JP4906535B2 - Fluid catalytic cracking catalyst, process for producing the same, and process for producing low sulfur catalytic cracked gasoline - Google Patents
Fluid catalytic cracking catalyst, process for producing the same, and process for producing low sulfur catalytic cracked gasoline Download PDFInfo
- Publication number
- JP4906535B2 JP4906535B2 JP2007044395A JP2007044395A JP4906535B2 JP 4906535 B2 JP4906535 B2 JP 4906535B2 JP 2007044395 A JP2007044395 A JP 2007044395A JP 2007044395 A JP2007044395 A JP 2007044395A JP 4906535 B2 JP4906535 B2 JP 4906535B2
- Authority
- JP
- Japan
- Prior art keywords
- catalytic cracking
- vanadium
- fluid catalytic
- catalyst
- cracking catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003054 catalyst Substances 0.000 title claims description 163
- 238000004231 fluid catalytic cracking Methods 0.000 title claims description 102
- 229910052717 sulfur Inorganic materials 0.000 title claims description 57
- 239000011593 sulfur Substances 0.000 title claims description 57
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 title claims description 46
- 238000000034 method Methods 0.000 title claims description 30
- 230000008569 process Effects 0.000 title claims description 9
- 230000003197 catalytic effect Effects 0.000 title description 10
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 99
- 229910052720 vanadium Inorganic materials 0.000 claims description 98
- 229910021536 Zeolite Inorganic materials 0.000 claims description 58
- 239000010457 zeolite Substances 0.000 claims description 58
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 57
- 229910052751 metal Inorganic materials 0.000 claims description 42
- 239000002184 metal Substances 0.000 claims description 42
- 239000003921 oil Substances 0.000 claims description 33
- 238000004519 manufacturing process Methods 0.000 claims description 32
- 238000001035 drying Methods 0.000 claims description 31
- 150000003839 salts Chemical class 0.000 claims description 31
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 28
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 28
- 239000000243 solution Substances 0.000 claims description 27
- 239000008187 granular material Substances 0.000 claims description 21
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 18
- 239000002253 acid Substances 0.000 claims description 17
- 239000007864 aqueous solution Substances 0.000 claims description 17
- 238000004523 catalytic cracking Methods 0.000 claims description 16
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 15
- 230000008929 regeneration Effects 0.000 claims description 15
- 238000011069 regeneration method Methods 0.000 claims description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 14
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 14
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 14
- 229910052759 nickel Inorganic materials 0.000 claims description 14
- 239000002734 clay mineral Substances 0.000 claims description 13
- 238000005336 cracking Methods 0.000 claims description 9
- 239000000377 silicon dioxide Substances 0.000 claims description 9
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 9
- 239000000295 fuel oil Substances 0.000 claims description 8
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 7
- 238000009835 boiling Methods 0.000 claims description 7
- 229910017052 cobalt Inorganic materials 0.000 claims description 7
- 239000010941 cobalt Substances 0.000 claims description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- 239000011701 zinc Substances 0.000 claims description 7
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052791 calcium Inorganic materials 0.000 claims description 6
- 239000011575 calcium Substances 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 239000011651 chromium Substances 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- 239000011777 magnesium Substances 0.000 claims description 6
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 6
- 239000010936 titanium Substances 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 239000005995 Aluminium silicate Substances 0.000 claims description 5
- 235000012211 aluminium silicate Nutrition 0.000 claims description 5
- 238000005470 impregnation Methods 0.000 claims description 5
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 5
- 238000005342 ion exchange Methods 0.000 claims description 4
- 238000009825 accumulation Methods 0.000 claims description 3
- 239000000440 bentonite Substances 0.000 claims description 3
- 229910000278 bentonite Inorganic materials 0.000 claims description 3
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims description 3
- 239000012530 fluid Substances 0.000 claims description 3
- 150000002910 rare earth metals Chemical group 0.000 claims description 3
- 238000006477 desulfuration reaction Methods 0.000 description 23
- 230000023556 desulfurization Effects 0.000 description 23
- 238000011156 evaluation Methods 0.000 description 21
- 230000000694 effects Effects 0.000 description 17
- 239000011148 porous material Substances 0.000 description 16
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 15
- 229910002091 carbon monoxide Inorganic materials 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 15
- 239000007789 gas Substances 0.000 description 13
- 238000010025 steaming Methods 0.000 description 13
- 238000000354 decomposition reaction Methods 0.000 description 12
- 238000001179 sorption measurement Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 7
- 238000011068 loading method Methods 0.000 description 7
- UUUGYDOQQLOJQA-UHFFFAOYSA-L vanadyl sulfate Chemical compound [V+2]=O.[O-]S([O-])(=O)=O UUUGYDOQQLOJQA-UHFFFAOYSA-L 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000000571 coke Substances 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 229910052746 lanthanum Inorganic materials 0.000 description 4
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 3
- IRERQBUNZFJFGC-UHFFFAOYSA-L azure blue Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[S-]S[S-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] IRERQBUNZFJFGC-UHFFFAOYSA-L 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000012266 salt solution Substances 0.000 description 3
- 235000013799 ultramarine blue Nutrition 0.000 description 3
- 229910052684 Cerium Inorganic materials 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- RAGLTCMTCZHYEJ-UHFFFAOYSA-K azanium;chromium(3+);disulfate Chemical compound [NH4+].[Cr+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RAGLTCMTCZHYEJ-UHFFFAOYSA-K 0.000 description 2
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- -1 halosite Chemical compound 0.000 description 2
- 239000011964 heteropoly acid Substances 0.000 description 2
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 2
- 229940099596 manganese sulfate Drugs 0.000 description 2
- 239000011702 manganese sulphate Substances 0.000 description 2
- 235000007079 manganese sulphate Nutrition 0.000 description 2
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 239000002808 molecular sieve Substances 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 2
- 238000001694 spray drying Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical class [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 150000003681 vanadium Chemical class 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical class [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- XHAFPKVCDCRTLV-UHFFFAOYSA-L N.S(=O)(=O)([O-])[O-].[Mn+2] Chemical compound N.S(=O)(=O)([O-])[O-].[Mn+2] XHAFPKVCDCRTLV-UHFFFAOYSA-L 0.000 description 1
- RSBNPUNXBGVNNB-UHFFFAOYSA-M S(=O)(=O)([O-])[O-].[NH4+].[Co+] Chemical compound S(=O)(=O)([O-])[O-].[NH4+].[Co+] RSBNPUNXBGVNNB-UHFFFAOYSA-M 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical class [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- LCQXXBOSCBRNNT-UHFFFAOYSA-K ammonium aluminium sulfate Chemical compound [NH4+].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O LCQXXBOSCBRNNT-UHFFFAOYSA-K 0.000 description 1
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 1
- 239000011609 ammonium molybdate Substances 0.000 description 1
- 235000018660 ammonium molybdate Nutrition 0.000 description 1
- 229940010552 ammonium molybdate Drugs 0.000 description 1
- DAPUDVOJPZKTSI-UHFFFAOYSA-L ammonium nickel sulfate Chemical compound [NH4+].[NH4+].[Ni+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DAPUDVOJPZKTSI-UHFFFAOYSA-L 0.000 description 1
- YVBOZGOAVJZITM-UHFFFAOYSA-P ammonium phosphomolybdate Chemical compound [NH4+].[NH4+].[NH4+].[NH4+].[O-]P([O-])=O.[O-][Mo]([O-])(=O)=O YVBOZGOAVJZITM-UHFFFAOYSA-P 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- GBAOBIBJACZTNA-UHFFFAOYSA-L calcium sulfite Chemical compound [Ca+2].[O-]S([O-])=O GBAOBIBJACZTNA-UHFFFAOYSA-L 0.000 description 1
- 235000010261 calcium sulphite Nutrition 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001844 chromium Chemical class 0.000 description 1
- GRWVQDDAKZFPFI-UHFFFAOYSA-H chromium(III) sulfate Chemical compound [Cr+3].[Cr+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRWVQDDAKZFPFI-UHFFFAOYSA-H 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 238000005443 coulometric titration Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003009 desulfurizing effect Effects 0.000 description 1
- DCNGHDHEMTUKNP-UHFFFAOYSA-L diazanium;magnesium;disulfate Chemical compound [NH4+].[NH4+].[Mg+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DCNGHDHEMTUKNP-UHFFFAOYSA-L 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- IMBKASBLAKCLEM-UHFFFAOYSA-L ferrous ammonium sulfate (anhydrous) Chemical compound [NH4+].[NH4+].[Fe+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O IMBKASBLAKCLEM-UHFFFAOYSA-L 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 159000000014 iron salts Chemical class 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 150000002696 manganese Chemical class 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000002751 molybdenum Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Chemical class 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- PDKHNCYLMVRIFV-UHFFFAOYSA-H molybdenum;hexachloride Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Mo] PDKHNCYLMVRIFV-UHFFFAOYSA-H 0.000 description 1
- VLAPMBHFAWRUQP-UHFFFAOYSA-L molybdic acid Chemical compound O[Mo](O)(=O)=O VLAPMBHFAWRUQP-UHFFFAOYSA-L 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Chemical class 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical class [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- OGUCKKLSDGRKSH-UHFFFAOYSA-N oxalic acid oxovanadium Chemical compound [V].[O].C(C(=O)O)(=O)O OGUCKKLSDGRKSH-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- DCKVFVYPWDKYDN-UHFFFAOYSA-L oxygen(2-);titanium(4+);sulfate Chemical compound [O-2].[Ti+4].[O-]S([O-])(=O)=O DCKVFVYPWDKYDN-UHFFFAOYSA-L 0.000 description 1
- IYDGMDWEHDFVQI-UHFFFAOYSA-N phosphoric acid;trioxotungsten Chemical compound O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.OP(O)(O)=O IYDGMDWEHDFVQI-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000036619 pore blockages Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 229940005657 pyrophosphoric acid Drugs 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical class [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- CGFYHILWFSGVJS-UHFFFAOYSA-N silicic acid;trioxotungsten Chemical compound O[Si](O)(O)O.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1.O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 CGFYHILWFSGVJS-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical class [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- YOUIDGQAIILFBW-UHFFFAOYSA-J tetrachlorotungsten Chemical compound Cl[W](Cl)(Cl)Cl YOUIDGQAIILFBW-UHFFFAOYSA-J 0.000 description 1
- 150000003608 titanium Chemical class 0.000 description 1
- 229910000348 titanium sulfate Inorganic materials 0.000 description 1
- KBSJJSOGQSGFRD-UHFFFAOYSA-K trichlorotungsten Chemical compound Cl[W](Cl)Cl KBSJJSOGQSGFRD-UHFFFAOYSA-K 0.000 description 1
- 150000003657 tungsten Chemical class 0.000 description 1
- 229910052721 tungsten Chemical class 0.000 description 1
- 239000010937 tungsten Chemical class 0.000 description 1
- KPGXUAIFQMJJFB-UHFFFAOYSA-H tungsten hexachloride Chemical compound Cl[W](Cl)(Cl)(Cl)(Cl)Cl KPGXUAIFQMJJFB-UHFFFAOYSA-H 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 229940041260 vanadyl sulfate Drugs 0.000 description 1
- 229910000352 vanadyl sulfate Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical class [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
Landscapes
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
本発明は、流動接触分解触媒及びその製造方法並びに低硫黄接触分解ガソリンの製造方法に関し、詳しくは、流動接触分解装置で低硫黄の接触分解ガソリンを製造するための触媒及びその製造方法並びに低硫黄接触分解ガソリンの製造方法に関する。 The present invention relates to a fluid catalytic cracking catalyst, a process for producing the same, and a process for producing a low sulfur catalytic cracked gasoline, and more particularly, a catalyst for producing a low sulfur catalytic cracked gasoline in a fluid catalytic cracking apparatus, a process for producing the same, and a low sulfur. The present invention relates to a method for producing catalytic cracking gasoline.
最近の環境問題の高まりに伴い、全世界的にガソリン中の硫黄分が規制されるようになった。日本においても2005年にはガソリン中の硫黄含有量を10質量ppmに自主規制している。ガソリン中の硫黄含有量を10質量ppm以下とするためには、ガソリン基材として用いられる接触分解ガソリン(以下「FCCガソリン」ということがある。)中の硫黄含有量を今まで以上に低減する必要がある。
FCCガソリン中の硫黄含有量を低減する方法として、例えば、流動接触分解装置の前段にある直接脱硫装置、又は間接脱硫装置によって、原料油(重質油)中の硫黄分を従来以上に低減する方法や、流動接触分解装置の後段に後処理装置としてFCCガソリンの水素化脱硫装置を設置し、低硫黄化を図る方法が考えられる。
しかしながら、これらの装置による低硫黄化に際しては、装置に対する負荷が増大するため、二酸化炭素の発生量の増大を免れないという問題がある。また、脱硫率を上げるためには、通常よりも水素の使用量が増えるため運転コストも増大する。さらに、前述の流動接触分解装置後段の後処理装置に関しては、新設する場合が多く莫大な建設コストがかかる。
With the recent increase in environmental problems, the sulfur content in gasoline has been regulated worldwide. Japan also voluntarily regulates the sulfur content in gasoline to 10 mass ppm in 2005. In order to reduce the sulfur content in gasoline to 10 mass ppm or less, the sulfur content in catalytic cracking gasoline (hereinafter sometimes referred to as “FCC gasoline”) used as a gasoline base material is reduced more than ever. There is a need.
As a method for reducing the sulfur content in FCC gasoline, for example, the sulfur content in the feedstock oil (heavy oil) is reduced more than before by using a direct desulfurization device or an indirect desulfurization device in front of the fluid catalytic cracking device. A method for reducing the sulfur content by installing a hydrodesulfurization device for FCC gasoline as a post-treatment device after the fluid catalytic cracking device can be considered.
However, when the sulfur content is reduced by these apparatuses, the load on the apparatus increases, so that there is a problem that an increase in the amount of carbon dioxide generated cannot be avoided. Further, in order to increase the desulfurization rate, the amount of hydrogen used is higher than usual, so that the operating cost also increases. Furthermore, the post-treatment device subsequent to the fluid catalytic cracking device described above is often newly installed, and enormous construction costs are required.
ところで、FCCガソリンは流動接触分解装置によって重質油等を分解することで得られる。流動接触分解装置で用いる流動接触分解触媒は、例えば、ゼオライト、シリカ・アルミナ等からなり、反応塔で分解反応を行い、再生塔で再生を繰り返すサイクルの中で使用される。このサイクルの中で、原料油中のバナジウム及びニッケルが流動接触分解触媒に蓄積されていき、これらの金属がある程度蓄積された状態(平衡触媒)で繰り返し反応に供される。流動接触分解装置内で、原料油中の硫黄分は、原料油の分解と並行して脱離し、脱硫活性を有するこれら蓄積されたバナジウム及びニッケル金属上で水素化脱硫され、硫化水素として系外に排出除去される。または、硫黄分はバナジウム及びニッケル金属に吸着され、あるいは発生する堆積コーク中に取り込まれ、再生塔にて焼成・酸化されてSOxとなって系外に排出除去される。このように、バナジウム等は脱硫活性を有するので、この性質を利用して、流動接触分解で用いられる触媒を改良し、脱硫率を上げてFCCガソリン中の硫黄含有量を低減する試みがなされている。例えば、バナジウム、亜鉛、ニッケル、鉄又はコバルトを担持した触媒(特許文献1、特許請求の範囲参照)、バナジウム金属をモレキュラーシーブの小孔内にカチオン種として導入したゼオライトを含有する触媒(特許文献2、特許請求の範囲参照)、さらには、バナジウム金属とともにランタン、セリウム等の希土類元素をモレキュラーシーブの小孔内に導入したゼオライトを含有する触媒(特許文献3、特許請求の範囲参照)などが提案されている。
しかしながら、バナジウムは脱硫活性を有する一方で、ゼオライトの小細孔に入り込んでゼオライトの活性点を被毒し、またゼオライト骨格への攻撃による構造の崩壊をもたらす。さらには、細孔閉塞によって原料油あるいは分解生成油の拡散を阻害するなどの弊害を引き起こす。従って、上記提案される触媒では、ある程度の脱硫活性は認められるものの、近年のさらなる低硫黄化に対しては、性能が不十分であり、さらなる改良が求められていた。
By the way, FCC gasoline is obtained by cracking heavy oil or the like with a fluid catalytic cracking device. The fluid catalytic cracking catalyst used in the fluid catalytic cracking apparatus is made of, for example, zeolite, silica / alumina, etc., and is used in a cycle in which a cracking reaction is performed in a reaction tower and regeneration is repeated in a regeneration tower. In this cycle, vanadium and nickel in the feedstock are accumulated in the fluid catalytic cracking catalyst, and are repeatedly subjected to the reaction in a state where these metals are accumulated to some extent (equilibrium catalyst). In the fluid catalytic cracking unit, the sulfur content in the feedstock is desorbed in parallel with the cracking of the feedstock, hydrodesulfurized on the accumulated vanadium and nickel metal having desulfurization activity, and is removed from the system as hydrogen sulfide. It is discharged and removed. Alternatively, the sulfur content is adsorbed by vanadium and nickel metal or taken into the generated deposited coke, and is baked and oxidized in the regeneration tower to be SOx to be discharged out of the system. As described above, vanadium and the like have desulfurization activity. Therefore, an attempt has been made to improve the catalyst used in fluid catalytic cracking and increase the desulfurization rate to reduce the sulfur content in FCC gasoline by utilizing this property. Yes. For example, a catalyst supporting vanadium, zinc, nickel, iron, or cobalt (see Patent Document 1 and claims), a catalyst containing a zeolite in which vanadium metal is introduced as a cationic species into the small pores of a molecular sieve (Patent Document) 2), and a catalyst containing a zeolite in which a rare earth element such as lanthanum or cerium is introduced together with vanadium metal into the small pores of the molecular sieve (see Patent Document 3, Claims). Proposed.
However, while vanadium has desulfurization activity, it enters into the small pores of the zeolite and poisons the active sites of the zeolite, and also causes structural collapse due to attack on the zeolite framework. Furthermore, the pore blockage causes adverse effects such as inhibiting the diffusion of the raw material oil or the decomposition product oil. Therefore, although the above-mentioned proposed catalyst has some desulfurization activity, its performance is insufficient for further reduction in sulfur in recent years, and further improvement has been demanded.
また、流動接触分解装置を構成する反応塔と再生塔では、反応と再生が繰り返され、還元・酸化が行われている。この再生塔においては、バナジウムは酸化されて5価となり、同じく再生塔で発生した二酸化炭素(CO2)から酸素を引き抜きいて一酸化炭素(CO)を生成する。ところが、再生塔で生成するCO量が多くなると、COボイラーに入るCO量が増加し、ボイラーの異常加熱により、装置の破壊等の危険性がある。従って、再生塔におけるCOの発生を抑制し、このような危険性を回避できる流動接触分解触媒が求められている。
Further, in the regeneration tower and reactor constituting a fluidized catalytic cracking unit, react with reproduction is repeated, the reduction and oxidation being performed. In this regeneration tower, vanadium is oxidized to become pentavalent, and oxygen is extracted from carbon dioxide (CO 2 ) generated in the regeneration tower to produce carbon monoxide (CO). However, when the amount of CO generated in the regeneration tower increases, the amount of CO entering the CO boiler increases, and there is a risk of destruction of the apparatus due to abnormal heating of the boiler. Therefore, there is a need for a fluid catalytic cracking catalyst that can suppress the generation of CO in the regeneration tower and avoid such danger.
本発明は、このような状況下でなされたもので、脱硫率が高く、再生塔における一酸化炭素(CO)の発生を抑制できる流動接触分解触媒及びその製造方法並びに低硫黄接触分解ガソリンの製造方法を提供することを目的とする。 The present invention has been made under such circumstances, and has a high desulfurization rate, a fluid catalytic cracking catalyst capable of suppressing the generation of carbon monoxide (CO) in the regeneration tower, a method for producing the same, and production of low sulfur catalytic cracked gasoline. It aims to provide a method.
本発明者らは、前記目的を達成するために、鋭意研究を重ねた結果、特定の担体にバナジウムを担持した触媒であって、触媒上にバナジウムとともに硫酸根が存在し、かつ特定の酸量及びマクロ細孔表面積を有する流動接触分解触媒が、前記課題を解決し得ることを見出した。本発明はかかる知見に基づいて完成されたものである。
すなわち、本発明は、
As a result of intensive studies to achieve the above object, the inventors of the present invention have obtained a catalyst in which vanadium is supported on a specific carrier, a sulfate group exists together with vanadium, and a specific acid amount. And the fluid catalytic cracking catalyst which has a macropore surface area discovered that the said subject could be solved. The present invention has been completed based on such findings.
That is, the present invention
[1] ゼオライトとゼオライト以外の多孔性無機酸化物及び/又は粘土鉱物とからなる粉粒体にバナジウム及び希土類元素を担持した触媒であって、触媒上にバナジウム及び希土類元素とともに硫酸根が存在し、バナジウムの担持量がバナジウム金属換算で500〜20,000質量ppmであり、酸量が20〜450μmol/g、及びマクロ細孔表面積が30〜150m[1] A catalyst in which vanadium and a rare earth element are supported on a granular material composed of zeolite and a porous inorganic oxide other than zeolite and / or clay mineral, and a sulfate group is present on the catalyst together with vanadium and the rare earth element. The supported amount of vanadium is 500 to 20,000 mass ppm in terms of vanadium metal, the acid amount is 20 to 450 μmol / g, and the macropore surface area is 30 to 150 m.
22
/gであり、/ G,
前記希土類元素を担持した後に行う乾燥が下記条件下で行われることを特徴とする流動接触分解触媒、 A fluid catalytic cracking catalyst characterized in that drying performed after supporting the rare earth element is performed under the following conditions;
(a)乾燥温度:60〜300℃の範囲(但し、200℃以上の温度に曝される時間を10分以内にする)(A) Drying temperature: in the range of 60 to 300 ° C. (however, the time of exposure to a temperature of 200 ° C. or higher is made within 10 minutes)
(b)乾燥時間:30〜120分の範囲(B) Drying time: in the range of 30 to 120 minutes
[2] ゼオライトが、Y型ゼオライト、希土類交換Y型ゼオライト、USY型ゼオライト、希土類交換USY型ゼオライト、β型ゼオライト、ZSM−5、及びL型ゼオライトから選ばれる少なくとも一種である[1]に記載の流動接触分解触媒、[2] The zeolite is at least one selected from Y-type zeolite, rare earth-exchanged Y-type zeolite, USY-type zeolite, rare-earth exchanged USY-type zeolite, β-type zeolite, ZSM-5, and L-type zeolite. Fluid catalytic cracking catalyst,
[3] 多孔性無機酸化物が、アルミナ、シリカ、シリカ・アルミナ、チタニア、シリカ・チタニア及びアルミナ・チタニアから選ばれる少なくとも一種である[1]又は[2]に記載の流動接触分解触媒、[3] The fluid catalytic cracking catalyst according to [1] or [2], wherein the porous inorganic oxide is at least one selected from alumina, silica, silica-alumina, titania, silica-titania and alumina-titania,
[4] 粘土鉱物がカオリン、ハロサイト又はベントナイトである[1]〜[3]のいずれかに記載の流動接触分解触媒、[4] The fluid catalytic cracking catalyst according to any one of [1] to [3], wherein the clay mineral is kaolin, halosite or bentonite,
[5] ゼオライトとゼオライト以外の多孔性無機酸化物及び/又は粘土鉱物とからなる粉粒体にバナジウム及び希土類元素を担持した触媒であって、触媒上にバナジウム及び希土類元素とともに硫酸根が存在し、バナジウムの担持量がバナジウム金属換算で1,000〜20,000質量ppm、酸量が20〜450μmol/g、及びマクロ細孔表面積が30〜150m[5] A catalyst in which vanadium and a rare earth element are supported on a granular material composed of zeolite and a porous inorganic oxide other than zeolite and / or clay mineral, and a sulfate radical is present on the catalyst together with vanadium and the rare earth element. The supported amount of vanadium is 1,000 to 20,000 ppm by mass in terms of vanadium metal, the acid amount is 20 to 450 μmol / g, and the macropore surface area is 30 to 150 m.
22
/gであり、/ G,
前記希土類元素を担持した後に行う乾燥が下記条件下で行われ、バナジウムの担持がバナジウムと硫酸根を含有する担持溶液を用いて担持してなる流動接触分解触媒、 Drying carried out after loading the rare earth element is carried out under the following conditions, and vanadium loading is carried using a loading solution containing vanadium and sulfate radicals, a fluid catalytic cracking catalyst,
(a)乾燥温度:60〜300℃の範囲(但し、200℃以上の温度に曝される時間を10分以内にする)(A) Drying temperature: in the range of 60 to 300 ° C. (however, the time of exposure to a temperature of 200 ° C. or higher is made within 10 minutes)
(b)乾燥時間:30〜120分の範囲(B) Drying time: in the range of 30 to 120 minutes
[6] バナジウムの少なくとも一部が担持溶液中で硫酸根を含有する多核錯塩を形成している[5]に記載の流動接触分解触媒、[6] The fluid catalytic cracking catalyst according to [5], wherein at least a part of vanadium forms a polynuclear complex salt containing a sulfate group in the supported solution.
[7] 担持溶液が、オキソ硫酸バナジウム、オキソ硫酸バナジウムと硫酸、又はこれらのいずれかと他の金属塩を含有する溶液である[5]又は[6]に記載の流動接触分解触媒、[7] The fluid catalytic cracking catalyst according to [5] or [6], wherein the supported solution is a solution containing vanadium oxosulfate, vanadium oxosulfate and sulfuric acid, or any of these and other metal salts,
[8] 担持溶液がpH4以下の溶液である[5]〜[7]のいずれかに記載の流動接触分解触媒、[8] The fluid catalytic cracking catalyst according to any one of [5] to [7], wherein the supported solution is a solution having a pH of 4 or less,
[9] 他の金属塩がマンガン、マグネシウム、カルシウム、コバルト、亜鉛、銅、チタン、アルミニウム、ニッケル、鉄、クロムから選ばれる少なくとも一種の無機金属塩である[7]又は[8]に記載の流動接触分解触媒、[9] The other metal salt according to [7] or [8], wherein the other metal salt is at least one inorganic metal salt selected from manganese, magnesium, calcium, cobalt, zinc, copper, titanium, aluminum, nickel, iron, and chromium. Fluid catalytic cracking catalyst,
[10] さらに、バナジウム及び/又はニッケルの蓄積量が50〜20,000質量ppmである流動接触分解平衡触媒を、触媒全量を基準として0〜95質量%混合した[1]〜[9]のいずれかに記載の流動接触分解触媒、[10] Further, the fluid catalytic cracking equilibrium catalyst having a vanadium and / or nickel accumulation amount of 50 to 20,000 mass ppm is mixed in an amount of 0 to 95 mass% based on the total amount of the catalyst. Fluid catalytic cracking catalyst according to any of the above,
[11] ゼオライトとゼオライト以外の多孔性無機酸化物及び/又は粘土鉱物とからなる粉粒体にバナジウム及び希土類元素を担持した触媒の製造方法であって、[11] A method for producing a catalyst in which vanadium and a rare earth element are supported on a granular material composed of zeolite and a porous inorganic oxide other than zeolite and / or clay mineral,
バナジウムと硫酸根を含有する水溶液を調製し、これを粉粒体に担持する工程と、 Preparing an aqueous solution containing vanadium and sulfate radicals, and supporting this on a granular material;
希土類元素を粉粒体に担持し、その後に行う乾燥を下記条件下で行う工程と、を含むことを特徴とする流動接触分解触媒の製造方法、 A method for producing a fluid catalytic cracking catalyst, comprising: carrying a rare earth element on a granular material; and performing subsequent drying under the following conditions:
(a)乾燥温度:60〜300℃の範囲(但し、200℃以上の温度に曝される時間を10分以内にする)(A) Drying temperature: in the range of 60 to 300 ° C. (however, the time of exposure to a temperature of 200 ° C. or higher is made within 10 minutes)
(b)乾燥時間:30〜120分の範囲(B) Drying time: in the range of 30 to 120 minutes
[12] バナジウムと硫酸根を含有する水溶液が、オキソ硫酸バナジウム、オキソ硫酸バナジウムと硫酸、又はこれらのいずれかと他の金属塩を含有する水溶液である[11]に記載の流動接触分解触媒の製造方法、[12] Production of fluid catalytic cracking catalyst according to [11], wherein the aqueous solution containing vanadium and sulfate radical is an aqueous solution containing vanadium oxosulfate, vanadium oxosulfate and sulfuric acid, or any of these and other metal salts. Method,
[13] バナジウムと硫酸根を含有する水溶液がpH4以下である[11]又は[12]に記載の流動接触分解触媒の製造方法、[13] The method for producing a fluid catalytic cracking catalyst according to [11] or [12], wherein the aqueous solution containing vanadium and a sulfate group has a pH of 4 or less,
[14] 他の金属塩がマンガン、マグネシウム、カルシウム、コバルト、亜鉛、銅、チタン、アルミニウム、ニッケル、鉄、クロムから選ばれる少なくとも一種の無機金属塩である[12]又は[13]に記載の流動接触分解触媒の製造方法、[14] The other metal salt is at least one inorganic metal salt selected from manganese, magnesium, calcium, cobalt, zinc, copper, titanium, aluminum, nickel, iron, and chromium, [12] or [13] Production method of fluid catalytic cracking catalyst,
[15] 前記希土類元素の担持を、イオン交換法又は含浸法を用いて行う[12]〜[14]のいずれかに記載の流動接触分解触媒の製造方法、[15] The method for producing a fluid catalytic cracking catalyst according to any one of [12] to [14], wherein the rare earth element is supported using an ion exchange method or an impregnation method.
[16] [1]〜[10]のいずれかに記載の流動接触分解触媒及び[11]〜[15]のいずれかに記載の流動接触分解触媒の製造方法で得られた流動接触分解触媒のいずれかを用いて重質油を接触分解する低硫黄接触分解ガソリンの製造方法、[16] The fluid catalytic cracking catalyst according to any one of [1] to [10] and the fluid catalytic cracking catalyst obtained by the method for producing a fluid catalytic cracking catalyst according to any of [11] to [15] A method for producing low-sulfur catalytic cracking gasoline in which heavy oil is catalytically cracked using either
[17] 重質油中の硫黄含有量が0.05〜0.7質量%であり、得られる接触分解ガソリン中の硫黄含有量が50質量ppm以下である[16]に記載の低硫黄接触分解ガソリンの製造方法、[17] The low sulfur contact according to [16], wherein the sulfur content in the heavy oil is 0.05 to 0.7% by mass, and the sulfur content in the obtained catalytic cracked gasoline is 50 ppm by mass or less. A method for producing cracked gasoline,
[18] 得られる低硫黄接触分解ガソリン中のC[18] C in the obtained low-sulfur catalytic cracking gasoline
5Five
〜210℃沸点範囲における硫黄含有量が30質量ppm以下である[17]に記載の低硫黄接触分解ガソリンの製造方法、The method for producing low-sulfur catalytic cracking gasoline according to [17], wherein the sulfur content in a boiling point range of ˜210 ° C. is 30 mass ppm or less,
[19] 得られる低硫黄接触分解ガソリン中のC[19] C in the obtained low-sulfur catalytic cracking gasoline
5Five
〜210℃沸点範囲における硫黄含有量が15質量ppm以下である[18]に記載の低硫黄接触分解ガソリンの製造方法、及びThe method for producing low-sulfur catalytic cracking gasoline according to [18], wherein the sulfur content in a boiling point range of ˜210 ° C. is 15 ppm by mass or less, and
[20] [16]〜[19]のいずれかに記載の低硫黄接触分解ガソリンの製造方法が、流動接触分解触媒の触媒再生工程において再生ガス中のCOの発生を抑制する低硫黄接触分解ガソリンの製造方法、[20] The low sulfur catalytic cracking gasoline according to any one of [16] to [19], wherein the low sulfur catalytic cracking gasoline suppresses the generation of CO in the regenerated gas in the catalyst regeneration step of the fluid catalytic cracking catalyst. Manufacturing method,
を提供するものである。Is to provide.
本発明の流動接触分解触媒によれば、流動接触分解装置を用いて分解処理及び脱硫処理をすることで、残油留分からは硫黄含有量50質量ppm以下のガソリン留分を、また重質軽油留分からは硫黄含有量30質量ppm以下のガソリン留分を効率よく製造することができる。また、接触分解ガソリンに加えて、分解軽油留分(ライトサイクルオイル、以下「LCO」という。)を効率的に製造することができ、過分解を抑制してコーク収率を低減することができる。さらに、本発明の流動接触分解触媒によれば、流動接触分解装置の再生塔における一酸化炭素(CO)の発生を抑制することができる。 According to the fluid catalytic cracking catalyst of the present invention, by performing cracking and desulfurization using a fluid catalytic cracking apparatus, a gasoline fraction having a sulfur content of 50 mass ppm or less is obtained from the residual oil fraction, and a heavy gas oil A gasoline fraction having a sulfur content of 30 mass ppm or less can be efficiently produced from the fraction. Moreover, in addition to catalytic cracking gasoline, a cracked light oil fraction (light cycle oil, hereinafter referred to as “LCO”) can be produced efficiently, and the coke yield can be reduced by suppressing over cracking. Furthermore, according to the fluid catalytic cracking catalyst of this invention, generation | occurrence | production of carbon monoxide (CO) in the regeneration tower of a fluid catalytic cracking apparatus can be suppressed.
本発明の流動接触分解触媒は、ゼオライトとゼオライト以外の多孔性無機酸化物及び/又は粘土鉱物とからなる粉粒体を担体とすることを特徴とする。ゼオライトの種類としては特に限定されず、Y型ゼオライト、希土類交換Y型ゼオライト、USY型ゼオライト、希土類交換USY型ゼオライト、β−ゼオライト、ZSM−5、L型ゼオライトなどが挙げられ、これらのうち特にY型ゼオライトが好ましい。該粉粒体中のゼオライトの含有量は、3〜70質量%が好ましい。3質量%以上であると十分な分解活性が得られ、70質量%以下であると、目的とするFCCガソリンが高い選択性で得られる。以上の点から、ゼオライトのさらに好ましい含有量は、粉粒体全量基準で5〜50質量%の範囲である。 The fluid catalytic cracking catalyst of the present invention is characterized in that a granular material comprising zeolite and a porous inorganic oxide other than zeolite and / or clay mineral is used as a carrier. The type of zeolite is not particularly limited, and examples include Y-type zeolite, rare earth-exchanged Y-type zeolite, USY-type zeolite, rare-earth exchanged USY-type zeolite, β-zeolite, ZSM-5, and L-type zeolite. Y-type zeolite is preferred. As for content of the zeolite in this granular material, 3-70 mass% is preferable. When it is 3% by mass or more, sufficient cracking activity is obtained, and when it is 70% by mass or less, the intended FCC gasoline is obtained with high selectivity. From the above points, the more preferable content of zeolite is in the range of 5 to 50% by mass on the basis of the total amount of the granular material.
ゼオライト以外の多孔性無機酸化物としては、アルミナ、シリカ、シリカ・アルミナ、チタニア、シリカ・チタニア、アルミナ・チタニアなどが挙げられ、FCCガソリン、LCOの収率の点から、アルミナ又はシリカ・アルミナが好ましい。該粉粒体中の多孔性無機酸化物の含有量は、3〜40質量%が好ましい。3質量%以上であると、分解活性及び脱硫活性が向上し、40質量%以下であると、十分な耐摩耗性が得られる。以上の点から、多孔性無機酸化物のさらに好ましい含有量は、粉粒体全量基準で10〜35質量%の範囲である。
また、粘土鉱物としては、カオリン、ハロサイト、ベントナイトなどが挙げられ、該粉粒体中の含有量としては、10〜50質量%が好ましい。
Examples of porous inorganic oxides other than zeolite include alumina, silica, silica / alumina, titania, silica / titania, and alumina / titania. From the viewpoint of the yield of FCC gasoline and LCO, alumina or silica / alumina is preferable. preferable. As for content of the porous inorganic oxide in this granular material, 3-40 mass% is preferable. When it is 3% by mass or more, decomposition activity and desulfurization activity are improved, and when it is 40% by mass or less, sufficient wear resistance is obtained. From the above points, the more preferable content of the porous inorganic oxide is in the range of 10 to 35% by mass on the basis of the total amount of the granular material.
Examples of the clay mineral include kaolin, halosite, bentonite and the like, and the content in the powder is preferably 10 to 50% by mass.
上記の担体成分から調製される市販の流動接触分解触媒や残油流動接触分解触媒も本発明の粉粒体に包含される。流動接触分解触媒及び残油流動接触分解触媒は、具体的にはY型ゼオライト、アルミナ、シリカ・アルミナ及びカオリンを用いてスプレードライ法などの常法により製造されるものである。
本発明における粉粒体は、上記担体成分を一種単独で、又は二種以上を組み合わせて使用することができるが、特に、脱硫活性を十分に得るとの点、及び重質油の分解活性に優れる点から、ゼオライトとしてY型ゼオライトを用い、多孔性無機酸化物として、アルミナ又はシリカ・アルミナを用い、さらに粘土鉱物を用いることが好ましい。
Commercially available fluid catalytic cracking catalysts and residual oil fluid catalytic cracking catalysts prepared from the above carrier components are also included in the granular material of the present invention. Specifically, the fluid catalytic cracking catalyst and the residual oil fluid catalytic cracking catalyst are produced by a conventional method such as spray drying using Y-type zeolite, alumina, silica / alumina and kaolin.
The granular material in the present invention can be used alone or in combination of two or more of the above carrier components. Particularly, it is sufficient for desulfurization activity and heavy oil decomposition activity. From the standpoint of excellence, it is preferable to use Y-type zeolite as the zeolite, alumina or silica / alumina as the porous inorganic oxide, and clay mineral.
本発明の流動接触分解触媒は、前記粉粒体にバナジウムを担持した触媒であり、バナジウムの担持量はバナジウム金属換算で1,000〜20,000質量ppmである。1,000質量ppm未満であると、バナジウムを担持した十分な効果、すなわち十分な脱硫活性を得ることができず、一方、20,000質量ppmを超えると、分解反応が進みすぎ、コークやガスなどの目的外生成物の収率が高くなり、経済性が低下する。 The fluid catalytic cracking catalyst of the present invention is a catalyst in which vanadium is supported on the granular material, and the supported amount of vanadium is 1,000 to 20,000 mass ppm in terms of vanadium metal. If it is less than 1,000 ppm by mass, a sufficient effect of supporting vanadium, that is, sufficient desulfurization activity cannot be obtained. On the other hand, if it exceeds 20,000 ppm by mass, the decomposition reaction proceeds too much and coke or gas is lost. As a result, the yield of unintended products such as these increases, and the economic efficiency decreases.
また、本発明の流動接触分解触媒は、触媒上にバナジウムとともに硫酸根が存在することを特徴とする。このような触媒は、通常バナジウムの少なくとも一部が多核錯塩を形成している。
ここで、多核錯塩はバナジウム単独の錯塩であってもよいし、又はバナジウムと他の異なる金属との2〜4核錯塩であってもよい。
バナジウムは、従来技術においては、メタバナジン酸アンモニウム、シュウ酸バナジル、ナフテン酸バナジウムなどの溶液を用いて担持されるが、これらの溶液を用いた場合には、バナジウムが単独イオンとして溶液中に存在し、担持の過程でゼオライトの小細孔内(細孔径7A程度)に入る。又は、流動接触分解装置の触媒再生塔においては、V2O5、VO2などのバナジウム酸化物となる。小細孔内に導入されたバナジウムは、ゼオライト、特に超安定Y型ゼオライト(USY)の結晶構造を崩壊させ、分解活性を減少させる。
一方、本発明におけるバナジウムは、触媒の製造過程における担持溶液中で、通常硫酸根を含有する多核錯体塩を形成するため、ゼオライトの小細孔内へのバナジウムの導入を抑制することができる。従って、本発明の流動接触分解触媒は、ゼオライトの結晶構造の崩壊が抑制され、バナジウムの持つ脱硫活性が最大限生かされ、硫黄含有量の少ないFCCガソリンが得られるとともに、FCCガソリン及びLCOの収率を増加させることができる。
ここで、上記多核錯塩は、安定性、バナジウムの水素化脱硫特性の点から、バナジウム単独の又はバナジウムと他の異なる金属との2〜4核錯塩、硫酸根が含まれるバナジウムのイソポリ酸又はヘテロポリ酸が好ましい。
In addition, the fluid catalytic cracking catalyst of the present invention is characterized in that a sulfate group is present together with vanadium on the catalyst. In such a catalyst, at least a part of vanadium usually forms a polynuclear complex salt.
Here, the polynuclear complex salt may be a complex salt of vanadium alone, or may be a complex salt of 2 to 4 nucleus of vanadium and another different metal.
In the prior art, vanadium is supported using a solution such as ammonium metavanadate, vanadyl oxalate, or vanadium naphthenate. However, when these solutions are used, vanadium is present in the solution as a single ion. In the loading process, it enters into the small pores of the zeolite (pore diameter of about 7A). Alternatively, in the catalyst regeneration tower of the fluid catalytic cracker, vanadium oxides such as V 2 O 5 and VO 2 are formed. Vanadium introduced into the small pores destroys the crystal structure of zeolite, particularly ultrastable Y-type zeolite (USY), and reduces the decomposition activity.
On the other hand, since vanadium in the present invention forms a polynuclear complex salt usually containing sulfate radicals in the supported solution in the catalyst production process, introduction of vanadium into the small pores of the zeolite can be suppressed. Therefore, the fluid catalytic cracking catalyst of the present invention suppresses the collapse of the crystal structure of the zeolite, makes the best use of the desulfurization activity of vanadium, obtains FCC gasoline with a low sulfur content, and collects FCC gasoline and LCO. The rate can be increased.
Here, from the viewpoint of stability and hydrodesulfurization characteristics of vanadium, the above-mentioned polynuclear complex salt is composed of vanadium alone or 2-4 nucleus complex salt of vanadium and another different metal, vanadium isopolyacid or heteropolyacid containing sulfate radical. Acid is preferred.
バナジウムの多核錯塩、イソポリ酸又はヘテロポリ酸を形成するためには、バナジウム担持においてバナジウム塩としてオキソ硫酸バナジウムが好適である。また、オキソ硫酸バナジウム含有溶液に硫酸及び他の金属塩から選ばれる少なくとも一種を混合した担持溶液にて担持することが好ましい。
バナジウムの多核錯塩を形成するための無機酸としては、硫酸及びピロリン酸が好適に挙げられる。硫酸の添加量としてオキソ硫酸はバナジウム塩−無機酸塩溶液がpH4以下となるように添加することが好ましく、さらにはpHが2〜3となるように添加することが好ましい。
In order to form a polynuclear complex salt, isopolyacid or heteropolyacid of vanadium, vanadium oxosulfate is preferred as the vanadium salt in the vanadium support. Moreover, it is preferable to carry | support with the carrying | support solution which mixed at least 1 type chosen from a sulfuric acid and another metal salt with the vanadium oxosulfate containing solution.
Preferable examples of the inorganic acid for forming the polynuclear complex salt of vanadium include sulfuric acid and pyrophosphoric acid. As the addition amount of sulfuric acid, oxosulfuric acid is preferably added so that the vanadium salt-inorganic acid salt solution has a pH of 4 or less, and more preferably added so that the pH becomes 2-3.
次に、バナジウムの多核錯塩を形成するための他の金属塩としては、種々のものが挙げられ、マンガン、マグネシウム、カルシウム、コバルト、亜鉛、銅、チタン、アルミニウム、ニッケル、鉄、クロム、ランタン、イットリウム、スカンジウム、ニオブ、タンタル、モリブデン、及びタングステンの無機金属塩及び有機金属塩が好適に挙げられる。これら他の金属の含有量としては、触媒体を基準として、500〜30,000質量ppmが好ましく、さらに1,000〜20,000質量ppmが好ましい。バナジウムとこれら他の金属による多核錯塩は、触媒調製の際に用いられるバナジウム塩溶液と、該金属の金属塩溶液を混合することで容易に得られる。 Next, other metal salts for forming a polynuclear complex salt of vanadium include various ones, such as manganese, magnesium, calcium, cobalt, zinc, copper, titanium, aluminum, nickel, iron, chromium, lanthanum, Preferable examples include inorganic metal salts and organometallic salts of yttrium, scandium, niobium, tantalum, molybdenum, and tungsten. The content of these other metals is preferably 500 to 30,000 mass ppm, more preferably 1,000 to 20,000 mass ppm, based on the catalyst body. A polynuclear complex salt of vanadium and these other metals can be easily obtained by mixing a vanadium salt solution used for catalyst preparation and a metal salt solution of the metal.
マンガン塩としては、硫酸マンガン(II)、硫酸アンモニウムマンガン(II)など、マグネシウム塩としては、硫酸マグネシウム、硫酸アンモニウムマグネシウムなど、カルシウム塩としては、亜硫酸カルシウム、硫酸カルシウムなどを用いることができる。
また、コバルト塩としては硫酸コバルト、硫酸アンモニウムコバルトなど、亜鉛塩としては硫酸亜鉛など、銅塩としては硫酸銅などを用いることができる。
さらにチタン塩としては、硫酸チタンなど、アルミニウム塩としては、硫酸アルミニウム、硫酸アンモニウムアルミニウムなど、ニッケル塩としては、硫酸ニッケル、硫酸アンモニウムニッケルなど、鉄塩としては、硫酸アンモニウム鉄、硫酸鉄(II)、硫酸
鉄(III)など、クロム塩としては、硫酸アンモニウムクロム、硫酸クロム、硫酸クロム
アンモニウムなどを用いることができる。
Examples of manganese salts include manganese sulfate (II) and ammonium manganese (II) sulfate. Examples of magnesium salts include magnesium sulfate and ammonium magnesium sulfate. Examples of calcium salts include calcium sulfite and calcium sulfate.
Moreover, cobalt sulfate and ammonium sulfate cobalt can be used as the cobalt salt, zinc sulfate can be used as the zinc salt, and copper sulfate can be used as the copper salt.
Furthermore, titanium salts include titanium sulfate, aluminum salts include aluminum sulfate and ammonium aluminum sulfate, nickel salts include nickel sulfate and nickel ammonium sulfate, and iron salts include ammonium iron sulfate, iron (II) sulfate, and iron sulfate. As the chromium salt such as (III), ammonium chromium sulfate, chromium sulfate, chromium ammonium sulfate and the like can be used.
さらに続いて、モリブデン塩としては、塩化モリブデン、酸化モリブデン、三酸化モリブデン、七モリブデン酸六アンモニウム、モリブデン酸アンモニウム、リンモリブデン酸アンモニウム、モリブデン酸、二硫化モリブデンなど、タングステン塩としては、塩化タングステン、ケイタングステン酸、タングステン酸アンモニウム、酸化タングステン、三塩化タングステン、リンタングステン酸アンモニウム、タングステン酸、リンタングステン酸、六塩化タングステンなどを用いることができる。 Furthermore, as molybdenum salts, molybdenum chloride, molybdenum oxide, molybdenum trioxide, hexaammonium heptamolybdate, ammonium molybdate, ammonium phosphomolybdate, molybdic acid, molybdenum disulfide, etc., tungsten salts include tungsten chloride, Silicotungstic acid, ammonium tungstate, tungsten oxide, tungsten trichloride, ammonium phosphotungstate, tungstic acid, phosphotungstic acid, tungsten hexachloride, and the like can be used.
本発明の流動接触分解触媒には、触媒の安定性、特に水熱安定性を付与するため、及び分解活性を向上させるために、所望により、ランタン、セリウム等の希土類元素を担持することができる。この希土類元素の担持量は、触媒全量基準で5,000〜25,000質量ppmの範囲が好ましい。 The fluid catalytic cracking catalyst of the present invention can support a rare earth element such as lanthanum or cerium, if desired, in order to impart catalyst stability, particularly hydrothermal stability, and to improve cracking activity. . The amount of the rare earth element supported is preferably in the range of 5,000 to 25,000 mass ppm based on the total amount of the catalyst.
次に、本発明の流動接触分解触媒は、酸量が20〜450μmol/gであることを特徴とする。上記酸量が20μmol/g未満では硫黄化合物の分解、脱硫が不十分となり、一方、450μmol/gを超えると分解反応が進みすぎ、ガスやコークなどの目的外生成物の収率が高くなり、経済性が低下する。好ましい酸量は100〜400μmol/gの範囲、さらには200〜350μmol/gの範囲である。
なお、酸量は下記の方法で測定した値である。
<酸量>
触媒上の酸点に塩基性ガス(アンモニア、ピリジン)が強く吸着することを利用して、触媒の酸性質をアンモニア微分吸着熱測定法により測定する。吸着熱の大小で酸点の強度が評価でき、同時に吸着量から、酸量を求めることができる。吸着熱量は熱量計で直接測定し、吸着量は圧力変化から測定する。
Next, the fluid catalytic cracking catalyst of the present invention is characterized in that the acid amount is 20 to 450 μmol / g. When the acid amount is less than 20 μmol / g, the decomposition and desulfurization of the sulfur compound are insufficient. On the other hand, when it exceeds 450 μmol / g, the decomposition reaction proceeds too much, and the yield of non-target products such as gas and coke increases. Economic efficiency decreases. A preferable acid amount is in the range of 100 to 400 μmol / g, and further in the range of 200 to 350 μmol / g.
The acid amount is a value measured by the following method.
<Acid amount>
Utilizing the fact that basic gas (ammonia, pyridine) is strongly adsorbed on the acid sites on the catalyst, the acid properties of the catalyst are measured by the ammonia differential adsorption heat measurement method. The strength of the acid point can be evaluated by the magnitude of the heat of adsorption, and at the same time, the acid amount can be determined from the amount of adsorption. The heat of adsorption is measured directly with a calorimeter, and the amount of adsorption is measured from the pressure change.
また、本発明の流動接触分解触媒は、メソ細孔及びマクロ細孔を有するものであり、細孔径の範囲が20〜1,000Aであり、細孔径ピーク位置を20〜500Aの間に単一ピークとして有することが好ましい。特に、細孔径ピーク位置が90〜300Aの間に存在することが好ましい。また、細孔径40〜400Aの細孔容積が0.05〜0.5mL/gの範囲であることが好ましい。この範囲内であるとバナジウム等の金属を十分に担持させることができ、かつ、触媒の十分な機械的強度を得ることができる。 The fluid catalytic cracking catalyst of the present invention has mesopores and macropores, the pore diameter range is 20 to 1,000 A, and the pore diameter peak position is single between 20 to 500 A. It is preferable to have it as a peak. In particular, the pore diameter peak position is preferably present between 90 and 300A. Moreover, it is preferable that the pore volume of pore diameter 40-400A is the range of 0.05-0.5 mL / g. Within this range, a metal such as vanadium can be sufficiently supported, and sufficient mechanical strength of the catalyst can be obtained.
本発明の流動接触分解触媒は、マクロ細孔表面積が30〜150m2/gであることを特徴とする。上記マクロ細孔表面積が30m2/g未満では原料油の分解が十分ではないため、接触分解ガソリンの収率が低く、かつ脱硫も不十分となり、一方150m2/gを超えると大きな細孔が多くなりすぎ、分解活性が低下すると共に、脱硫も不十分となる。好ましいマクロ細孔表面積は、40〜120m2/gの範囲である。なお、ここでマクロ細孔とは、ゼオライトのミクロ細孔よりも大きい細孔をいう。 The fluid catalytic cracking catalyst of the present invention has a macropore surface area of 30 to 150 m 2 / g. If the macropore surface area is less than 30 m 2 / g, the feedstock is not decomposed sufficiently, so that the yield of catalytic cracked gasoline is low and desulfurization is insufficient. On the other hand, if it exceeds 150 m 2 / g, large pores are formed. Too much, the decomposition activity decreases, and desulfurization becomes insufficient. A preferred macropore surface area is in the range of 40 to 120 m 2 / g. In addition, a macropore means here a pore larger than the micropore of a zeolite.
次に、本発明の流動接触分解触媒の製造方法について以下に説明する。
まず、担体である粉粒体は、ゼオライトとゼオライト以外の多孔性無機酸化物及び/又は粘土鉱物を混合することで調製する。混合した後、80〜300℃程度で乾燥してもよい。
この粉粒体に、バナジウムと硫酸根を含有する水溶液を用いて含浸担持する。担持方法としては、常圧含浸法、真空含浸法、及び浸漬法が好適に用いられる。担持する際の溶液の温度は常温でも加温してもよいが、常温で行うことが好ましい。
Next, the manufacturing method of the fluid catalytic cracking catalyst of this invention is demonstrated below.
First, the granular material as a carrier is prepared by mixing zeolite and a porous inorganic oxide other than zeolite and / or clay mineral. After mixing, you may dry at about 80-300 degreeC.
This granular material is impregnated and supported using an aqueous solution containing vanadium and sulfate radicals. As the supporting method, an atmospheric pressure impregnation method, a vacuum impregnation method, and an immersion method are preferably used. Although the temperature of the solution at the time of carrying | supporting may be heated at normal temperature, it is preferable to carry out at normal temperature.
上記バナジウムと硫酸根を含有する水溶液としては、これを粉粒体に担持するオキシ硫酸バナジウム水溶液が好ましい。上記、オキシ硫酸バナジウム水溶液の担持の際に硫酸及び/又は他の金属塩を溶液状態で混合させることもでき、バナジウムの多核錯塩を得ることができる。オキソ硫酸バナジウム塩と硫酸を用いる系においては、これを粉粒体に担持することにより、本発明の流動接触分解触媒を得ることができる。 As the aqueous solution containing vanadium and sulfate radical, an aqueous vanadium oxysulfate solution in which this is supported on a granular material is preferable. When the above vanadium oxysulfate aqueous solution is supported, sulfuric acid and / or other metal salts can be mixed in a solution state to obtain a polynuclear complex salt of vanadium. In a system using vanadium oxosulfate and sulfuric acid, the fluid catalytic cracking catalyst of the present invention can be obtained by supporting it on a powder.
次に、バナジウムと他の金属を用いる系においては、本発明の流動接触分解触媒を調製するに際して用いる担持溶液は、オキソ硫酸バナジウム塩と他の金属の無機塩を用いて調製したバナジウムと他の金属の混合溶液であることが好ましい。ここで他の金属としては、前述したのと同様であり、具体的には、マンガン、マグネシウム、カルシウム、コバルト、亜鉛、銅、チタン、アルミニウム、ニッケル、鉄、クロムなどが挙げられる。 Next, in a system using vanadium and another metal, the supporting solution used in preparing the fluid catalytic cracking catalyst of the present invention is vanadium prepared using vanadium oxosulfate and an inorganic salt of other metal and other metals. A mixed solution of metals is preferable. Here, the other metal is the same as described above, and specifically includes manganese, magnesium, calcium, cobalt, zinc, copper, titanium, aluminum, nickel, iron, chromium, and the like.
バナジウムを担持させた後は、70〜200℃で乾燥することが好ましい。乾燥温度が70℃以上であると十分な乾燥が可能であり、一方、200℃以下であるとバナジウム金属が凝集することを抑制できる。以上の観点から、乾燥温度は100〜150℃の範囲がより好ましい。
また、乾燥を行った後、所望に応じて、500〜900℃の温度で酸素及び水蒸気の存在下スチーミング処理を行ったり、焼成処理することもできる。
After supporting vanadium, it is preferable to dry at 70 to 200 ° C. When the drying temperature is 70 ° C. or higher, sufficient drying is possible. On the other hand, when the drying temperature is 200 ° C. or lower, aggregation of vanadium metal can be suppressed. From the above viewpoint, the drying temperature is more preferably in the range of 100 to 150 ° C.
In addition, after drying, a steaming process or a baking process can be performed in the presence of oxygen and water vapor at a temperature of 500 to 900 ° C., as desired.
本発明の流動接触分解触媒の製造方法において、さらに、希土類元素を担持する場合の希土類元素の担持方法としては、公知の方法、例えば、イオン交換法や含浸法を用いて行うことができる。この場合、希土類元素を担持した後に行う乾燥は、下記の(a)と(b)を満たす条件で行うのが好ましい。
(a)乾燥温度:60〜300℃、より好ましくは60〜250℃の範囲である。但し、200℃以上の温度に曝される時間が10分以内である。
(b)乾燥時間:30〜120分、より好ましくは30〜80分の範囲である。
また、乾燥温度が200℃以上に到達する場合には、200℃に達するまでの時間が5分以上であることが好ましく、特には10〜60分程度であることが好ましい。
このような条件であれば、取り扱いが困難にならず、また乾燥が過度になることによるバナジウムを含浸した際に、バナジウムがゼオライト細孔内に入り、触媒の性能が低下することもない。
また、通常さらに焼成などの熱処理を行うことができるが、本発明においては、乾燥のみで焼成などの熱処理を行わないことがより好ましい。
In the method for producing a fluid catalytic cracking catalyst of the present invention, as a method for loading a rare earth element when loading a rare earth element, a known method such as an ion exchange method or an impregnation method can be used. In this case, the drying performed after supporting the rare earth element is preferably performed under the conditions satisfying the following (a) and (b).
(A) Drying temperature: 60 to 300 ° C, more preferably 60 to 250 ° C. However, the time for exposure to a temperature of 200 ° C. or higher is within 10 minutes.
(B) Drying time: 30 to 120 minutes, more preferably 30 to 80 minutes.
Moreover, when the drying temperature reaches 200 ° C. or higher, the time until the drying temperature reaches 200 ° C. is preferably 5 minutes or more, and particularly preferably about 10 to 60 minutes.
Under such conditions, handling does not become difficult, and when impregnated with vanadium due to excessive drying, vanadium does not enter the zeolite pores and the performance of the catalyst does not deteriorate.
Further, although heat treatment such as firing can usually be performed, it is more preferable in the present invention that heat treatment such as firing is not performed only by drying.
本発明の流動接触分解触媒としては、上記の触媒を単独で使用する場合に加え、市販の流動接触分解触媒を触媒全量基準で0〜95質量%混合したものも含む。ここで、市販の流動接触分解触媒としては、平衡触媒であることが好ましく、特にバナジウム及び/又はニッケルの蓄積量が50〜20,000質量ppmであるものが好ましい。該平衡触媒の混合量は、原料油の性状、通油量、目的とする製品の量、目的とする製品の性状等によって、適宜決定されるものであるが、触媒全量基準で20〜90質量%の範囲であることがより好ましい。 The fluid catalytic cracking catalyst of the present invention includes a mixture of 0 to 95% by mass of a commercially available fluid catalytic cracking catalyst based on the total amount of the catalyst in addition to the case where the above catalyst is used alone. Here, as a commercially available fluid catalytic cracking catalyst, it is preferable that it is an equilibrium catalyst, and especially the thing whose accumulation amount of vanadium and / or nickel is 50-20,000 mass ppm is preferable. The mixing amount of the equilibrium catalyst is appropriately determined depending on the properties of the raw material oil, the oil passing amount, the amount of the target product, the properties of the target product, etc., but is 20 to 90 mass based on the total amount of the catalyst. % Is more preferable.
本発明の流動接触分解触媒は、原料油である直接脱硫装置から供給される脱硫残油又は重質留分に富んだ原料油から、ガソリン留分(FCCガソリン)及びLCOを製造する残油流動接触分解装置(RFCC)に好適に使用される。また、重質軽油、減圧軽油、脱瀝軽油等を間接脱硫装置で脱硫処理して得られる脱硫重質軽油、脱硫減圧軽油、及び脱硫脱瀝軽油を原料として、FCCガソリン及びLCOを製造する流動接触分解装置(FCC)に好適に使用される。残油流動接触分解装置の原料油は硫黄含有量が高いため、製造されるFCCガソリン中の硫黄含有量は相対的に高くなるが、本発明の流動接触分解触媒を用いることで、硫黄含有量5〜200質量ppmのFCCガソリンを製造することができる。また、流動接触分解装置の場合には、本発明の流動接触分解触媒を用いることで、硫黄含有量5〜50質量ppmのFCCガソリンを製造することができる。
分解生成油(FCCガソリン)中の硫黄含有量は、用いる原料油の硫黄含有量及び流動接触分解装置の運転条件によって決定されるが、原料油である重質油の硫黄含有量が0.05〜0.7質量%である場合には、得られるFCCガソリン中の硫黄含有量は50質量ppm以下とすることができる。また、得られるFCCガソリン中の、炭素数5の炭化水素の沸点に相当する温度(C5と記載する)〜210℃の沸点範囲を有する留分における硫黄含有量は30質量ppm以下とすることができる。さらには運転条件によっては15質量ppm以下にすることもできる。
本発明における流動接触分解の処理条件としては、通常、流動接触分解装置で用いられる条件であればよく、例えば、温度480〜650℃、好ましくは480〜550℃、反応圧力0.02〜5MPa、好ましくは0.2〜2MPaである。処理条件が上記範囲内であると、触媒の分解活性、及びFCCガソリンの脱硫率が高く好ましい。
The fluid catalytic cracking catalyst of the present invention is a residual oil flow that produces gasoline fraction (FCC gasoline) and LCO from desulfurized residual oil or raw material oil rich in heavy fraction supplied from a direct desulfurization apparatus that is raw material oil. It is suitably used for a catalytic cracker (RFCC). In addition, the flow to produce FCC gasoline and LCO using desulfurized heavy gas oil, desulfurized vacuum gas oil, and desulfurized degasified gas oil obtained by desulfurizing heavy gas oil, vacuum gas oil, degassed gas oil, etc. with an indirect desulfurization unit It is suitably used for a catalytic cracker (FCC). Since the raw material oil of the residual oil fluid catalytic cracking apparatus has a high sulfur content, the sulfur content in the FCC gasoline produced is relatively high. However, by using the fluid catalytic cracking catalyst of the present invention, the sulfur content 5-200 ppm by weight of FCC gasoline can be produced. In the case of a fluid catalytic cracking apparatus, FCC gasoline with a sulfur content of 5 to 50 ppm by mass can be produced by using the fluid catalytic cracking catalyst of the present invention.
The sulfur content in the cracked product oil (FCC gasoline) is determined by the sulfur content of the feedstock used and the operating conditions of the fluid catalytic cracker, but the sulfur content of the heavy oil that is the feedstock is 0.05. When it is -0.7 mass%, the sulfur content in the obtained FCC gasoline can be 50 mass ppm or less. In addition, the sulfur content in the fraction having a boiling point range of from a temperature corresponding to the boiling point of a hydrocarbon having 5 carbon atoms (described as C 5 ) to 210 ° C. in the obtained FCC gasoline shall be 30 mass ppm or less. Can do. Further, depending on the operating conditions, it may be 15 ppm by mass or less.
The treatment conditions for fluid catalytic cracking in the present invention are usually those used in fluid catalytic cracking equipment, for example, a temperature of 480-650 ° C., preferably 480-550 ° C., a reaction pressure of 0.02-5 MPa, Preferably it is 0.2-2 MPa. When the treatment conditions are within the above range, the catalyst decomposition activity and the FCS gasoline desulfurization rate are high, which is preferable.
次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
〈物性測定方法及び触媒評価方法〉
(1)酸量;前述のアンモニア微分吸着熱測定法にて測定した。
(2)マクロ細孔表面積;細孔分布測定装置(カンタクローム社製「オートソーブ6」)を用いて、窒素吸着法にて測定し、T−プロット法により吸着等温線を解析して求めた。
(3)脱硫率;各実施例及び比較例で得られた触媒を連続式流動床ベンチプラントに充填し、硫黄含有量0.19質量%の水素化処理脱硫重質軽油を、反応温度535℃、反応圧力0.18MPa・G、触媒再生温度683℃、触媒/原料油比(質量比)7.0、原料油供給量950g/hrの条件で、分解・脱硫反応させた。
生成油は15段蒸留装置にて、沸点C5〜210℃の留分を接触分解ガソリンとして分
取し、その硫黄含有量、窒素含有量を測定した。なお、硫黄の定量は、電量滴定法により、窒素の定量は化学発光法により行った。
(4)分解率;通常のMAT評価装置を用いて測定した。反応温度535℃、触媒/原料油比(質量比)4.0の条件で行った。ガソリン収率(質量%)、LCO収率(質量%)、コーク収率(質量%)、及び原料油転化率(質量%)にて評価した。
また、水素化脱硫重質油を処理する場合の反応温度は535℃とした。
生成するCO量は熱伝導度測定機により測定した。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
<Physical property measurement method and catalyst evaluation method>
(1) Acid amount: measured by the above-mentioned ammonia differential adsorption heat measurement method.
(2) Macropore surface area: Measured by a nitrogen adsorption method using a pore distribution measuring device ("Autosorb 6" manufactured by Cantachrome), and obtained by analyzing an adsorption isotherm by a T-plot method.
(3) Desulfurization rate: The catalyst obtained in each Example and Comparative Example was charged into a continuous fluidized bed bench plant, and hydrotreated desulfurized heavy gas oil having a sulfur content of 0.19% by mass was reacted at a reaction temperature of 535 ° C. The decomposition / desulfurization reaction was performed under the conditions of a reaction pressure of 0.18 MPa · G, a catalyst regeneration temperature of 683 ° C., a catalyst / raw oil ratio (mass ratio) of 7.0, and a raw oil supply amount of 950 g / hr.
The product oil was fractionated in a 15-stage distillation apparatus as a catalytically cracked gasoline having a boiling point of C5 to 210 ° C., and the sulfur content and nitrogen content were measured. Sulfur was quantified by coulometric titration, and nitrogen was quantified by chemiluminescence.
(4) Decomposition rate: measured using a normal MAT evaluation apparatus. The reaction was performed under the conditions of a reaction temperature of 535 ° C. and a catalyst / raw oil ratio (mass ratio) of 4.0. The gasoline yield (mass%), the LCO yield (mass%), the coke yield (mass%), and the feedstock oil conversion (mass%) were evaluated.
The reaction temperature for treating hydrodesulfurized heavy oil was 535 ° C.
The amount of CO produced was measured with a thermal conductivity meter.
実施例1
(1)流動接触分解触媒の製造
乾燥後の基準で、USY型ゼオライト20質量%及びアルミナ20質量%、粘土鉱物カオリンが40質量%及びシリカゾルが20質量%になるように、それぞれの成分をイオン交換水に加え、固形分15質量%のスラリーとした。ついで、上記スラリーを、スプレードライ法により噴霧乾燥処理して、微小球粒子を得た。該微小球粒子に対して、ランタン(希土類元素)を1.7質量%担持し、120℃で3時間乾燥を行ない担体(A)を得た。(いずれも流動接触分解触媒全量基準)
製造した担体(A)に、バナジウム換算で4000質量ppmのバナジウムが担持されるようにオキシ硫酸バナジウム(VOSO4・nH2O(n=3〜4))を8.9gとり、190mLの水に溶解してオキシ硫酸バナジウム水溶液を調製した。なお、水の量は担体(A)の常温時の吸水率を測定して決定した。
オキシ硫酸バナジウム水溶液のpHは2.3であり、透明の群青色を示した。この水溶液を500gの担体(A)に常圧含浸した後、120℃で3時間乾燥し、バナジウム担持量4000質量ppmの触媒体(B−1)を得た。
次に、該触媒体(B−1)を擬似平衡化条件として、600℃で1時間空気中にて焼成した後、スチーム濃度98容量%、空気濃度2容量%の条件で、温度760℃、6時間スチーミング処理を行い、スチーミング処理触媒(C−1)を得た。該スチーミング処理触媒(C−1)240gと、バナジウム870質量ppm及びニッケル530質量ppmが蓄積された平衡触媒(D)1360gとを均一に混合し、本発明の流動接触分解触媒(E−1)を得た。
(2)流動接触分解触媒の性能評価
この流動接触分解触媒(E−1)を用いて上述の連続式流動床ベンチプラントにて評価を実施した。評価結果を第1表に示す。
また、MAT評価装置での試験においては、前記スチーミング処理触媒(C−1)0.75gと平衡触媒(D)4.25gとを混合して本発明の流動接触分解触媒(F−1)を得、反応に供した。評価結果を第1表に示す。
Example 1
(1) Manufacture of fluid catalytic cracking catalyst Each component is ionized so that it becomes 20% by mass of USY zeolite and 20% by mass of alumina, 40% by mass of clay mineral kaolin and 20% by mass of silica sol on the basis of after drying. In addition to the exchange water, a slurry having a solid content of 15% by mass was obtained. Subsequently, the slurry was spray-dried by a spray drying method to obtain microsphere particles. The microsphere particles were loaded with 1.7% by mass of lanthanum (rare earth element) and dried at 120 ° C. for 3 hours to obtain a carrier (A). (All are based on the total amount of fluid catalytic cracking catalyst)
8.9 g of vanadium oxysulfate (VOSO 4 · nH 2 O (n = 3 to 4)) was taken on 190 mL of water so that the produced carrier (A) supported 4000 mass ppm of vanadium in terms of vanadium. It melt | dissolved and the vanadium oxysulfate aqueous solution was prepared. The amount of water was determined by measuring the water absorption rate of the carrier (A) at room temperature.
The pH of the vanadium oxysulfate aqueous solution was 2.3 and showed a transparent ultramarine blue. The aqueous solution was impregnated with 500 g of the carrier (A) under normal pressure and then dried at 120 ° C. for 3 hours to obtain a catalyst body (B-1) having a vanadium loading of 4000 mass ppm.
Next, the catalyst body (B-1) was calcined in air at 600 ° C. for 1 hour as a quasi-equilibrium condition, and then at a temperature of 760 ° C. under the conditions of a steam concentration of 98% by volume and an air concentration of 2% by volume. A steaming treatment was performed for 6 hours to obtain a steaming catalyst (C-1). 240 g of the steaming catalyst (C-1) and 1360 g of the equilibrium catalyst (D) in which 870 ppm by mass of vanadium and 530 ppm by mass of nickel are accumulated are mixed uniformly to obtain the fluid catalytic cracking catalyst (E-1 of the present invention). )
(2) Performance evaluation of fluid catalytic cracking catalyst The fluid catalytic cracking catalyst (E-1) was used for evaluation in the above-described continuous fluidized bed bench plant. The evaluation results are shown in Table 1.
In the test using the MAT evaluation apparatus, 0.75 g of the steaming catalyst (C-1) and 4.25 g of the equilibrium catalyst (D) were mixed to obtain the fluid catalytic cracking catalyst (F-1) of the present invention. And subjected to the reaction. The evaluation results are shown in Table 1.
実施例2
実施例1における水の配合量を185mLとし、pHを1.5程度に調整するために濃硫酸(濃度95%)を添加し、その後イオン交換水を加えて担体(A)の常温時の吸水率に見合う190mLのオキシ硫酸バナジウム水溶液を調製した。この水溶液を実施例1と同様に500gの担体(A)に常圧含浸し、120℃、3時間乾燥し、触媒体(B−2)とした。触媒体(B−2)中のバナジウム含有量はバナジウム金属換算で4000質量ppmであった。なお、バナジウム溶液のpHは1.5であり、透明の群青色を示した。
触媒体(B−2)を実施例1と同様に擬似平衡化処理を行ない、スチーミング処理触媒(C−2)を得た。スチーミング処理触媒(C−2)240gと、実施例1で用いたのと同様の平衡触媒(D)1360gとを均一に混合して、本発明の流動接触分解触媒(E−2)を得た。この流動接触分解触媒(E−2)を用いて実施例1と同様に連続式流動床ベンチプラントにて評価を実施した。評価結果を第1表に示す。
また、MAT評価装置での試験においては、実施例1と同様に、スチーミング処理触媒(C−2)0.75gと平衡触媒(D)4.25gとを混合して本発明の流動接触分解触媒(F−2)を得、反応に供した。評価結果を第1表に示す。
Example 2
The amount of water in Example 1 was 185 mL, concentrated sulfuric acid (concentration 95%) was added to adjust the pH to about 1.5, and then ion-exchanged water was added to absorb the carrier (A) at room temperature. A 190 mL vanadium oxysulfate aqueous solution corresponding to the rate was prepared. In the same manner as in Example 1, 500 g of the carrier (A) was impregnated with this aqueous solution at normal pressure and dried at 120 ° C. for 3 hours to obtain a catalyst body (B-2). The vanadium content in the catalyst body (B-2) was 4000 mass ppm in terms of vanadium metal. The vanadium solution had a pH of 1.5 and showed a transparent ultramarine blue.
The catalyst body (B-2) was subjected to a quasi-equilibrium treatment in the same manner as in Example 1 to obtain a steaming catalyst (C-2). 240 g of the steaming catalyst (C-2) and 1360 g of the same equilibrium catalyst (D) used in Example 1 were mixed uniformly to obtain the fluid catalytic cracking catalyst (E-2) of the present invention. It was. Using this fluid catalytic cracking catalyst (E-2), evaluation was carried out in a continuous fluidized bed bench plant in the same manner as in Example 1. The evaluation results are shown in Table 1.
In the test using the MAT evaluation apparatus, as in Example 1, 0.75 g of the steaming catalyst (C-2) and 4.25 g of the equilibrium catalyst (D) were mixed and the fluid catalytic cracking of the present invention. A catalyst (F-2) was obtained and subjected to the reaction. The evaluation results are shown in Table 1.
実施例3
バナジウムとして4000質量ppmが担持されるように硫酸バナジルVOSO4・nH2O(n=3〜4)を、マンガンとして4000質量ppm担持されるように硫酸マンガンMnSO4・5H2Oを8.8gとり、105mLのイオン交換水に溶解し、担持溶液を得た。この水溶液を実施例1と同様に500gの担体(A)に常圧含浸し、120℃、3時間乾燥し、触媒体(B−3)とした。なお、バナジウム溶液のpHは3.2であり、透明の群青色を示した。
触媒体(B−3)を実施例1と同様に擬似平衡化処理を行ない、スチーミング処理触媒(C−3)を得た。スチーミング処理触媒(C−3)240gと、実施例1で用いたのと同様の平衡触媒(D)1360gとを均一に混合して、本発明の流動接触分解触媒(E−3)を得た。この流動接触分解触媒(E−3)を用いて実施例1と同様に連続式流動床ベンチプラントにて評価を実施した。評価結果を第1表に示す。
また、MAT評価装置での試験においては、実施例1と同様に、スチーミング処理触媒(C−3)0.75gと平衡触媒(D)4.25gとを混合して本発明の流動接触分解触媒(F−3)を得、反応に供した。評価結果を第1表に示す。
Example 3
8.8 g of vanadyl sulfate VOSO 4 .nH 2 O (n = 3 to 4) so that 4000 mass ppm is supported as vanadium, and manganese sulfate MnSO 4 .5H 2 O so that 4000 mass ppm is supported as manganese. And dissolved in 105 mL of ion exchange water to obtain a supported solution. In the same manner as in Example 1, 500 g of the carrier (A) was impregnated at atmospheric pressure with this aqueous solution, and dried at 120 ° C. for 3 hours to obtain a catalyst body (B-3). The vanadium solution had a pH of 3.2 and showed a transparent ultramarine blue.
The catalyst body (B-3) was subjected to quasi-equilibrium treatment in the same manner as in Example 1 to obtain a steaming catalyst (C-3). 240 g of the steaming treatment catalyst (C-3) and 1360 g of the same equilibrium catalyst (D) used in Example 1 were uniformly mixed to obtain a fluid catalytic cracking catalyst (E-3) of the present invention. It was. Using this fluid catalytic cracking catalyst (E-3), evaluation was carried out in a continuous fluidized bed bench plant in the same manner as in Example 1. The evaluation results are shown in Table 1.
In the test using the MAT evaluation apparatus, as in Example 1, 0.75 g of the steaming catalyst (C-3) and 4.25 g of the equilibrium catalyst (D) were mixed and the fluid catalytic cracking of the present invention. A catalyst (F-3) was obtained and subjected to the reaction. The evaluation results are shown in Table 1.
比較例1
メタバナジン酸アンモニウムをバナジウム金属換算で4,000質量ppmとなるようにしたこと以外は、実施例1と同様にして触媒体(B−4)を調製した。溶解のためアンモニア水にて調整し、バナジウム溶液のpHは8.5であった。次いで、触媒体(B−4)を、実施例1と同様に擬似平衡化してスチーミング処理触媒(C−4)を得、平衡触媒(D)と混合して、流動接触分解触媒(E−4)を得た。この流動接触分解触媒(E−4)を用いて実施例1と同様に連続式流動床ベンチプラントにて評価を実施した。評価結果を第1表に示す。
また、MAT評価装置での試験においては、実施例1と同様に、スチーミング処理触媒(C−4)0.75gと平衡触媒(D)4.25gとを混合して本発明の流動接触分解触媒(F−4)を得、反応に供した。評価結果を第1表に示す。
Comparative Example 1
A catalyst body (B-4) was prepared in the same manner as in Example 1 except that ammonium metavanadate was 4,000 ppm by mass in terms of vanadium metal. The solution was adjusted with aqueous ammonia for dissolution, and the pH of the vanadium solution was 8.5. Next, the catalyst body (B-4) was quasi-equilibrated in the same manner as in Example 1 to obtain a steaming catalyst (C-4), mixed with the equilibrium catalyst (D), and the fluid catalytic cracking catalyst (E- 4) was obtained. Using this fluid catalytic cracking catalyst (E-4), evaluation was carried out in a continuous fluidized bed bench plant in the same manner as in Example 1. The evaluation results are shown in Table 1.
Further, in the test using the MAT evaluation apparatus, as in Example 1, 0.75 g of the steaming catalyst (C-4) and 4.25 g of the equilibrium catalyst (D) were mixed and the fluid catalytic cracking of the present invention. A catalyst (F-4) was obtained and subjected to the reaction. The evaluation results are shown in Table 1.
比較例2
平衡触媒(D)のみを用いたこと以外は実施例1と同様にして評価した。評価結果を第1表に示す。なお、全触媒充填量が実施例1と同様になるようにした。
Comparative Example 2
Evaluation was performed in the same manner as in Example 1 except that only the equilibrium catalyst (D) was used. The evaluation results are shown in Table 1. The total catalyst charge was set to be the same as in Example 1.
本発明の流動接触分解触媒によれば、流動接触分解装置を用いて分解処理及び脱硫処理をすることで、低硫黄含有量のガソリン留分を高収率で得ることができる。また、同時にLCO(ライトサイクルオイル)を効率的に製造することができ、過分解を抑制してコーク収率を低減することができる。さらに、本発明の流動接触分解触媒によれば、流動接触分解装置の再生塔における一酸化炭素(CO)の発生を抑制することができる。 According to the fluid catalytic cracking catalyst of the present invention, a gasoline fraction having a low sulfur content can be obtained in a high yield by performing a cracking treatment and a desulfurization treatment using a fluid catalytic cracking apparatus. At the same time, LCO (light cycle oil) can be efficiently produced, and excessive decomposition can be suppressed to reduce the coke yield. Furthermore, according to the fluid catalytic cracking catalyst of this invention, generation | occurrence | production of carbon monoxide (CO) in the regeneration tower of a fluid catalytic cracking apparatus can be suppressed.
Claims (20)
前記希土類元素を担持した後に行う乾燥が下記条件下で行われることを特徴とする流動接触分解触媒。
(a)乾燥温度:60〜300℃の範囲(但し、200℃以上の温度に曝される時間を10分以内にする)
(b)乾燥時間:30〜120分の範囲 A catalyst in which vanadium and a rare earth element are supported on a granular material composed of zeolite and a porous inorganic oxide other than zeolite and / or clay mineral, and a sulfate group is present together with vanadium and the rare earth element on the catalyst. The supported amount is 500 to 20,000 ppm by mass in terms of vanadium metal, the acid amount is 20 to 450 μmol / g, and the macropore surface area is 30 to 150 m 2 / g,
A fluid catalytic cracking catalyst characterized in that drying performed after supporting the rare earth element is performed under the following conditions.
(A) Drying temperature: in the range of 60 to 300 ° C. (however, the time of exposure to a temperature of 200 ° C. or higher is made within 10 minutes)
(B) Drying time: in the range of 30 to 120 minutes
前記希土類元素を担持した後に行う乾燥が下記条件下で行われ、バナジウムの担持がバナジウムと硫酸根を含有する担持溶液を用いて担持してなる流動接触分解触媒。
(a)乾燥温度:60〜300℃の範囲(但し、200℃以上の温度に曝される時間を10分以内にする)
(b)乾燥時間:30〜120分の範囲 A catalyst in which vanadium and a rare earth element are supported on a granular material composed of zeolite and a porous inorganic oxide other than zeolite and / or clay mineral, and a sulfate group is present together with vanadium and the rare earth element on the catalyst. The supported amount is 1,000 to 20,000 mass ppm in terms of vanadium metal, the acid amount is 20 to 450 μmol / g, and the macropore surface area is 30 to 150 m 2 / g,
A fluid catalytic cracking catalyst, wherein drying performed after supporting the rare earth element is performed under the following conditions, and supporting of vanadium is performed using a supporting solution containing vanadium and a sulfate group.
(A) Drying temperature: in the range of 60 to 300 ° C. (however, the time of exposure to a temperature of 200 ° C. or higher is made within 10 minutes)
(B) Drying time: in the range of 30 to 120 minutes
バナジウムと硫酸根を含有する水溶液を調製し、これを粉粒体に担持する工程と、
希土類元素を粉粒体に担持し、その後に行う乾燥を下記条件下で行う工程と、を含むことを特徴とする流動接触分解触媒の製造方法。
(a)乾燥温度:60〜300℃の範囲(但し、200℃以上の温度に曝される時間を10分以内にする)
(b)乾燥時間:30〜120分の範囲 A method for producing a catalyst in which vanadium and a rare earth element are supported on a granular material composed of zeolite and a porous inorganic oxide other than zeolite and / or clay mineral,
Preparing an aqueous solution containing vanadium and sulfate radicals, and supporting this on a granular material;
A process for supporting a rare earth element on a granular material, followed by drying under the following conditions.
(A) Drying temperature: in the range of 60 to 300 ° C. (however, the time of exposure to a temperature of 200 ° C. or higher is made within 10 minutes)
(B) Drying time: in the range of 30 to 120 minutes
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007044395A JP4906535B2 (en) | 2007-02-23 | 2007-02-23 | Fluid catalytic cracking catalyst, process for producing the same, and process for producing low sulfur catalytic cracked gasoline |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007044395A JP4906535B2 (en) | 2007-02-23 | 2007-02-23 | Fluid catalytic cracking catalyst, process for producing the same, and process for producing low sulfur catalytic cracked gasoline |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008207076A JP2008207076A (en) | 2008-09-11 |
JP4906535B2 true JP4906535B2 (en) | 2012-03-28 |
Family
ID=39783850
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007044395A Expired - Fee Related JP4906535B2 (en) | 2007-02-23 | 2007-02-23 | Fluid catalytic cracking catalyst, process for producing the same, and process for producing low sulfur catalytic cracked gasoline |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4906535B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105617986A (en) * | 2014-12-01 | 2016-06-01 | 中国石化扬子石油化工有限公司 | Preparation method for compound active carbon hydrogen sulfide remover |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI502061B (en) * | 2009-12-25 | 2015-10-01 | Jgc Catalysts & Chemicals Ltd | Additive for fluid catalytic cracking catalysts |
SG188753A1 (en) * | 2011-09-30 | 2013-04-30 | Bharat Petroleum Corp Ltd | Sulphur reduction catalyst additive composition in fluid catalytic cracking and method of preparation thereof |
WO2015001004A1 (en) * | 2013-07-04 | 2015-01-08 | Total Research & Technology Feluy | Catalyst compositions comprising small size molecular sieves crystals deposited on a porous material |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19962669B4 (en) * | 1998-12-28 | 2004-07-01 | Mobil Oil Corp. | Reduction of the sulfur content in gasoline during fluid catalytic cracking |
JP2003027065A (en) * | 2001-07-12 | 2003-01-29 | Idemitsu Kosan Co Ltd | Method for desulfurization of catalytically cracked gasoline |
JP2004083615A (en) * | 2002-08-22 | 2004-03-18 | Idemitsu Kosan Co Ltd | Method for producing low-sulfur catalytically cracked gasoline |
JP4409996B2 (en) * | 2003-06-02 | 2010-02-03 | 財団法人石油産業活性化センター | Process for producing low sulfur catalytic cracking gasoline |
US8084383B2 (en) * | 2004-03-16 | 2011-12-27 | W.R. Grace & Co.-Conn. | Gasoline sulfur reduction catalyst for fluid catalytic cracking process |
-
2007
- 2007-02-23 JP JP2007044395A patent/JP4906535B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105617986A (en) * | 2014-12-01 | 2016-06-01 | 中国石化扬子石油化工有限公司 | Preparation method for compound active carbon hydrogen sulfide remover |
CN105617986B (en) * | 2014-12-01 | 2019-04-23 | 中国石化扬子石油化工有限公司 | A kind of preparation method of composite activated carbon hydrogen sulfide remover |
Also Published As
Publication number | Publication date |
---|---|
JP2008207076A (en) | 2008-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5008666B2 (en) | Desulfurization function-added fluid catalytic cracking catalyst, production method thereof, and method for producing low sulfur catalytic cracking gasoline using the desulfurization function-added fluid catalytic cracking catalyst | |
JP4156859B2 (en) | Gas oil hydrotreating catalyst, method for producing the same, and gas oil hydrotreating method | |
JP5796871B2 (en) | Regeneration method for hydroprocessing catalyst of hydrocarbon oil | |
EP2604340B1 (en) | Gasoline sulfur reductions catalyst for fluid catalytic cracking process | |
WO2020262078A1 (en) | Heavy oil hydrogenation processing method | |
KR102245503B1 (en) | Novel resid hydrotreating catalyst | |
JP5628027B2 (en) | Fluid catalytic cracking catalyst of hydrocarbon oil and fluid catalytic cracking method of hydrocarbon oil using the same | |
WO2011040224A1 (en) | Hydrodesulfurization catalyst for a hydrocarbon oil, manufacturing method therefor, and hydrorefining method | |
TW201400602A (en) | Catalyst containing a modified y-type zeolite and a preparation process thereof | |
RU2624443C2 (en) | Catalyst for catalytic cracking of hydrocarbons | |
JP4906535B2 (en) | Fluid catalytic cracking catalyst, process for producing the same, and process for producing low sulfur catalytic cracked gasoline | |
JP2007054753A (en) | Fluid catalytic cracking catalyst, its production method and production method of low-sulfur catalytic cracked gasoline | |
JP5697009B2 (en) | Hydrocarbon oil hydrodesulfurization catalyst | |
JP4519719B2 (en) | Method for producing hydrotreating catalyst for hydrocarbon oil, and hydrotreating method for hydrocarbon oil | |
JP5060045B2 (en) | Method for producing catalyst, catalytic cracking catalyst, and method for producing low sulfur catalytic cracking gasoline | |
JP2010042343A (en) | Catalyst for manufacturing lower olefin, method of manufacturing the same and method of manufacturing lower olefin using catalyst | |
CN109465005B (en) | Sulfur transfer catalyst and preparation method thereof | |
JP5426308B2 (en) | Fluid catalytic cracking method | |
JP4493997B2 (en) | Hydrodesulfurization catalyst for hydrocarbon oil and method for producing the same | |
JP2004083615A (en) | Method for producing low-sulfur catalytically cracked gasoline | |
JP2005015766A (en) | Production method for low-sulfur catalytically cracked gasoline | |
JP2004130193A (en) | Catalyst composition for cracking hydrocarbon catalytically and catalytic cracking method using the same | |
JP3990673B2 (en) | Hydrodesulfurization method of light oil | |
Valderrama‐Zapata et al. | Interplay Between Ni and Brønsted and Lewis Acid Sites in the Hydrodesulfurization of Dibenzothiophene | |
JP5660672B2 (en) | Regeneration method for hydroprocessing catalyst of hydrocarbon oil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100218 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110628 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110829 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111004 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111220 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120110 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150120 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |