JP4905757B2 - Seawater collection device - Google Patents

Seawater collection device Download PDF

Info

Publication number
JP4905757B2
JP4905757B2 JP2005060732A JP2005060732A JP4905757B2 JP 4905757 B2 JP4905757 B2 JP 4905757B2 JP 2005060732 A JP2005060732 A JP 2005060732A JP 2005060732 A JP2005060732 A JP 2005060732A JP 4905757 B2 JP4905757 B2 JP 4905757B2
Authority
JP
Japan
Prior art keywords
seawater
sensor
hot water
collecting
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005060732A
Other languages
Japanese (ja)
Other versions
JP2006240530A (en
Inventor
公紀 下島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2005060732A priority Critical patent/JP4905757B2/en
Publication of JP2006240530A publication Critical patent/JP2006240530A/en
Application granted granted Critical
Publication of JP4905757B2 publication Critical patent/JP4905757B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は、海水の変化の状況を把握するために状況が変化する部位に移動して所定の部位の海水を採取する海水採取装置に関する。   The present invention relates to a seawater collecting apparatus that moves to a site where the situation changes in order to grasp the state of change in seawater and collects seawater at a predetermined site.

海底における地下生物圏での生成物(排出物)等の物質は、熱水として海洋底層に放出され、熱水プルームとなって海洋深層に拡散する。この拡散の挙動を観測することは、その中で発生している物理的化学反応や微生物活動、それらが海洋に及ぼす影響について解明されることになり有用である。熱水プルームに限らず、二酸化炭素の海洋放出における二酸化炭素の希釈状況や、海底面生物の分布状況を解明することは、二酸化炭素の効果的な放出の手法の設定や、海底面生物からの放出物や生物自身の化学的環境変化の把握につながり有用である。   Substances such as products (emissions) in the subsurface biosphere on the sea floor are released as hot water into the ocean floor and diffuse into the ocean deep as a hydrothermal plume. Observing the behavior of this diffusion is useful because it will elucidate the physical and chemical reactions and microbial activities that occur in it and the effects they have on the ocean. Elucidation of carbon dioxide dilution and the distribution of marine organisms not only in hydrothermal plumes, but also in the ocean release of carbon dioxide This is useful for grasping the chemical environment changes of emissions and living organisms.

熱水プルームをはじめとする海水の状況をpHセンサや海水の密度の鉛直分布を測定する装置(CTD:conductivity-temperature-depth recorder)を用いて検出し、海水の
状況の分布を求めることが考えられる。しかし、海水の間接的な状況把握による分布の導出のため、正確な検出位置の特定が困難で分布の状況を正確に把握することはできないのが現状であった。
It is considered to detect the distribution of seawater conditions by detecting the condition of seawater including hot water plume using a pH sensor or a device that measures the vertical distribution of seawater density (CTD: conductivity-temperature-depth recorder). It is done. However, since the derivation of the distribution is based on the indirect grasp of the seawater, it is difficult to accurately identify the detection position, and it is impossible to accurately grasp the distribution.

熱水プルームをはじめとする海水の分布状況を正確に把握するため、海水を直接採取することが考えられている。具体的には、海中での作業を行う作業機(例えば、特許文献1参照)を用い、遠隔操作により温度変化が生じている部位の海水を採取し、採取した位置の情報とのマッチングを行って海水の分布状況を把握することが考えられている。この場合、作業機により温度変化が生じている部位の近傍に移動して海水を採取することができる。   In order to accurately grasp the distribution of seawater including hot water plumes, it is considered to collect seawater directly. Specifically, using a working machine that performs work in the sea (for example, see Patent Document 1), seawater at a site where the temperature change has occurred by remote control is collected, and matching with the information on the collected position is performed. It is considered to grasp the distribution of seawater. In this case, seawater can be collected by moving to the vicinity of the portion where the temperature change is caused by the work implement.

しかし、作業機による遠隔操作では、作業機からのマニピュレータの操作により海水の採取を行うようになっているので、採取開始から終了までに時間がかかり、例えば、温度が変化したことを検出した時に作業を開始してもリアルタイムの採取が困難であり、所望の部位の海水を採取できない結果になっていた。   However, in remote operation by a work machine, seawater is collected by manipulator operation from the work machine, so it takes time from the start to the end of collection, for example, when it detects that the temperature has changed Even when the work was started, it was difficult to collect in real time, and it was impossible to collect seawater at a desired site.

熱水プルームをはじめとする海水の分布状況は、温度等の状況が僅かに変化しても海水の状況は顕著に変化する。このため、リアルタイムでの海水の採取は海水の状況分布等を把握する上で必要不可欠なことである。   The distribution of seawater including a hot water plume changes significantly even if the temperature and other conditions change slightly. For this reason, the collection of seawater in real time is indispensable for grasping the situation distribution of seawater.

特開平8−180393号公報JP-A-8-180393

発明は上記状況に鑑みてなされたもので、海水の変化の状況を把握するために状況が変化する部位に移動して所定の部位の海水を採取する海水採取装置を提供することを目的とする。 The present invention has been made in view of the above situation, and an object of the present invention is to provide a seawater collection device that moves to a site where the situation changes in order to grasp the state of change in seawater and collects seawater at a predetermined site. To do.

本発明では、海水の状況を検出しながら状況の境界部に移動して境界部の海水を採取し、状況の分布を導出する。 In the present invention, while detecting the condition of sea water by moving the boundary conditions were taken seawater boundary, we derive the distribution situation.

これにより、海水の状況が変化する部位に移動して所定の部位の海水を採取するので、採取位置の情報と合わせる事で海水の変化の状況を把握することが可能になる。 Thereby, since it moves to the site | part to which the condition of seawater changes and the seawater of a predetermined | prescribed site | part is sampled, it becomes possible to grasp | ascertain the condition of the change of seawater by combining with the information of a sampling position.

また、海水の状況は海底から噴出する熱水の温度であり、温度変化の境界部に移動して境界部の熱水を採取し、採取位置の情報と組み合わせて熱水の分布を導出する。 Also, the status of seawater is the temperature of the hot water to be ejected from the seabed, the hot water boundary was recovered by moving the border portion of the temperature change, we derive the distribution of hot water in combination with the collected positional information .

これにより、熱水の分布を把握することが可能になる。 Thereby, it becomes possible to grasp | ascertain distribution of hot water.

上記目的を達成するための請求項1に係る本発明の海水採取装置は、海水の状況を検出するセンサを備えると共に、センサの近傍に海水を採取するための海水採取手段を備えることで採取手段を構成し、海底を移動することで採取手段を任意の位置に移動させる潜水艇を備え、海水採取手段は、センサに対して位置が特定され両端が開口された複数の筒体と、筒体の開口に設けられ個別に閉動作する蓋とを備え、筒体は移動方向に軸心が延びる状態に配置されて蓋が開いている状態で海水を流通可能とし、蓋を筒の外側から閉じ側に付勢する付勢手段が設けられ、付勢手段に抗して蓋を開き側に個別に規制すると共に海水の採取時に規制を個別に解除する開閉手段を備えたことを特徴とする。 In order to achieve the above object, the seawater collection device of the present invention according to claim 1 includes a sensor for detecting the state of seawater, and also includes a seawater collection unit for collecting seawater in the vicinity of the sensor. configure, submarine provided with a submersible to move the collection means to an arbitrary position by moving the seawater collecting means includes a plurality of cylindrical body position both ends are identified are open to the sensor, the cylindrical body The cylinder is arranged in a state in which the axial center extends in the moving direction so that seawater can be circulated with the lid open, and the lid is closed from the outside of the cylinder. An urging means for urging to the side is provided, and an opening / closing means for individually restricting the lid to the opening side against the urging means and individually releasing the restriction when collecting seawater is provided .

請求項1に係る本発明では、潜水艇により採取手段を任意の位置に移動させ、センサにより海水の所定の状況を検出した際に近傍にある海水採取手段によりその場所の海水を採取することで、海水の変化の状況を把握するために状況が変化する部位に移動して所定の部位の海水を採取することが可能になる。
そして、移動に伴って筒内の海水が入れ替わり、開閉手段により規制を個別に解除することで付勢手段の付勢力により蓋が瞬時に閉じられ、所定の部位の海水を瞬時に採取することができる。
In the present invention according to claim 1, by collecting the seawater at the place by the seawater collecting means located in the vicinity when the sampling means is moved to an arbitrary position by the submersible and a predetermined state of the seawater is detected by the sensor. In order to grasp the state of seawater change, it is possible to move to a part where the situation changes and collect seawater at a predetermined part.
And the seawater in the cylinder is replaced with the movement, the lid is instantly closed by the urging force of the urging means by individually releasing the regulation by the opening and closing means, and the seawater at a predetermined part can be collected instantly it can.

そして、請求項2に係る本発明の海水採取装置は、請求項1に記載の海水採取装置において、筒体は、センサに対して複数の位置が特定されて複数備えられていることを特徴とする。 And the seawater collection device of the present invention according to claim 2 is characterized in that, in the seawater collection device according to claim 1, a plurality of cylindrical bodies are provided with a plurality of positions specified with respect to the sensor. To do.

請求項2に係る本発明では、所定間隔をあけた複数の位置で特定された状態の海水を採取することができる。 In the present invention according to claim 2, seawater in a state specified at a plurality of positions at predetermined intervals can be collected.

また、請求項3に係る本発明の海水採取装置は、請求項1もしくは請求項2に記載の海水採取装置において、センサは温度センサ及び濁度センサであり、採取する海水は海底から噴出する熱水であることを特徴とする。 Moreover, the seawater collection device of the present invention according to claim 3 is the seawater collection device according to claim 1 or 2, wherein the sensors are a temperature sensor and a turbidity sensor, and the collected seawater is heat that is ejected from the seabed. It is water .

請求項3に係る本発明では、温度センサ及び濁度センサにより海水の温度状況を検出し、所定の部位での熱水を採取することができる。 In this invention which concerns on Claim 3 , the temperature condition of seawater can be detected with a temperature sensor and a turbidity sensor, and hot water in a predetermined | prescribed site | part can be extract | collected.

願発明の海水採取装置は、海水の変化の状況を把握するために状況が変化する部位に移動して所定の部位の海水を採取することが可能になる。 Seawater sampling device of the present gun invention, it is possible to collect seawater predetermined site by moving the site conditions change in order to grasp the situation of change of sea water.

本発明の海水採取装置による海水状況把握方法は、海水の状況である温度、濁度等を検出しながら熱水噴出孔から噴出する熱水の位置(状況の境界部)に移動して、所定温度部位での熱水(境界部の海水)を採取し、採取した位置との位置情報とマッチングさせて熱水の分布状況を把握するものである。 Seawater status monitoring method according to the onset bright seawater sampling device is moved temperatures the situation of seawater, the position of the hot water ejected from hydrothermal vents while detecting the turbidity or the like (boundary conditions), Hot water (seawater at the boundary) at a predetermined temperature site is collected and matched with position information of the collected position to grasp the distribution of hot water.

海底面から海水中に噴出した熱水は、混合希釈されながら上昇していく。熱水プルームは、何百倍程度に希釈された熱水が周囲の海水とつりあう面まで上昇を続けた後に、海洋中に広がった水塊である。熱水プルームが形成する過程も熱水と海水が混合する過程の一つであり、そのような水塊中では微生物活動が高く、沈殿生成等の化学反応、懸濁態粒子への化学種吸着や懸濁態粒子の集積沈降等の物理的過程が化学環境を左右する。   Hot water erupted into the seawater from the bottom of the sea rises while being mixed and diluted. A hot water plume is a mass of water that has spread throughout the ocean after hot water diluted several hundred times continues to rise to the surface where it balances with the surrounding sea water. The process of forming a hydrothermal plume is one of the processes of mixing hot water and seawater. In such a water mass, microbial activity is high, chemical reaction such as precipitation, chemical species adsorption to suspended particles. Physical processes such as accumulation and sedimentation of suspended particles influence the chemical environment.

熱水噴出孔の周囲では様々な割合で熱水と海水の混合が起こっており、混合に伴う化学反応が進行している。そのために、熱水活動地帯の化学的環境は場所ごとに大きく異なっている。従って、熱水活動地帯の化学的環境を明らかにする上で空間分布に加えて時間変動も考慮する必要があるため、所定の位置に正確に移動して所定温度部位で熱水を採取することは必要不可欠な事項である。   The hot water and seawater are mixed in various proportions around the hydrothermal vent, and the chemical reaction accompanying the mixing proceeds. For this reason, the chemical environment of the hydrothermal activity zone varies greatly from place to place. Therefore, in order to clarify the chemical environment of the hydrothermal activity zone, it is necessary to consider time fluctuations in addition to spatial distribution, so it is necessary to move to a predetermined position and collect hot water at a predetermined temperature site. Is an indispensable matter.

このような状況から、海水の状況を検出するセンサ(温度センサ、濁度センサ)を備えると共に、センサの近傍に海水採取手段を備えることで採取手段を構成し、採取手段を任意の位置に移動させる移動手段(潜水艇)を備え、採取手段を任意の位置に移動させて、センサにより海水の所定の状況を検出した際にセンサの近傍にある海水採取手段によりその場所の海水を採取することができるようにした海水採取装置を達成したものである。そして、熱水活動地帯の直上の水塊の物理的化学的性質に関する空間分布を明らかにし、例えば、海底熱水活動とそこに発達する微生物生態系の活動関連等を解明するために用いられる。   In such a situation, a sensor (temperature sensor, turbidity sensor) for detecting the state of seawater is provided, and a sampling means is configured by providing a seawater sampling means in the vicinity of the sensor, and the sampling means is moved to an arbitrary position. A moving means (submersible) that moves the sampling means to an arbitrary position, and when a predetermined condition of seawater is detected by the sensor, the seawater sampling means in the vicinity of the sensor collects the seawater at that location The seawater collection device that has made it possible to achieve this is achieved. It is used to clarify the spatial distribution of the physical and chemical properties of the water mass directly above the hydrothermal activity zone, and to elucidate, for example, the relationship between the hydrothermal activity of the seabed and the microbial ecosystem that develops there.

例えば、本発明の海水採取装置により温度変化に対応してその部位の熱水を採取することで、熱水噴出孔からの距離が大きくなるにつれて全ての熱水由来成分の濃度は減少するが、保存成分と考えられる成分では、二酸化炭素の濃度現象は混合希釈で説明がつく状態の結果が得られ、硫化水素の減少度合いは混合希釈の度合いより大きい結果が得られる。このことから、硫化水素が、熱水と海水との混合希釈過程で何らかの化学反応で除去されていることが示される。   For example, by collecting the hot water of the part corresponding to the temperature change by the seawater collection device of the present invention, the concentration of all the hot water-derived components decreases as the distance from the hot water ejection hole increases, For components considered to be preservative components, the concentration phenomenon of carbon dioxide can be explained with mixed dilution, and the reduction degree of hydrogen sulfide is larger than the mixed dilution. This indicates that hydrogen sulfide is removed by some chemical reaction in the process of mixing and diluting hot water and seawater.

このように、本発明の海水採取装置により熱水を採取することで、熱水プルームの状況が物理的化学的にどのように存在しているかを知ることができる。熱水プルームに限らず、センサで検知した状態の変化部位の海水を採取することで、二酸化炭素の希釈状況を解明し、二酸化炭素の海洋放出における分野で、放出場所の最適な設定や放出場所・放出時期に対する放出流量の最適設定、放出機構等の設計等に解明したデータを適用することができる。その他にも、海底生物の生息分布による生物からの放出物状況や生物自身の物理的変化等の解明に適用することができる。
(実施形態例)
図1乃至図6に基づいて本発明の一実施形態例に係る海水採取装置を説明する。図1には本発明の一実施形態例に係る海水採取装置の全体の概略構成、図2には取水手段の正面視状況、図3には蓋が開いている状態の採取手段の斜視状況、図4には蓋が閉じた状態の採取手段の斜視状況、図5には海水採取装置により海水を採取している状態の概略説明、図6には採取結果に基づいて得られた熱水プルームの状態の一例を示してある。
Thus, by collecting hot water with the seawater collection device of the present invention, it is possible to know how the state of the hot water plume exists physically and chemically. In addition to the hot water plume, by collecting seawater at the site where the state of change detected by the sensor is collected, the carbon dioxide dilution status is clarified, and in the field of carbon dioxide ocean release, the optimal setting of the release location and the release location -Elucidated data can be applied to the optimal setting of the discharge flow rate with respect to the release time, the design of the release mechanism, etc. In addition, the present invention can be applied to elucidation of the state of emissions from living organisms due to the distribution of marine organisms and the physical changes of organisms.
(Example embodiment)
A seawater collection device according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic configuration of the entire seawater collection device according to an embodiment of the present invention, FIG. 2 is a front view of the water intake means, FIG. 3 is a perspective view of the collection means with the lid open, FIG. 4 is a perspective view of the collecting means with the lid closed, FIG. 5 is a schematic explanation of the state where seawater is collected by the seawater collecting device, and FIG. 6 is a hot water plume obtained based on the collection result. An example of the state is shown.

図1に示すように、海水採取装置11は、潜水艇1(移動手段)の前方(移動方向前側)に採取手段2が取り付けられ、採取手段2には海水を採取するための海水採取手段3が取り付けられている。海水採取装置11を潜水艇1の移動方向前側に取り付けたことにより、潜水艇1自身の推進手段による海底のまきあげ等が発生していない海水を採取することができる。   As shown in FIG. 1, the seawater collection device 11 has a collection means 2 attached to the front of the submersible 1 (movement means) (front side in the movement direction), and the collection means 2 collects seawater collection means 3 for collecting seawater. Is attached. By attaching the seawater collecting device 11 to the front side in the moving direction of the submersible craft 1, it is possible to collect seawater that does not cause the seabed to be lifted by the propulsion means of the submersible craft 1 itself.

図2乃至図4に基づいて採取手段2を説明する。   The sampling means 2 will be described with reference to FIGS.

図に示すように、採取手段2にはセンサとして、濁度センサ6及び海水の密度の鉛直分布を測定する装置(CTD:conductivity-temperature-depth recorder)7が備えられ、濁度センサ6及びCTD7の周囲には海水採取手段として複数(図示例では12本)の筒体4a〜4lが逆U字状に配置されて設けられている。例えば、熱水の噴出孔近傍では温度が高く濁度が高い状態になっているので、濁度センサ6で検出される濁度及びCTD7で検出される海水の密度の分布により、海底から噴出する熱水が検出される。筒体4a〜4lは移動方向に軸心が延びる状態に配置されている。   As shown in the figure, the sampling means 2 is provided with a turbidity sensor 6 and a device (CTD: conductivity-temperature-depth recorder) 7 for measuring the vertical distribution of the density of seawater as sensors, and the turbidity sensor 6 and CTD 7. A plurality of (12 in the illustrated example) cylinders 4a to 4l are arranged in a reverse U-shape as seawater collecting means. For example, since the temperature is high and the turbidity is high in the vicinity of the hot water jet hole, the hot water jets from the seabed due to the distribution of the turbidity detected by the turbidity sensor 6 and the density of the seawater detected by the CTD 7. Hot water is detected. The cylinders 4a to 4l are arranged in a state where the axis extends in the movement direction.

濁度センサ6及びCTD7に一番近い筒体4a、4lで、濁度センサ6で検出される濁度及びCTD7で検出される状態の熱水(海水)がほぼそのままで採取され、濁度センサ6及びCTD7から一番離れた筒体4f、4gで、濁度センサ6で検出される濁度及びCTD7で検出される状態から最大に間隔をあけた位置で特定された状態の熱水(海水)が採取される。筒体4b〜4e、4h〜4kに関しても、濁度センサ6で検出される濁度及びCTD7で検出される状態から所定間隔をあけた位置で特定された状態の熱水(海水)が採取される。筒体4a〜4lは濁度センサ6及びCTD7に対する相対位置が特定され、図示しない制御手段に記憶されている。   Turbidity detected by the turbidity sensor 6 and hot water (seawater) detected by the CTD7 are collected almost as they are in the cylinders 4a and 4l closest to the turbidity sensor 6 and the CTD7. 6 and the tubular bodies 4f and 4g farthest from the CTD 7, the turbidity detected by the turbidity sensor 6 and the hot water (seawater) in a state specified at a position spaced from the state detected by the CTD 7 to the maximum. ) Is collected. Also for the cylinders 4b to 4e and 4h to 4k, turbidity detected by the turbidity sensor 6 and hot water (seawater) in a state specified at a predetermined interval from the state detected by the CTD 7 are collected. The The cylinders 4a to 4l have relative positions with respect to the turbidity sensor 6 and the CTD 7, and are stored in control means (not shown).

筒体4a〜4lは両端が開口された状態になっており、筒体4a〜4lの両開口には蓋5a〜5lがそれぞれ設けられている。両開口に設けられた蓋5a〜5lは付勢手段によりそれぞれ両開口同士で同時に閉じ側に付勢支持されていると共に、規制手段10により付勢力に抗して両開口同士の蓋5a〜5lを開き側に規制している。   The cylinders 4a to 4l are in a state in which both ends are opened, and lids 5a to 5l are respectively provided at both openings of the cylinders 4a to 4l. The lids 5a to 5l provided in both the openings are urged and supported by the biasing means at the same time on the closing side, and the lids 5a to 5l of the two openings are resisted by the regulating means 10 against the biasing force. Is restricted to the open side.

規制手段10は、海水を採取するための信号が入力された際に蓋5a〜5lの開き側への規制を解除し、両開口同士の蓋5a〜5lを付勢手段によって閉動作させるようになっている。即ち、規制手段10は、蓋5a〜5lを開き側に維持する際には両開口同士の蓋5a〜5lを付勢手段に抗して保持する機構となり、閉動作信号をトリガとして保持力を開放する機構となっている。   When the signal for collecting seawater is input, the restricting means 10 releases the restriction to the opening side of the lids 5a to 5l and causes the lids 5a to 5l between the openings to be closed by the urging means. It has become. That is, the restricting means 10 is a mechanism that holds the lids 5a to 5l between the two openings against the biasing means when the lids 5a to 5l are maintained on the open side, and has a holding force triggered by the closing operation signal. It is a mechanism to release.

つまり、海水を採取する前は、付勢力に抗して両開口同士の蓋5a〜5lが規制手段10により開き側に規制され、筒体4a〜4l内は潜水艇1の航行に伴って海水が入れ替わりながら流通する状態にされる。濁度センサ6及びCTD7による検出信号に基づいて海水を採取する部位とされた時に閉動作信号が出力され、閉動作信号により開き側への規制が個別に解除され、蓋5a〜5lが付勢手段の付勢力により個別に閉動作されて筒体4a〜4l内に海水が採取される。蓋5a〜5lの閉動作は、筒体毎に個別に制御され、濁度センサ6及びCTD7との位置関係により採取部位が特定された状態で海水が採取される。   That is, before the seawater is collected, the lids 5a to 5l between the two openings are restricted to the open side by the regulating means 10 against the urging force, and the inside of the cylinders 4a to 4l is seawater as the submarine 1 sails. Are put into a state of being distributed. When the seawater is collected based on the detection signals from the turbidity sensor 6 and the CTD 7, a closing operation signal is output, the restriction to the opening side is individually released by the closing operation signal, and the lids 5a to 5l are energized. The urging force of the means individually closes and seawater is collected in the cylinders 4a to 4l. The closing operation of the lids 5a to 5l is individually controlled for each cylinder, and seawater is collected in a state where the collection site is specified by the positional relationship with the turbidity sensor 6 and the CTD 7.

上述した海水採取装置11は、濁度センサ6及びCTD7に最も近い筒体4a、4lを備えると共に、濁度センサ6で検出される濁度及びCTD7から所定間隔をあけた位置で特定された位置に筒体4b〜4kを備えたので、濁度センサ6及びCTD7に最も近い部位の熱水及び所定間隔をあけた熱水を採取することができる。   The seawater collection device 11 described above includes the cylinders 4a and 4l that are closest to the turbidity sensor 6 and the CTD 7, and the turbidity detected by the turbidity sensor 6 and a position that is specified at a position spaced from the CTD 7. Since the cylindrical bodies 4b to 4k are provided, hot water at a portion closest to the turbidity sensor 6 and the CTD 7 and hot water having a predetermined interval can be collected.

尚、筒体4a〜4lを円形に配置し、全体を回動可能にすることで、濁度センサ6及びCTD7に最も近い位置に採取動作を行う筒体を移動させて熱水を採取することも可能である。   In addition, by arranging the cylinders 4a to 4l in a circular shape and enabling the whole to rotate, the cylinder performing the sampling operation is moved to a position closest to the turbidity sensor 6 and the CTD 7 to collect hot water. Is also possible.

上記構成の海水採取装置11では、濁度センサ6及びCTD7で海水の状況を検出しながら潜水艇1を熱水の噴出孔近傍22(図5参照)に航行し、予め設定された濁度、温度等の位置(状況の境界)に採取手段2を移動させる。濁度センサ6及びCTD7により予め設定された濁度、温度等の位置が検出されると、閉動作信号により規制手段10による蓋5の開状態保持を解除して蓋5を閉動作させる。これにより、予め設定された位置での熱水を極めて短い時間で確実に採取することができる。   In the seawater sampling device 11 having the above-described configuration, the submarine 1 is navigated to the vicinity of the hot water jet hole 22 (see FIG. 5) while detecting the state of the seawater with the turbidity sensor 6 and the CTD 7, The sampling means 2 is moved to a position such as temperature (situation boundary). When the turbidity sensor 6 and the CTD 7 detect preset positions of turbidity, temperature, etc., the lid 5 is closed by releasing the holding of the lid 5 by the regulating means 10 by the closing operation signal. Thereby, the hot water in the preset position can be reliably collected in a very short time.

因みに、本実施形態例の採取手段2を用いずに、作業用のマニピュレータを用いて容器に熱水を採取するようにした場合には、採取開始から完了までの時間が長いため、所定の濁度、温度等の位置に対して採取完了する位置がずれて、的確な熱水を採取するには限界がある。これに対し、採取手段2を用いて熱水を採取した場合には、採取開始から完了までの時間が極めて短いため(例えば1〜2秒の瞬時)、所定の濁度、温度等の位置に対して採取完了位置が殆ど同位置となり、的確な熱水を採取することができる。   Incidentally, when hot water is collected in a container using a working manipulator without using the collecting means 2 of the present embodiment, the time from the start to the completion of the collection is long, so a predetermined turbidity is required. There is a limit to the collection of accurate hot water because the position where the collection is completed is deviated from the position of temperature, temperature, etc. On the other hand, when hot water is collected using the collection means 2, the time from the start to the completion of collection is extremely short (for example, for an instant of 1 to 2 seconds). On the other hand, the collection completion position is almost the same position, and accurate hot water can be collected.

所定の濁度、温度等の位置に採取手段2を移動させて採取を繰り返し、採取位置の情報と組み合わせて熱水の分布を導出する。採取した熱水の状況を分析することで、図6に示すように、噴出孔23からの熱水の拡散に対する成分状況等(成分の経時変化、堆積物の状況の変化等)の拡散状況が分布21として求められる。分布21としては、所定の濁度、温度等の位置で採取した熱水に基づいて得られる情報の分布であれば、様々な態様の情報の分布とすることができる。   The sampling means 2 is moved to a position such as a predetermined turbidity and temperature, and sampling is repeated, and the distribution of hot water is derived in combination with information on the sampling position. By analyzing the status of the collected hot water, as shown in FIG. 6, the diffusion status of the component status, etc. (the time-dependent change of the component, the status of the deposit, etc.) with respect to the diffusion of the hot water from the ejection hole 23 can be obtained. The distribution 21 is obtained. The distribution 21 may be information distribution in various forms as long as it is a distribution of information obtained based on hot water collected at a predetermined position such as turbidity and temperature.

同様に、センサの種類を変えることにより、異なる状況の境界部の海水を採取することが可能である。また、採取手段2に航行手段を設けることにより、潜水艇1が近づくことができない場所に対しても採取手段2を移動させて所望の海水の採取が可能になる。   Similarly, it is possible to collect seawater at the boundary of different situations by changing the type of sensor. Further, by providing the navigation means in the collection means 2, it is possible to collect the desired seawater by moving the collection means 2 to a place where the submersible craft 1 cannot approach.

上述した海水採取装置11を用いることにより、海水の変化の状況を把握するために状況が変化する部位に移動して所定の部位の熱水(海水)を的確に採取することができ、熱水(海水)の状況を検出しながら状況の境界部に移動して境界部の熱水(海水)を採取することで、熱水の成分等の拡散状況の分布を導出することができる。   By using the seawater sampling device 11 described above, it is possible to move to a site where the situation changes in order to grasp the situation of the change in seawater and accurately collect hot water (seawater) at a predetermined site. By detecting the state of (seawater) and moving to the boundary part of the situation and collecting hot water (seawater) at the boundary part, it is possible to derive the distribution of the diffusion state of the components of the hot water.

発明は、海水の変化の状況を把握するために状況が変化する部位に移動して所定の部位の海水を採取する海水採取装置の産業分野で利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be used in the industrial field of a seawater collecting device that moves to a site where the situation changes in order to grasp the state of change in seawater and collects seawater at a predetermined site.

本発明の一実施形態例に係る海水採取装置の全体の概略構成図である。1 is an overall schematic configuration diagram of a seawater collection device according to an embodiment of the present invention. 採取手段の正面図である。It is a front view of a collection means. 蓋が開いている状態の採取手段の斜視図である。It is a perspective view of the sampling means in a state where the lid is open. 蓋が閉じた状態の採取手段の斜視図である。It is a perspective view of the sampling means in the state where the lid is closed. 海水採取装置により海水を採取している状態の概略説明図である。It is a schematic explanatory drawing of the state which is collecting seawater with a seawater collection device. 採取結果に基づいて得られた熱水プルームの状態説明図である。It is state explanatory drawing of the hot water plume obtained based on the collection result.

1 潜水艇
2 採取手段
3 海水採取手段
4 筒体
5 蓋
6 濁度センサ
7 CDT
10 規制手段
11 海水採取装置
21 分布
22 噴出孔近傍
23 噴出孔
DESCRIPTION OF SYMBOLS 1 Submersible craft 2 Collecting means 3 Seawater collecting means 4 Cylinder 5 Lid 6 Turbidity sensor 7 CDT
DESCRIPTION OF SYMBOLS 10 Control means 11 Seawater sampling device 21 Distribution 22 Near jet hole 23 Jet hole

Claims (3)

海水の状況を検出するセンサを備えると共に、センサの近傍に海水を採取するための海水採取手段を備えることで採取手段を構成し、海底を移動することで採取手段を任意の位置に移動させる潜水艇を備え、
海水採取手段は、センサに対して位置が特定され両端が開口された複数の筒体と、筒体の開口に設けられ個別に閉動作する蓋とを備え、
筒体は移動方向に軸心が延びる状態に配置されて蓋が開いている状態で海水を流通可能とし、蓋を筒の外側から閉じ側に付勢する付勢手段が設けられ、付勢手段に抗して蓋を開き側に個別に規制すると共に海水の採取時に規制を個別に解除する開閉手段を備えた
ことを特徴とする海水採取装置。
A submersible that includes a sensor that detects the state of seawater, and that includes a seawater collecting means for collecting seawater in the vicinity of the sensor to constitute the collecting means, and moves the sampling means to an arbitrary position by moving the seabed. Equipped with a boat ,
The seawater collecting means includes a plurality of cylinders whose positions are specified with respect to the sensor and whose both ends are open, and a lid that is provided at the opening of the cylinder and individually closes.
The cylinder is arranged in a state in which the axial center extends in the moving direction so that seawater can be circulated with the lid open, and biasing means for biasing the lid from the outside of the cylinder to the closing side is provided. A seawater collecting device comprising an opening / closing means for individually restricting the lid to the open side against the seam and releasing the restriction individually when collecting seawater.
請求項1に記載の海水採取装置において、
筒体は、センサに対して複数の位置が特定されて複数備えられている
ことを特徴とする海水採取装置。
In the seawater collecting device according to claim 1,
A seawater collecting apparatus , wherein a plurality of cylindrical bodies are provided with a plurality of positions specified with respect to the sensor .
請求項1もしくは請求項2に記載の海水採取装置において、
センサは温度センサ及び濁度センサであり、採取する海水は海底から噴出する熱水である
ことを特徴とする海水採取装置。
In the seawater collecting device according to claim 1 or 2,
The sensor is a temperature sensor and a turbidity sensor, and the seawater to be collected is hot water ejected from the seabed.
JP2005060732A 2005-03-04 2005-03-04 Seawater collection device Expired - Fee Related JP4905757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005060732A JP4905757B2 (en) 2005-03-04 2005-03-04 Seawater collection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005060732A JP4905757B2 (en) 2005-03-04 2005-03-04 Seawater collection device

Publications (2)

Publication Number Publication Date
JP2006240530A JP2006240530A (en) 2006-09-14
JP4905757B2 true JP4905757B2 (en) 2012-03-28

Family

ID=37047352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005060732A Expired - Fee Related JP4905757B2 (en) 2005-03-04 2005-03-04 Seawater collection device

Country Status (1)

Country Link
JP (1) JP4905757B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5030098B2 (en) * 2007-08-22 2012-09-19 一般財団法人電力中央研究所 Underwater spring condition detection system
JP5263829B2 (en) * 2009-01-29 2013-08-14 一般財団法人電力中央研究所 Monitoring method and monitoring system of leaked carbon dioxide in subsea reservoir storage

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450341A (en) * 1987-08-19 1989-02-27 Toyo Boseki Manufacture of surface applied with powder
JPH0741876B2 (en) * 1991-08-23 1995-05-10 海洋科学技術センター Underwater cooling / heating device
JPH1123429A (en) * 1997-06-30 1999-01-29 Mitsubishi Heavy Ind Ltd Water collecting container
JP4445635B2 (en) * 2000-03-06 2010-04-07 三井造船株式会社 Unmanned submersible navigation method and unmanned submersible
JP3519667B2 (en) * 2000-04-07 2004-04-19 三菱重工業株式会社 Multi-point water sampling device

Also Published As

Publication number Publication date
JP2006240530A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
AU2016228263B2 (en) Autonomous underwater system for 4d environmental monitoring
Dunbabin et al. An autonomous surface vehicle for water quality monitoring
Flohr et al. Towards improved monitoring of offshore carbon storage: a real-world field experiment detecting a controlled sub-seafloor CO2 release
Viollier et al. Benthic biogeochemistry: state of the art technologies and guidelines for the future of in situ survey
AU2015289472B2 (en) Method and system for performing surveying and sampling in a body of water
Zhang et al. Autonomous tracking and sampling of the deep chlorophyll maximum layer in an open-ocean eddy by a long-range autonomous underwater vehicle
US20160018559A1 (en) Method And System For Performing Surveying And Sampling In A Body Of Water
Ferri et al. A novel trigger-based method for hydrothermal vents prospecting using an autonomous underwater robot
JP4905757B2 (en) Seawater collection device
Cruz et al. Reactive AUV motion for thermocline tracking
US20120046882A1 (en) Method of detecting contamination of water using living organisms
Daly et al. Chemical and biological sensors for time-series research: Current status and new directions
Maslin et al. Underwater robots provide similar fish biodiversity assessments as divers on coral reefs
Petillo et al. Autonomous and adaptive underwater plume detection and tracking with AUVs: Concepts, methods, and available technology
US20230408336A1 (en) Modular-reconfigurable long-term in-situ monitoring device and monitoring method
JP5412972B2 (en) Water column observation device
Ross et al. Marine measurement, monitoring and verification for offshore carbon storage projects–learnings from a coastal Gippsland setting
Bonin-Font et al. Towards a new methodology to evaluate the environmental impact of a marine outfall using a lightweight AUV
Preston et al. Discovering hydrothermalism from Afar: In Situ methane instrumentation and change-point detection for decision-making
Webster et al. Sensory-mediated tracking behaviour in turbulent chemical plumes
Thompson et al. MBARI Dorado AUV's scientific results
JP2011158343A (en) Exploration method of undiscovered sea-floor hydrothermal deposit and exploration system of undiscovered sea-floor hydrothermal deposit
Amundsen et al. Aquaculture field robotics: Applications, lessons learned and future prospects
TR201922399A1 (en) A life detection system for machining tools
Dearden et al. Planning for AUVs: Dealing with a continuous partially-observable environment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4905757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees