JP4904880B2 - Fuel cell reformer - Google Patents

Fuel cell reformer Download PDF

Info

Publication number
JP4904880B2
JP4904880B2 JP2006086134A JP2006086134A JP4904880B2 JP 4904880 B2 JP4904880 B2 JP 4904880B2 JP 2006086134 A JP2006086134 A JP 2006086134A JP 2006086134 A JP2006086134 A JP 2006086134A JP 4904880 B2 JP4904880 B2 JP 4904880B2
Authority
JP
Japan
Prior art keywords
reforming
outer cylinder
return pipe
raw material
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006086134A
Other languages
Japanese (ja)
Other versions
JP2007261829A (en
Inventor
行貴 濱田
榮 千々岩
実 水澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2006086134A priority Critical patent/JP4904880B2/en
Publication of JP2007261829A publication Critical patent/JP2007261829A/en
Application granted granted Critical
Publication of JP4904880B2 publication Critical patent/JP4904880B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Description

本発明は、都市ガス、LPG等の原料を改質して燃料電池で用いる水素リッチガスを生成させるようにする燃料電池用改質装置に関するものである。   The present invention relates to a reformer for a fuel cell that reforms raw materials such as city gas and LPG to generate a hydrogen-rich gas used in a fuel cell.

燃料電池を用いた発電装置は、環境保全性、発電効率等に優れていることから、注目され、需要が伸びている。特に、近年では、固体高分子型燃料電池(PEFC)は、100℃以下という低温での発電が行われ、出力密度が高いことから、他の型式の燃料電池に比して小型化でき、しかも、起動が容易であること、等の長所があることから、小規模な業務用あるいは家庭用等の発電装置として使用されるようになってきている。   Power generation devices using fuel cells are attracting attention and demand is increasing because they are excellent in environmental conservation and power generation efficiency. In particular, in recent years, the polymer electrolyte fuel cell (PEFC) generates electricity at a low temperature of 100 ° C. or less and has a high output density, so that it can be reduced in size compared with other types of fuel cells. Because of its advantages such as easy start-up, it has come to be used as a power generator for small-scale business use or home use.

上記固体高分子型燃料電池を用いた発電装置(PEFC発電装置)の一般的な構成は、図4に示すようにしてある。すなわち、燃料電池1は、電解質としてフッ素系のイオン交換膜が用いられている固体高分子電解質膜の両面をカソード(空気極)2とアノード(燃料極)3の両ガス拡散電極で挟持させてなるセルを、セパレータ(図示せず)を介し積層してスタックとしてなる構成としてある。上記固体高分子型燃料電池1におけるアノード3の入口側には、改質器5、低温シフトコンバータ6、CO選択酸化反応器(CO除去器)7を順に備えてなる燃料処理装置4と、加湿器8が設けてある。これにより、燃料供給部より供給される都市ガス(天然ガス)やLPG等の原料(原燃料)9を、脱硫器10にて脱硫した後、原料予熱器(原燃料気化器)11にて予熱してから、水蒸発器12より導かれる水蒸気13と共に上記燃料処理装置4へ供給し、該燃料処理装置4の改質器5にておよそ700℃前後に加熱して水蒸気改質が行われるようにしてある。得られる改質ガス(燃料ガス)14は、低温シフトコンバータ6に導いておよそ250℃前後まで温度低下させてシフト反応させ、更に、上記CO選択酸化反応器7にておよそ100〜120℃前後まで温度低下させてCO除去処理するようにしてある。上記燃料処理装置4より送出される改質ガス14は、加湿器8にて加湿された後、上記固体高分子型燃料電池1のアノード3へ供給されるようにしてある。一方、上記カソード2の入口側には、酸化ガスとして空気15が、空気ブロワ16で加圧された後、上記加湿器8を経てから供給されるようにしてある。図中9aは原料9の一部を改質器5のバーナへ供給する追焚き燃料、17はアノードオフガス、18は燃料電池1の冷却部である。   A general configuration of a power generation device (PEFC power generation device) using the polymer electrolyte fuel cell is as shown in FIG. That is, in the fuel cell 1, both surfaces of a solid polymer electrolyte membrane in which a fluorine-based ion exchange membrane is used as an electrolyte are sandwiched between both cathode (air electrode) 2 and anode (fuel electrode) 3 gas diffusion electrodes. The cells are stacked through a separator (not shown) to form a stack. On the inlet side of the anode 3 in the polymer electrolyte fuel cell 1, a fuel processor 4 comprising a reformer 5, a low temperature shift converter 6, a CO selective oxidation reactor (CO remover) 7 in this order, and a humidification A vessel 8 is provided. Thereby, after desulfurizing the raw material (raw fuel) 9 such as city gas (natural gas) and LPG supplied from the fuel supply unit by the desulfurizer 10, the raw material preheater (raw fuel vaporizer) 11 preheats it. Then, it is supplied to the fuel processor 4 together with the steam 13 guided from the water evaporator 12 and heated to about 700 ° C. in the reformer 5 of the fuel processor 4 so that steam reforming is performed. It is. The resulting reformed gas (fuel gas) 14 is led to the low-temperature shift converter 6 and is subjected to a shift reaction by lowering the temperature to about 250 ° C., and further to about 100 to 120 ° C. in the CO selective oxidation reactor 7. The temperature is lowered to perform CO removal treatment. The reformed gas 14 delivered from the fuel processor 4 is humidified by the humidifier 8 and then supplied to the anode 3 of the polymer electrolyte fuel cell 1. On the other hand, air 15 as an oxidizing gas is supplied to the inlet side of the cathode 2 through the humidifier 8 after being pressurized by the air blower 16. In the figure, reference numeral 9 a denotes additional fuel for supplying a part of the raw material 9 to the burner of the reformer 5, 17 an anode off gas, and 18 a cooling part of the fuel cell 1.

上記のような燃料電池発電装置で用いられる燃料処理装置における改質器5は、上記のように都市ガス等の原料から燃料電池1へ供給する水素リッチガスを生成させるものであるが、その具体的構成としては、図5に一例を示すような縦長の反応管を用いた構成のものがある。   The reformer 5 in the fuel processor used in the fuel cell power generator as described above generates hydrogen-rich gas to be supplied to the fuel cell 1 from the raw material such as city gas as described above. As a configuration, there is a configuration using a vertically long reaction tube as shown in FIG.

すなわち、図5に示す反応管を用いている改質装置は、上下方向に延び且つ下端(先端)が閉塞されている円筒状の外筒20と、該外筒20内に同心状に挿入されている内筒21と、該内筒21と外筒20との間に充填された改質触媒22とを備える反応管19を、図示してない容器内に複数本並列に配置して、各反応管19の触媒22中には改質原料ガス23を流し、各反応管19の外側には、加熱流体25を流すようにして、吸熱反応で改質原料ガス23を水素リッチな改質ガス24に水蒸気改質させるようにしてある。上記改質装置で用いられている各反応管19の一例が図5に示されるもので、上記外筒20は、上端(基端)26が開口され、下端(先端)27がキャップ28にて密閉されている。上記内筒21は、外筒20内に上方より挿入されて、下端(先端)29が開口させられたまま外筒20の下端部に位置していて、該内筒下端29と外筒下端27との間にプレート状の触媒サポート材30が取り付けてあり、該触媒サポート材30の上方となる外筒20と内筒21との間に改質触媒22を充填するようにしてある。   That is, the reformer using the reaction tube shown in FIG. 5 is inserted into the outer cylinder 20 concentrically with the cylindrical outer cylinder 20 extending in the vertical direction and closed at the lower end (tip). A plurality of reaction tubes 19 each having an inner cylinder 21 and a reforming catalyst 22 filled between the inner cylinder 21 and the outer cylinder 20 are arranged in parallel in a container not shown. A reforming raw material gas 23 is allowed to flow in the catalyst 22 of the reaction tube 19, and a heating fluid 25 is allowed to flow outside each reaction tube 19. 24 is steam reformed. An example of each reaction tube 19 used in the reformer is shown in FIG. 5. The outer cylinder 20 has an upper end (base end) 26 opened and a lower end (tip end) 27 at a cap 28. It is sealed. The inner cylinder 21 is inserted into the outer cylinder 20 from above, and is positioned at the lower end portion of the outer cylinder 20 with the lower end (tip) 29 opened. The inner cylinder lower end 29 and the outer cylinder lower end 27 A plate-like catalyst support material 30 is attached between the outer cylinder 20 and the inner cylinder 21 between the outer cylinder 20 and the inner cylinder 21 above the catalyst support material 30.

又、上記内筒21の上端31側は、外筒20の上端26位置よりも上方へ延長させて、図示しない他の各反応管19の内筒21の上端とともに改質ガスヘッダに接続するようにしてある。   Further, the upper end 31 side of the inner cylinder 21 is extended upward from the position of the upper end 26 of the outer cylinder 20 and is connected to the reformed gas header together with the upper ends of the inner cylinders 21 of the other reaction tubes 19 (not shown). It is.

更に、上記内筒21の下端側の内側には、該内筒21の内径よりも小さい外径のプラグ32を挿入して配置し、改質ガス24が内筒21内を通るときの通過断面積を高温部分で制御するようにしてある(たとえば、特許文献1参照)。   Furthermore, a plug 32 having an outer diameter smaller than the inner diameter of the inner cylinder 21 is inserted and arranged inside the lower end side of the inner cylinder 21 so that the passage of the reformed gas 24 when passing through the inner cylinder 21 is interrupted. The area is controlled at a high temperature part (see, for example, Patent Document 1).

上記図5に示す反応管19での改質原料ガス23の改質作用は、外筒20の上端26と内筒21との間を通り導入された改質原料ガス23と水蒸気を混合したものが触媒22中を下向きに流れる間に、反応管19の外側を矢印方向に流れる加熱流体25の熱を吸熱して改質反応が行われる。改質されたガス24は触媒サポート材30の細孔を通過して下方へ放出された後、反転して開口している内筒21の下端より内筒21の内側へ入り、上昇して排出される。この間に改質反応部の高温部における内筒21内のプラグ32により、内筒21を流通する改質ガス24の通過速度が変わり、内筒21内を流通する改質ガス24からの内筒21の外側を流通する改質原料ガス23への伝熱量を制御することができるようにしてある。   The reforming action of the reforming raw material gas 23 in the reaction tube 19 shown in FIG. 5 is a mixture of the reforming raw material gas 23 introduced through the space between the upper end 26 of the outer cylinder 20 and the inner cylinder 21 and steam. While flowing through the catalyst 22 downward, the reforming reaction is carried out by absorbing the heat of the heated fluid 25 flowing outside the reaction tube 19 in the direction of the arrow. The reformed gas 24 passes through the pores of the catalyst support material 30 and is discharged downward, and then enters the inner cylinder 21 from the lower end of the inner cylinder 21 that is reversed and opened, and then rises and discharges. Is done. During this time, the passage speed of the reformed gas 24 flowing through the inner cylinder 21 changes due to the plug 32 in the inner cylinder 21 in the high temperature portion of the reforming reaction section, and the inner cylinder from the reformed gas 24 flowing through the inner cylinder 21. The amount of heat transfer to the reforming raw material gas 23 that flows outside the control unit 21 can be controlled.

又、従来の改質装置として、改質ガスをリターンさせる形式のもので、図6に示す如く、改質管33の内側に触媒を充填して改質原料ガスと水蒸気を混合した反応ガス34を流すようにすると共に、改質管33の軸心部に改質ガス35をリターンパスさせる流路36を形成したものにおいて、改質管33の内側にルテニウム触媒37とニッケル触媒38を充填した触媒二層充填式改質装置も提案されている(たとえば、特許文献2参照)。   Further, as a conventional reforming apparatus, a reforming gas is returned, and as shown in FIG. 6, a reaction gas 34 in which a catalyst is filled inside the reforming pipe 33 and a reforming raw material gas and water vapor are mixed. The flow path 36 for returning the reformed gas 35 to the axial center of the reforming tube 33 is formed, and the inside of the reforming tube 33 is filled with a ruthenium catalyst 37 and a nickel catalyst 38. A catalyst two-layer packed reformer has also been proposed (see, for example, Patent Document 2).

特開平11−169702号公報JP-A-11-169702 特開平8−48501号公報Japanese Patent Laid-Open No. 8-48501

ところが、上記特許文献1に記載されているものは、改質装置の反応管19自体がほぼ全長に亘って改質反応部となっているものであり、図示しない頂部の改質ガスヘッダへ集められる改質ガス24は高温の状態である。又、反応管19の改質反応部の高温部における内筒21に挿入されているプラグ32は、内筒21を流通する改質ガス24の通過断面積を制御して改質原料ガス23への伝熱面積を変え、伝熱量を制御するものであるが、改質ガス温度の低いところに用いられるものではない。更に、上記特許文献1には、反応管19の上端部外側に伝熱促進粒子を設けたことも記載されているが、この伝熱促進粒子は、反応管19の外側を流通する加熱流体25による伝熱を促進させるもので、改質ガス24による改質原料ガス23への伝熱を促進させるものではない。   However, what is described in Patent Document 1 is that the reaction tube 19 of the reformer itself is a reforming reaction section over almost the entire length, and is collected in a reformed gas header at the top (not shown). The reformed gas 24 is in a high temperature state. Further, the plug 32 inserted in the inner cylinder 21 in the high temperature portion of the reforming reaction section of the reaction tube 19 controls the passage cross-sectional area of the reformed gas 24 flowing through the inner cylinder 21 to the reforming raw material gas 23. The heat transfer area is changed to control the amount of heat transfer, but it is not used in a place where the reformed gas temperature is low. Further, Patent Document 1 also describes that heat transfer promoting particles are provided outside the upper end portion of the reaction tube 19, and the heat transfer promoting particles are heated by the heating fluid 25 that circulates outside the reaction tube 19. However, it does not promote heat transfer from the reformed gas 24 to the reforming raw material gas 23.

又、特許文献2に記載されたものは、カーボン析出防止を目的に触媒を二層に積層したものであり、改質ガスの出口温度は400〜550℃とするようにしてある。   In addition, what is described in Patent Document 2 is one in which a catalyst is laminated in two layers for the purpose of preventing carbon deposition, and the outlet temperature of the reformed gas is set to 400 to 550 ° C.

固体高分子型燃料電池発電装置の改質装置として用いる場合、固体高分子型燃料電池発電装置では、図4に示すシステム構成例図から明らかなように、改質器の下流側には、低温シフトコンバータ(LTS)6が連接されている。この低温シフトコンバータ6の入口温度は250℃前後であり、高温で改質されて生成された改質ガス温度を、上記の250℃程度にまで降温させるには、改質ガスの顕熱回収が必要であるが、上記従来提案されているものでは、かかる温度まで顕熱回収で下げることについては開示されておらず、示唆もされていない。又、触媒の飛散防止や触媒の交換方法等についても、上記特許文献1や特許文献2には開示されていない。   When used as a reforming device of a polymer electrolyte fuel cell power generator, the polymer electrolyte fuel cell power generator has a low temperature downstream of the reformer, as is apparent from the system configuration example shown in FIG. A shift converter (LTS) 6 is connected. The inlet temperature of the low temperature shift converter 6 is around 250 ° C., and the sensible heat recovery of the reformed gas is required to lower the reformed gas temperature generated by reforming at a high temperature to about 250 ° C. Although it is necessary, in the conventional proposals described above, there is no disclosure or suggestion of reducing the temperature to such a temperature by sensible heat recovery. Further, neither Patent Document 1 nor Patent Document 2 discloses a catalyst scattering prevention, a catalyst replacement method, or the like.

そこで、本発明は、改質ガスの顕熱を有効に回収できるようにして改質原料ガスの温度上昇を図ると共に、改質ガスの出口温度を低くできるようにした改質管を有する燃料電池用改質装置を提供しようとするものである。   Accordingly, the present invention provides a fuel cell having a reforming tube that can effectively recover the sensible heat of the reformed gas to increase the temperature of the reforming raw material gas and lower the outlet temperature of the reformed gas. It is intended to provide a reforming apparatus for industrial use.

本発明は、上記課題を解決するために、長手方向に改質反応部と改質予熱部とを有し、該改質反応部は、上端を閉塞させて下端を開口させた上部外筒と、該上部外筒内へ下端開口を通して挿入した、細長くした小径のリターン管と該上部外筒の下端部との間に設けた触媒支持板上に充填された改質触媒と、からなるものとし、上記改質予熱部は、上記上部外筒よりも小径とし且つ上記リターン管よりも大径としてあって下端部に改質原料ガス入口を有する下部外筒を備えて、該下部外筒の上端を、上記改質反応部の上部外筒の下端開口部に外周部を固定した連結板の中央部開口に、固定すると共に、該下部外筒の下端部を上記リターン管の下端側の外周面に固定して、上記改質原料ガス入口から流入する改質原料ガスが上記下部外筒とリターン管との間を上昇するように改質原料ガス流路を形成してなるものとし、上記改質予熱部の改質原料ガス流路から改質反応部側へ改質原料ガスを流通させるようにすると共に、上記リターン管の内側を改質ガスを流通させるようにし、且つ上記改質予熱部側から改質反応部の一部まで達する長さの内挿物を、上記リターン管内に挿入配置して、該リターン管内を流通する高温の改質ガス顕熱を改質反応部で回収し、温度の下がった改質ガスの顕熱を更に改質予熱部の改質原料ガス流路を流通する改質原料ガスとの熱交換で回収できるようにしてある改質管を備えた構成を有するものとする。 In order to solve the above problems, the present invention has a reforming reaction section and a reforming preheating section in the longitudinal direction, and the reforming reaction section includes an upper outer cylinder whose upper end is closed and whose lower end is opened. And a reforming catalyst filled on a catalyst support plate provided between the elongated small diameter return pipe inserted into the upper outer cylinder through the lower end opening and the lower end of the upper outer cylinder. The reforming preheating section includes a lower outer cylinder having a smaller diameter than the upper outer cylinder and a larger diameter than the return pipe and having a reforming raw material gas inlet at a lower end, and an upper end of the lower outer cylinder. Is fixed to the central opening of the connecting plate whose outer periphery is fixed to the lower end opening of the upper outer cylinder of the reforming reaction section, and the lower end of the lower outer cylinder is fixed to the outer peripheral surface on the lower end side of the return pipe. is fixed to, the reformed raw material gas reforming raw material gas flowing from the inlet the lower outer cylinder and litter It shall be formed by forming a reforming raw material gas flow path so as to increase the space between the tubes, so as to circulate the reformed raw material gas from the reformed raw material gas flow path of the reforming preheater to the reforming reaction portion In addition, the reformed gas is allowed to flow inside the return pipe, and an insert having a length reaching from the reforming preheating part side to a part of the reforming reaction part is inserted into the return pipe. Then, the sensible heat of the high-temperature reformed gas flowing through the return pipe is recovered in the reforming reaction section, and the sensible heat of the reformed gas that has fallen in temperature is further passed through the reforming raw material gas flow path of the reforming preheating section. It shall have the structure provided with the reforming pipe | tube which can be collect | recovered by heat exchange with the reforming source gas which distribute | circulates .

又、上記構成における改質反応部、上部外筒の上端を上蓋で開閉できるように密閉できるようにした構成とする。 Further, a configuration in which as the reforming reaction unit that put the above configuration, the upper end of the upper outer cylinder sealable to allow opening and closing in the upper cover.

更に、リターン管の改質ガスが入る入口部にガスのみを通す細孔を有する触媒落下防止板を取り付けた構成とする。 Further, a catalyst fall prevention plate having pores through which only the gas passes is attached to the inlet portion of the return pipe where the reformed gas enters.

本発明の燃料電池用改質装置によれば、次の如き優れた効果を奏し得る。
(1)長手方向に改質反応部と改質予熱部とを有し、該改質反応部は、上端を閉塞させて下端を開口させた上部外筒と、該上部外筒内へ下端開口を通して挿入した、細長くした小径のリターン管と該上部外筒の下端部との間に設けた触媒支持板上に充填された改質触媒と、からなるものとし、上記改質予熱部は、上記上部外筒よりも小径とし且つ上記リターン管よりも大径としてあって下端部に改質原料ガス入口を有する下部外筒を備えて、該下部外筒の上端を、上記改質反応部の上部外筒の下端開口部に外周部を固定した連結板の中央部開口に、固定すると共に、該下部外筒の下端部を上記リターン管の下端側の外周面に固定して、上記改質原料ガス入口から流入する改質原料ガスが上記下部外筒とリターン管との間を上昇するように改質原料ガス流路を形成してなるものとし、上記改質予熱部の改質原料ガス流路から改質反応部側へ改質原料ガスを流通させるようにすると共に、上記リターン管の内側を改質ガスを流通させるようにし、且つ上記改質予熱部側から改質反応部の一部まで達する長さの内挿物を、上記リターン管内に挿入配置して、該リターン管内を流通する高温の改質ガス顕熱を改質反応部で回収し、温度の下がった改質ガスの顕熱を更に改質予熱部の改質原料ガス流路を流通する改質原料ガスとの熱交換で回収できるようにしてある改質管を備えた構成を有するものとしてあるので、改質原料ガスを改質予熱部で予熱して改質反応部に導入でき、その上改質反応部のリターン管内を流れる高温の改質ガスの顕熱を回収することにより吸熱の改質反応熱の一部を補い、改質反応促進に寄与できる。これに伴い高温の改質ガスを、たとえば、700℃前後の高温から改質反応部の出口部で550℃前後の中温まで顕熱回収で確実に下げることができる。更に、改質反応器は伝熱律速であるため、改質反応部へ、上部外筒により外側から、又、リターン筒により内側から伝熱されることにより、伝熱面積に裕度ができ、改質管をコンパクトにまとめることができる。
(2)更に、上記(1)のように、改質予熱部、下端部に改質原料ガス入口を有する下部外筒を備えて、該下部外筒の上端を、改質反応部の上部外筒の下端開口部に外周部を固定した連結板の中央部開口に、固定すると共に、該下部外筒の下端部を上記リターン管の下端側の外周面に固定して、上記改質原料ガス入口から流入する改質原料ガスが上記下部外筒とリターン管との間を上昇するように改質原料ガス流路を形成してなるものとしてあり、改質予熱部の改質原料ガス流路から改質反応部側へ改質原料ガスを流通させるようにすると共に、上記リターン管の内側を改質ガスを流通させるようにして、リターン管内を下降する改質ガスの顕熱を改質原料ガスとの熱交換で回収できるようにした構成としてあるので、上記550℃前後の中温の改質ガスを改質原料ガスとの熱交換で250℃前後までに下げることができて、低温シフトコンバータの最適入口温度にすることができる。
(3)改質反応部、上部外筒の上端を上蓋で開閉できるように密閉できるようにした構成とすることにより、改質触媒の交換を容易に且つ短時間で行うことが可能となる。
(4)リターン管に改質ガスが入る入口部にガスのみを流す細孔を有する触媒落下防止板を取り付けた構成とすることにより、改質反応部で改質ガスにより吹き上げて飛散される改質触媒の一部がリターン管内に入ることを防止でき、改質触媒の流出防止が図れる。
According to the fuel cell reforming apparatus of the present invention, the following excellent effects can be obtained.
(1) A reforming reaction section and a reforming preheating section in the longitudinal direction, the reforming reaction section having an upper outer cylinder whose upper end is closed and whose lower end is opened, and a lower end opening into the upper outer cylinder And a reforming catalyst filled on a catalyst support plate provided between an elongated return pipe having an elongated diameter and a lower end portion of the upper outer cylinder. A lower outer cylinder having a diameter smaller than that of the upper outer cylinder and larger than that of the return pipe and having a reforming raw material gas inlet at a lower end thereof, the upper end of the lower outer cylinder being connected to the upper portion of the reforming reaction section The reforming raw material is fixed to the central opening of the connecting plate having an outer peripheral portion fixed to the lower end opening of the outer cylinder, and the lower end of the lower outer cylinder is fixed to the outer peripheral surface on the lower end side of the return pipe. reforming as reforming raw material gas flowing from the gas inlet increases between the lower outer cylinder and the return pipe Material gas flow path is formed and made to, as well as to circulating the reforming raw material gas from the reformed raw material gas flow path of the reforming preheater to the reforming reaction portion, reforming the inside of the return pipe A high-temperature gas that circulates in the return pipe is inserted and arranged in the return pipe so that the quality gas is circulated and the length of the insert that reaches from the reforming preheating part side to a part of the reforming reaction part is inserted. The sensible heat of the reformed gas is recovered in the reforming reaction section, and the sensible heat of the reformed gas that has fallen in temperature is further exchanged with the reformed source gas flowing in the reformed source gas flow path of the reforming preheating section. Since it has a configuration with a reforming pipe that can be recovered, the reforming raw material gas can be preheated in the reforming preheating section and introduced into the reforming reaction section, and in addition, in the return pipe of the reforming reaction section Of endothermic reforming reaction heat by recovering sensible heat of hot reformed gas flowing through Supplement, can contribute to the reforming reaction promotion. Along with this, the high temperature reformed gas can be reliably reduced by sensible heat recovery, for example, from a high temperature of around 700 ° C. to an intermediate temperature of around 550 ° C. at the outlet of the reforming reaction section. Furthermore, since the reforming reactor is heat transfer rate limiting, heat is transferred to the reforming reaction section from the outside by the upper outer cylinder and from the inner side by the return cylinder, so that the heat transfer area can be marginalized and improved. Pellets can be gathered compactly.
(2) In addition, as in the above (1), modifying the preheating section is provided with a lower outer cylinder having the reformed raw material gas inlet to the lower end, the upper end of the lower outer cylinder, the upper portion of the reforming reaction unit The reforming raw material is fixed to the central opening of the connecting plate having an outer peripheral portion fixed to the lower end opening of the outer cylinder, and the lower end of the lower outer cylinder is fixed to the outer peripheral surface on the lower end side of the return pipe. The reforming material gas flow path is formed so that the reforming material gas flowing in from the gas inlet rises between the lower outer cylinder and the return pipe, and the reforming material gas flow in the reforming preheating section is formed. The reforming raw material gas is circulated from the passage to the reforming reaction section, and the reformed gas is circulated inside the return pipe to reform the sensible heat of the reformed gas descending the return pipe. because are a structure in which to be recovered by heat exchange with the feed gas, the 550 ° C. of about And can be lowered to a temperature of the reformed gas to around 250 ° C. in heat exchange with the reformed raw material gas can be optimized inlet temperature of the low-temperature shift converter.
(3) The reforming reaction section is configured so that the upper end of the upper outer cylinder can be sealed with an upper lid so that the reforming catalyst can be replaced easily and in a short time. .
(4) By adopting a structure in which a catalyst fall prevention plate having pores for allowing only gas to flow into the return pipe into which the reformed gas enters is installed, the reformed gas blown up by the reformed gas and scattered in the reforming reaction section. A part of the quality catalyst can be prevented from entering the return pipe, and the outflow of the reforming catalyst can be prevented.

以下、本発明を実施するための最良の形態を図面を参照して説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は本発明の実施の一形態の概要を示すもので、改質反応部40と改質予熱部41とを有する改質管39とし、該改質管39を図示しない容器内に並べて配置し、各改質管39の下端より改質原料ガス42を水蒸気とともに改質予熱部41、改質反応部40の順に流すようにし、一方、各改質管39の外側には加熱流体44が流されて、該加熱流体44の熱を吸熱して改質管39内で改質原料ガス42が水蒸気改質されるようにする。   FIG. 1 shows an outline of an embodiment of the present invention. A reforming pipe 39 having a reforming reaction section 40 and a reforming preheating section 41 is provided, and the reforming pipes 39 are arranged in a container (not shown). Then, the reforming raw material gas 42 is allowed to flow along with steam from the lower ends of the reforming tubes 39 in the order of the reforming preheating unit 41 and the reforming reaction unit 40, while the heating fluid 44 is outside the reforming tubes 39. The reformed raw material gas 42 is steam reformed in the reforming tube 39 by absorbing the heat of the heating fluid 44.

詳述すると、所要の径及び長さ(高さ)としてある上部外筒45の上端を上蓋46で閉塞させて、下端のみ開口させ、該上部外筒45の下端開口を通して軸心部に、細長くした小径の内筒としてのリターン管47を同心状に挿入配置する。上記上部外筒45の下端開口部には、中央部に開口49を有する皿状連結板48の外周部上端縁を当接させて、周方向に溶接等にて固定し、該皿状連結板48の内周縁部に、上部外筒45よりも小径で且つ上記リターン管47よりも大径としてあって下端部に改質原料ガス入口51を形成した下部外筒50の上端を当接させて、周方向に溶接等にて固定し、上記上部外筒45と下部外筒50とを皿状連結板48を介して一体構造とする。   More specifically, the upper end of the upper outer cylinder 45 having a required diameter and length (height) is closed with the upper lid 46, only the lower end is opened, and the shaft center portion is elongated through the lower end opening of the upper outer cylinder 45. The return pipe 47 as an inner cylinder having a small diameter is inserted and arranged concentrically. An upper end edge of the outer periphery of the dish-like connecting plate 48 having an opening 49 at the center is brought into contact with the lower end opening of the upper outer cylinder 45 and fixed in the circumferential direction by welding or the like. The upper end of the lower outer cylinder 50 having a smaller diameter than the upper outer cylinder 45 and a larger diameter than the return pipe 47 and having the reforming raw material gas inlet 51 formed at the lower end is brought into contact with the inner peripheral edge of 48. The upper outer cylinder 45 and the lower outer cylinder 50 are integrated with each other through a dish-like connecting plate 48 by being fixed in the circumferential direction by welding or the like.

又、上記下部外筒50の下端部を、上記リターン管47の下端側の外周面に密閉状態に固定して、改質原料ガス入口51から流入する改質原料ガス42がすべて下部外筒50とリターン管47との間を上昇するように改質原料ガス流路52を設け、該改質原料ガス流路52の形成部を、上記改質予熱部41とするようにする。   In addition, the lower end portion of the lower outer cylinder 50 is fixed to the outer peripheral surface on the lower end side of the return pipe 47 in a sealed state, and all the reforming raw material gas 42 flowing from the reforming raw material gas inlet 51 is completely removed. The reforming source gas channel 52 is provided so as to rise between the return pipe 47 and the reforming source gas channel 52 is formed as the reforming preheating unit 41.

上記改質原料ガス流路52の上方位置、すなわち、上記皿状連結板48の位置には、多数の細孔を有してガスは通過させるが触媒は通さないようにしてあるパンチ板、焼結金属、セラミックファイバー等からなる触媒支持板53を、リターン管47の外側面と皿状連結板48又は上部外筒45の内側面(図1では皿状連結板48の場合を示す)との間に全周に亘り設け、上部外筒45とリターン管47との間に改質触媒54を充填し、上記触媒支持板53の上方を触媒層とするようにして、該上部外筒45内に改質触媒54が充填された部分を、上記改質反応部40とするようにする。   At a position above the reforming raw material gas flow path 52, that is, at the position of the dish-like connecting plate 48, a punch plate, a firing plate having a large number of pores that allow gas to pass but not catalyst. The catalyst support plate 53 made of a metal, ceramic fiber, etc. is connected to the outer surface of the return pipe 47 and the inner surface of the dish-like connecting plate 48 or the upper outer cylinder 45 (FIG. 1 shows the case of the dish-like connecting plate 48). The reforming catalyst 54 is filled between the upper outer cylinder 45 and the return pipe 47, and the upper part of the catalyst support plate 53 is used as a catalyst layer so that the inside of the upper outer cylinder 45 is provided. The part filled with the reforming catalyst 54 is used as the reforming reaction part 40.

又、上記改質反応部40におけるリターン管47の上端には、上記触媒支持板53と同様に多数の細孔を有してガスのみを通すようにしてある触媒落下防止板55を取り付け、改質原料ガス42が触媒54中を上昇して改質された後、触媒層を出て反転してリターン管47に入るとき、吹き上げられて飛散される触媒54がリターン管47に落下するのを防止するようにしてある。   In addition, a catalyst fall prevention plate 55 having a large number of pores and allowing only gas to pass therethrough is attached to the upper end of the return pipe 47 in the reforming reaction section 40 and modified. After the raw material gas 42 rises in the catalyst 54 and is reformed, it exits the catalyst layer, reverses and enters the return pipe 47, and the blown up and scattered catalyst 54 falls into the return pipe 47. I try to prevent it.

更に、上記リターン管47内の上記改質予熱部41の全域と改質反応部40の改質予熱部41側領域に、伝熱促進用の内挿物56を挿入配置する。この際、この内挿物56をリターン管47の全長に亘るように挿入しないのは大きな熱流束が必要な領域のみにとどめた方が改質ガスの圧損を小さく抑えることができ好ましいからである。   Further, heat transfer promoting inserts 56 are inserted and arranged in the entire region of the reforming preheating unit 41 in the return pipe 47 and the reforming preheating unit 41 side region of the reforming reaction unit 40. At this time, the reason why the insert 56 is not inserted so as to extend over the entire length of the return pipe 47 is that it is preferable to limit the insert 56 only to a region where a large heat flux is required because the pressure loss of the reformed gas can be suppressed. .

なお、上部外筒45の上端に取り付けてある上蓋46は、溶接部を切除することで開閉できるようにしてあるが、取付け時は上部外筒45を密閉するようにする。   The upper lid 46 attached to the upper end of the upper outer cylinder 45 can be opened and closed by excising the welded portion, but the upper outer cylinder 45 is sealed when attached.

本発明の改質装置における改質管39は、上記構成としてあるので、改質原料ガス42の改質を行うときは、改質予熱部41における下部外筒50下端部の改質原料ガス入口51より水蒸気と一緒になっている改質原料ガス42を流入させる。流入させられた改質原料ガス42は、改質原料ガス流路52に沿い上昇し、改質反応部40を構成する上部外筒45内に導入される。該上部外筒45の下端部には、触媒支持板53が設けてあって、その上側に改質触媒54が充填されているので、改質原料ガス42は、触媒支持板53の細孔を通って改質触媒54の層中に入り、触媒間を通りながら矢印の如く上昇させられる。
上記改質触媒54は、粒径が約3mm程度のボール状となっているものであり、改質原料ガス42は触媒54に接触しながら流通させられる。
Since the reforming pipe 39 in the reforming apparatus of the present invention has the above-described configuration, when reforming the reforming material gas 42, the reforming material gas inlet at the lower end of the lower outer cylinder 50 in the reforming preheating unit 41 is performed. A reforming raw material gas 42 which is mixed with water vapor is introduced from 51. The reformed raw material gas 42 that has flowed in rises along the reformed raw material gas flow path 52 and is introduced into the upper outer cylinder 45 that constitutes the reforming reaction section 40. Since the catalyst support plate 53 is provided at the lower end of the upper outer cylinder 45 and the reforming catalyst 54 is filled on the upper side thereof, the reforming raw material gas 42 passes through the pores of the catalyst support plate 53. It passes through the layer of reforming catalyst 54 and is raised as shown by the arrow while passing between the catalysts.
The reforming catalyst 54 has a ball shape with a particle size of about 3 mm, and the reforming raw material gas 42 is circulated while being in contact with the catalyst 54.

上記改質反応部40の上部外筒45の外側には、加熱流体44が流れているので、改質反応部40を通過中の改質原料ガス42は、外部の加熱流体44の熱により改質反応部40で吸熱反応が行われることによって水素リッチな改質ガス43に改質される。   Since the heating fluid 44 flows outside the upper outer cylinder 45 of the reforming reaction section 40, the reforming raw material gas 42 passing through the reforming reaction section 40 is modified by the heat of the external heating fluid 44. An endothermic reaction is performed in the quality reaction unit 40 to reform the hydrogen-rich reformed gas 43.

上記改質予熱部41及び改質反応部40を通る間に改質原料ガス42の温度は、図2に破線で示す如く変化する。すなわち、改質原料ガス入口51で250℃前後から改質予熱部41で500℃前後まで昇温し、改質反応部40の改質触媒54中に入ってから少し温度が下がるが、改質反応部40の外側の加熱流体44の熱を吸熱して改質反応することにより700℃前後の高温に達する。これにより改質原料ガス42は改質されて水素リッチな改質ガス43が生成される。このように生成された700℃前後の改質ガス43は、燃料電池に供給する前に低温シフトコンバータ6(図4参照)に送るため、該低温シフトコンバータ6の入口温度である250℃前後にしなければならない。   While passing through the reforming preheating section 41 and the reforming reaction section 40, the temperature of the reforming raw material gas 42 changes as shown by a broken line in FIG. That is, the temperature is raised from around 250 ° C. at the reforming raw material gas inlet 51 to around 500 ° C. at the reforming preheating unit 41, and the temperature drops slightly after entering the reforming catalyst 54 of the reforming reaction unit 40. A high temperature of about 700 ° C. is reached by absorbing the heat of the heating fluid 44 outside the reaction section 40 and performing a reforming reaction. As a result, the reforming raw material gas 42 is reformed and a hydrogen-rich reformed gas 43 is generated. The reformed gas 43 of about 700 ° C. generated in this way is sent to the low temperature shift converter 6 (see FIG. 4) before being supplied to the fuel cell, so that the inlet temperature of the low temperature shift converter 6 is set to about 250 ° C. There must be.

本発明では、改質反応部40及び改質予熱部41の内側に内筒としてのリターン管47が挿入してあるので、改質反応部40で改質された改質ガス43は、触媒54の層から上方へ抜け出た後、反転し、触媒落下防止板55の細い孔を通りリターン管47へ入り、リターンパスされる。この間に、高温の改質ガス43は、改質反応部40の吸熱により顕熱が回収されて550℃前後まで温度降下させられる。続いて、550℃前後となった中温の改質ガス43の顕熱は、改質予熱部41にて改質原料ガス42との熱交換により回収される。このように、改質ガス43は改質管39の改質反応部40と改質予熱部41の中央部に設けたリターン管47を通過する間に高温の顕熱が回収されることにより、出口部では250℃前後とすることが可能となる。   In the present invention, since the return pipe 47 as an inner cylinder is inserted inside the reforming reaction section 40 and the reforming preheating section 41, the reformed gas 43 reformed in the reforming reaction section 40 is converted into the catalyst 54. Then, it is reversed and passes through the narrow hole of the catalyst fall prevention plate 55 and enters the return pipe 47 to be returned. During this time, the sensible heat of the high temperature reformed gas 43 is recovered by the endothermic reaction of the reforming reaction section 40 and the temperature is lowered to around 550 ° C. Subsequently, the sensible heat of the medium-temperature reformed gas 43 that has reached around 550 ° C. is recovered by heat exchange with the reforming raw material gas 42 in the reforming preheating unit 41. In this way, the reformed gas 43 is recovered by collecting high-temperature sensible heat while passing through the reforming reaction section 40 of the reforming pipe 39 and the return pipe 47 provided at the center of the reforming preheating section 41. It becomes possible to set it as about 250 degreeC in an exit part.

本発明においては、リターン管47内の改質予熱部41の全域と改質反応部40の一部の領域に、伝熱促進用の内挿物56を挿入配置しているので、該内挿物56が配置されている領域では、改質ガス流路断面が絞られることから改質ガス43の流速が上がり、改質ガス43から改質原料ガス42への伝熱が促進される。これにより、改質原料ガス42の改質予熱部41での温度上昇が、改質ガス43が550℃前後から250℃前後までの顕熱回収に合わせて行われ、更に、改質反応部40に入っても、改質ガス43が700℃前後から550℃前後まで顕熱回収されることに合わせ且つ内挿物56による伝熱促進により、改質原料ガス42の温度は、滑らかな曲線で上昇させられ、図2に実線で示す改質ガス43の温度曲線に沿うようにすることが可能となる。   In the present invention, the heat transfer promoting inserts 56 are inserted and arranged in the entire region of the reforming preheating unit 41 and a partial region of the reforming reaction unit 40 in the return pipe 47. In the region where the product 56 is disposed, the reformed gas flow path section is narrowed, so that the flow rate of the reformed gas 43 is increased, and heat transfer from the reformed gas 43 to the reformed raw material gas 42 is promoted. As a result, the temperature of the reforming raw material gas 42 in the reforming preheating unit 41 is increased in accordance with the sensible heat recovery of the reforming gas 43 from about 550 ° C. to about 250 ° C. However, the temperature of the reforming raw material gas 42 is a smooth curve due to the sensible heat recovery of the reformed gas 43 from about 700 ° C. to about 550 ° C. and by the heat transfer enhancement by the insert 56. The temperature of the reformed gas 43 can be adjusted so as to follow the temperature curve of the reformed gas 43 shown by the solid line in FIG.

上記において、内挿物56による伝熱促進をより高めるために、内挿物56の表面に、図1に示す如く細線やフィン57等を螺旋状に巻きつけて、改質ガス43が旋回しながら流れるようにしたり、内挿物56の表面に凹凸を設けたり、表面を粗面にする等の工夫を施すことにより、改質ガス43の顕熱回収を効率よく行うようにすることができる。   In the above, in order to further enhance heat transfer by the insert 56, the reformed gas 43 swirls around the surface of the insert 56 by winding thin wires, fins 57, etc. spirally as shown in FIG. However, the sensible heat recovery of the reformed gas 43 can be efficiently performed by making it flow, by providing irregularities on the surface of the insert 56, or by making the surface rough. .

又、上記改質反応部40で改質された改質ガス43が反転してリターン管47に入るとき、吹き上げられて飛散する改質触媒54が、万一、リターン管47内に落下すると、改質ガス43の流れの障害になるおそれがあると共に、落下位置周辺の改質逆反応が起こり、改質率が低下するおそれがある。   Further, when the reformed gas 43 reformed in the reforming reaction section 40 is reversed and enters the return pipe 47, if the reforming catalyst 54 blown up and scattered falls into the return pipe 47, There is a possibility that the flow of the reformed gas 43 may become an obstacle, and a reforming reverse reaction around the dropping position may occur, which may reduce the reforming rate.

この点、本発明では、リターン管47の上端に、触媒落下防止板55が装着されているので、改質ガス43で吹き上げられた改質触媒54がリターン管47の上方へ落下しても、触媒落下防止板55上で受けて、リターン管47内へ落下することを防止できる。これにより上記のようなおそれは未然に防止することができる。   In this regard, in the present invention, since the catalyst fall prevention plate 55 is attached to the upper end of the return pipe 47, even if the reforming catalyst 54 blown up by the reformed gas 43 falls above the return pipe 47, It can be received on the catalyst fall prevention plate 55 and prevented from falling into the return pipe 47. Thereby, the above-mentioned fear can be prevented beforehand.

更に、上記改質触媒54は、長時間に亘る改質反応により劣化することがあり、又、水蒸気改質において運転不具合により水蒸気の混合がなく改質原料ガス42だけが改質反応部40に入ると、カーボンの析出で改質触媒54が壊れて粉体となり、改質触媒の粉体の目詰まりを引き起こすようになるおそれがある。   Further, the reforming catalyst 54 may be deteriorated by a reforming reaction over a long period of time, and there is no mixing of steam due to an operation failure in steam reforming, and only the reforming raw material gas 42 enters the reforming reaction unit 40. If it enters, the reforming catalyst 54 may be broken and formed into powder due to carbon deposition, which may cause clogging of the reforming catalyst powder.

このような場合は、改質触媒54を交換しなければならない。従来用いられている改質器の場合には、改質触媒54の交換は容易ではなく、各機器を損傷させることなく慎重に解体して改質触媒54の交換を行うようにしていた。そのため、長時間を要していた。   In such a case, the reforming catalyst 54 must be replaced. In the case of a conventionally used reformer, the replacement of the reforming catalyst 54 is not easy, and the reforming catalyst 54 is replaced by carefully dismantling without damaging each device. Therefore, it took a long time.

本発明においては、改質反応部40の上端、すなわち、上部外筒45の上端に密閉状態に取り付けてある上蓋46を開けて、改質反応部40を上方へ開放することができるようにした構成としてあるので、改質触媒54の交換の必要が生じたときは、図3に示す如く上蓋46を取り外す。次いで、掃除機のような吸引装置の吸出し管58を上部外筒45とリターン管47との間に挿入し、改質触媒54を吹い出すようにする。改質触媒54は前記したように粒径が3mm程度のボール状のものであるため、容易に吸い出すことができる。   In the present invention, the upper end of the reforming reaction unit 40, that is, the upper end of the upper outer cylinder 45 is opened in a sealed state so that the reforming reaction unit 40 can be opened upward. Since it is configured, when it is necessary to replace the reforming catalyst 54, the upper lid 46 is removed as shown in FIG. Next, a suction pipe 58 of a suction device such as a vacuum cleaner is inserted between the upper outer cylinder 45 and the return pipe 47 so that the reforming catalyst 54 is blown out. As described above, the reforming catalyst 54 is in the shape of a ball having a particle size of about 3 mm and can be sucked out easily.

このようにして、すべての古い改質触媒54を吸い出し終ると、新しい改質触媒54を、上部外筒45とリターン管47との間に上方より注入して充填させるようにする。これにより従来大変な作業であった改質触媒の交換を容易に且つ短時間に行うことができる。   When all the old reforming catalyst 54 is sucked out in this way, a new reforming catalyst 54 is injected between the upper outer cylinder 45 and the return pipe 47 from above and filled. As a result, it is possible to easily and quickly replace the reforming catalyst, which has been a difficult task in the past.

新しい改質触媒54の充填が終ると、上部外筒45の上端に上蓋46を被せ、溶接等で密閉させるようにする。   After the filling of the new reforming catalyst 54 is completed, the upper lid 46 is put on the upper end of the upper outer cylinder 45 and sealed by welding or the like.

なお、本発明は、上記実施の形態のみに限定されるものではなく、たとえば、リターン管47に挿入する内挿物56の改質反応部40への挿入長さは、改質原料ガス42の温度が下がるところの伝熱促進が図れればよく、図示した位置に限定されるものではない。その他本発明の要旨を逸脱しない範囲内で種々変更を加え得ることは勿論である。   The present invention is not limited to the above embodiment. For example, the insertion length of the insert 56 inserted into the return pipe 47 into the reforming reaction unit 40 is the length of the reforming raw material gas 42. It is only necessary to promote heat transfer when the temperature decreases, and the present invention is not limited to the illustrated position. Of course, various modifications can be made without departing from the scope of the present invention.

本発明の改質装置における改質管の実施の一形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the reforming pipe | tube in the reforming apparatus of this invention. 本発明における改質予熱部と改質反応部の改質原料ガスと改質ガスの温度状況を示す図である。It is a figure which shows the temperature condition of the reforming raw material gas and reformed gas of the reforming preheating part and reforming reaction part in this invention. 改質触媒交換時における古い改質触媒を取り出している状態を示す図である。It is a figure which shows the state which has taken out the old reforming catalyst at the time of reforming catalyst replacement | exchange. 固体高分子型燃料電池発電装置のシステム構成図である。1 is a system configuration diagram of a solid polymer fuel cell power generator. FIG. 従来の改質装置の反応管の一例を示す断面図である。It is sectional drawing which shows an example of the reaction tube of the conventional reformer. 従来の改質装置の改質管の断面図である。It is sectional drawing of the reforming pipe | tube of the conventional reforming apparatus.

符号の説明Explanation of symbols

1 燃料電池
39 改質管
40 改質反応部
41 改質予熱部
42 改質原料ガス
43 改質ガス
44 加熱流体
45 上部外筒
46 上蓋
47 リターン管
48 皿状連結板(連結板)
49 開口
50 下部外筒
51 改質原料ガス入口
52 改質原料ガス流路
53 触媒支持板
54 改質触媒
55 触媒落下防止板(板)
56 内挿物
DESCRIPTION OF SYMBOLS 1 Fuel cell 39 Reforming pipe 40 Reforming reaction part 41 Reforming preheating part 42 Reforming raw material gas 43 Reforming gas 44 Heating fluid 45 Upper outer cylinder 46 Top cover 47 Return pipe
48 Plate-shaped connecting plate (connecting plate)
49 Opening 50 Lower outer cylinder 51 Reforming raw material gas inlet 52 Reforming raw material gas flow path 53 Catalyst support plate 54 Reforming catalyst 55 Catalyst fall prevention plate (plate)
56 Interpolation

Claims (3)

長手方向に改質反応部と改質予熱部とを有し、該改質反応部は、上端を閉塞させて下端を開口させた上部外筒と、該上部外筒内へ下端開口を通して挿入した、細長くした小径のリターン管と該上部外筒の下端部との間に設けた触媒支持板上に充填された改質触媒と、からなるものとし、上記改質予熱部は、上記上部外筒よりも小径とし且つ上記リターン管よりも大径としてあって下端部に改質原料ガス入口を有する下部外筒を備えて、該下部外筒の上端を、上記改質反応部の上部外筒の下端開口部に外周部を固定した連結板の中央部開口に、固定すると共に、該下部外筒の下端部を上記リターン管の下端側の外周面に固定して、上記改質原料ガス入口から流入する改質原料ガスが上記下部外筒とリターン管との間を上昇するように改質原料ガス流路を形成してなるものとし、上記改質予熱部の改質原料ガス流路から改質反応部側へ改質原料ガスを流通させるようにすると共に、上記リターン管の内側を改質ガスを流通させるようにし、且つ上記改質予熱部側から改質反応部の一部まで達する長さの内挿物を、上記リターン管内に挿入配置して、該リターン管内を流通する高温の改質ガス顕熱を改質反応部で回収し、温度の下がった改質ガスの顕熱を更に改質予熱部の改質原料ガス流路を流通する改質原料ガスとの熱交換で回収できるようにしてある改質管を備えた構成を有することを特徴とする燃料電池用改質装置。 A reforming reaction part and a reforming preheating part are provided in the longitudinal direction, and the reforming reaction part is inserted into the upper outer cylinder through the lower end opening, with the upper end closed and the lower end opened. A reforming catalyst filled on a catalyst support plate provided between an elongated small-diameter return pipe and a lower end portion of the upper outer cylinder, and the reforming preheating portion is formed by the upper outer cylinder. A lower outer cylinder having a smaller diameter and a larger diameter than the return pipe and having a reforming raw material gas inlet at the lower end, and the upper end of the lower outer cylinder is connected to the upper outer cylinder of the reforming reaction section. The lower end of the lower outer cylinder is fixed to the outer peripheral surface on the lower end side of the return pipe, and is fixed to the central opening of the connecting plate having the outer periphery fixed to the lower end opening. reforming material gas as reforming raw material gas flowing to rise between the lower outer cylinder and the return pipe Shall by forming a flow path, as well as to circulating the reforming raw material gas from the reformed raw material gas flow path of the reforming preheater to the reforming reaction portion, the reformed gas to the inside of the return pipe And insert an insert having a length reaching from the reforming preheating part side to a part of the reforming reaction part into the return pipe, and the high temperature reforming that circulates in the return pipe. the sensible heat of the gas is recovered in the reforming reaction unit can be recovered by heat exchange with the reforming raw material gas flowing in the reformed raw material gas flow path of further reforming preheater sensible heat of the lowered reformed gas temperature A reformer for a fuel cell, characterized in that it has a configuration including a certain reforming tube. 改質反応部上部外筒の上端を上蓋で開閉できるように密閉できるようにした請求項1記載の燃料電池用改質装置。 Reformer reformer of claim 1 Symbol placement was to be sealed to the upper end of the upper outer cylinder can be opened and closed by the upper cover of. リターン管の改質ガスが入る入口部にガスのみを通す細孔を有する触媒落下防止板を取り付けた請求項1又は2記載の燃料電池用改質装置。 The reformer for a fuel cell according to claim 1 or 2 , wherein a catalyst fall prevention plate having a pore through which only the gas passes is attached to an inlet portion of the return pipe into which the reformed gas enters.
JP2006086134A 2006-03-27 2006-03-27 Fuel cell reformer Expired - Fee Related JP4904880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006086134A JP4904880B2 (en) 2006-03-27 2006-03-27 Fuel cell reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006086134A JP4904880B2 (en) 2006-03-27 2006-03-27 Fuel cell reformer

Publications (2)

Publication Number Publication Date
JP2007261829A JP2007261829A (en) 2007-10-11
JP4904880B2 true JP4904880B2 (en) 2012-03-28

Family

ID=38635193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006086134A Expired - Fee Related JP4904880B2 (en) 2006-03-27 2006-03-27 Fuel cell reformer

Country Status (1)

Country Link
JP (1) JP4904880B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102075154B1 (en) * 2018-06-29 2020-02-10 제이엔케이히터(주) Reformer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102804A (en) * 1982-12-01 1984-06-14 Mitsubishi Heavy Ind Ltd Device for modifying fuel
JPS6071035A (en) * 1983-09-29 1985-04-22 Toshiba Corp Reforming device
JPH01151835A (en) * 1988-06-27 1989-06-14 Toshiba Corp Paging system
JPH0848501A (en) * 1994-08-05 1996-02-20 Toshiba Corp Reforming device
JPH10328555A (en) * 1997-05-29 1998-12-15 Babcock Hitachi Kk Double tube type reactor and degraded catalyst exchanging method
JPH11169702A (en) * 1997-12-10 1999-06-29 Babcock Hitachi Kk Heat exchanger type modification apparatus

Also Published As

Publication number Publication date
JP2007261829A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
US8500875B2 (en) Desulfurizer
JP2009078954A (en) Reforming apparatus
CN106104882A (en) Fuel cell system
JP5154272B2 (en) Fuel cell reformer
JP2007128716A (en) Fuel cell
CN110114923B (en) Fuel processing device
JP2003282114A (en) Stopping method of fuel cell power generating device
JP4862449B2 (en) Desulfurizer
JP4904880B2 (en) Fuel cell reformer
JP2009070730A (en) Fuel cell module
JP2004071242A (en) Reformed steam generator of fuel cell power generator
JP2010024075A (en) Combustion device and fuel reforming apparatus
CN114751374B (en) Methanol steam reforming hydrogen production reactor, method and manufacturing method thereof
JP2010024402A (en) Fuel cell power generation system and desulfurizer used therefor
JP4904867B2 (en) Fuel processor
TW201145663A (en) Reforming unit and fuel cell system
JP4696495B2 (en) Fuel cell power generator
JP2018104232A (en) Hydrogen production apparatus
KR101929801B1 (en) Fuel cell module
JP4413040B2 (en) Shift reactor
JP4431455B2 (en) Reformer
JP2004262691A (en) Reformer for fuel
JP2010159193A (en) Hydrogen producing device and hydrogen producing method
CN114628749B (en) Reactor utilizing waste heat of reformed gas tail gas and application
JP5948605B2 (en) Hydrogen generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4904880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees