JP2004262691A - Reformer for fuel - Google Patents

Reformer for fuel Download PDF

Info

Publication number
JP2004262691A
JP2004262691A JP2003052857A JP2003052857A JP2004262691A JP 2004262691 A JP2004262691 A JP 2004262691A JP 2003052857 A JP2003052857 A JP 2003052857A JP 2003052857 A JP2003052857 A JP 2003052857A JP 2004262691 A JP2004262691 A JP 2004262691A
Authority
JP
Japan
Prior art keywords
reformer
gas
heat transfer
combustion
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003052857A
Other languages
Japanese (ja)
Inventor
Isao Nakagawa
功夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003052857A priority Critical patent/JP2004262691A/en
Publication of JP2004262691A publication Critical patent/JP2004262691A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently produce a reformed gas to make small-sized and lightweight in a hydrogen production apparatus. <P>SOLUTION: In the hydrogen production apparatus using the steam reforming system for producing hydrogen necessary for a fuel cell main body from a town gas as original fuel, LPG or the like, a reforming reaction tube composed of a double tube is arranged at the center of a combustion furnace, the space area of the combustion furnace is minimized and a reforming catalyst layer outlet part faces the flame of a burner combustor. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、原燃料である都市ガス、LPGを水蒸気改質する改質器の構造に関する。
【0002】
【従来の技術】
従来の固体高分子形燃料電池システム用の改質器では同心円状に間隔を設けられた二重円筒管の内側に燃焼炉が構成され、必要に応じて燃焼筒を炉内空間に併設するものが一般的であった。こうした改質器の構成は、特開平2000−309075、特開平2001−151501、特開平2001−155756、特開平2002−356306、特開平2003−0602等にてその配置構造は公知である。
【0003】
【発明が解決しようとする課題】
本発明は、原燃料となる都市ガス、LPG等から燃料電池本体に必要な水素を生成する水蒸気改質方式を採用する定置型発電装置及び水素製造装置において、改質ガスを効率良く生成させ、小型軽量化を図ることを目的とする。
【0004】
【課題を解決するための手段】
本発明は、二重円筒の改質管を触媒充填層と伝熱粒子層にて構成し、筒状の二重円筒管として、燃焼炉内の中心に配置し、触媒層をバーナ燃焼器の火炎に向けることで、十分な反応熱を与えると同時に、二重円筒管の内側に伝熱粒子を充填することにより、改質ガス熱回収部を設けることにより熱伝達率を向上させるものである。これにより、改質ガスから改質触媒部への熱交換を実施して,改質ガス出口温度を下げると同時に燃焼排ガスを下げることが可能となる。
このようにすることによって、燃焼炉の空間容積を最小限にすると同時に、使用する触媒量の低減化を図れ小型軽量の改質器を提供することができる。
【0005】
【発明の実施の形態】
図1は本発明の実施例の改質器を模式的に表した概略構成図である。
本発明では、改質器に供給される原燃料は都市ガスと改質用水が予め混合された後、CO変成触媒層の反応熱により原燃料を予熱する予熱部(1)と一酸化炭素除去触媒層の反応熱により原燃料を予熱する予熱部(2)に導かれる。原燃料は予熱部(1)の入口ノズル21aより導入された原燃料は、予熱された後、出口ノズル21bより取り出され、更に、入口ノズル22aに導かれ、更に予熱された後、出口ノズル22bより導出される。原燃料ガスはCO変成触媒及び、一酸化炭素除去触媒の反応熱にて120℃まで予熱される。その後、原燃料入口ノズル8より供給され、燃焼排ガス6と熱交換されて原燃料出口ノズル14より400℃〜500℃のガスとして取り出され、改質器入口部15より供給される。原燃料ガスは改質器上部より改質触媒層2をダウンフローで流れ、改質管1の底部に向けて水蒸気改質反応が進む。改質管底部で改質ガスは折り返して、改質ガス出口ノズル3を上方向に流れる。この際に改質後ガス温度はシステム運用上600℃〜700℃で運用されるが、この改質ガスは改質管出口ノズル3に充填された改質ガス熱回収部となる伝熱粒子7により、改質ガスから改質触媒部への熱交換を実施して,改質ガス出口温度を300℃〜400℃に下げることが出来る。
【0006】
改質器で水素リッチにされた改質ガスは、耐熱性の高い貴金属系CO変成触媒層10にて一酸化炭素濃度を0.5%以下にまで低減させた後、一酸化炭素除去触媒層11に導入される。この際、CO変成器出口ガス温度は180℃程度までさげられているのが通常である。
このCO変成触媒層10から導出された改質ガスに一酸化炭素除去触媒層11の選択酸化反応に必要な酸化剤を酸化剤導入口18より導入した場合、触媒層におけるピーク温度が顕著に上昇するため、伝熱粒子充填層12を一酸化炭素除去触媒層11の内側に設けることにより、この伝熱粒子充填層12から原燃料入口8より導入された原燃料と熱交換させることにより、酸化剤と改質ガス中の一酸化炭素による急激な温度上昇が起こらない温度水準である120℃程度にまで下げることを可能にしている。
【0007】
このような構成によれば、改質器からの放熱量を最小限に抑えることが可能となり、熱効率が向上するという効果も得られる。
更に、ここでは改質管の外表面の構造を工夫することにより、改質管1に充填されている改質触媒層2に効率よく熱を伝えることが可能となる。
図2は、本発明の異なる実施例での改質管を模式的に表した概略構成図である。
本発明にて伝熱フィンを垂直に複数本取り付けたことにより改質効率が上昇する。更に、燃焼排ガスを螺旋状のフィンにより強制対流伝熱により触媒層への熱伝達を効率的に行なわせることも可能である。また、こうした伝熱フィンと同時に改質管表面に微小な凹凸面を加工(ローレット加工)することによりガス境膜を乱す効果もあり、触媒層への伝熱が改善され改質性能が向上する効果が認められた。
【0008】
図3は、本発明による改質管内に充填された改質触媒層の出口温度の推移である。改質管内の改質ガス出口ノズル部3を空塔とした場合、改質触媒層2への改質後ガスの伝熱が得られず、触媒出口温度は600℃程度と低い結果が得られた。本発明に示された伝熱粒子7を改質ガス出口ノズル3に充填することにより、改質ガスの伝熱は促進され、改質触媒層温度が高く維持できることが明らかとなった。更に、図2に示された改質反応管の表面加工を実施したことにより、より熱伝達率が向上し触媒層温度を十分な温度レベルに維持することが可能となった。
【0009】
【発明の効果】
本発明によれば、改質管を燃焼炉内の中心に配置したことにより、改質装置全体を小型軽量化を図ることが可能となった。また、改質触媒層出口に設けられた伝熱粒子により燃焼ガス及び改質後ガスの熱を十分に改質触媒層に与えることが出来るようになった。
反応器全体を軽量化できたことにより熱容量の小さい反応器構成となり起動時間短縮にも寄与し、小型改質装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例を示す改質器を模式的に表した概略構成図である。
【図2】本発明の実施例を示す改質反応管を模式的に表した概略構成図である。
【図3】本発明の実施例における改質触媒層出口温度の推移である。
【符号の説明】
1:改質管
2:改質触媒
3:改質ガス出口ノズル
4:燃焼排ガス流路(1)
5:断熱材
6:燃焼排ガス流路(2)
7:伝熱粒子
8:原燃料入口
9:排ガス出口
10:CO変成触媒
11:一酸化炭素除去触媒
12:伝熱粒子
13:バーナ
14:予熱原燃料出口
15:改質器入口
16:改質器出口
17:CO変成器入口
18:酸化剤入口
19:改質ガス出口
20:空気予熱部
21a:予熱部(1)入口ノズル
21b:予熱(1)出口ノズル
22a:予熱部(2)入口ノズル
22b:予熱(2)出口ノズル
23:伝熱フィン
24:改質管表面加工
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to the structure of a reformer for steam reforming city gas and LPG as raw fuel.
[0002]
[Prior art]
In conventional reformers for polymer electrolyte fuel cell systems, a combustion furnace is constructed inside a concentrically spaced double cylindrical tube, and a combustion cylinder is installed in the furnace space as necessary. Was common. The configuration of such a reformer is known in JP-A-2000-309075, JP-A-2001-151501, JP-A-2001-155756, JP-A-2002-356306, JP-A-2003-0602, and the like.
[0003]
[Problems to be solved by the invention]
The present invention provides a stationary power generation device and a hydrogen production device that employ a steam reforming method of generating hydrogen required for a fuel cell main body from city gas serving as a raw fuel, LPG, and the like, and efficiently generates reformed gas. The purpose is to reduce the size and weight.
[0004]
[Means for Solving the Problems]
The present invention comprises a double-cylindrical reforming tube composed of a catalyst-packed layer and a heat-transfer particle layer, arranged as a cylindrical double-cylindrical tube in the center of a combustion furnace, and the catalyst layer of a burner combustor. By directing the flame, sufficient reaction heat is given, and at the same time, the heat transfer coefficient is improved by providing a reformed gas heat recovery section by filling the inside of the double cylindrical tube with heat transfer particles. . This makes it possible to perform heat exchange from the reformed gas to the reforming catalyst section, thereby lowering the reformed gas outlet temperature and simultaneously lowering the combustion exhaust gas.
By doing so, the space volume of the combustion furnace can be minimized, and at the same time, the amount of catalyst used can be reduced, and a compact and lightweight reformer can be provided.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic configuration diagram schematically showing a reformer according to an embodiment of the present invention.
According to the present invention, the raw fuel supplied to the reformer is obtained by mixing the city gas and the reforming water in advance, and then preheating the raw fuel by the reaction heat of the CO shift catalyst layer and removing carbon monoxide. The reaction heat of the catalyst layer guides the raw fuel to a preheating section (2). The raw fuel introduced from the inlet nozzle 21a of the preheating unit (1) is preheated, taken out from the outlet nozzle 21b, guided to the inlet nozzle 22a, further preheated, and then discharged from the outlet nozzle 22b. Derived from The raw fuel gas is preheated to 120 ° C. by the reaction heat of the CO shift catalyst and the carbon monoxide removal catalyst. Thereafter, it is supplied from the raw fuel inlet nozzle 8, exchanges heat with the combustion exhaust gas 6, is taken out from the raw fuel outlet nozzle 14 as a gas at 400 ° C. to 500 ° C., and is supplied from the reformer inlet 15. The raw fuel gas flows down the reforming catalyst layer 2 from the upper part of the reformer, and the steam reforming reaction proceeds toward the bottom of the reforming tube 1. The reformed gas turns back at the bottom of the reforming tube and flows upward through the reformed gas outlet nozzle 3. At this time, the reformed gas is operated at a temperature of 600 ° C. to 700 ° C. for system operation, and the reformed gas is supplied to the heat transfer particles 7 serving as the reformed gas heat recovery unit filled in the reforming tube outlet nozzle 3. As a result, heat exchange from the reformed gas to the reforming catalyst section can be performed, and the outlet temperature of the reformed gas can be reduced to 300 ° C. to 400 ° C.
[0006]
The hydrogen-rich reformed gas in the reformer is used to reduce the concentration of carbon monoxide to 0.5% or less in the noble metal-based CO shift catalyst layer 10 having high heat resistance, and then the carbon monoxide removal catalyst layer. 11 is introduced. At this time, the gas temperature at the outlet of the CO converter is usually reduced to about 180 ° C.
When an oxidizing agent required for the selective oxidation reaction of the carbon monoxide removing catalyst layer 11 is introduced into the reformed gas derived from the CO shift catalyst layer 10 through the oxidizing agent inlet 18, the peak temperature in the catalyst layer significantly increases. Therefore, by providing the heat transfer particle packed layer 12 inside the carbon monoxide removal catalyst layer 11, heat exchange with the raw fuel introduced from the raw fuel inlet 8 from the heat transfer particle packed layer 12 results in oxidation. This makes it possible to lower the temperature to about 120 ° C., which is a temperature level at which no rapid temperature rise occurs due to the agent and carbon monoxide in the reformed gas.
[0007]
According to such a configuration, the amount of heat radiation from the reformer can be minimized, and the effect of improving thermal efficiency can be obtained.
Further, here, heat can be efficiently transmitted to the reforming catalyst layer 2 filled in the reforming tube 1 by devising the structure of the outer surface of the reforming tube.
FIG. 2 is a schematic configuration diagram schematically showing a reforming tube according to another embodiment of the present invention.
According to the present invention, the reforming efficiency is increased by vertically attaching a plurality of heat transfer fins. Furthermore, it is possible to efficiently transfer heat to the catalyst layer by forced convection heat transfer of the combustion exhaust gas by the spiral fins. In addition, by processing (knurling) minute irregularities on the surface of the reforming tube simultaneously with the heat transfer fins, there is also an effect of disturbing the gas film, and the heat transfer to the catalyst layer is improved and the reforming performance is improved. The effect was recognized.
[0008]
FIG. 3 shows the transition of the outlet temperature of the reforming catalyst layer filled in the reforming tube according to the present invention. When the reformed gas outlet nozzle portion 3 in the reforming tube is an empty tower, heat transfer of the reformed gas to the reforming catalyst layer 2 is not obtained, and the catalyst outlet temperature is as low as about 600 ° C. Was. By filling the heat transfer particles 7 shown in the present invention into the reformed gas outlet nozzle 3, it was found that the heat transfer of the reformed gas was promoted and the temperature of the reforming catalyst layer could be kept high. Further, by performing the surface treatment of the reforming reaction tube shown in FIG. 2, the heat transfer coefficient was further improved, and the catalyst layer temperature could be maintained at a sufficient temperature level.
[0009]
【The invention's effect】
According to the present invention, the entire reforming apparatus can be reduced in size and weight by arranging the reforming tube at the center in the combustion furnace. Further, the heat of the combustion gas and the reformed gas can be sufficiently given to the reforming catalyst layer by the heat transfer particles provided at the outlet of the reforming catalyst layer.
The reduction in the weight of the entire reactor results in a reactor configuration having a small heat capacity, which contributes to a reduction in the start-up time, thereby providing a compact reformer.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram schematically showing a reformer according to an embodiment of the present invention.
FIG. 2 is a schematic configuration diagram schematically showing a reforming reaction tube showing an example of the present invention.
FIG. 3 is a graph showing the transition of the reforming catalyst layer outlet temperature in the example of the present invention.
[Explanation of symbols]
1: Reforming tube 2: Reforming catalyst 3: Reformed gas outlet nozzle 4: Combustion exhaust gas channel (1)
5: thermal insulation 6: flue gas flow path (2)
7: Heat transfer particles 8: Raw fuel inlet 9: Exhaust gas outlet 10: CO shift catalyst 11: Carbon monoxide removal catalyst 12: Heat transfer particles 13: Burner 14: Preheat raw fuel outlet 15: Reformer inlet 16: Reforming Unit outlet 17: CO converter inlet 18: Oxidant inlet 19: Reformed gas outlet 20: Air preheating unit 21a: Preheating unit (1) Inlet nozzle 21b: Preheating (1) Outlet nozzle 22a: Preheating unit (2) Inlet nozzle 22b: Preheating (2) Outlet nozzle 23: Heat transfer fin 24: Reforming tube surface processing

Claims (7)

原燃料ガスを水素リッチな改質ガスに転化する二重円筒改質反応管と、前記二重円筒改質反応管を加熱するための燃焼ガスを発生させるバーナ燃焼器と、前記二重円筒改質反応管の周囲に形成される燃焼ガス流路(1)と、前記燃焼ガスの放熱を防止するための断熱層と、前記断熱層の外周を流れる燃焼ガス流路(2)と前記燃焼ガス流路(2)の外側に形成される原燃料ガスの供給路と、前記燃焼ガス流路(2)を流れる燃焼排ガスにより予熱された原燃料ガスを前記二重円筒改質反応管の入口部に接続し、更に、前記原燃料ガス供給路の外側に形成されるCO変成触媒層を取り囲む触媒充填層部と、CO変成部の下流側にCO変成ガスの除熱を行なうために形成される伝熱粒子充填層と、前記伝熱粒子充填層の外周に形成される一酸化炭素除去触媒層を設け、前記一酸化炭素除去触媒層に供給される酸化剤の導入部を前記伝熱粒子充填層の入口に設けたことにより、前記伝熱粒子層での酸化剤のガス等配を均一化させることを特徴とした一体型燃料電池用改質器。A double-cylindrical reforming reaction tube for converting a raw fuel gas into a hydrogen-rich reformed gas; a burner combustor for generating a combustion gas for heating the double-cylindrical reforming reaction tube; Gas passage (1) formed around a porous reaction tube, a heat insulating layer for preventing heat radiation of the combustion gas, a combustion gas flow passage (2) flowing around the outer periphery of the heat insulating layer, and the combustion gas A raw fuel gas supply path formed outside the flow path (2), and a raw fuel gas preheated by combustion exhaust gas flowing through the combustion gas flow path (2); And a catalyst packed layer portion surrounding the CO shift catalyst layer formed outside the raw fuel gas supply passage, and formed to perform heat removal of the CO shift gas downstream of the CO shift portion. A heat transfer particle packed layer, and carbon monoxide formed on the outer periphery of the heat transfer particle packed layer By providing a removal catalyst layer and providing an inlet for the oxidant supplied to the carbon monoxide removal catalyst layer at the inlet of the heat transfer particle packed layer, the gas distribution of the oxidant in the heat transfer particle layer is improved. An integrated fuel cell reformer characterized by uniformity. 上記改質器は、燃焼炉内の中央部に筒状の二重円筒改質反応管を配置し、前記二重円筒改質反応管の外側に改質触媒が充填され、触媒層出口が燃焼炉内に配置された燃焼バーナの火炎側に向けられていることを特徴とする燃料電池用改質器。In the reformer, a cylindrical double-cylindrical reforming reaction tube is disposed at a central portion in a combustion furnace, and the outside of the double-cylindrical reforming reaction tube is filled with a reforming catalyst. A reformer for a fuel cell, wherein the reformer is directed to a flame side of a combustion burner disposed in a furnace. 上記改質器において、二重円筒改質反応管の内側に改質ガス熱回収部となる伝熱粒子を充填し熱伝達率を向上させることにより、改質ガスから改質触媒部への熱交換を実施して,改質ガス出口温度を下げることを特徴とする燃料電池用改質器。In the above reformer, the heat transfer from the reformed gas to the reforming catalyst section is performed by filling the inside of the double cylindrical reforming reaction tube with heat transfer particles serving as the reformed gas heat recovery section and improving the heat transfer coefficient. A reformer for a fuel cell, wherein the temperature of a reformed gas outlet is lowered by performing replacement. 上記改質器の二重円筒管の外側に伝熱フィンを設置し,燃焼ガス流路の熱伝達率を向上させることによって,燃焼ガスから改質触媒部への熱交換量を増加させ,燃焼排ガス出口温度を下げることを特徴とした燃料電池用改質器。By installing heat transfer fins outside the double cylindrical tube of the above reformer and improving the heat transfer coefficient of the combustion gas flow path, the amount of heat exchange from the combustion gas to the reforming catalyst section is increased, A fuel cell reformer characterized by lowering the exhaust gas outlet temperature. 上記改質器の二重円筒管の外側に燃焼排ガスの強制対流伝熱を促進するために螺旋状伝熱フィン設けたことを特徴とする燃料電池用改質器。A reformer for a fuel cell, wherein a spiral heat transfer fin is provided outside a double cylindrical tube of the reformer to promote forced convection heat transfer of combustion exhaust gas. 上記改質器の二重円筒管の外側にガス境膜を乱し熱伝達率の向上を目的としてローレット加工を施したことを特徴とする燃料電池用改質器。A reformer for a fuel cell, wherein a knurling process is performed for the purpose of improving a heat transfer coefficient by disturbing a gas film outside a double cylindrical tube of the reformer. 上記改質器の一酸化炭素除去触媒層に導入される酸化剤と改質ガスの混合性を良好にするため、前記一酸化炭素除去触媒層の手前に伝熱粒子を配し、更に、その手前にCO変成ガスと酸化剤の混合促進空間を備えたことを特徴とした燃料電池用改質器。In order to improve the mixing property between the oxidizing agent and the reformed gas introduced into the carbon monoxide removal catalyst layer of the reformer, heat transfer particles are arranged in front of the carbon monoxide removal catalyst layer, A reformer for a fuel cell, comprising a space for promoting mixing of a CO-converted gas and an oxidant in the foreground.
JP2003052857A 2003-02-28 2003-02-28 Reformer for fuel Pending JP2004262691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003052857A JP2004262691A (en) 2003-02-28 2003-02-28 Reformer for fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003052857A JP2004262691A (en) 2003-02-28 2003-02-28 Reformer for fuel

Publications (1)

Publication Number Publication Date
JP2004262691A true JP2004262691A (en) 2004-09-24

Family

ID=33117621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003052857A Pending JP2004262691A (en) 2003-02-28 2003-02-28 Reformer for fuel

Country Status (1)

Country Link
JP (1) JP2004262691A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101408209B1 (en) 2012-12-28 2014-06-16 충북대학교 산학협력단 Lpg steam reformer
CN108187590A (en) * 2017-12-29 2018-06-22 北京氢璞创能科技有限公司 A kind of reforming reactor
KR20190059007A (en) * 2017-11-22 2019-05-30 한국에너지기술연구원 Hydrogen production reactor including feed preheating part
KR20210157097A (en) * 2020-06-19 2021-12-28 주식회사 파나시아 Steam Hydrocarbon Reformer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101408209B1 (en) 2012-12-28 2014-06-16 충북대학교 산학협력단 Lpg steam reformer
KR20190059007A (en) * 2017-11-22 2019-05-30 한국에너지기술연구원 Hydrogen production reactor including feed preheating part
KR102005715B1 (en) 2017-11-22 2019-08-01 한국에너지기술연구원 Hydrogen production reactor including feed preheating part
CN108187590A (en) * 2017-12-29 2018-06-22 北京氢璞创能科技有限公司 A kind of reforming reactor
KR20210157097A (en) * 2020-06-19 2021-12-28 주식회사 파나시아 Steam Hydrocarbon Reformer
KR102378005B1 (en) 2020-06-19 2022-03-24 주식회사 파나시아 Steam Hydrocarbon Reformer

Similar Documents

Publication Publication Date Title
JP2004171989A (en) Hydrogen generator for fuel cell
WO2005073126A1 (en) Reformer
JP2001155756A (en) Vapor-reforming reactor for fuel cell
KR20100006469A (en) Fuel processor of fuel cell system
JP2003282114A (en) Stopping method of fuel cell power generating device
CN110114923B (en) Fuel processing device
JP3903710B2 (en) Fuel reformer and polymer electrolyte fuel cell power generator using the same
US20110064631A1 (en) Hydrogen generator and the application of the same
JP2000203802A (en) Reformer
JP2001080904A (en) Fuel reformer
JP2003160306A (en) Hydrogen containing gas generator
JP2004352528A (en) Hydrogen production system
JP2000169102A (en) Fuel reformer
JP2003321206A (en) Single tubular cylinder type reforming apparatus
JP2003187849A (en) Solid polymer fuel cell power generator
JP2004262691A (en) Reformer for fuel
WO2005077820A1 (en) Fuel reformer
JP2937656B2 (en) Fuel cell power generation system
JP4904867B2 (en) Fuel processor
JP2003086210A (en) Solid high-polymer type fuel cell power generator and its operation method
TW201145663A (en) Reforming unit and fuel cell system
JP2000281311A (en) Reforming device for fuel cell
JP4043383B2 (en) Membrane reactor and synthesis gas production method using the same
JP2004075435A (en) Fuel reforming device
JP2009173479A (en) Heat exchanger and compound type fuel reactor