有無を推定する接触可能性推定手段と、前記接触の可能性があると推定された場合、接触する前の所定時期に前記車両と前記物体との接触回避を支援する接触回避支援手段を作動させる支援作動手段とを備えた車両の走行安全装置において、前記支援作動手段は、前記認識された線分の個数が1個の場合、2個認識された場合に比し、前記所定時期を遅延させた時期に前記接触回避支援手段を作動させる如く構成した。 In order to solve the above object, in the claim 1, wherein the object based transmits the electromagnetic wave in the traveling direction of the vehicle, the reflection points obtained by reflecting the one object present in the advancing direction An object detection means for detecting a line segment, a line segment recognition means for recognizing a line segment constituting an outline of the object based on an array of point groups obtained by projecting the reflection points onto a two-dimensional plane, and the recognized End point extracting means for extracting an end point of the object based on a line segment; and a relative relationship calculating means for calculating a relative relation between the object and the object including a relative speed of the object with respect to the vehicle based on the extracted end point; , A contact possibility estimating means for estimating the possibility of contact of the vehicle with the object based on the calculated relative relationship, and a pre-contact before the contact is estimated when the possibility of the contact is estimated. The vehicle and the object in time In the vehicular travel safety device, the assisting actuating means includes two assisting operation means for actuating the contact avoidance assisting means for assisting the avoidance of contact with the vehicle when the number of the recognized line segments is one. Compared to the case where it is recognized, the contact avoidance support means is operated at a time when the predetermined time is delayed.

請求項2に係る車両の走行安全装置にあっては、前記物体検知手段は所定の時間間隔で前記物体を検知すると共に、前記支援作動手段は、ある検知時点において前記認識された線分の個数が2個であったにもかかわらず、その後の検知時点において1個のみ認識される場合、前記所定時期に前記接触回避支援手段を作動させる如く構成した。   In the vehicle travel safety device according to claim 2, the object detection means detects the object at a predetermined time interval, and the support actuating means determines the number of the recognized line segments at a detection time point. Even if there are two, when only one is recognized at the subsequent detection time, the contact avoidance support means is operated at the predetermined time.

請求項1にあっては、物体に反射させて得た反射点を2次元平面に投影して得た点群の配列に基づいて一つの物体の輪郭を構成する線分を認識すると共に、認識された線分に基づいて物体の端点を抽出し、それに基づいて物体との相対関係を算出し、算出された相対関係に基づいて物体と接触する可能性があると推定された場合、接触する前の所定時期に物体との接触回避を支援する接触回避支援手段を作動させる車両の走行安全装置において、認識された線分の個数が1個の場合、2個認識された場合に比し、所定時期を遅延させた時期に接触回避支援手段を作動させる如く構成したので、認識されている線分の個数から端点の確からしさを判定できる結果、前方の十字路あるいはT字路で側方から車両(自車)の走行路に接近する、いわゆる出会い頭車両などの物体を精度良く検知することができ、それとの接触を効果的に回避することができる。 According to the first aspect of the present invention, the line segment constituting the outline of one object is recognized and recognized based on the array of point groups obtained by projecting the reflection point obtained by reflecting the object onto the two-dimensional plane. The end point of the object is extracted based on the line segment, the relative relationship with the object is calculated based on the extracted end point, and the contact with the object is estimated based on the calculated relative relationship. In the traveling safety device for a vehicle that operates the contact avoidance assisting means that assists in avoiding contact with an object at a predetermined time before, when the number of recognized line segments is one, compared to when two are recognized, Since the contact avoidance support means is configured to operate when the predetermined time is delayed, it is possible to determine the likelihood of the end point from the number of recognized line segments. As a result, the vehicle from the side on the front cross or T-shaped road (Wow) approaching the driving path of (own vehicle) That Crossing can be detected accurately an object such as a vehicle, it is possible to effectively avoid contact with it.

また、認識された線分の個数が1個の場合、側方からの出会い頭車両ではない蓋然性があることから、所定時期を遅延させた時期に接触回避支援手段を作動させることで、接触回避支援手段の過剰作動を防止することができる。   In addition, when the number of recognized line segments is 1, there is a possibility that the vehicle is not an encounter vehicle from the side, so contact avoidance support means is activated by operating the contact avoidance support means when the predetermined time is delayed. The excessive operation of the means can be prevented.

請求項2に係る車両の走行安全装置にあっては、ある検知時点において認識された線分の個数が2個であったにもかかわらず、その後の検知時点において1個のみ認識される場合、所定時期に接触回避支援手段を作動させる如く構成したので、出会い頭車両などの物体との接触を効果的に回避することができる。即ち、過去に線分が2個認識されていたことは端点の抽出精度が高く、その物体が車両(自車)の正面に移動したために1個の線分のみが認識されると考えられることから、接触回避支援手段を、遅延時期ではなく、本来の所定時期で作動させることで、その物体との接触を確実に回避することができる。   In the vehicle travel safety device according to claim 2, even if the number of line segments recognized at a certain detection time is two, only one is recognized at the subsequent detection time, Since the contact avoidance support means is configured to operate at a predetermined time, it is possible to effectively avoid contact with an object such as an encounter vehicle. In other words, the fact that two line segments have been recognized in the past is that the extraction accuracy of the end points is high, and it is considered that only one line segment is recognized because the object has moved to the front of the vehicle (own vehicle). Thus, by operating the contact avoidance support means at the original predetermined time instead of the delay time, it is possible to reliably avoid contact with the object.

以下、添付図面に即してこの発明に係る車両の走行安全装置を実施するための最良の形態について説明する。   The best mode for carrying out a vehicle travel safety device according to the present invention will be described below with reference to the accompanying drawings.

図1は、この発明の実施例に係る車両の走行安全装置を全体的に示す概略図である。   FIG. 1 is a schematic diagram generally showing a vehicle travel safety device according to an embodiment of the present invention.

図1において、符号10は車両(自車)を示し、その前部には4気筒の内燃機関(図1で「ENG」と示し、以下「エンジン」という)12が搭載される。エンジン12の出力は自動変速機(図1で「T/M」と示す)14に入力される。自動変速機14は前進5速、後進1速の有段式であり、エンジン12の出力はそこで適宜変速されて左右の前輪16に伝えられ、左右の前輪16を駆動しつつ、左右の後輪20を従動させて車両10を走行させる。   In FIG. 1, reference numeral 10 denotes a vehicle (own vehicle), and a four-cylinder internal combustion engine (shown as “ENG” in FIG. 1, hereinafter referred to as “engine”) 12 is mounted on the front thereof. The output of the engine 12 is input to an automatic transmission (shown as “T / M” in FIG. 1) 14. The automatic transmission 14 is a stepped type with 5 forward speeds and 1 reverse speed, and the output of the engine 12 is appropriately shifted there and transmitted to the left and right front wheels 16, driving the left and right front wheels 16, and the left and right rear wheels. 20 is driven and the vehicle 10 is driven.

車両10の運転席にはオーディオスピーカとインディケータからなる警報装置22が設けられ、音声と視覚によって運転者に警報する。車両10の運転席床面に配置されたブレーキペダル24は、マスタバック26、マスタシリンダ30およびブレーキ油圧機構32を介して左右の前輪16と後輪20のそれぞれに装着されたブレーキ(ディスクブレーキ)34に接続される。   The driver's seat of the vehicle 10 is provided with an alarm device 22 including an audio speaker and an indicator, and alerts the driver by voice and vision. A brake pedal 24 disposed on the driver's seat floor of the vehicle 10 is a brake (disc brake) mounted on each of the left and right front wheels 16 and rear wheels 20 via a master back 26, a master cylinder 30 and a brake hydraulic mechanism 32. 34.

運転者がブレーキペダル24を操作すると(踏み込むと)、その踏み込み力(踏力)はマスタバック26で増力され、マスタシリンダ30は増力された踏み込み力で制動圧を発生し、ブレーキ油圧機構32を介して前輪16と後輪20のそれぞれに装着されたブレーキ34を動作させ、車両10を減速させる(制動する)。ブレーキペダル24の付近にはブレーキスイッチ36が配置され、運転者によってブレーキペダル24が操作されるとき、オン信号を出力する。   When the driver operates (depresses) the brake pedal 24, the depressing force (depressing force) is increased by the master back 26, and the master cylinder 30 generates a braking pressure with the increased depressing force, via the brake hydraulic mechanism 32. Then, the brakes 34 attached to the front wheels 16 and the rear wheels 20 are operated to decelerate (brake) the vehicle 10. A brake switch 36 is disposed in the vicinity of the brake pedal 24 and outputs an ON signal when the driver operates the brake pedal 24.

ブレーキ油圧機構32は、リザーバに接続される油路に介挿された電磁ソレノイドバルブ群、油圧ポンプ、および油圧ポンプを駆動する電動モータ(全て図示せず)などを備える。電磁ソレノイドバルブ群は駆動回路(図示せず)を介してECU(電子制御ユニット)40に接続され、よって4個のブレーキ34は、運転者によるブレーキペダル24の操作とは別に、ECU40によって相互に独立して作動するように構成される。 The brake hydraulic mechanism 32 includes an electromagnetic solenoid valve group inserted in an oil passage connected to a reservoir, a hydraulic pump, and an electric motor (all not shown) that drives the hydraulic pump. The electromagnetic solenoid valve group is connected to an ECU (Electronic Control Unit) 40 via a drive circuit (not shown), and thus the four brakes 34 are mutually connected by the ECU 40 separately from the operation of the brake pedal 24 by the driver. Configured to operate independently.

上記で、警報装置22、およびブレーキ油圧機構32とブレーキ34が接触回避支援手段に、ECU40が支援作動手段に相当する。   In the above, the alarm device 22, the brake hydraulic mechanism 32 and the brake 34 correspond to contact avoidance support means, and the ECU 40 corresponds to support operation means.

車両10の前部にはレーダ(レーザスキャンレーダ)42が設けられる。レーダ42は車両10の進行方向に向けてレーザ光(電磁波(搬送波))を発射し、車両10の前方の
十字路あるいはT字路で側方から車両(自車)の走行路に接近する、いわゆる出会い頭車両などの物体にレーザ光を反射させて得た反射波を受信することにより、物体を検知する。符号42aは、検知領域(スキャン範囲)を示す。
A radar (laser scan radar) 42 is provided at the front of the vehicle 10. The radar 42 emits a laser beam (electromagnetic wave (carrier wave)) in the traveling direction of the vehicle 10, and approaches the traveling path of the vehicle (own vehicle) from the side at a cross road or T-shaped road in front of the vehicle 10. An object is detected by receiving a reflected wave obtained by reflecting a laser beam on an object such as an encounter vehicle. Reference numeral 42a indicates a detection area (scan range).

レーダ42の出力は、マイクロコンピュータからなるレーダ出力処理ECU(電子制御ユニット)44に送られる。レーダ出力処理ECU44では、反射点を2次元平面に投影して得た点群の配列に基づいて物体の輪郭を構成する線分を認識すると共に、認識された線分に基づいて物体の端点を抽出する。また、反射波の入射方向から物体の方位を検知し、物体の二次元情報を得る。   The output of the radar 42 is sent to a radar output processing ECU (electronic control unit) 44 composed of a microcomputer. The radar output processing ECU 44 recognizes a line segment constituting the contour of the object based on an array of point clouds obtained by projecting the reflection points onto a two-dimensional plane, and determines an end point of the object based on the recognized line segment. Extract. Further, the direction of the object is detected from the incident direction of the reflected wave, and two-dimensional information of the object is obtained.

次いで、レーザ光を発射してから、抽出された端点で反射光を受信するまでの時間が測定されて物体までの相対距離が算出され、さらに相対距離を微分することで物体の相対速度が求められる、即ち、レーダ出力処理ECU44は、抽出された端点に基づいて物体の車両10に対する相対速度を含む、物体との相対関係を算出する。尚、線分の認識などの詳細は、本出願人が先に提案した、上記した従来技術に記載されているので、詳細な説明は省略する。 Then, the relative speed from when firing a laser beam, is relative distance calculated in the extracted edge point to the object is measured the time until receiving the reflected light, an object by further differentiating the relative distance That is, the radar output processing ECU 44 calculates a relative relationship with the object including the relative speed of the object with respect to the vehicle 10 based on the extracted end points. Note that details of line segment recognition and the like are described in the above-described prior art previously proposed by the present applicant, and thus detailed description thereof is omitted.

レーダ出力処理ECU44の出力は、ECU(電子制御ユニット)40に送られる。図示は省略するが、ECU40は、CPU,RAM,ROM、入出力回路などからなるマイクロコンピュータから構成される。   The output of the radar output processing ECU 44 is sent to an ECU (electronic control unit) 40. Although illustration is omitted, the ECU 40 is constituted by a microcomputer including a CPU, a RAM, a ROM, an input / output circuit, and the like.

前輪16と後輪20の付近には車輪速センサ46がそれぞれ配置され、各車輪の所定回転角度ごとにパルス信号を出力する。車両10の運転席に設けられたステアリングホイール50の付近には操舵角センサ52が配置され、運転者によって入力されたステアリングホイール50の操舵角に比例する出力を生じる。また、車両10の中央位置付近にはヨーレートセンサ56が配置され、車両10の重力軸回りのヨーレート(角速度)に応じた出力を生じる。   A wheel speed sensor 46 is disposed in the vicinity of the front wheel 16 and the rear wheel 20 and outputs a pulse signal for each predetermined rotation angle of each wheel. A steering angle sensor 52 is disposed in the vicinity of the steering wheel 50 provided in the driver's seat of the vehicle 10 and generates an output proportional to the steering angle of the steering wheel 50 input by the driver. Further, a yaw rate sensor 56 is disposed in the vicinity of the center position of the vehicle 10 and generates an output corresponding to the yaw rate (angular velocity) around the gravity axis of the vehicle 10.

また、エンジン12のクランクシャフト(図示せず)の付近にはクランク角センサ60が配置されてクランク角度信号などのパルス信号を出力すると共に、吸気管(図示せず)には絶対圧センサ62が配置され、吸気管内絶対圧(エンジン負荷)に応じた信号を出力する。また、スロットルバルブ(図示せず)の付近にはスロットル開度センサ64が配置され、スロットル開度に応じた信号を出力する。   A crank angle sensor 60 is disposed near the crankshaft (not shown) of the engine 12 to output a pulse signal such as a crank angle signal, and an absolute pressure sensor 62 is provided to the intake pipe (not shown). It is arranged and outputs a signal corresponding to the absolute pressure (engine load) in the intake pipe. A throttle opening sensor 64 is disposed near a throttle valve (not shown) and outputs a signal corresponding to the throttle opening.

上記したセンサ群の出力も、ECU40に送出される。ECU40は4個の車輪速センサ46の出力をカウントし、その平均値を算出するなどして車両10の速度(自車速度)Voを検出すると共に、クランク角センサ60の出力をカウントしてエンジン回転数NEを検出する。   The output of the sensor group described above is also sent to the ECU 40. The ECU 40 counts the outputs of the four wheel speed sensors 46, calculates the average value thereof, and so on, detects the speed (vehicle speed) Vo of the vehicle 10, and counts the output of the crank angle sensor 60 to detect the engine. The rotational speed NE is detected.

図2は、図1に示す装置の動作を示すフロー・チャートである。これは、ECU40において所定時間、例えば100msecごとに実行される。   FIG. 2 is a flowchart showing the operation of the apparatus shown in FIG. This is executed in the ECU 40 every predetermined time, for example, every 100 msec.

以下説明すると、S10において車輪速センサ46やヨーレートセンサ56で検出された、自車速度Vo、ヨーレートなどの自車情報を取り込み、S12に進み、取り込んだ自車速度Voとヨーレートに基づいて自車10の進路を推定する。   Explaining below, the vehicle information such as the vehicle speed Vo and the yaw rate detected by the wheel speed sensor 46 and the yaw rate sensor 56 in S10 is captured, and the process proceeds to S12, where the vehicle is based on the captured vehicle speed Vo and the yaw rate. 10 courses are estimated.

次いでS14に進み、相手車両(物体)の検知状態よりフラグを設定する。   Next, in S14, a flag is set from the detection state of the opponent vehicle (object).

図3は、その処理を示すサブ・ルーチン・フロー・チャートである。   FIG. 3 is a sub-routine flow chart showing the processing.

図3の説明に入る前に、図4以降を参照してこの実施例に係る車両の走行安全装置の動作を説明する。   Prior to the description of FIG. 3, the operation of the vehicle travel safety device according to this embodiment will be described with reference to FIG.

図4以降は、自車10が走行する走行路100の前方に位置する十字路あるいはT字路102を走行する、側方から走行路100に接近する、いわゆる出会い頭車両などの物体(相手車両)104を示すが、最初に述べた如く、この発明の目的はそのような出会い頭車両(相手車両。物体)104との接触を効果的に回避することにある。   In FIG. 4 and subsequent figures, an object (partner vehicle) 104 such as a so-called encounter vehicle traveling on a cross road or T-shaped road 102 positioned in front of the traveling path 100 on which the vehicle 10 travels and approaching the traveling path 100 from the side. As described first, the object of the present invention is to effectively avoid contact with such an encounter vehicle (an opponent vehicle, an object) 104.

図4などに示す如く、レーダ42の検知領域42aでは、相手車両104はレーザの反射点として捉えられる。その反射点を自車10の進行方向(X方向)とそれに直交する方向(Y方向)からなる、スキャナデータ上の、2次元平面に投影した場合、相手車両104の反射点は複数個互いに近い位置に連続して分布するため、相手車両104は反射点の集合、即ち、点群の配列として表現される。   As shown in FIG. 4 and the like, in the detection area 42a of the radar 42, the opponent vehicle 104 is regarded as a laser reflection point. When the reflection point is projected on a two-dimensional plane on the scanner data, which is composed of the traveling direction (X direction) of the own vehicle 10 and the direction (Y direction) orthogonal thereto, a plurality of reflection points of the opponent vehicle 104 are close to each other. Since the vehicle 104 is continuously distributed in position, the opponent vehicle 104 is expressed as a set of reflection points, that is, an array of point groups.

図3の説明に入ると、S100でレーダ出力処理ECU44からレーダ42の出力情報を取り込み、S102に進み、上記した反射点の集合(点群の配列)を検出する。次いでS104に進み、検出された点群の配列から相手車両104の輪郭を構成する線分を認識すると共に、認識された線分に基づいて端点を抽出する。   Referring to FIG. 3, the output information of the radar 42 is fetched from the radar output processing ECU 44 in S100, and the process proceeds to S102, where the set of reflection points (array of point groups) described above is detected. Next, the process proceeds to S104, where line segments constituting the contour of the opponent vehicle 104 are recognized from the detected point cloud array, and end points are extracted based on the recognized line segments.

図4に示す例でいえば、相手車両104を進行方向(X方向)とそれに直交する方向(Y方向)の2面で検知していることから、2本の線分が認識され、認識された線分に基づいて端点Pが抽出される。この場合、端点Pは相手車両104の線分の進行方向最先端に相当する点であることから、相手車両104の輪郭の前面側の端部を意味する。尚、前記した如く、線分の認識などはレーダ出力処理ECU44によってなされることから、ECU40は実際には、S102,S104の処理ではレーダ出力処理ECU44の出力を読み込むに止める。   In the example shown in FIG. 4, since the opponent vehicle 104 is detected on two surfaces, the traveling direction (X direction) and the direction orthogonal to the traveling direction (Y direction), two line segments are recognized and recognized. The end point P is extracted based on the line segment. In this case, since the end point P is a point corresponding to the forefront of the line segment of the opponent vehicle 104, the end point P means an end portion on the front side of the contour of the opponent vehicle 104. As described above, since the line segment is recognized by the radar output processing ECU 44, the ECU 40 actually stops reading the output of the radar output processing ECU 44 in the processing of S102 and S104.

次いでS106に進み、認識された線分の個数が2個か否か判断し、肯定されるときはS108に進み、フラグのビットを1に設定(セット)する。図4と図5に示す例がこれに相当する。   Next, the process proceeds to S106, where it is determined whether or not the number of recognized line segments is 2. If the determination is affirmative, the process proceeds to S108, and the bit of the flag is set (set) to 1. The example shown in FIGS. 4 and 5 corresponds to this.

他方、相手車両104が1面のみで検知されている場合、認識された線分の個数は1個となる。また、相手車両104が移動して自車10の真正面あるいはその付近に到達したときも、認識できる線分は1個となる。図6に示す例がそれに該当する。   On the other hand, when the opponent vehicle 104 is detected on only one surface, the number of recognized line segments is one. Also, when the opponent vehicle 104 moves and reaches the front of the host vehicle 10 or the vicinity thereof, the number of line segments that can be recognized is one. The example shown in FIG.

従って、S106で否定されるときはS110に進み、過去の検知時点、即ち、図2フロー・チャートの過去の実行時刻において2個の線分が認識されていたか否か判断し、肯定されるときはS108に進む。他方、S110で否定されるときはS112に進み、フラグのビットを0に設定(セット)する。   Accordingly, when the result in S106 is negative, the process proceeds to S110, where it is determined whether two line segments have been recognized at the past detection time, that is, at the past execution time of the flowchart of FIG. Advances to S108. On the other hand, when the result in S110 is negative, the program proceeds to S112, where the bit of the flag is set (set) to 0.

図2フロー・チャートの説明に戻ると、次いでS16に進み、レーダ出力処理で得られた端点Pを時系列にトラッキングして自車10に対する相手車両104の相対速度Vyと、相手車両104の側面の輪郭を構成する線分の端点Pを延長させた延長線と自車10の距離Dt(自車10に対する相手車両104の相対位置に相当)とを算出する。このように、相対速度Vyなどの相手車両104の相対関係は、抽出された端点Pに基づいて算出される。尚、相対速度Vyなども実際にはレーダ出力処理ECU44が算出した値を読み込むことで行われる。   Returning to the description of the flow chart of FIG. 2, the process then proceeds to S <b> 16 where the end point P obtained by the radar output processing is tracked in time series, the relative speed Vy of the opponent vehicle 104 with respect to the own vehicle 10, The distance Dt (corresponding to the relative position of the opponent vehicle 104 with respect to the host vehicle 10) between the extension line obtained by extending the end point P of the line segment constituting the contour of the host vehicle 10 and the host vehicle 10 is calculated. Thus, the relative relationship of the opponent vehicle 104 such as the relative speed Vy is calculated based on the extracted end point P. Note that the relative speed Vy and the like are actually read by reading the values calculated by the radar output processing ECU 44.

次いでS18に進み、予測接触領域Acを求める。予測接触領域Acは、図4に示す如く、自車10の推定進路延長線(距離Dtを示す線に同じ)と相手車両104の進行方向延長線が交差する位置での自車10の面積相当の領域で、自車10の運転者が減速や進路変更などの回避行動をとらず、相手車両104もそのまま進行したと仮定した場合、自車10が相手車両104と接触すると予測される領域を意味する。   Next, in S18, the predicted contact area Ac is obtained. As shown in FIG. 4, the predicted contact area Ac corresponds to the area of the host vehicle 10 at a position where the estimated route extension line of the host vehicle 10 (same as the line indicating the distance Dt) and the extension line of the opponent vehicle 104 intersect. In this area, if it is assumed that the driver of the host vehicle 10 does not take an avoiding action such as deceleration or change of course, and the opponent vehicle 104 also proceeds as it is, an area where the own vehicle 10 is predicted to contact the opponent vehicle 104 is means.

次いでS20に進み、算出された距離Dtと自車速度Voより、より具体的には算出された距離Dtを検出された自車速度Voで除算することで、予測接触時間TTCt(図5に示す)を求める。予測接触時間TTCtは、運転者が減速や進路変更などの回避行動をとらず、相手車両104もそのまま進行したと仮定した場合、自車10が相手車両104に接触するまでに要すると予測される時間を意味する。   Next, in S20, the predicted contact time TTCt (shown in FIG. 5) is calculated by dividing the calculated distance Dt from the calculated distance Dt and the own vehicle speed Vo, more specifically, by the detected own vehicle speed Vo. ) The predicted contact time TTCt is predicted to be required for the host vehicle 10 to contact the partner vehicle 104 when it is assumed that the driver does not take any avoidance action such as deceleration or course change and the partner vehicle 104 also travels as it is. Means time.

次いでS22に進み、相手車両104の端点Pから予測接触領域Acまでの距離Dy1を求めると共に、Dy1に自車10の横幅+α(適宜設定)と相手車両104の車長を加算して距離Dy2(図4に示す)を求め、求めた距離Dy1,Dy2と自車10に対する相手車両104の相対速度Vyとから、相手車両104が予測接触領域Acに到達するまでに要すると予測される時間TTCy1と相手車両104がその予測接触領域Acを通過するのに要すると予測される時間TTCy2(図5に示す)を求める。   Next, in S22, the distance Dy1 from the end point P of the opponent vehicle 104 to the predicted contact area Ac is obtained, and the distance Dy2 (the vehicle width of the own vehicle + α (set appropriately) and the vehicle length of the opponent vehicle 104 are added to Dy1. The time TTCy1 predicted to be required for the opponent vehicle 104 to reach the predicted contact area Ac from the obtained distances Dy1, Dy2 and the relative speed Vy of the opponent vehicle 104 with respect to the own vehicle 10 A time TTCy2 (shown in FIG. 5) that is predicted to be required for the opponent vehicle 104 to pass through the predicted contact area Ac is obtained.

相手車両104が予測接触領域Acに到達するまでに要すると予測される時間TTCy1は、Dy1/Vyで求める。また、相手車両104が予測接触領域Acを通過するのに要すると予測される時間TTCy2は、Dy2/Vyで求める。   The time TTCy1 predicted to be required for the opponent vehicle 104 to reach the predicted contact area Ac is obtained by Dy1 / Vy. Further, the time TTCy2 predicted to be required for the opponent vehicle 104 to pass through the predicted contact area Ac is obtained by Dy2 / Vy.

次いでS24に進み、図示の如く、予測接触時間TTCtが算出された時間TTCy1,TTCy2の間になる関係が成り立つか否か判断し、換言すれば自車10が相手車両104との接触の可能性の有無を推定し、肯定されて接触の可能性があると推定されるときはS26に進み、フラグのビットが0に設定されているか、即ち、認識された線分の個数が1個か否か判断する。   Next, the process proceeds to S24, and as shown in the figure, it is determined whether or not there is a relationship that the predicted contact time TTCt is between the calculated times TTCy1 and TTCy2. If it is affirmed and it is estimated that there is a possibility of contact, the process proceeds to S26, in which the flag bit is set to 0, that is, the number of recognized line segments is one. Judge.

S26で否定されて今回あるいは前回認識された線分の個数が2個と判断されるときはS28に進み、予測接触時間TTCtが第1の時間TTCthr1(例えば2.5sec)未満か否か判断する。S28で肯定されて予測接触時間が第1の時間TTCthr1未満と判断されるときはS30に進み、警報装置22を作動して運転者に警報した後、ブレーキ油圧機構32を介してブレーキ34を作動、即ち、接触回避支援手段を作動する。   When it is determined negative in S26 and it is determined that the number of line segments recognized this time or last time is two, the process proceeds to S28, and it is determined whether or not the predicted contact time TTCt is less than a first time TTCthr1 (for example, 2.5 sec). . When the result in S28 is affirmative and the predicted contact time is determined to be less than the first time TTCthr1, the process proceeds to S30, the alarm device 22 is activated to alert the driver, and then the brake 34 is activated via the brake hydraulic mechanism 32. That is, the contact avoidance support means is activated.

次いでS32に進み、設定時間(例えば1.0sec)の後、ブレーキ34の作動を解除する。尚、S28で否定されるときは、時間的に余裕があることから、S30などの処理をスキップする。   Next, in S32, after a set time (for example, 1.0 sec), the operation of the brake 34 is released. If the result in S28 is NO, there is a time allowance, and the processing of S30 and the like is skipped.

他方、S26で肯定されるとき、即ち、認識された線分の個数が1個と判断されるときはS34に進み、予測接触時間TTCtが第2の時間TTCthr0(例えば2.0sec)未満か否か判断し、肯定されるときはS30に進んで警報装置22を作動した後、ブレーキ34を作動し、次いでS32に進んで設定時間経過後、ブレーキ34の作動を解除する。   On the other hand, when the result in S26 is affirmative, that is, when it is determined that the number of recognized line segments is one, the process proceeds to S34, and whether or not the predicted contact time TTCt is less than the second time TTCthr0 (for example, 2.0 sec). If the answer is affirmative, the process proceeds to S30, the alarm device 22 is activated, and the brake 34 is activated. Then, the process proceeds to S32, and after the set time has elapsed, the operation of the brake 34 is released.

尚、S34で否定されるときは同様に時間的に余裕があることから、S30などの処理をスキップする。また、S24で否定されるときは、自車10が相手車両104と接触する可能性がないことから、S26以降の処理をスキップする。   Note that when the result in S34 is NO, there is time in the same manner, and therefore the processing of S30 and the like is skipped. Further, when the result in S24 is NO, there is no possibility that the own vehicle 10 will come into contact with the opponent vehicle 104, and therefore the processing after S26 is skipped.

この実施例は上記の如く、相手車両(物体)104に反射させて得た反射点を2次元平面に投影して得た点群の配列に基づいて相手車両104の輪郭を構成する線分を認識すると共に、認識された線分に基づいて相手車両の端点Pを抽出し、それに基づいて相手車両104の相対速度Vy、距離Dt,Dy1,Dy2からなる相対関係を算出する。   In this embodiment, as described above, the line segments constituting the contour of the opponent vehicle 104 based on the array of point groups obtained by projecting the reflection points obtained by reflecting the opponent vehicle (object) 104 on a two-dimensional plane are shown. At the same time, the end point P of the opponent vehicle is extracted based on the recognized line segment, and the relative relationship composed of the relative speed Vy and the distances Dt, Dy1, and Dy2 of the opponent vehicle 104 is calculated based on the extracted end point P.

そして、算出された相対速度Vy,距離Dt,Dy1,Dy2からなる相対関係に基づいて、より具体的には相対関係に基づいて算出された予測接触時間TTCt、相手車両104が予測接触領域Acに到達するまでに要すると予測される時間TTCy1および相手車両104が予測接触領域Acを通過するのに要すると予測される時間TTCy2に基づき、自車10が相手車両104と接触する可能性の有無を推定し、接触する可能性があると推定された場合(TTCy1<TTCt<TTCy2が成り立つ場合)、接触する前の所定時期、即ち予測接触時間TTCtが第1の時間TTCthr1未満となった時期に相手車両104との接触回避を支援する接触回避支援手段(警報装置22、ブレーキ油圧機構32およびブレーキ34)を作動させると共に、認識された線分の個数が1個の場合、2個認識された場合に比し、予測接触時間TTCtが第1の時間TTCthr1より短い第2の時間TTCthr0未満となった時期、換言すれば所定時期を遅延させた時期に接触回避支援手段を作動させる如く構成したので、認識されている線分の個数から端点Pの確からしさを判定できる結果、前方の十字路あるいはT字路102で側方から自車10の推定進路(走行路)に接近する、いわゆる出会い頭車両などの相手車両104を精度良く検知することができ、それとの接触を効果的に回避することができる。   The predicted contact time TTCt calculated based on the relative relationship consisting of the calculated relative speed Vy and the distances Dt, Dy1, and Dy2, more specifically based on the relative relationship, and the opponent vehicle 104 in the predicted contact area Ac. Based on the time TTCy1 predicted to be required to reach the vehicle and the time TTCy2 predicted to be required for the opponent vehicle 104 to pass the predicted contact area Ac, the presence / absence of the possibility that the host vehicle 10 may contact the opponent vehicle 104 is determined. When it is estimated that there is a possibility of contact (when TTCy1 <TTCt <TTCy2 holds), the opponent at a predetermined time before contact, that is, when the predicted contact time TTCt is less than the first time TTCthr1 Contact avoidance assisting means (alarm device 22, brake hydraulic mechanism 32 and brake 34) for assisting avoidance of contact with vehicle 104 In addition, when the number of recognized line segments is 1, when the predicted contact time TTCt is less than the second time TTCthr0 shorter than the first time TTCthr0 compared to the case where two line segments are recognized, In other words, since the contact avoidance support means is operated at a time when the predetermined time is delayed, it is possible to determine the likelihood of the end point P from the number of recognized line segments. Therefore, it is possible to accurately detect the opponent vehicle 104 such as a so-called encounter vehicle that approaches the estimated route (traveling route) of the host vehicle 10 from the side, and contact with the vehicle can be effectively avoided.

また、認識された線分の個数が1個の場合、相手車両104が側方からの出会い頭車両ではない蓋然性があることから、所定時期を遅延させた時期に接触回避支援手段を作動させることで、接触回避支援手段の過剰作動を防止することができる。   In addition, when the number of recognized line segments is one, there is a possibility that the opponent vehicle 104 is not an encounter vehicle from the side. Therefore, by operating the contact avoidance support means when the predetermined time is delayed, The excessive operation of the contact avoidance support means can be prevented.

また、過去の検知時点(ある検知時点)において認識された線分の個数が2個であったにもかかわらず、その後の検知時点において1個のみ認識される場合、所定時期に接触回避支援手段を作動させる如く構成したので、出会い頭車両などの相手車両104との接触を効果的に回避することができる。即ち、過去に線分が2個認識されていたことは端点Pの抽出精度が高く、相手車両104が自車10の正面に移動したために1個の線分のみが認識されると考えられることから、接触回避支援手段を、遅延時期ではなく、本来の所定時期で作動させることで、その物体との接触を確実に回避することができる。   Further, when only one line segment is recognized at the subsequent detection time point even though the number of line segments recognized at the past detection time point (a certain detection time point) is two, the contact avoidance support means at a predetermined time Therefore, it is possible to effectively avoid contact with the partner vehicle 104 such as an encounter vehicle. In other words, the fact that two line segments have been recognized in the past means that the extraction accuracy of the end point P is high, and it is considered that only one line segment is recognized because the opponent vehicle 104 has moved to the front of the host vehicle 10. Thus, by operating the contact avoidance support means at the original predetermined time instead of the delay time, it is possible to reliably avoid contact with the object.

この実施例は上記の如く、車両(自車)10の進行方向に電磁波を送信すると共に、前記進行方向に存在する一つの物体(相手車両)104に反射させて得た反射点に基づいて前記物体を検知する物体検知手段(レーダ42、レーダ出力処理ECU44)と、前記反射点を2次元平面に投影して得た点群の配列に基づいて前記物体の輪郭を構成する線分を認識する線分認識手段(ECU40(レーダ出力処理ECU44),S100からS102)と、前記認識された線分に基づいて前記物体の端点を抽出する端点抽出手段(ECU40(レーダ出力処理ECU44),S104)と、前記抽出された端点に基づいて前記物体の前記車両に対する相対速度Vyを含む、前記物体との相対関係を算出する相対関係算出手段(ECU40(レーダ出力処理ECU44),S16)と、前記算出された相対関係に基づいて前記車両が前記物体と接触する可能性の有無を推定する接触可能性推定手段(ECU40,S18からS24)と、前記接触の可能性があると推定された場合、接触する前の所定時期(TTCt<TTCthr1)に前記車両と前記物体との接触回避を支援する接触回避支援手段(警報装置22、ブレーキ油圧機構32、ブレーキ34)を作動させる支援作動手段(ECU40,S24からS32)とを備えた車両の走行安全装置において、前記支援作動手段は、前記認識された線分の個数が1個の場合、2個認識された場合に比し、前記所定時期を遅延させた時期(TTCt<TTCthr0)に前記接触回避支援手段を作動させる(ECU40,S26,S34,S30,S32)如く構成した。 This embodiment as described above, on the basis transmits the electromagnetic wave in the traveling direction of the vehicle (own vehicle) 10, the one object reflection points obtained by reflecting the (other vehicle) 104 existing in the traveling direction Based on an object detection means (radar 42, radar output processing ECU 44) for detecting an object and an array of point groups obtained by projecting the reflection points onto a two-dimensional plane, a line segment constituting the contour of the object is recognized. Line segment recognition means (ECU 40 (radar output processing ECU 44), S100 to S102), and end point extraction means (ECU 40 (radar output processing ECU 44), S104) for extracting the end point of the object based on the recognized line segment; , A relative relationship calculating means (ECU 40 (radar 40) for calculating a relative relationship with the object, including a relative speed Vy of the object with respect to the vehicle, based on the extracted end points. Force processing ECUs 44), S16), contact possibility estimation means (ECU 40, S18 to S24) for estimating the presence / absence of the possibility of the vehicle contacting the object based on the calculated relative relationship, When it is estimated that there is a possibility, contact avoidance support means (alarm device 22, brake hydraulic mechanism 32, brake 34) that supports contact avoidance between the vehicle and the object at a predetermined time (TTCt <TTCthr1) before contact. In the vehicle travel safety device provided with the assist actuating means (ECU 40, S24 to S32) for actuating the actuating device), the assist actuating means is recognized when the number of the recognized line segments is one. Compared to the case, the contact avoidance support means is operated at a time (TTCt <TTCthr0) delayed from the predetermined time (ECU 40, S26, S34, 30, S32) was as configuration.

また、前記物体検知手段は所定の時間間隔で前記物体を検知すると共に、前記支援作動手段は、ある検知時点(過去の検知時点)において前記認識された線分の個数が2個であったにもかかわらず、その後の検知時点において1個のみ認識される場合(ECU40,S110,S108)、前記所定時期に前記接触回避支援手段を作動させる(ECU40,S26からS32)如く構成した。   Further, the object detection means detects the object at a predetermined time interval, and the support activation means has two recognized line segments at a certain detection time point (past detection time point). However, when only one is recognized at the subsequent detection time (ECU 40, S110, S108), the contact avoidance support means is operated at the predetermined time (ECU 40, S26 to S32).

尚、上記において、レーザレーダの出力から物体を検知するようにしたが、それに代え、あるいはそれに加え、ミリ波レーダを用いても良い。   In the above description, the object is detected from the output of the laser radar. However, instead of or in addition to this, a millimeter wave radar may be used.

また、警報装置22は音声と視覚の双方によって警報するようにしたが、警報装置22は音声と視覚のいずれか一方のみで警報しても良い。さらには、警報装置22に代え、あるいはそれに加え、車両10の運転席(図示せず)を適宜な手段で振動させる、シートベルト(図示せず)を引き込むなどしても良い。   Further, although the alarm device 22 is alarmed by both sound and vision, the alarm device 22 may alarm only by either sound or vision. Further, instead of or in addition to the alarm device 22, a driver's seat (not shown) of the vehicle 10 may be vibrated by an appropriate means, or a seat belt (not shown) may be pulled in.

この発明の実施例に係る車両の走行安全装置を全体的に示す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing an overall traveling safety device for a vehicle according to an embodiment of the present invention. 図1に示す装置の動作を示すフロー・チャートである。It is a flowchart which shows operation | movement of the apparatus shown in FIG. 図2フロー・チャートのフラグ設定処理を示すサブ・ルーチン・フロー・チャートである。2 is a sub-routine flow chart showing a flag setting process of the flow chart. 図1に示すレーダのレーザ光と物体との反射点群の分布を自車の進行方向(X方向)とそれに直交する方向(Y方向)からなる、スキャナデータ上の、2次元平面に投影して得た説明図である。1 is projected onto the two-dimensional plane on the scanner data, which consists of the traveling direction (X direction) of the vehicle and the direction (Y direction) perpendicular to the traveling direction of the own vehicle. It is explanatory drawing obtained. 同様に、図1に示すレーダのレーザ光と物体との反射点群の分布をスキャナデータ上の2次元平面に投影して得た説明図である。Similarly, it is an explanatory diagram obtained by projecting the distribution of the reflection point group of the radar laser beam and the object shown in FIG. 1 onto a two-dimensional plane on the scanner data. 同様に、図1に示すレーダのレーザ光と物体との反射点群の分布をスキャナデータ上の2次元平面に投影して得た説明図である。Similarly, it is an explanatory diagram obtained by projecting the distribution of the reflection point group of the radar laser beam and the object shown in FIG. 1 onto a two-dimensional plane on the scanner data.

符号の説明Explanation of symbols

10 車両(自車)、12 エンジン(内燃機関)、16 前輪、20 後輪、22 警報装置、34 ブレーキ、36 ブレーキスイッチ、40 ECU(電子制御ユニット)、42 レーザレーダ、42a 検知領域、44 レーダ出力処理ECU、46 車輪速センサ、100 走行路、102 十字路あるいはT字路、104 物体(相手車両)   DESCRIPTION OF SYMBOLS 10 Vehicle (own vehicle), 12 engine (internal combustion engine), 16 front wheel, 20 rear wheel, 22 alarm device, 34 brake, 36 brake switch, 40 ECU (electronic control unit), 42 laser radar, 42a detection area, 44 radar Output processing ECU, 46 wheel speed sensor, 100 traveling road, 102 cross road or T-shaped road, 104 object (partner vehicle)

Claims (2)

車両の進行方向に電磁波を送信すると共に、前記進行方向に存在する一つの物体に反射させて得た反射点に基づいて前記物体を検知する物体検知手段と、前記反射点を2次元平面に投影して得た点群の配列に基づいて前記物体の輪郭を構成する線分を認識する線分認識手段と、前記認識された線分に基づいて前記物体の端点を抽出する端点抽出手段と、前記抽出された端点に基づいて前記物体の前記車両に対する相対速度を含む、前記物体との相対関係を算出する相対関係算出手段と、前記算出された相対関係に基づいて前記車両が前記物体と接触する可能性の有無を推定する接触可能性推定手段と、前記接触の可能性があると推定された場合、接触する前の所定時期に前記車両と前記物体との接触回避を支援する接触回避支援手段を作動させる支援作動手段とを備えた車両の走行安全装置において、前記支援作動手段は、前記認識された線分の個数が1個の場合、2個認識された場合に比し、前記所定時期を遅延させた時期に前記接触回避支援手段を作動させることを特徴とする車両の走行安全装置。 Transmits the electromagnetic wave in the traveling direction of the vehicle, and object detecting means for detecting the object based on the reflection points obtained by reflecting the one object present in the advancing direction, projecting the reflection point on the two-dimensional plane Line segment recognizing means for recognizing a line segment constituting the outline of the object based on the array of point groups obtained as described above, and end point extracting means for extracting the end point of the object based on the recognized line segment; Relative relationship calculating means for calculating a relative relationship between the object including the relative speed of the object with respect to the vehicle based on the extracted end points, and the vehicle contacting the object based on the calculated relative relationship Contact possibility estimating means for estimating the possibility of contact, and contact avoidance support that supports contact avoidance between the vehicle and the object at a predetermined time before contact when it is estimated that there is a possibility of contact Actuated means In the vehicle travel safety device comprising the support actuating means, the support actuating means delays the predetermined time when the number of recognized line segments is one when compared with the case when two are recognized. A travel safety device for a vehicle, wherein the contact avoidance support means is actuated at a time when the contact is made. 前記物体検知手段は所定の時間間隔で前記物体を検知すると共に、前記支援作動手段は、ある検知時点において前記認識された線分の個数が2個であったにもかかわらず、その後の検知時点において1個のみ認識される場合、前記所定時期に前記接触回避支援手段を作動させることを特徴とする請求項1記載の車両の走行安全装置。   The object detection means detects the object at a predetermined time interval, and the support actuating means detects a subsequent detection time point even though the number of recognized line segments is two at a detection time point. 2. The vehicle travel safety device according to claim 1, wherein when only one is recognized, the contact avoidance support means is operated at the predetermined time.
JP2006245286A 2006-09-11 2006-09-11 Vehicle travel safety device Expired - Fee Related JP4824511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006245286A JP4824511B2 (en) 2006-09-11 2006-09-11 Vehicle travel safety device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006245286A JP4824511B2 (en) 2006-09-11 2006-09-11 Vehicle travel safety device

Publications (2)

Publication Number Publication Date
JP2008062873A JP2008062873A (en) 2008-03-21
JP4824511B2 true JP4824511B2 (en) 2011-11-30

Family

ID=39285950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006245286A Expired - Fee Related JP4824511B2 (en) 2006-09-11 2006-09-11 Vehicle travel safety device

Country Status (1)

Country Link
JP (1) JP4824511B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106608259A (en) * 2015-10-21 2017-05-03 现代自动车株式会社 Autonomous emergency braking apparatus and method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4980969B2 (en) * 2008-03-25 2012-07-18 本田技研工業株式会社 Vehicle object detection device
JP5042128B2 (en) * 2008-06-10 2012-10-03 Udトラックス株式会社 Collision damage reduction device
JP2010249690A (en) * 2009-04-16 2010-11-04 Honda Motor Co Ltd Object detecting device for vehicle
CN102666240B (en) * 2009-11-27 2014-04-16 丰田自动车株式会社 Collision prevention device
JP2011196943A (en) * 2010-03-23 2011-10-06 Denso Corp Recognition device
JP5698597B2 (en) * 2011-05-10 2015-04-08 本田技研工業株式会社 Vehicle object detection device
JP6593354B2 (en) * 2017-01-16 2019-10-23 株式会社デンソー Collision avoidance device
CN110356390B (en) * 2018-04-03 2022-10-21 奥迪股份公司 Driving assistance system and method
DE102018222672A1 (en) * 2018-12-20 2020-06-25 Robert Bosch Gmbh Determination of the orientation of objects with radar and other electromagnetic interrogation radiation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337643A (en) * 1998-05-27 1999-12-10 Mitsubishi Motors Corp Rear monitoring system for vehicle
JP3765687B2 (en) * 1998-06-03 2006-04-12 本田技研工業株式会社 Vehicle travel safety device
JP3690366B2 (en) * 2001-12-27 2005-08-31 日産自動車株式会社 Front object detection device
JP4329442B2 (en) * 2003-07-30 2009-09-09 日産自動車株式会社 Surrounding vehicle detection device
JP2006038755A (en) * 2004-07-29 2006-02-09 Nissan Motor Co Ltd Device for detecting object around vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106608259A (en) * 2015-10-21 2017-05-03 现代自动车株式会社 Autonomous emergency braking apparatus and method
US9834186B2 (en) 2015-10-21 2017-12-05 Hyundai Motor Company Autonomous emergency braking apparatus and method

Also Published As

Publication number Publication date
JP2008062873A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP4824511B2 (en) Vehicle travel safety device
US8633832B2 (en) Obstacle detection apparatus for vehicle
JP7176415B2 (en) Pre-collision control device
JP4907207B2 (en) Vehicle travel safety device
JP4933144B2 (en) Object detection device
EP2799302A1 (en) Vehicle driving assistance device
JP2010257298A (en) Travel safety device of vehicle
JP5560371B2 (en) Vehicle object detection device
JP4956043B2 (en) Vehicle object detection device
JP2011018165A (en) Vehicle travel safety device
JP2015074380A (en) Vehicle travel control device
JP2016122456A (en) Vehicle drive assist device
JP2009223640A (en) Traveling safety device for vehicle
WO2021172532A1 (en) Parking assistance device and parking assistance method
JP2007298430A (en) Object detection device for vehicle
JP5027748B2 (en) Vehicle travel safety device
JP5745927B2 (en) Vehicle object detection device
JP4980969B2 (en) Vehicle object detection device
JP5070151B2 (en) Vehicle travel safety device
JP2010249690A (en) Object detecting device for vehicle
JP5113656B2 (en) Vehicle travel safety device
JP7505509B2 (en) Vehicle Driving Assistance Device
JP4977097B2 (en) Vehicle travel safety device
JP5090218B2 (en) Vehicle travel safety device
JPWO2013098996A1 (en) Vehicle driving support device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees