JP4902098B2 - Transport method of superconducting bulk magnet - Google Patents

Transport method of superconducting bulk magnet Download PDF

Info

Publication number
JP4902098B2
JP4902098B2 JP2003289333A JP2003289333A JP4902098B2 JP 4902098 B2 JP4902098 B2 JP 4902098B2 JP 2003289333 A JP2003289333 A JP 2003289333A JP 2003289333 A JP2003289333 A JP 2003289333A JP 4902098 B2 JP4902098 B2 JP 4902098B2
Authority
JP
Japan
Prior art keywords
superconducting bulk
bulk magnet
magnetic field
superconducting
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003289333A
Other languages
Japanese (ja)
Other versions
JP2005057218A (en
Inventor
陽介 柳
佳孝 伊藤
雅章 吉川
宇一郎 水谷
博志 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2003289333A priority Critical patent/JP4902098B2/en
Publication of JP2005057218A publication Critical patent/JP2005057218A/en
Application granted granted Critical
Publication of JP4902098B2 publication Critical patent/JP4902098B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

本発明は超電導体を着磁して超電導バルク磁石として用いる際、その超電導バルク磁石の供給者が着磁と輸送サービスを提供し、ユーザーは超電導バルク磁石の必要な磁場を利用することができるシステムを提供する超電導バルク磁石の輸送方法に関する。   In the present invention, when a superconductor is magnetized and used as a superconducting bulk magnet, the supplier of the superconducting bulk magnet provides magnetization and transport services, and the user can use the necessary magnetic field of the superconducting bulk magnet. The present invention relates to a method for transporting a superconducting bulk magnet.

溶融後に固化させた溶融バルクと呼ばれるバルク形状(塊状)の超電導体が近年開発されている。適切な組織制御を行って合成した溶融バルクは、磁場中で冷却するなどの方法で一旦着磁すれば、数cm程度のサイズでT(テスラ)級の強い磁場を保持できるものが得られるようになっており、超電導体を着磁して磁石にしたものは、超電導バルク磁石と呼ばれている。超電導バルク磁石は、線材をコイルにした従来の超電導マグネットとは異なる、新しいタイプの磁石として種々の応用が近年検討されている。   In recent years, a bulk (bulk) superconductor called a molten bulk solidified after melting has been developed. The melted bulk synthesized with appropriate structure control can be obtained by holding a strong magnetic field of T (tesla) class with a size of several centimeters once it is magnetized by a method such as cooling in a magnetic field. A magnet formed by magnetizing a superconductor is called a superconducting bulk magnet. A superconducting bulk magnet has recently been studied for various applications as a new type of magnet, which is different from a conventional superconducting magnet having a wire as a coil.

また特許文献1には、震災時等において凝集剤、磁性粉末を原水に供給することにより浄水を生成する超電導磁気分離装置を車両に載せた非常用浄水システムが開示されている。また特許文献2には、磁場発生装置を恒温化する温度制御装置の電力を供給する太陽電池を車両に搭載した移動式磁気共鳴イメージング装置が開示されている。
特開2000−51866号公報の図1 特開平6−237911号公報の図1
Patent Document 1 discloses an emergency water purification system in which a superconducting magnetic separation device that generates purified water by supplying a flocculant and magnetic powder to raw water during an earthquake is mounted on a vehicle. Further, Patent Document 2 discloses a mobile magnetic resonance imaging apparatus in which a solar cell that supplies electric power of a temperature control device that makes a magnetic field generator constant temperature is mounted on a vehicle.
FIG. 1 of JP 2000-51866 A FIG. 1 of Japanese Patent Laid-Open No. 6-237911

上記した公報技術は、超電導体の着磁に関する技術ではない。また上記した超電導バルク磁石は、非常にコンパクトながら超電導マグネットに近い強磁場を簡易に利用できるという特徴がある。ところが、超電導バルク磁石を実際に磁石として使う場合にはさまざまな制約があった。まず、超電導バルク磁石は、磁場の減衰を防ぎ、安定した発生磁場強度を維持するためには、着磁した温度より充分低い温度に常に保持し続けなければならない。この点は、冷凍機を利用すれば、電源を入れて運転を継続している限りは解決することができる。しかしながら、着磁直後から温度を保つ必要があるため、この条件を満たすためには、超電導バルク磁石を使うユーザの使用場所に着磁装置を用意するしかなかった。   The above publication technique is not a technique related to magnetization of a superconductor. The above-described superconducting bulk magnet is characterized by being able to easily use a strong magnetic field close to that of a superconducting magnet although it is very compact. However, there are various restrictions when using a superconducting bulk magnet as a magnet. First, the superconducting bulk magnet must always be kept at a temperature sufficiently lower than the magnetized temperature in order to prevent the attenuation of the magnetic field and maintain a stable generated magnetic field strength. This can be solved by using a refrigerator as long as the power is turned on and the operation is continued. However, since it is necessary to maintain the temperature immediately after magnetization, in order to satisfy this condition, there is no choice but to prepare a magnetizing device at the place where the user using the superconducting bulk magnet is used.

更に、この着磁法および着磁装置には問題点がある。即ち、超電導バルク磁石は一旦印加された磁場をそのまま保持することにより磁石化される。そのため、強い磁場を発生させるためには、少なくともそれ以上の磁場を印加する必要がある。T(テスラ)級の強い磁場を発生できる方法、装置となると、限られている。ひとつはコンデンサの放電電流を短時間でコイルに通電して強磁場を発生するパルス着磁法である。この方法では、発生できる磁場強度に対して、それほど装置価格、サイズ等は大きくならず、また、装置内へのコイル組み込みなどにより、insituで超電導バルク磁石の着磁も可能である。しかしながら、着磁過程で起こる超電導バルク磁石の内部における発熱のため、着磁できる磁場強度が制限されてしまうという問題点がある。   Furthermore, there are problems with this magnetization method and apparatus. That is, the superconducting bulk magnet is magnetized by holding the applied magnetic field as it is. Therefore, in order to generate a strong magnetic field, it is necessary to apply a magnetic field of at least more than that. The method and apparatus capable of generating a strong magnetic field of T (Tesla) class are limited. One is a pulse magnetization method in which a strong magnetic field is generated by energizing a coil with a capacitor discharge current in a short time. In this method, the apparatus price, size, etc. are not so large with respect to the magnetic field intensity that can be generated, and superconducting bulk magnets can be magnetized in situ by incorporating a coil in the apparatus. However, there is a problem that the intensity of the magnetic field that can be magnetized is limited due to heat generation inside the superconducting bulk magnet that occurs in the magnetization process.

他の着磁法として、超電導マグネットを利用した磁場中冷却法がある。この方法では、超電導バルク磁石を、その材料が本来もつ性能まで着磁することができるが、装置が大きく、しかも高額であり、また洩れ磁場対策などが必要なため広い設置面積が必要である。   As another magnetization method, there is a cooling method in a magnetic field using a superconducting magnet. In this method, the superconducting bulk magnet can be magnetized to the original performance of the material, but the apparatus is large and expensive, and a large installation area is required because measures against leakage magnetic field are required.

前記した超電導バルク磁石は、局所的に強い磁場を安定して発生できることが最大の特徴であり、磁場強度を変化させるような用途、頻繁に磁場の発生、消去が必要な用途には一般的にはあまり適さない。この特徴から、冷凍機による冷却を利用する超電導バルク磁石は、一度着磁するとそのままの状態で半年ないし数年といった相当長期間、そのまま磁場を保持して使うことがほとんどである。   The superconducting bulk magnet described above is characterized by the ability to stably generate a strong magnetic field locally, and is generally used for applications that change the magnetic field strength, applications that require frequent magnetic field generation and erasure. Is not very suitable. Because of this feature, superconducting bulk magnets that utilize cooling by a refrigerator are almost always used while retaining the magnetic field for a considerable period of time, such as half a year to several years, as it is once magnetized.

このような使用特性から、超電導バルク磁石を使用するユーザーが個別に着磁装置をユーザーの使用場所で準備するには、経済的合理性から言っても困難があった。そのため、超電導バルク磁石がもつコンパクトな強磁場を享受できるのは、実質的に、超電導バルク磁石の何らかの着磁手段をもつ者だけに限られていたのが実情である。   Due to such usage characteristics, it has been difficult for a user who uses a superconducting bulk magnet to prepare a magnetizing device individually at the user's location, even from an economic point of view. Therefore, the fact that the superconducting bulk magnet has a compact strong magnetic field is practically limited only to those who have some means of magnetizing the superconducting bulk magnet.

また、着磁過程で超電導バルク磁石の内部に非常に大きな応力がかかり、場合によっては超電導バルク磁石の破壊に至ることがある。これらの現象についてはユーザーは充分な知見があるとは言えず、超電導バルク磁石の磁場を使いたいユーザーが、高価な超電導バルク材を購入しても、充分な経験とノウハウがないため、着磁過程で超電導バルク磁石を破損してしまう問題、あるいは充分な着磁ができないなど問題がある。   In addition, a very large stress is applied to the inside of the superconducting bulk magnet during the magnetization process, and in some cases, the superconducting bulk magnet may be destroyed. Users cannot say enough about these phenomena, and users who want to use the magnetic field of superconducting bulk magnets do not have enough experience and know-how to purchase expensive superconducting bulk materials. There is a problem that the superconducting bulk magnet is damaged during the process, or that sufficient magnetization is not possible.

一方、この超電導バルク磁石を使った種々の装置では、スパッタリング装置など著しい効果の確認されたものができており、すぐにも利用したいというユーザーのニーズは強まっている。上記のような問題を解決し、超電導バルク磁石の優れた特性を生かした装置を広く一般に使えるようにするには、必要なだけ超電導バルク磁石を着磁し、いかにして運搬してユーザーのもとで使えるように供給できるか、ということが鍵になっている。   On the other hand, various apparatuses using this superconducting bulk magnet have been confirmed to have a remarkable effect such as a sputtering apparatus, and there is an increasing need for users who want to use the apparatus immediately. In order to solve the above problems and make it possible to use the equipment that makes use of the superior properties of superconducting bulk magnets widely and generally, the superconducting bulk magnets can be magnetized and transported as needed. The key is whether it can be supplied so that it can be used.

本発明は上記した実情に鑑みてなされたものであり、超電導バルク磁石を使用するユーザーが、着磁装置などの高価なシステムを保有することなく、また、着磁法についてのノウハウを気にすることもなく、着磁された状態の超電導バルク磁石について供給を受けられるシステムを構築するために必要な超電導バルク磁石の輸送方法を提供することを課題とする。   The present invention has been made in view of the above-described circumstances, and a user who uses a superconducting bulk magnet does not have an expensive system such as a magnetizing apparatus, and cares about know-how about the magnetizing method. It is an object of the present invention to provide a method of transporting a superconducting bulk magnet necessary for constructing a system that can receive a supply of a superconducting bulk magnet in a magnetized state.

(1)請求項1に係る超電導バルク磁石の輸送方法は、真空容器内に配設され、超電導遷移温度以下に冷却され外部に磁場を発する超電導バルク磁石となる移動可能な超電導体と、電力の供給を受けることにより超電導体を冷却する移動可能な冷却装置と、一定の時間電力を供給できる移動可能な補助電源とを用意すると共に、超電導体、冷却装置、補助電源を搭載した移動可能な可動台車とを用意する工程と、
超電導体を着磁させて超電導バルク磁石とする着磁工程と、
超電導バルク磁石と冷却装置および補助電源とを一体として可動台車に搭載し、補助電源から電力を冷却装置に供給して冷却装置を稼働し続けることにより、真空容器内を真空排気することなく真空容器内を封止した状態で真空容器内の断熱を保ち、超電導バルク磁石が磁場を発生した状態を維持したまま建物内を自由に運搬する運搬工程とを順に実施することを特徴とするものである。
(1) A method for transporting a superconducting bulk magnet according to claim 1 is a method of transporting a superconducting bulk magnet that is disposed in a vacuum vessel and that becomes a superconducting bulk magnet that is cooled to a superconducting transition temperature and emits a magnetic field to the outside. A movable cooling device that cools the superconductor by receiving power and a movable auxiliary power source that can supply power for a certain period of time are prepared, and a movable movable device that is equipped with the superconductor, cooling device, and auxiliary power source. Preparing a cart,
Magnetizing the superconductor to form a superconducting bulk magnet; and
A superconducting bulk magnet, a cooling device, and an auxiliary power source are integrated into a movable carriage, and power is supplied from the auxiliary power source to the cooling device to keep the cooling device running. The inside of the vacuum vessel is kept heat-insulated in a sealed state, and the carrying process of carrying the inside of the building freely while maintaining the state where the superconducting bulk magnet generates a magnetic field is performed in order. .

請求項1に係る発明方法によれば、超電導体を着磁して超電導バルク体とした後、可動台車上の補助電源から電力を可動台車上の冷却装置に供給して冷却装置を稼働させて可動台車上の超電導バルク磁石を冷却し、超電導バルク磁石の磁場を発生させた状態で、可動台車上の超電導バルク磁石を冷却装置及び補助電源と共に運搬する。   According to the inventive method of claim 1, after magnetizing the superconductor to form a superconducting bulk body, power is supplied from the auxiliary power source on the movable carriage to the cooling apparatus on the movable carriage to operate the cooling apparatus. The superconducting bulk magnet on the movable carriage is cooled, and the superconducting bulk magnet on the movable carriage is transported together with the cooling device and the auxiliary power source in a state where the magnetic field of the superconducting bulk magnet is generated.

上記したように請求項1に係る発明方法によれば、超電導バルク磁石と冷却装置および補助電源とを一体として可動台車に搭載し、補助電源から電力を冷却装置に供給して冷却装置を稼働し続けることにより超電導バルク磁石が磁場を発生した状態を維持したまま運搬する。更に、補助電源から電力を冷却装置に供給して冷却装置を稼働し続けると共に、超電導バルク磁石が配設されている真空容器内を真空排気することなく、真空容器内を封止した状態で、真空容器内の断熱を保つ。このように請求項1に係る本願発明方法によれば、超電導バルク磁石が配設されている真空容器内を真空排気することなく、可動台車が建物内を自由に移動でき、可動台車に搭載されている超電導体で形成された超電導バルク磁石、冷却装置、補助電源を、建物内を自由に運搬できる。   As described above, according to the inventive method of the first aspect, the superconducting bulk magnet, the cooling device, and the auxiliary power source are integrally mounted on the movable carriage, and power is supplied from the auxiliary power source to the cooling device to operate the cooling device. By continuing, the superconducting bulk magnet is transported with the magnetic field generated. In addition, while continuing to operate the cooling device by supplying power from the auxiliary power supply to the cooling device, without evacuating the vacuum vessel in which the superconducting bulk magnet is disposed, Keep insulation in the vacuum vessel. Thus, according to the method of the present invention according to claim 1, the movable carriage can be freely moved in the building without being evacuated inside the vacuum vessel in which the superconducting bulk magnet is disposed, and is mounted on the movable carriage. A superconducting bulk magnet, a cooling device, and an auxiliary power source formed of superconductors can be freely transported in the building.

(2)請求項2に係る超電導バルク磁石の輸送方法は、真空容器内に配設され、超電導遷移温度以下に冷却され外部に磁場を発する超電導バルク磁石となる超電導体と、電力の供給を受けることにより超電導体を冷却する冷却装置と、一定の時間電力を供給できる補助電源とを用意する工程と、
超電導体を着磁させて超電導バルク磁石とする着磁工程と、
真空容器内を真空排気することなく真空容器内を封止した状態で真空容器内の断熱を保ち、補助電源から電力を冷却装置に供給して冷却装置を稼働させながら超電導バルク磁石が磁場を発生させた状態で、超電導バルク磁石と冷却装置および補助電源を一体として可動台車にて建物内を自由に運搬する運搬工程とを順に実施することを特徴とする。
(2) A method for transporting a superconducting bulk magnet according to claim 2 is provided in a superconducting bulk magnet which is disposed in a vacuum vessel and is cooled below the superconducting transition temperature and generates a magnetic field to the outside, and is supplied with electric power. Preparing a cooling device for cooling the superconductor by this, and an auxiliary power source capable of supplying power for a certain period of time,
Magnetizing the superconductor to form a superconducting bulk magnet; and
The superconducting bulk magnet generates a magnetic field while keeping the insulation inside the vacuum vessel sealed without evacuating the inside of the vacuum vessel, and supplying power from the auxiliary power source to the cooling device and operating the cooling device. In this state, a superconducting bulk magnet, a cooling device, and an auxiliary power source are integrated, and a transporting step of transporting the inside of the building freely with a movable carriage is performed in order.

上記したように請求項2に係る発明方法によれば、補助電源から電力を冷却装置に供給して冷却装置を稼働させながら、超電導バルク磁石が磁場を発生させた状態で、超電導バルク磁石と冷却装置および補助電源をまとめて運搬する。このように超電導バルク磁石と冷却装置および補助電源とをまとめて一体として可動台車にて運搬することができる。このように請求項2に係る発明方法によれば、超電導バルク磁石が配設されている真空容器内を真空排気することなく、超電導体で形成された超電導バルク磁石、冷却装置、補助電源を一体として可動台車にて建物内を自由に運搬できる。   As described above, according to the method of the invention according to claim 2, the superconducting bulk magnet and the cooling device are cooled in a state where the superconducting bulk magnet generates a magnetic field while supplying the electric power from the auxiliary power source to the cooling device and operating the cooling device. Transport equipment and auxiliary power together. In this way, the superconducting bulk magnet, the cooling device, and the auxiliary power source can be collectively transported by a movable carriage. Thus, according to the invention method of claim 2, the superconducting bulk magnet, the cooling device, and the auxiliary power source formed of the superconductor are integrated without evacuating the vacuum container in which the superconducting bulk magnet is disposed. Can be freely transported in the building with a movable carriage.

(1)本願発明に係る方法によれば、超電導バルク磁石と冷却装置および補助電源とを一体として可動台車に搭載し、運搬中において、超電導バルク磁石と共に可動台車に搭載されている冷却装置を使用しており、電力を冷却装置に供給して冷却装置を稼働し続けることにより、超電導バルク磁石が磁場を発生した状態を維持したまま運搬する。ここで、超電導バルク磁石の冷却に必要なものは、冷却装置を運転するための電力である。冷却装置に電力を供給できる補助電源を超電導バルク磁石と冷却装置と共に可動台車に組み合わせているため、輸送元や輸送先の商用電源と冷却装置とを切り離した状態でも、可動台車に搭載されている補助電源により一定時間の間、冷却装置に給電できる。冷却装置を稼働し続けることにより、超電導バルク磁石が磁場を発生した状態を維持したまま運搬することができる。   (1) According to the method of the present invention, a superconducting bulk magnet, a cooling device, and an auxiliary power source are integrally mounted on a movable carriage, and a cooling device mounted on the movable carriage together with the superconducting bulk magnet is used during transportation. Then, by supplying electric power to the cooling device and continuing to operate the cooling device, the superconducting bulk magnet is transported while maintaining a state where a magnetic field is generated. Here, what is necessary for cooling the superconducting bulk magnet is electric power for operating the cooling device. Since the auxiliary power source that can supply power to the cooling device is combined with the superconducting bulk magnet and the cooling device in the movable carriage, it is mounted on the movable carriage even when the commercial power source and the cooling device are separated from the transportation source and destination. The cooling device can be powered for a certain time by the auxiliary power source. By continuing to operate the cooling device, the superconducting bulk magnet can be transported while maintaining a state where a magnetic field is generated.

従って冷却装置を停止させることがなく、可動台車に搭載されている超電導バルク磁石の温度を着磁の際の温度より充分低くし続けることができる。このため、超電導バルク磁石の捕捉磁場に影響を与えることを抑えつつ、冷却装置の電力供給源を変更したり、商用電源から切り離したりして、超電導バルク磁石の輸送を行うことができる。   Therefore, the temperature of the superconducting bulk magnet mounted on the movable carriage can be kept sufficiently lower than the temperature at the time of magnetization without stopping the cooling device. For this reason, it is possible to transport the superconducting bulk magnet by changing the power supply source of the cooling device or disconnecting it from the commercial power supply while suppressing the influence on the trapped magnetic field of the superconducting bulk magnet.

さらに本願発明に係る方法によれば、超電導体の着磁を行い、超電導バルク磁石とするため、使用頻度が少ない着磁作業のためだけに着磁装置を多くのユーザーが準備する必要から開放される。また、多数のユーザーに超電導バルク磁石を供与できることからコストダウンを期待でき、より利用しやすい価格で超電導バルク磁石を輸送先に提供できると期待される。   Furthermore, according to the method according to the present invention, the superconductor is magnetized to form a superconducting bulk magnet, which eliminates the need for a large number of users to prepare a magnetizing device only for a magnetizing operation that is less frequently used. The Moreover, since superconducting bulk magnets can be provided to a large number of users, cost reduction can be expected, and it is expected that superconducting bulk magnets can be provided to destinations at a price that is easier to use.

さらに本願発明に係る方法によれば、真空容器内を真空排気することなく真空容器内を封止した状態で真空容器内の断熱を保つ。このため超電導バルク磁石を配設している真空容器内の極低温状態が維持される。   Furthermore, according to the method of the present invention, the heat insulation in the vacuum container is maintained in a state where the inside of the vacuum container is sealed without evacuating the inside of the vacuum container. For this reason, the cryogenic state in the vacuum vessel in which the superconducting bulk magnet is disposed is maintained.

超電導バルク磁石から発する磁場を遮蔽する磁場遮蔽部材を、超電導バルク磁石、または、超電導バルク磁石を収容する真空容器に取り付けることが好ましい。磁場遮蔽部材は、物体が超電導バルク磁石の磁極に一定距離内に近付くことができないように超電導体を覆うカバー部材、または、超電導体の磁場が外部に漏れることを抑制する磁気回路を形成するヨーク材であることが好ましい。カバー部材及びヨーク材は、超電導バルク磁石を収容する真空容器に対して脱着可能であることが好ましい。カバー部材は樹脂やゴム等の非磁性材料で形成でき、例えば発泡体とすることができる。ヨーク材は、透磁率が高い材料、例えば、鉄−コバルト−バナジウム(パーメンジュール)、純鉄、珪素鋼板、鉄−シリコン−アルミニウム(センダスト)などで形成できる。あるいはヨーク材は永久磁石材料(例えばネオジム−鉄−ボロン系、サマリウム−コバルト系)で形成できる。   It is preferable to attach the magnetic field shielding member that shields the magnetic field generated from the superconducting bulk magnet to the superconducting bulk magnet or the vacuum container that houses the superconducting bulk magnet. The magnetic field shielding member is a cover member that covers the superconductor so that an object cannot approach the magnetic pole of the superconducting bulk magnet within a certain distance, or a yoke that forms a magnetic circuit that suppresses the leakage of the magnetic field of the superconductor to the outside. A material is preferred. It is preferable that the cover member and the yoke material are detachable from the vacuum vessel that accommodates the superconducting bulk magnet. The cover member can be formed of a nonmagnetic material such as resin or rubber, and can be, for example, a foam. The yoke material can be formed of a material having high magnetic permeability, such as iron-cobalt-vanadium (permendur), pure iron, silicon steel plate, iron-silicon-aluminum (Sendust), or the like. Alternatively, the yoke material can be formed of a permanent magnet material (for example, neodymium-iron-boron system, samarium-cobalt system).

冷却装置は、超電導バルク磁石を収容する真空容器と、真空容器を低温に冷却する冷凍機とを有する構成とすることができる。この場合、超電導バルク磁石は冷凍機の真空容器内で冷却されるとともに、運搬中は冷凍機の真空容器内を真空排気することなく、真空容器内を封止した状態で、且つ真空容器内の断熱を保ったまま、超電導バルク磁石を冷凍機と共に運搬することができる。   A cooling device can be set as the structure which has the vacuum vessel which accommodates a superconducting bulk magnet, and the refrigerator which cools a vacuum vessel to low temperature. In this case, the superconducting bulk magnet is cooled in the vacuum container of the refrigerator, and the vacuum container is not evacuated during transportation, and the vacuum container is sealed and transported. The superconducting bulk magnet can be transported along with the refrigerator while maintaining heat insulation.

冷凍機は空冷式の圧縮機を有することが好ましい。超電導バルク磁石、冷却装置、補助電源は、いずれもキャスター等を有し、移動容易な形で構成されていることが好ましい。さらに、冷却装置の運転条件を60K以下のなるべく低い温度が得られるようにすることにより、運搬時には排気装置等の付帯設備も切り離すことも可能である。真空容器は、室が高真空状態に維持されることにより断熱性を有する断熱容器として機能できる。   The refrigerator preferably has an air-cooled compressor. Each of the superconducting bulk magnet, the cooling device, and the auxiliary power source preferably has a caster or the like and is configured to be easily moved. Furthermore, by making the operating conditions of the cooling device as low as possible below 60K, it is possible to disconnect auxiliary equipment such as an exhaust device during transportation. The vacuum container can function as a heat insulating container having heat insulation properties by maintaining the chamber in a high vacuum state.

補助電源は、一定時間外部からエネルギの補給を受けることなく電力を供給できる。補助電源は、冷却装置の全てまたは一部と一体になっており、自立移動可能とされていることが好ましい。このようにすれば、建物内での移動は極めて容易になり、エレベーター等を使って別の階に容易に移動させることもできる。自立移動可能にするには、補助電源が走行輪をもつことが好ましく、更に自走用の稼働モータを搭載することが好ましい。補助電源と圧縮機とを一体化させることも好ましい。   The auxiliary power supply can supply power without receiving energy supply from outside for a certain period of time. The auxiliary power source is preferably integrated with all or part of the cooling device and is capable of moving independently. If it does in this way, the movement in a building will become very easy, and it can also be easily moved to another floor using an elevator etc. In order to be able to move independently, it is preferable that the auxiliary power source has a traveling wheel, and it is preferable to mount an operating motor for self-propelling. It is also preferable to integrate the auxiliary power source and the compressor.

以下、本発明の各実施例を図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施例1)
図1は実施例1を示す。本実施例は、成膜用のスパッタリング装置等の磁場利用装置に搭載する超電導バルク磁石に適用する場合の例である。超電導バルク磁石をスパッタリング装置等の装置に組み込んで使用するまでには、超電導バルク磁石の作製、超電導バルク磁石の着磁、発生磁場の確認、超電導バルク磁石の運搬、ユーザにおいて超電導バルク磁石を使うスパッタング装置への組み付け、といった各工程がある。これを順を追って説明する。
Example 1
FIG. 1 shows a first embodiment. The present embodiment is an example in which the present invention is applied to a superconducting bulk magnet mounted on a magnetic field utilization apparatus such as a sputtering apparatus for film formation. Before using a superconducting bulk magnet in a device such as a sputtering device, preparation of the superconducting bulk magnet, magnetization of the superconducting bulk magnet, confirmation of the generated magnetic field, transportation of the superconducting bulk magnet, sputtering using the superconducting bulk magnet in the user There are various processes such as assembling to the mounting device. This will be explained step by step.

図1に示すように、走行車輪1xをもつ移動可能な可動台車1には、超電導体2で形成された超電導バルク磁石3(Sm−Ba−Cu−O系,例えば直径60mm)、超電導バルク磁石3を冷却するための冷却装置としての冷凍機6、超電導バルク磁石3を昇降させる昇降機としてのジャッキ4と、冷凍機6に電力を供給する補助電源としての無停電電源5とが搭載されている。なお、着磁前のものを超電導体2といい、超電導体2を着磁したものを超電導バルク磁石3という。   As shown in FIG. 1, a movable movable carriage 1 having traveling wheels 1x includes a superconducting bulk magnet 3 (Sm-Ba-Cu-O system, for example, a diameter of 60 mm) formed of a superconductor 2, a superconducting bulk magnet. A refrigerator 6 as a cooling device for cooling 3, a jack 4 as a lift for raising and lowering the superconducting bulk magnet 3, and an uninterruptible power supply 5 as an auxiliary power supply for supplying power to the refrigerator 6 are mounted. . In addition, the thing before magnetization is called the superconductor 2, and the thing which magnetized the superconductor 2 is called the superconducting bulk magnet 3.

冷凍機6は、低温を得るために冷媒(一般的にはヘリウム)を圧縮させる圧縮機8と、冷凍を生成するための冷凍部7と、冷凍部7により冷却される低温となる寒冷部であるコールドヘッド9と、コールドヘッド9を収容する真空断熱室10を形成する断熱容器として機能できる真空容器11とを有する。これらの要素は可動台車1に搭載されている。圧縮機8は空冷式であり、水冷式と異なり、水源及びウォータポンプ等を必要とせず、サイズのコンパクト化を図り得、運搬、車載等に適する。圧縮機8はAC100V稼働、定格800Wの空冷式のコンプレッサである。   The refrigerator 6 includes a compressor 8 that compresses a refrigerant (generally helium) to obtain a low temperature, a refrigeration unit 7 for generating refrigeration, and a cold part that is cooled by the refrigeration unit 7 and has a low temperature. It has a certain cold head 9 and a vacuum container 11 that can function as a heat insulating container that forms a vacuum heat insulating chamber 10 that houses the cold head 9. These elements are mounted on the movable carriage 1. The compressor 8 is an air-cooled type, and unlike the water-cooled type, it does not require a water source and a water pump, and can be made compact in size, and is suitable for transportation, in-vehicle use, and the like. The compressor 8 is an air-cooled compressor operating at 100 V AC and rated at 800 W.

真空容器11は可動台車1の設置面1aから上方に向けて突出している。コールドヘッド9は超電導バルク磁石3を保持してこれを冷却するものであり、超電導バルク磁石3と共に真空容器11の真空断熱室10内に保持されている。図示はしないものの、コールドヘッド9には温度センサとヒーターを取り付け、外部の温度調節器に結線した。これにより、冷凍部7の最低到達温度以上から室温までの間の所望の温度に調整、保持できるようになっている。また、超電導バルク磁石3の着磁後、超電導バルク磁石3を最低到達温度に冷却して磁場を保持している間は、温度調節器は冷凍部7から切り離すことができる。冷凍部7と圧縮機8との間には、電力を供給するための電源線15が接続されており、また、冷媒(一般的にヘリウム)の往路及び復路となるフレキシブルな2本の冷媒ホース12がつながれている。冷媒ホース12に冷媒(ヘリウム)ガスが循環する。   The vacuum vessel 11 protrudes upward from the installation surface 1 a of the movable carriage 1. The cold head 9 holds the superconducting bulk magnet 3 and cools it, and is held in the vacuum heat insulating chamber 10 of the vacuum vessel 11 together with the superconducting bulk magnet 3. Although not shown, a temperature sensor and a heater were attached to the cold head 9 and connected to an external temperature controller. As a result, the temperature can be adjusted and maintained at a desired temperature between the minimum temperature reached by the freezing unit 7 and room temperature. Further, after the superconducting bulk magnet 3 is magnetized, the temperature controller can be disconnected from the freezing section 7 while the superconducting bulk magnet 3 is cooled to the lowest temperature and the magnetic field is maintained. A power line 15 for supplying electric power is connected between the refrigeration unit 7 and the compressor 8, and two flexible refrigerant hoses serving as a forward path and a return path for the refrigerant (generally helium) are connected. 12 are connected. A refrigerant (helium) gas circulates in the refrigerant hose 12.

圧縮機8と無停電電源5とは第2電源線13で接続されている。圧縮機8への電力供給は、無停電電源5(最大出力1500VA)から第2電源線13を介して行うことができる。無停電電源5は、一定時間外部からエネルギの補給を受けることなく電力を供給できるものであり、輸送元及び輸送先の室に取り付けられている商用電源のコンセントに接続可能なプラグ14をもつ電源線16を有する。無停電電源5のプラグ14を輸送元または輸送先の室に取り付けられている商用電源のコンセントに接続すれば、当該商用電源により圧縮機8を稼働させて冷凍機6を運転し、コールドヘッド9の低温を維持することができる。また、無停電電源5のプラグ14が輸送元または輸送先の室に取り付けられている商用電源のコンセントに接続されていないときには、無停電電源5は、一定時間圧縮機8を稼働させて冷凍機6を運転することができる。なお、最大出力1500VAの無停電電源5で、消費電力800Wのコンプレッサを15分運転することができた。   The compressor 8 and the uninterruptible power supply 5 are connected by a second power supply line 13. The power supply to the compressor 8 can be performed from the uninterruptible power supply 5 (maximum output 1500 VA) through the second power supply line 13. The uninterruptible power supply 5 is a power supply that can supply electric power without being replenished with energy from the outside for a certain period of time, and has a plug 14 that can be connected to a commercial power outlet attached to a room of a transportation source and a transportation destination. It has a line 16. If the plug 14 of the uninterruptible power supply 5 is connected to the outlet of a commercial power source installed in the room of the transportation source or the transportation destination, the compressor 8 is operated by the commercial power source to operate the refrigerator 6, and the cold head 9 The low temperature of can be maintained. Further, when the plug 14 of the uninterruptible power supply 5 is not connected to a commercial power outlet attached to the room of the transportation source or destination, the uninterruptible power supply 5 operates the compressor 8 for a certain period of time to operate the refrigerator. 6 can be driven. In addition, the uninterruptible power supply 5 with a maximum output of 1500 VA allowed the compressor with power consumption of 800 W to be operated for 15 minutes.

さて本実施例によれば、冷凍機6の運転前の状態、つまり室温状態で、真空容器11への超電導体2の取り付け作業、結線等を行なう。次に着磁過程について説明する。即ち、冷凍部7の真空容器11を輸送元の真空排気装置(ここでは図示しない)で排気しながら、輸送元の商用電源のコンセントにプラグ14を接続し、当該商用電源により冷凍機6を運転し、バルク状の超電導体2を低温まで冷却する。超電導体2は、超電導遷移温度以下に冷却され磁場を捕捉することにより外部に磁場を発する超電導バルク磁石となるものである。磁場を捕捉することにより行われる着磁には、冷凍機で冷却する方式のリング形状の室温ボア10cmを有する超電導マグネット100(図1参照,外径56cm、高さ67cmのもの)を用いた。この超電導マグネット100はマグネット本体の冷却に水冷式冷凍機が必要で、励磁用電源等の補機を含めた全体の重量は500kg以上ある。超電導マグネット100は、磁場発生時の遺漏磁界も非常に大きく、設置場所は限定され、輸送先には装備されていないのが通常である。本実施例では、設置条件を満たした輸送元の専用の超電導マグネット100を利用する。着磁工程として一般的な磁場中冷却法による。その手順は、ジャッキ4を上昇作動させることにより、超電導体2を収容する真空容器11を上昇させ、リング状の超電導マグネット100の室温ボアに挿入する。次に、超電導マグネット100の冷凍機を運転し、温度調節機で超電導体2の温度を超電磁遷移温度以上である100Kに保持し、その状態で、超電導マグネット100を6.5Tまで励磁する。次に、超電導マグネット100の磁場を6.5Tに保ったまま、超電導体2の温度を42Kまで冷却する。この場合、無停電電源5のプラグ14は輸送元の商用電源のコンセントに接続されているため、輸送元の商用電源により圧縮機8が稼働し冷凍機6が運転され、超電導体2を冷却する。   Now, according to the present embodiment, the superconductor 2 is attached to the vacuum vessel 11, connected, etc. in the state before the operation of the refrigerator 6, that is, at room temperature. Next, the magnetization process will be described. That is, while evacuating the vacuum container 11 of the refrigeration unit 7 with a transport source vacuum exhaust device (not shown here), the plug 14 is connected to the outlet of the commercial power source of the transport source, and the refrigerator 6 is operated by the commercial power source. Then, the bulk superconductor 2 is cooled to a low temperature. The superconductor 2 is a superconducting bulk magnet that emits a magnetic field to the outside by being cooled below the superconducting transition temperature and capturing the magnetic field. For the magnetization performed by capturing the magnetic field, a superconducting magnet 100 (see FIG. 1, having an outer diameter of 56 cm and a height of 67 cm) having a ring-shaped room temperature bore of 10 cm that is cooled by a refrigerator was used. The superconducting magnet 100 requires a water-cooled refrigerator for cooling the magnet body, and the total weight including auxiliary equipment such as an excitation power source is 500 kg or more. The superconducting magnet 100 has a very large leakage magnetic field when a magnetic field is generated, the installation location is limited, and the superconducting magnet 100 is usually not installed at the transportation destination. In this embodiment, a dedicated superconducting magnet 100 of a transportation source that satisfies the installation conditions is used. As a magnetization process, a general cooling method in a magnetic field is used. The procedure is to raise the vacuum vessel 11 containing the superconductor 2 by raising the jack 4 and inserting it into the room temperature bore of the ring-shaped superconducting magnet 100. Next, the refrigerator of the superconducting magnet 100 is operated, and the temperature of the superconductor 2 is maintained at 100 K which is equal to or higher than the superelectromagnetic transition temperature by the temperature controller, and in this state, the superconducting magnet 100 is excited to 6.5 T. Next, the temperature of the superconductor 2 is cooled to 42 K while the magnetic field of the superconducting magnet 100 is maintained at 6.5 T. In this case, since the plug 14 of the uninterruptible power supply 5 is connected to the outlet of the commercial power source of the transportation source, the compressor 8 is operated and the refrigerator 6 is operated by the commercial power source of the transportation source to cool the superconductor 2. .

次に、超電導体2の温度を42Kに保ったまま、超電導マグネット100の磁場を0まで下げる。次に、超電導マグネット100の磁場が0になった後、温度調節機のヒーターを止め、超電導体2を最低到達温度34Kまで冷却して磁束クリープを抑えて発生磁場を安定させる。以上の手順で、室温空間となる磁場表面上に4.6T程度の強い磁場をもつ超電導バルク磁石3を得ることができる。着磁後には、ジャッキ4を下降作動させることにより、超電導バルク磁石3を収容する真空容器11を下降させ、超電導バルク磁石3をリング状の超電導マグネット100のボアから離脱させる。   Next, the magnetic field of the superconducting magnet 100 is lowered to 0 while keeping the temperature of the superconductor 2 at 42K. Next, after the magnetic field of the superconducting magnet 100 becomes zero, the heater of the temperature controller is stopped, and the superconductor 2 is cooled to the lowest temperature of 34 K to suppress magnetic flux creep and stabilize the generated magnetic field. With the above procedure, the superconducting bulk magnet 3 having a strong magnetic field of about 4.6 T can be obtained on the magnetic field surface serving as a room temperature space. After magnetization, the jack 4 is lowered to lower the vacuum container 11 that accommodates the superconducting bulk magnet 3, and the superconducting bulk magnet 3 is detached from the bore of the ring-shaped superconducting magnet 100.

(磁場分布測定、確認)
上記のようにして着磁した磁極の発生磁場をもつ超電導バルク磁石3は、専用の3次元磁場分布測定装置を用いて評価する。この装置は、磁場XYZの各方向成分を同時に測定できるセンサを、XYZステージで走査し、測定空間内の磁場ベクトルを測定できる。その測定結果を分析して、スパッタリング装置に必要な水平磁場1T以上の磁場が同心円状の対称性のよい分布で出ていることを確認する。これにより超電導バルク磁石3の輸送前に、超電導バルク磁石3が目標磁場分布を有すること確認する。
(Magnetic field distribution measurement, confirmation)
The superconducting bulk magnet 3 having the magnetic field generated by the magnetic poles magnetized as described above is evaluated using a dedicated three-dimensional magnetic field distribution measuring device. This apparatus can measure a magnetic field vector in a measurement space by scanning a sensor capable of simultaneously measuring each direction component of the magnetic field XYZ with an XYZ stage. The measurement result is analyzed, and it is confirmed that a magnetic field having a horizontal magnetic field of 1 T or more necessary for the sputtering apparatus is generated in a concentric and symmetrical distribution. This confirms that the superconducting bulk magnet 3 has the target magnetic field distribution before the superconducting bulk magnet 3 is transported.

(輸送)
上記したように所望の磁場が出ている超電導バルク磁石3を、輸送元から輸送先に運搬する。輸送先は、着磁用の超電導マグネット100のある実験室から遠い(例えば10km以上離れた)所にあり、スパッタリング装置等の装置を有する室である。この場合、超電導バルク磁石3を搭載する可動台車1を車両18(輸送手段,図3参照)に搬入し、車両18を使って運搬する。車両18(自動車)は、電力供給源としての車載コンセント17(交流,AC100V)を有する。車載コンセント17は、輸送元の商用電源および輸送先の商用電源に対して、電圧、電気容量、周波数、コンセント形状に対してそれぞれ互換性を有する。主な運搬手順は、磁場の漏れ防止対策、着磁装置のある実験室から車両18までの超電導バルク磁石3の移動、超電導バルク磁石3を載せた状態での車両18による運搬、輸送先でのスパッタリング装置等の装置への組み付けである。
(transport)
As described above, the superconducting bulk magnet 3 generating a desired magnetic field is transported from the transport source to the transport destination. The transport destination is a room that is far from the laboratory where the superconducting magnet 100 for magnetization is located (for example, 10 km or more away) and has a device such as a sputtering device. In this case, the movable carriage 1 on which the superconducting bulk magnet 3 is mounted is carried into a vehicle 18 (transport means, see FIG. 3) and is carried using the vehicle 18. The vehicle 18 (automobile) has an on-vehicle outlet 17 (AC, AC 100 V) as a power supply source. The in-vehicle outlet 17 has compatibility with respect to the voltage, electric capacity, frequency, and outlet shape with respect to the commercial power source of the transportation source and the commercial power source of the transportation destination. The main transportation procedures are magnetic field leakage prevention measures, movement of the superconducting bulk magnet 3 from the laboratory where the magnetizing device is located to the vehicle 18, transportation by the vehicle 18 with the superconducting bulk magnet 3 mounted thereon, It is assembling to a device such as a sputtering device.

超電導バルク磁石3の磁極の表面からは非常に強い磁場が出る。このため鉄などの磁性材料の物体が近づくと強烈に超電導バルク磁石3に引きつけられてへばりついてしまい、超電導バルク磁石3から取り外すのは困難となる。また、鉄などの磁性材が強い力で超電導バルク磁石3の磁極に勢い良く飛びつくので、配慮が必要である。そのため、超電導バルク磁石3の磁場周辺の磁場の強い部分に磁性材料の物体が近づくことのないように、図2に示すように、非磁性材料で作った容器状をなすカバー部材としての非磁性緩衝材20を同軸的に真空容器11の上部に着脱可能に被着する。非磁性緩衝材20は、軽量化、緩衝性、磁場遮蔽性を確保すべく、発泡スチロール等の発泡体で形成されている。非磁性緩衝材20は、超電導バルク磁石3を収容する真空容器11の上部の側面を覆うリング形状の側面壁部21と、超電導バルク磁石3を収容する真空容器11の上面を覆う天井壁部22とを一体的に有する。非磁性緩衝材20の外側は、超電導バルク磁石3から距離が離れているため、他の磁性材が近づいても危険のない磁場強度になっている。   A very strong magnetic field is generated from the surface of the magnetic pole of the superconducting bulk magnet 3. For this reason, when an object of a magnetic material such as iron approaches, it is attracted to the superconducting bulk magnet 3 and sticks, and it is difficult to remove it from the superconducting bulk magnet 3. In addition, since a magnetic material such as iron jumps vigorously to the magnetic poles of the superconducting bulk magnet 3 with a strong force, consideration is required. Therefore, as shown in FIG. 2, nonmagnetic as a cover member made of a nonmagnetic material is used as a cover member so that an object of magnetic material does not approach the strong magnetic field around the magnetic field of the superconducting bulk magnet 3. The buffer material 20 is coaxially attached to the upper part of the vacuum vessel 11 so as to be detachable. The nonmagnetic cushioning material 20 is formed of a foamed material such as polystyrene foam in order to ensure weight reduction, buffering properties, and magnetic field shielding properties. The nonmagnetic buffer material 20 includes a ring-shaped side wall portion 21 that covers the upper side surface of the vacuum vessel 11 that accommodates the superconducting bulk magnet 3, and a ceiling wall portion 22 that covers the upper surface of the vacuum vessel 11 that accommodates the superconducting bulk magnet 3. And integrally. Since the outside of the nonmagnetic buffer material 20 is far from the superconducting bulk magnet 3, the magnetic field strength has no danger even when other magnetic materials approach.

更に図2に示すように、透磁率が高い軟磁性材料で形成された容器状をなすヨーク材24を、非磁性緩衝材20の上に同軸的に着脱可能に被着する。ヨーク材24は、非磁性緩衝材20の側面を覆うことにより超電導バルク磁石3の側面を覆うリング形状の側面壁部25と、非磁性緩衝材20の上面を覆うことにより超電導バルク磁石3の上面を覆う天井壁部26とを一体的に有する。このように超電導バルク磁石3の側面部及び上部は非磁性緩衝材20を介してヨーク材24により覆われているため、超電導バルク磁石3とヨーク材24とを繋ぐ閉ループ状の磁気回路30が形成され、超電導バルク磁石3の磁場の漏れが一層抑えられる。即ち、超電導バルク磁石3の磁極から出る磁力線は、ヨーク材24を透過するような閉ループの磁気回路30を形成するため、磁場の外部への漏れが抑制される。このように超電導バルク磁石3の外部にヨーク材24を配置して磁気回路30に形成するため、強い磁場が洩れる範囲は、ヨーク材24が設けられていない場合よりもかなり狭くなっている。この結果、超電導バルク磁石3の磁極から距離の離れたところに発生する磁場は、急激に小さくなる。この結果、外部に洩れる磁場を抑え、例えば外部に洩れる磁場が200ガウス以下になるようにし、輸送の際に、鉄などの磁性材料の物体が強い力で超電導バルク磁石3の磁極に飛びつくことを抑える。これにより運搬の際の安全性を高めることができる。   Further, as shown in FIG. 2, a yoke material 24 made of a soft magnetic material having a high magnetic permeability and having a container shape is coaxially and detachably attached on the nonmagnetic buffer material 20. The yoke material 24 includes a ring-shaped side wall 25 that covers the side surface of the superconducting bulk magnet 3 by covering the side surface of the nonmagnetic buffer material 20, and an upper surface of the superconducting bulk magnet 3 by covering the top surface of the nonmagnetic buffer material 20. And a ceiling wall portion 26 covering the wall. Thus, since the side surface and the upper part of the superconducting bulk magnet 3 are covered with the yoke material 24 via the nonmagnetic buffer material 20, a closed-loop magnetic circuit 30 that connects the superconducting bulk magnet 3 and the yoke material 24 is formed. Thus, the leakage of the magnetic field of the superconducting bulk magnet 3 is further suppressed. That is, the magnetic lines of force that emerge from the magnetic poles of the superconducting bulk magnet 3 form a closed-loop magnetic circuit 30 that passes through the yoke material 24, so that leakage of the magnetic field to the outside is suppressed. Thus, since the yoke material 24 is arranged outside the superconducting bulk magnet 3 and formed in the magnetic circuit 30, the range in which a strong magnetic field leaks is considerably narrower than when the yoke material 24 is not provided. As a result, the magnetic field generated at a distance away from the magnetic pole of the superconducting bulk magnet 3 rapidly decreases. As a result, the magnetic field leaking to the outside is suppressed, for example, the magnetic field leaking to the outside is set to 200 gauss or less, and an object of magnetic material such as iron jumps to the magnetic pole of the superconducting bulk magnet 3 with a strong force during transportation. suppress. Thereby, the safety | security at the time of conveyance can be improved.

本実施例によれば、図2に示すように、運搬時には、真空容器11の外方に、容器状の保護部材65が着脱可能に被着される。保護部材65は樹脂やゴム等の非磁性材料で形成されており、側面壁部66と天井壁部67とをもち、非磁性緩衝材20及びヨーク材24を包囲する。保護部材65により磁場の漏れが一層抑えられている。   According to the present embodiment, as shown in FIG. 2, the container-shaped protection member 65 is detachably attached to the outside of the vacuum container 11 during transportation. The protective member 65 is made of a nonmagnetic material such as resin or rubber, has a side wall portion 66 and a ceiling wall portion 67 and surrounds the nonmagnetic cushioning material 20 and the yoke material 24. The protective member 65 further suppresses magnetic field leakage.

着磁装置が設けられている輸送元の実験室から車両18に載せるまでの移動にあたり、輸送元の実験室の商用電源のコンセントから無停電電源5のプラグ14を切り離し、室内および通路を運搬する。この場合、輸送元の商用電源のコンセントから圧縮機8は切り離されるため、無停電電源5から供給される電力により圧縮機8を稼働させて冷凍機6を運転し、超電導バルク磁石3を冷却する。この場合、車両18としては、最大1500Wの出力がとれる車載コンセント17を車室内にもつハイブリッド車を用いる。超電導バルク磁石3等の各要素を搭載した可動台車1を車両18の車室内に乗せた後、無停電電源5の電源線16のプラグ14を車両18の車室内の車載コンセント17に差し込む。車両18により超電導バルク磁石3を輸送している間は、車両18の車載コンセント17から冷凍機6の圧縮機8が電力供給を受け、超電導バルク磁石3を冷却する。所定時間(約1時間ほど)車両18を運転して車両18が輸送先に到着する。なお、輸送中は、冷凍機6の真空容器11内を真空排気することなく、真空容器11内を封止した状態で、且つ真空容器11内の断熱を保ったまま、超電導バルク磁石3を冷凍機6と共に運搬する。   When moving from the laboratory at the transportation source where the magnetizing device is installed to the vehicle 18, the plug 14 of the uninterruptible power supply 5 is disconnected from the commercial power outlet of the laboratory at the transportation source to transport the room and passage. . In this case, since the compressor 8 is disconnected from the outlet of the commercial power source of the transportation source, the compressor 8 is operated by the electric power supplied from the uninterruptible power supply 5, the refrigerator 6 is operated, and the superconducting bulk magnet 3 is cooled. . In this case, as the vehicle 18, a hybrid vehicle having an in-vehicle outlet 17 that can output a maximum of 1500 W in the vehicle interior is used. After the movable carriage 1 mounted with each element such as the superconducting bulk magnet 3 is placed in the vehicle interior of the vehicle 18, the plug 14 of the power line 16 of the uninterruptible power supply 5 is inserted into the vehicle-mounted outlet 17 in the vehicle interior of the vehicle 18. While the superconducting bulk magnet 3 is being transported by the vehicle 18, the compressor 8 of the refrigerator 6 is supplied with power from the in-vehicle outlet 17 of the vehicle 18 to cool the superconducting bulk magnet 3. The vehicle 18 is driven for a predetermined time (about 1 hour) and the vehicle 18 arrives at the destination. During transportation, the superconducting bulk magnet 3 is frozen while the vacuum vessel 11 is sealed and the heat insulation in the vacuum vessel 11 is maintained without evacuating the vacuum vessel 11 of the refrigerator 6. Carry with machine 6

そして輸送先においては、無停電電源5の電源線16のプラグ14を車両18の車室内の車載コンセント17から切り離す。更に、可動台車1の搬入時と同様に、超電導バルク磁石3などを搭載した可動台車1を車両18から、成膜用のスパッタリング装置のある実験室まで運搬する。この場合、可動台車1を車両18から輸送先の実験室に移動させるまでの間は、無停電電源5からの電力により冷凍機6の圧縮機8を稼働し、超電導バルク磁石3を収容する真空断熱室10内の低温を維持する。そして、保護部材65,ヨーク材24、非磁性緩衝材20を真空容器11から外した状態で、ジャッキ4を上昇作動させることにより、超電導体2を収容する真空容器11を上昇させ、輸送先のスパッタリング装置等の磁場利用装置に組み付ける。この場合、無停電電源5のプラグ14を輸送先の実験室の商用電源のコンセントに接続し、商用電源から電力により圧縮機8を稼働して冷凍機6を運転し、超電導バルク磁石3を低温に維持する。   At the transportation destination, the plug 14 of the power line 16 of the uninterruptible power supply 5 is disconnected from the in-vehicle outlet 17 in the passenger compartment of the vehicle 18. Further, the movable carriage 1 on which the superconducting bulk magnet 3 and the like are mounted is transported from the vehicle 18 to the laboratory where the film forming sputtering apparatus is provided, as in the case where the movable carriage 1 is carried in. In this case, until the movable carriage 1 is moved from the vehicle 18 to the transport destination laboratory, the compressor 8 of the refrigerator 6 is operated by the electric power from the uninterruptible power supply 5, and the vacuum that accommodates the superconducting bulk magnet 3 is accommodated. The low temperature in the heat insulating chamber 10 is maintained. Then, with the protective member 65, the yoke material 24, and the nonmagnetic buffer material 20 removed from the vacuum container 11, the jack 4 is lifted to raise the vacuum container 11 that accommodates the superconductor 2, and the transport destination Installed in a magnetic field device such as a sputtering device. In this case, the plug 14 of the uninterruptible power supply 5 is connected to the outlet of the commercial power source of the laboratory at the transportation destination, the compressor 8 is operated by the electric power from the commercial power source, the refrigerator 6 is operated, and the superconducting bulk magnet 3 is cooled to a low temperature. To maintain.

以上説明したように本実施例によれば、冷却装置として機能する冷凍機6を使用しており、超電導バルク磁石3の運転に必要なものは冷凍機6の電力である。補助電源である無停電電源5を組み合わせているため、輸送元の商用電源と冷凍機6とを切り離した状態でも、無停電電源5により一定時間の間、冷凍機6を停止させずに、すなわち超電導バルク磁石3の温度を着磁の際の温度より充分低くし続けることができる。このため、超電導バルク磁石3の捕捉磁場に影響を与えることを抑えつつ、冷凍機6の電力供給源を変更したり、冷凍機6を商用電源から切り離して輸送を行うことができる。   As described above, according to the present embodiment, the refrigerator 6 that functions as a cooling device is used, and what is necessary for the operation of the superconducting bulk magnet 3 is the electric power of the refrigerator 6. Since the uninterruptible power supply 5 which is an auxiliary power supply is combined, the refrigerator 6 is not stopped for a certain time by the uninterruptible power supply 5 even when the commercial power source of the transportation source and the refrigerator 6 are disconnected. The temperature of the superconducting bulk magnet 3 can be kept sufficiently lower than the temperature at the time of magnetization. For this reason, it is possible to change the power supply source of the refrigerator 6 or to transport the refrigerator 6 separated from the commercial power source while suppressing the influence on the trapped magnetic field of the superconducting bulk magnet 3.

さらに本実施例によれば、輸送元で超電導体2の着磁を行い、超電導バルク磁石3とするため、使用頻度が少ない着磁作業のためだけに着磁装置を多くのユーザーが準備する必要から開放される。また、輸送元も多数のユーザーに超電導バルク磁石3を供与できることからコストダウンを期待でき、より利用しやすい価格で超電導バルク磁石を提供できると期待される。   Furthermore, according to the present embodiment, since the superconductor 2 is magnetized at the transportation source to form the superconducting bulk magnet 3, it is necessary for many users to prepare a magnetizing device only for a magnetizing operation that is less frequently used. Is released from. In addition, since the superconducting bulk magnet 3 can be provided to a large number of users, the cost can be expected to be reduced, and it is expected that the superconducting bulk magnet can be provided at a price that is easier to use.

本実施例によれば、ハイブリッド車等の電力供給源(車載コンセント17)を持つ輸送手段としての車両18を用いることにより、超電導バルク磁石3を遠隔地へ輸送することも可能である。これにより、超電導バルク磁石3のユーザーは高価な着磁装置を自前で持つ必要はなくなり、超電導バルク磁石3のメーカーから、所望の磁場強度を保証された上で、超電導バルク磁石3を入手することも可能になる。   According to the present embodiment, the superconducting bulk magnet 3 can be transported to a remote place by using the vehicle 18 as a transport means having a power supply source (vehicle outlet 17) such as a hybrid vehicle. This eliminates the need for users of the superconducting bulk magnet 3 to have an expensive magnetizing device on their own, and obtains the superconducting bulk magnet 3 from the manufacturer of the superconducting bulk magnet 3 while ensuring the desired magnetic field strength. Is also possible.

前述されているように、補助電源である無停電電源5は一定時間外部からエネルギの補給を受けることなく電力を供給できる。このようにすれば、無停電電源5や超電導バルク磁石3などを搭載した可動台車1を建物内において移動させることは極めて容易になり、エレベーター等を使って別の階に容易に移動させることもできる。   As described above, the uninterruptible power supply 5 which is an auxiliary power supply can supply electric power without being replenished with energy from the outside for a certain period of time. If it does in this way, it will become very easy to move movable cart 1 carrying uninterruptible power supply 5, superconducting bulk magnet 3, etc. in a building, and it can also be easily moved to another floor using an elevator etc. it can.

(実施例2)
図4は実施例2を示す。実施例2は実施例1と基本的には同様の構成であり、基本的には同様の作用効果を奏する。共通する機能を有する部位には共通の符号を付する。以下、実施例1と相違する部分のみ説明する。図4に示すように、走行車輪1xをもつ可動台車1Bには、超電導バルク磁石3(Sm系,例えば直径60mm)、コールドヘッド9で寒冷を生成するための冷凍部7、超電導バルク磁石3を昇降させる昇降機としての昇降可能なジャッキ4とが搭載されている。冷凍機6は、冷媒を圧縮させる圧縮機8と、冷凍部7と、冷凍部7により冷却される低温となる寒冷部であるコールドヘッド9と、コールドヘッド9を収容する断熱容器として機能できる真空容器11とを有する。コールドヘッド9は超電導バルク磁石3と共に真空容器11の真空断熱室10内に保持されている。本実施例によれば、圧縮機8は、冷凍部7に電力を供給する補助電源である無停電電源5と一体的に設けられている。一体型の圧縮機8は可動台車1Bと別にされており、走行車輪8xを有しており、移動可能とされている。冷凍部7と圧縮機8との間には、電源供給のため電源線13が接続されており、また、冷却のためフレキシブルな2本の冷媒(ヘリウム)の往路及び復路となる冷媒ホース12がつながれている。冷凍機6の圧縮機8への電力供給は、無停電電源5(最大出力1500VA)から行なう。圧縮機8と一体化された無停電電源5は、所定時間(最大30分まで)冷凍機6を運転することができる。そして、冷凍機6の運転前の状態、つまり室温状態で、真空容器11へのバルク状の超電導体2の取り付け作業、結線等を行なう。本実施例によれば、無停電電源5は圧縮機8と一体であるため、運搬物の数が少なくなり、運び易い利点が得られる。更に無停電電源5と一体化された圧縮機8を、超電導バルク磁石3から離間させるのに有利であるため、超電導バルク磁石3の強い磁場の影響が無停電電源5、圧縮機8に影響することを回避することができる。また、磁場を発生する超電導体2(着磁後は超電導バルク磁石3)の部分だけを別体で扱えるため、着磁作業が楽にできる。また超電導体2を使うときも、装置に組み込む際の自由度が大きく使い易い。
(Example 2)
FIG. 4 shows a second embodiment. The second embodiment basically has the same configuration as that of the first embodiment, and basically has the same functions and effects. Parts having common functions are denoted by common reference numerals. Only the parts different from the first embodiment will be described below. As shown in FIG. 4, a movable carriage 1B having traveling wheels 1x includes a superconducting bulk magnet 3 (Sm system, for example, a diameter of 60 mm), a refrigeration unit 7 for generating cold with a cold head 9, and a superconducting bulk magnet 3. A liftable jack 4 is mounted as a lift that moves up and down. The refrigerator 6 is a vacuum that can function as a heat insulating container that houses the compressor 8 that compresses the refrigerant, the freezing unit 7, the cold head 9 that is a cold part cooled by the freezing unit 7, and the cold head 9. And a container 11. The cold head 9 is held in the vacuum heat insulating chamber 10 of the vacuum vessel 11 together with the superconducting bulk magnet 3. According to the present embodiment, the compressor 8 is provided integrally with the uninterruptible power supply 5 that is an auxiliary power supply that supplies power to the refrigeration unit 7. The integrated compressor 8 is separate from the movable carriage 1B, has traveling wheels 8x, and is movable. A power line 13 is connected between the refrigeration unit 7 and the compressor 8 for power supply, and a refrigerant hose 12 serving as a forward path and a return path for two flexible refrigerants (helium) for cooling. It is connected. Electric power is supplied to the compressor 8 of the refrigerator 6 from the uninterruptible power supply 5 (maximum output 1500 VA). The uninterruptible power supply 5 integrated with the compressor 8 can operate the refrigerator 6 for a predetermined time (up to 30 minutes). Then, in the state before the operation of the refrigerator 6, that is, at room temperature, the work of attaching the bulk superconductor 2 to the vacuum vessel 11, connection, etc. are performed. According to the present embodiment, since the uninterruptible power supply 5 is integrated with the compressor 8, the number of items to be transported is reduced, and an advantage of being easy to carry is obtained. Furthermore, since the compressor 8 integrated with the uninterruptible power supply 5 is advantageous for separating from the superconducting bulk magnet 3, the influence of the strong magnetic field of the superconducting bulk magnet 3 affects the uninterruptible power supply 5 and the compressor 8. You can avoid that. In addition, since only the superconductor 2 that generates a magnetic field (superconducting bulk magnet 3 after magnetization) can be handled separately, the magnetizing operation can be facilitated. Also, when using the superconductor 2, the degree of freedom in incorporating it into the apparatus is large and easy to use.

なお、本実施例によれば、実施例1と同様に、輸送元においては、ジャッキ4を上昇作動させることにより、超電導体2を収容する真空容器11を上昇させ、リング状の超電導マグネット100の室温ボアに挿入し、その状態で超電導バルク磁石3の着磁を行う。超電導バルク磁石3の着磁後には、ジャッキ4を下降作動させることにより、超電導バルク磁石3を収容する真空容器11を下降させ、リング状の超電導マグネット100の室温ボアから離脱させる。一方、輸送先においては、保護部材65,ヨーク材24、非磁性緩衝材20を真空容器11から外した状態で、ジャッキ4を上昇作動させることにより、超電導バルク磁石3を収容する真空容器11を上昇させ、超電導バルク磁石3をスパッタリング装置等の装置に組み付ける。前述されているように、補助電源である無停電電源5は一定時間外部からエネルギの補給を受けることなく電力を供給できる。このようにすれば、無停電電源5や超電導バルク磁石3などを搭載した可動台車1を建物内において移動させることは極めて容易になり、エレベーター等を使って別の階に容易に移動させることもできる。   In addition, according to the present embodiment, similarly to the first embodiment, at the transportation source, by raising the jack 4, the vacuum vessel 11 that accommodates the superconductor 2 is raised, and the ring-shaped superconducting magnet 100 is The superconducting bulk magnet 3 is magnetized by being inserted into the room temperature bore. After the superconducting bulk magnet 3 is magnetized, the jack 4 is moved downward to lower the vacuum container 11 that accommodates the superconducting bulk magnet 3 and is detached from the room temperature bore of the ring-shaped superconducting magnet 100. On the other hand, at the transport destination, the vacuum container 11 that accommodates the superconducting bulk magnet 3 is operated by raising the jack 4 with the protective member 65, the yoke material 24, and the nonmagnetic buffer material 20 removed from the vacuum container 11. The superconducting bulk magnet 3 is assembled to a device such as a sputtering device. As described above, the uninterruptible power supply 5 which is an auxiliary power supply can supply electric power without being replenished with energy from the outside for a predetermined time. If it does in this way, it will become very easy to move movable cart 1 carrying uninterruptible power supply 5, superconducting bulk magnet 3, etc. in a building, and it can also be easily moved to another floor using an elevator etc. it can.

(実施例3)
図5は実施例3を示す。実施例3は実施例2と基本的には同様の構成であり、基本的には同様の作用効果を奏する。共通する機能を有する部位には共通の符号を付する。以下、実施例2と相違する部分を中心として説明する。本実施例によれば、図5に示すように、冷凍部7に電力を供給する補助電源である無停電電源5は、空冷式の圧縮機8とは別体とされている。無停電電源5は走行車輪5xを有し、移動可能とされている。圧縮機8は走行車輪8xを有し、移動可能とされている。
Example 3
FIG. 5 shows a third embodiment. The third embodiment has basically the same configuration as that of the second embodiment, and basically has the same functions and effects. Parts having common functions are denoted by common reference numerals. Hereinafter, a description will be given centering on the difference from the second embodiment. According to the present embodiment, as shown in FIG. 5, the uninterruptible power supply 5 that is an auxiliary power supply that supplies power to the refrigeration unit 7 is separated from the air-cooled compressor 8. The uninterruptible power supply 5 has traveling wheels 5x and is movable. The compressor 8 has traveling wheels 8x and is movable.

なお、本実施例においても、実施例1と同様に、輸送元においては、保護部材65,ヨーク材24、非磁性緩衝材20を真空容器11から外した状態で、ジャッキ4を上昇作動させることにより、超電導体2を収容する真空容器11を上昇させ、リング状の超電導マグネット100の室温ボアに挿入し、その状態で超電導バルク磁石3の着磁を行う。着磁後には、ジャッキ4を下降作動させることにより、超電導体2を収容する真空容器11を下降させ、リング状の超電導マグネット100の室温ボアから離脱させ、その状態で超電導バルク磁石3の着磁を行う。着磁の際には、プラグ14が輸送元の室の商用電源のコンセントに接続されているため、商用電源により圧縮機8を稼働させて冷凍機器6を運転し、超電導バルク磁石3を冷却する。また、輸送先においては、保護部材65,ヨーク材24、非磁性緩衝材20を真空容器11から外した状態で、ジャッキ4を上昇作動させることにより、超電導バルク磁石3を収容する真空容器11を上昇させ、スパッタリング装置等の磁場利用装置に組み付ける。前述されているように、補助電源である無停電電源5は一定時間外部からエネルギの補給を受けることなく電力を供給できる。このようにすれば、無停電電源5や超電導バルク磁石3などを搭載した可動台車1を建物内において移動させることは極めて容易になり、エレベーター等を使って別の階に容易に移動させることもできる。   Also in the present embodiment, as in the first embodiment, the jack 4 is lifted and operated at the transportation source with the protective member 65, the yoke material 24, and the nonmagnetic buffer material 20 removed from the vacuum container 11. Thus, the vacuum vessel 11 that accommodates the superconductor 2 is raised and inserted into the room temperature bore of the ring-shaped superconducting magnet 100, and the superconducting bulk magnet 3 is magnetized in this state. After magnetization, the jack 4 is lowered to lower the vacuum vessel 11 that accommodates the superconductor 2 and is detached from the room temperature bore of the ring-shaped superconducting magnet 100, and in this state, the superconducting bulk magnet 3 is magnetized. I do. At the time of magnetization, since the plug 14 is connected to the outlet of the commercial power source in the room of the transportation source, the compressor 8 is operated by the commercial power source, the refrigeration equipment 6 is operated, and the superconducting bulk magnet 3 is cooled. . Further, at the transportation destination, the vacuum container 11 that accommodates the superconducting bulk magnet 3 is operated by raising the jack 4 with the protective member 65, the yoke material 24, and the nonmagnetic buffer material 20 removed from the vacuum container 11. Raised and assembled to a magnetic field utilization device such as a sputtering device. As described above, the uninterruptible power supply 5 which is an auxiliary power supply can supply electric power without being replenished with energy from the outside for a certain period of time. If it does in this way, it will become very easy to move movable cart 1 carrying uninterruptible power supply 5, superconducting bulk magnet 3, etc. in a building, and it can also be easily moved to another floor using an elevator etc. it can.

(実施例4)
図6は実施例4を示す。実施例4は実施例2と基本的には同様の構成であり、基本的には同様の作用効果を奏する。共通する機能を有する部位には共通の符号を付する。以下、相違する部分を中心として説明する。図6に示すように、冷凍部7に電力を供給する補助電源である無停電電源5は、空冷式の圧縮機8と別にされている。無停電電源5は走行車輪5xを有し、移動可能とされている。圧縮機8は走行車輪8xを有し、移動可能とされている。更に、無停電電源5に接続された予備無停電電源80(第2補助電源)が設けられている。予備無停電電源80は走行車輪80xを有する。燃料を供給する給油時等のような車両1の停止時には、車両18の車載コンセント17から電力を圧縮機8に充分に供給できなくなるおそれがある。そこで、無停電電源5を予備無停電電源80に接続し、予備無停電電源80を無停電電源5と車載コンセント17との間に介在させている。このため車両18が長時間にわたり停止するときにおいても、予備無停電電源80により圧縮機8に電力を供給できるため、給油回数が多い長時間の輸送に適する。このように無停電電源を予備無停電電源80及び無停電電源5に分けることにより、超電導バルク磁石3側に付帯する補助電源を必要最小限のものにすることができ、ユーザーが必要以上の補助電源を用意する必要がなくなる。前述されているように、補助電源である無停電電源5は一定時間外部からエネルギの補給を受けることなく電力を供給できる。このようにすれば、無停電電源5や超電導バルク磁石3などを搭載した可動台車1を建物内において移動させることは極めて容易になり、エレベーター等を使って別の階に容易に移動させることもできる。
Example 4
FIG. 6 shows a fourth embodiment. The fourth embodiment has basically the same configuration as that of the second embodiment, and basically has the same functions and effects. Parts having common functions are denoted by common reference numerals. Hereinafter, the description will focus on the different parts. As shown in FIG. 6, the uninterruptible power supply 5, which is an auxiliary power supply that supplies power to the refrigeration unit 7, is separate from the air-cooled compressor 8. The uninterruptible power supply 5 has traveling wheels 5x and is movable. The compressor 8 has traveling wheels 8x and is movable. Further, a backup uninterruptible power supply 80 (second auxiliary power supply) connected to the uninterruptible power supply 5 is provided. The standby uninterruptible power supply 80 has traveling wheels 80x. When the vehicle 1 is stopped, such as when fuel is supplied, there is a possibility that electric power cannot be sufficiently supplied from the in-vehicle outlet 17 of the vehicle 18 to the compressor 8. Therefore, the uninterruptible power supply 5 is connected to the backup uninterruptible power supply 80, and the backup uninterruptible power supply 80 is interposed between the uninterruptible power supply 5 and the in-vehicle outlet 17. For this reason, even when the vehicle 18 stops for a long time, power can be supplied to the compressor 8 by the backup uninterruptible power supply 80, so that it is suitable for long-time transportation with a large number of times of refueling. By dividing the uninterruptible power supply into the standby uninterruptible power supply 80 and the uninterruptible power supply 5 in this way, the auxiliary power supply attached to the superconducting bulk magnet 3 side can be made the minimum necessary, and the user can assist more than necessary. There is no need to prepare a power supply. As described above, the uninterruptible power supply 5 which is an auxiliary power supply can supply electric power without being replenished with energy from the outside for a predetermined time. If it does in this way, it will become very easy to move movable cart 1 carrying uninterruptible power supply 5, superconducting bulk magnet 3, etc. in a building, and it can also be easily moved to another floor using an elevator etc. it can.

(実施例5)
図7は実施例5を示す。実施例5は実施例1と基本的には同様の構成であり、基本的には同様の作用効果を奏する。共通する機能を有する部位には共通の符号を付する。以下、相違する部分を中心として説明する。図7に示すように、本実施例は、超電導バルク磁石3を貯留容器40の液体冷媒41(一般的には液体窒素とするが、これに限られものではない)に浸漬し、超電導バルク磁石3の磁場を発生させた状態で運搬する例である。この場合、図7に示すように、液体冷媒41が入った断熱性をもつ断熱容器として機能できる貯留容器40、無停電電源5が冷却装置43と共に可動台車1に搭載されている。可動台車1に搭載されている冷却装置43は、コールドヘッド9で寒冷を生成する冷凍部7をもつ冷凍機6と、液体冷媒41を貯留する上面開口40aをもつ貯留容器40と、貯留容器40の上面開口40aを開閉する断熱性をもつ蓋44とを有する。コールドヘッド9には冷却フィン46が液体冷媒41に浸漬されるように取り付けられている。なお、コールドヘッド9は、貯留容器40の液体冷媒41を所定の温度に設定できるように液体冷媒41を温度制御ができるようになっている。
(Example 5)
FIG. 7 shows a fifth embodiment. The fifth embodiment has basically the same configuration as the first embodiment, and basically has the same function and effect. Parts having common functions are denoted by common reference numerals. Hereinafter, the description will focus on the different parts. As shown in FIG. 7, in this embodiment, the superconducting bulk magnet 3 is immersed in a liquid refrigerant 41 (generally liquid nitrogen, but not limited to this) in the storage container 40, and the superconducting bulk magnet is immersed. It is an example conveyed in the state which generated 3 magnetic fields. In this case, as shown in FIG. 7, the storage container 40 and the uninterruptible power supply 5 that can function as a heat insulating container having a heat insulating property containing the liquid refrigerant 41 are mounted on the movable carriage 1 together with the cooling device 43. The cooling device 43 mounted on the movable carriage 1 includes a refrigerator 6 having a refrigeration unit 7 that generates cold with the cold head 9, a storage container 40 having an upper surface opening 40 a for storing the liquid refrigerant 41, and a storage container 40. And a lid 44 having heat insulation for opening and closing the upper surface opening 40a. Cooling fins 46 are attached to the cold head 9 so as to be immersed in the liquid refrigerant 41. The cold head 9 can control the temperature of the liquid refrigerant 41 so that the liquid refrigerant 41 of the storage container 40 can be set to a predetermined temperature.

取出容器50は、磁場を発生している超電導バルク磁石3を載置可能な保持部51と、使用者またはロボットが掴むハンドル部52とを有しており、貯留容器40内の冷却フィン46に対して着脱可能とされている。超電導バルク磁石3を収容する取出容器50は、貯留容器40の液体冷媒41の中に着脱可能に浸漬される。取出容器50を液体冷媒41に浸漬させても、ハンドル部52は液体冷媒41の液面41dから露出する。そして、冷却フィン46と取出容器50との間に支持材53を着脱可能に配置することにより、超電導バルク磁石3を収容する取出容器50は固定され、運搬時に水平方向に動かないようにされる。この場合、超電導バルク磁石3は例えばSm-Ba-Cu-O系超電導体2(Tc=94K)で形成されているが、これに限定されるものではない。
運搬にあたり次のようにする。
(1)着磁された超電導バルク磁石3を液体冷媒41と共に取出容器50に入れた状態にしておく(図8参照)。通常、超電導マグネットを使って超電導バルク磁石3を液体冷媒41中で着磁した場合には、このような状態に容易にできる。超電導バルク磁石3は位置決め部材47によりその位置が固定されている。具体的には、板状の位置決め部材47には超電導バルク磁石3に対応する穴が形成されており、この穴に超電導体2が嵌め込まれて、超電導体2の水平方向の移動が抑制されている。
(2)可動台車1の貯留容器40内には予め液体冷媒41(一般的には液体窒素)を貯留しておく。そして、液体冷媒41の蒸発を抑える温度(一般的には大気圧で63K以上77K以下)に冷凍部7で温度制御しておく。
(3)貯留容器40内に貯留されている液体冷媒41に、超電導バルク磁石3と共に取出容器50を浸漬させる。この場合、超電導バルク磁石3の全体は、液体冷媒41に浸漬される。この場合、支持材53を冷却フィン46と取出容器50の外周部との間に取り付け、超電導バルク磁石3を収容する取出容器50を動かないように固定する。更に貯留容器40の上面開口40aに蓋44をセットする。
(4)この状態の可動台車1を車載コンセント17(電力供給源)付の車両18に載せ、プラグ14を車載コンセント17に接続し、車両18により輸送先の目的地に運搬する。
(5)目的地に到着したら、逆の手順で、超電導バルク磁石3を搭載した可動台車1を車両18から搬出する。更に逆の手順で、可動台車1の超電導バルク磁石3を輸送先の装置に組み付ける。
The take-out container 50 has a holding part 51 on which the superconducting bulk magnet 3 generating a magnetic field can be placed, and a handle part 52 that is gripped by a user or a robot, and is attached to the cooling fin 46 in the storage container 40. On the other hand, it is detachable. The take-out container 50 that accommodates the superconducting bulk magnet 3 is detachably immersed in the liquid refrigerant 41 of the storage container 40. Even when the extraction container 50 is immersed in the liquid refrigerant 41, the handle portion 52 is exposed from the liquid surface 41 d of the liquid refrigerant 41. The support material 53 is detachably disposed between the cooling fin 46 and the take-out container 50, whereby the take-out container 50 that accommodates the superconducting bulk magnet 3 is fixed and does not move in the horizontal direction during transportation. . In this case, the superconducting bulk magnet 3 is formed of, for example, the Sm—Ba—Cu—O-based superconductor 2 (Tc = 94K), but is not limited thereto.
When transporting, do as follows.
(1) The magnetized superconducting bulk magnet 3 is kept in the take-out container 50 together with the liquid refrigerant 41 (see FIG. 8). Usually, when the superconducting bulk magnet 3 is magnetized in the liquid refrigerant 41 using a superconducting magnet, such a state can be easily achieved. The position of superconducting bulk magnet 3 is fixed by positioning member 47. Specifically, a hole corresponding to the superconducting bulk magnet 3 is formed in the plate-shaped positioning member 47, and the superconductor 2 is fitted into this hole, so that the horizontal movement of the superconductor 2 is suppressed. Yes.
(2) A liquid refrigerant 41 (generally liquid nitrogen) is stored in the storage container 40 of the movable carriage 1 in advance. Then, the temperature of the refrigeration unit 7 is controlled to a temperature at which evaporation of the liquid refrigerant 41 is suppressed (generally 63 K or more and 77 K or less at atmospheric pressure).
(3) The extraction container 50 is immersed together with the superconducting bulk magnet 3 in the liquid refrigerant 41 stored in the storage container 40. In this case, the entire superconducting bulk magnet 3 is immersed in the liquid refrigerant 41. In this case, the support member 53 is attached between the cooling fin 46 and the outer peripheral portion of the extraction container 50, and the extraction container 50 that accommodates the superconducting bulk magnet 3 is fixed so as not to move. Further, the lid 44 is set in the upper surface opening 40 a of the storage container 40.
(4) The movable carriage 1 in this state is placed on a vehicle 18 with an in-vehicle outlet 17 (power supply source), the plug 14 is connected to the in-vehicle outlet 17, and is transported by the vehicle 18 to the destination of the transportation destination.
(5) When arriving at the destination, the movable carriage 1 carrying the superconducting bulk magnet 3 is carried out of the vehicle 18 in the reverse procedure. Further, the superconducting bulk magnet 3 of the movable carriage 1 is assembled to the transport destination apparatus by the reverse procedure.

本実施例によれば、前記した実施例と同様に、超電導バルク磁石3の磁場を発生した状態で運搬が可能となる。更に、超電導バルク磁石3の低温を維持するために液体冷媒41を使っているので、貯留容器40の貯留室40c内を必ずしも真空状態または高真空状態に維持せずともよく、超電導バルク磁石3の出し入れが容易である。また、超電導バルク磁石3の磁場を遮蔽する磁場遮蔽空間が貯留容器40の貯留室40cにより確保できるため、外部への磁場の影響を小さくできる。   According to the present embodiment, as in the above-described embodiment, the superconducting bulk magnet 3 can be transported with the magnetic field generated. Furthermore, since the liquid refrigerant 41 is used to maintain the low temperature of the superconducting bulk magnet 3, the inside of the storage chamber 40c of the storage container 40 does not necessarily have to be maintained in a vacuum state or a high vacuum state. Easy to put in and out. Moreover, since the magnetic field shielding space for shielding the magnetic field of the superconducting bulk magnet 3 can be secured by the storage chamber 40c of the storage container 40, the influence of the magnetic field to the outside can be reduced.

また図7に示すように貯留容器40の液体冷媒41の液面41dに、液体冷媒41よりも比重が小さく且つ磁場遮蔽性及び断熱性をもつ材料(樹脂発泡体等)で形成されたフロート部材85を浮遊させ、フロート部材85で液体冷媒41を覆うこともできる。この場合、超電導バルク磁石3を浸漬している液体冷媒41に対する保冷性を高めることができ、更に、運搬の際に液体冷媒41の液面41dの揺動を抑制でき、超電導バルク磁石3の低温維持に有利であり、加えて超電導バルク磁石3の磁場の漏れを抑えるのに有利である。前述されているように、補助電源である無停電電源5は一定時間外部からエネルギの補給を受けることなく電力を供給できる。このようにすれば、無停電電源5や超電導バルク磁石3などを搭載した可動台車1を建物内において移動させることは極めて容易になり、エレベーター等を使って別の階に容易に移動させることもできる。   Further, as shown in FIG. 7, a float member formed on the liquid surface 41 d of the liquid refrigerant 41 of the storage container 40 with a material (resin foam or the like) having a specific gravity smaller than that of the liquid refrigerant 41 and having magnetic field shielding and heat insulation properties. It is also possible to float 85 and cover the liquid refrigerant 41 with the float member 85. In this case, it is possible to improve the cold insulation property for the liquid refrigerant 41 in which the superconducting bulk magnet 3 is immersed, and further, it is possible to suppress the swing of the liquid surface 41d of the liquid refrigerant 41 during transportation, and the superconducting bulk magnet 3 has a low temperature. It is advantageous for maintenance, and in addition, it is advantageous for suppressing leakage of the magnetic field of the superconducting bulk magnet 3. As described above, the uninterruptible power supply 5 which is an auxiliary power supply can supply electric power without being replenished with energy from the outside for a certain period of time. If it does in this way, it will become very easy to move movable cart 1 carrying uninterruptible power supply 5, superconducting bulk magnet 3, etc. in a building, and it can also be easily moved to another floor using an elevator etc. it can.

(実施例6)
図9は実施例6を示す。実施例6は実施例5と基本的には同様の構成であり、基本的には同様の作用効果を奏する。共通する機能を有する部位には共通の符号を付する。以下、相違する部分を中心として説明する。本実施例は、超電導バルク磁石3を貯留容器40に貯留されている液体冷媒41に浸漬して磁場を発生させた状態で運搬する別の例である。実施例5と異なる点は以下の通りである。即ち、冷凍機6の設定温度を変えて、貯留容器40内の液体冷媒41の温度をその凝固点以下(液体冷媒41が液体窒素である場合には、大気圧で63K)にし、超電導バルク磁石3全体が浸漬している状態の液体冷媒41を凍結固化させる。この結果、超電導バルク磁石3の外周側及び上面側の液体冷媒41が凍結固化するため、超電導バルク磁石3の固定性、保護性が向上、超電導バルク磁石3の保護性を高めることができる。更に運搬中に可動台車1が振動するときであっても、液体冷媒41の液面41dの揺動も防止でき、液体冷媒41の液面41dから超電導バルク磁石3が露出する不具合を防止できる。
(Example 6)
FIG. 9 shows a sixth embodiment. The sixth embodiment has basically the same configuration as that of the fifth embodiment, and basically has the same functions and effects. Parts having common functions are denoted by common reference numerals. Hereinafter, the description will focus on the different parts. The present embodiment is another example in which the superconducting bulk magnet 3 is transported while being immersed in the liquid refrigerant 41 stored in the storage container 40 and generating a magnetic field. Differences from the fifth embodiment are as follows. That is, by changing the set temperature of the refrigerator 6, the temperature of the liquid refrigerant 41 in the storage container 40 is set to the freezing point or lower (if the liquid refrigerant 41 is liquid nitrogen, 63 K at atmospheric pressure), and the superconducting bulk magnet 3. The liquid refrigerant 41 in a state where the whole is immersed is frozen and solidified. As a result, since the liquid refrigerant 41 on the outer peripheral side and the upper surface side of the superconducting bulk magnet 3 is frozen and solidified, the fixing and protecting properties of the superconducting bulk magnet 3 can be improved, and the protecting properties of the superconducting bulk magnet 3 can be improved. Further, even when the movable carriage 1 vibrates during transportation, it is possible to prevent the liquid surface 41d of the liquid refrigerant 41 from swinging and to prevent the superconducting bulk magnet 3 from being exposed from the liquid surface 41d of the liquid refrigerant 41.

その後、車載コンセント17(電力供給源)付の車両18に可動台車1を載せて目的地に運搬する。この場合、無停電電源5のプラグ14を車載コンセント17に接続し、車載コンセント17からの電力により圧縮機8を稼働させて冷凍機6を運転し、低温を維持する。そして目的地に到着したら、再び、冷凍機6の温度調節の設定を冷媒が液体となる温度(液体窒素の場合には、大気圧で63〜77K)に変え、凍結して固化している冷媒を液体に戻す。このように液体媒体41になれば、超電導バルク磁石3を収容する取出容器50を貯留容器40から取り出すことができる。そして実施例7と同様に、磁場を発生している超電導バルク磁石3を輸送先の装置に組み付ける。   Thereafter, the movable carriage 1 is placed on a vehicle 18 with an on-vehicle outlet 17 (power supply source) and transported to the destination. In this case, the plug 14 of the uninterruptible power supply 5 is connected to the in-vehicle outlet 17, the compressor 8 is operated by the electric power from the in-vehicle outlet 17, the refrigerator 6 is operated, and the low temperature is maintained. When the destination is reached, the temperature control setting of the refrigerator 6 is changed again to a temperature at which the refrigerant becomes liquid (in the case of liquid nitrogen, 63 to 77 K at atmospheric pressure), and the refrigerant is frozen and solidified. Return to the liquid. When the liquid medium 41 is thus obtained, the take-out container 50 that accommodates the superconducting bulk magnet 3 can be taken out from the storage container 40. In the same manner as in the seventh embodiment, the superconducting bulk magnet 3 generating a magnetic field is assembled to the transport destination apparatus.

本実施例によれば、超電導バルク磁石3を浸漬させた液体冷媒41を凍らせて運搬するので、超電導バルク磁石3を貯留容器40内において固定するのに有利であり、前記した支持材53等が不要となる。更に、液体冷媒41の温度で着磁した超電導バルク磁石3を、その着磁温度以下にして運搬することになるので、磁束クリープ(超電導体2に捕捉された磁場が熱エネルギによって一定の確率で抜けることにより捕捉磁場が時間的に減少する現象)を抑制することができる。故に、超電導バルク磁石3の性能の劣化を抑えつつ超電導バルク磁石3を運搬できる。   According to the present embodiment, since the liquid refrigerant 41 in which the superconducting bulk magnet 3 is immersed is frozen and transported, it is advantageous for fixing the superconducting bulk magnet 3 in the storage container 40, and the above-described support material 53, etc. Is no longer necessary. Furthermore, since the superconducting bulk magnet 3 magnetized at the temperature of the liquid refrigerant 41 is transported below the magnetizing temperature, magnetic flux creep (the magnetic field trapped by the superconductor 2 has a certain probability due to thermal energy). (Phenomenon in which the trapped magnetic field decreases with time). Therefore, the superconducting bulk magnet 3 can be transported while suppressing the deterioration of the performance of the superconducting bulk magnet 3.

また、類似効果が期待できる例として、超電導バルク磁石3となる超電導体2の超電導遷移温度Tcが冷媒の沸点より高い場合に、同様にして運搬が可能である。想定される冷媒としては次のものがある。Sm−Ba−Cu−O系超電導体2(Tc=94K)の場合には、原理的に使用可能な冷媒としては、ネオン,窒素,空気,アルゴン,酸素があげられる。なお、超電導体2の材質によっては、クリプトン、キセノンとすることもできる。本実施例においても、貯留容器40の凍結される冷媒41に比重が小さく且つ磁場遮蔽性及び断熱性をもつ材料(発泡体等)で形成されたフロート部材85を浮遊させることもできる。前述されているように、補助電源である無停電電源5は一定時間外部からエネルギの補給を受けることなく電力を供給できる。このようにすれば、無停電電源5や超電導バルク磁石3などを搭載した可動台車1を建物内において移動させることは極めて容易になり、エレベーター等を使って別の階に容易に移動させることもできる。   Further, as an example where a similar effect can be expected, when the superconducting transition temperature Tc of the superconductor 2 to be the superconducting bulk magnet 3 is higher than the boiling point of the refrigerant, it can be transported in the same manner. Possible refrigerants are as follows. In the case of the Sm—Ba—Cu—O-based superconductor 2 (Tc = 94K), examples of the refrigerant that can be used in principle include neon, nitrogen, air, argon, and oxygen. Depending on the material of the superconductor 2, krypton or xenon can be used. Also in the present embodiment, the float member 85 formed of a material (foam or the like) having a small specific gravity and a magnetic field shielding property and heat insulation property can be suspended in the refrigerant 41 to be frozen in the storage container 40. As described above, the uninterruptible power supply 5 which is an auxiliary power supply can supply electric power without being replenished with energy from the outside for a certain period of time. If it does in this way, it will become very easy to move movable cart 1 carrying uninterruptible power supply 5, superconducting bulk magnet 3, etc. in a building, and it can also be easily moved to another floor using an elevator etc. it can.

(実施例7)
図10は実施例7を示す。実施例7は実施例6と基本的には同様の構成であり、基本的には同様の作用効果を奏する。共通する機能を有する部位には共通の符号を付する。以下、相違する部分を中心として説明する。図10に示すように、冷凍機6のコールドヘッド9は、貯留容器40の液体冷媒41に浸漬しておらず、貯留容器40の上面開口40aを開閉する蓋44に冷凍部7と共に保持されており、貯留容器40に貯留されている液体冷媒41の液面41dよりも上方に配置されている。コールドヘッド9は冷却フィン9cを有する。コールドヘッド9は、貯留容器40内の液体冷媒41を直接冷却するのではなく、貯留容器40内の液体冷媒41から蒸発した貯留容器40内の液面41dの上方のガス状冷媒を冷却して再液化(沸点以下に冷却)させ、液滴化して液体冷媒41fとして滴下させて貯留容器40内に戻し、液体冷媒41の蒸発による減少を抑制している。このように液体冷媒41の蒸発による減少を抑制しているため、貯留容器40内の液体冷媒41に超電導バルク磁石3が浸漬することを長時間にわたり維持することができる。本実施例においても、貯留容器40の凍結される冷媒41に、比重が小さく且つ磁場遮蔽性及び断熱性をもつ材料(発泡体等)で形成されたフロート部材85を浮遊させることもできる。前述されているように、補助電源である無停電電源5は一定時間外部からエネルギの補給を受けることなく電力を供給できる。このようにすれば、無停電電源5や超電導バルク磁石3などを搭載した可動台車1を建物内において移動させることは極めて容易になり、エレベーター等を使って別の階に容易に移動させることもできる。
(Example 7)
FIG. 10 shows a seventh embodiment. The seventh embodiment has basically the same configuration as that of the sixth embodiment, and basically has the same functions and effects. Parts having common functions are denoted by common reference numerals. Hereinafter, the description will focus on the different parts. As shown in FIG. 10, the cold head 9 of the refrigerator 6 is not immersed in the liquid refrigerant 41 of the storage container 40, and is held together with the refrigeration unit 7 on the lid 44 that opens and closes the upper surface opening 40 a of the storage container 40. And disposed above the liquid level 41 d of the liquid refrigerant 41 stored in the storage container 40. The cold head 9 has cooling fins 9c. The cold head 9 does not directly cool the liquid refrigerant 41 in the storage container 40, but cools the gaseous refrigerant above the liquid surface 41d in the storage container 40 evaporated from the liquid refrigerant 41 in the storage container 40. Reliquefaction (cooled below the boiling point), dropletized and dropped as liquid refrigerant 41f and returned to the storage container 40, the decrease due to evaporation of the liquid refrigerant 41 is suppressed. Thus, since the decrease by evaporation of the liquid refrigerant 41 is suppressed, it is possible to maintain the superconducting bulk magnet 3 being immersed in the liquid refrigerant 41 in the storage container 40 for a long time. Also in the present embodiment, the float member 85 formed of a material (foam or the like) having a small specific gravity and having a magnetic field shielding property and a heat insulating property can be suspended in the refrigerant 41 to be frozen. As described above, the uninterruptible power supply 5 which is an auxiliary power supply can supply electric power without being replenished with energy from the outside for a predetermined time. If it does in this way, it will become very easy to move movable cart 1 carrying uninterruptible power supply 5, superconducting bulk magnet 3, etc. in a building, and it can also be easily moved to another floor using an elevator etc. it can.

(実施例8)
図11は実施例8を示す。実施例8は実施例1と基本的には同様の構成であり、基本的には同様の作用効果を奏する。共通する機能を有する部位には共通の符号を付する。以下、相違する部分を中心として説明する。図11に示すように、真空容器11に収容されているコールドヘッド9の上面には、磁場遮蔽部材としての第1ヨーク材61を介して超電導バルク磁石3が保持されている。更に真空容器11の上部の外周部には、磁場遮蔽部材としての第2ヨーク材62が保持されている。第1ヨーク材61は円盤状をなしており、超電導バルク磁石3の下面に対面し、第2ヨーク材62はリング形状をなしており、超電導バルク磁石3の側面及び第1ヨーク材61の側面に対面する。このため、超電導バルク磁石3の磁極、第1ヨーク材61、第2ヨーク材62を透過する閉ループ状の磁気回路63が形成される。これにより磁場の漏れが抑えられ、輸送中に鉄などの磁性材料の物体が超電導バルク磁石3の磁極に勢い良く飛びつくことが抑えられる。更に、真空容器11の外方には、容器状の保護部材65が着脱可能に被着されている。保護部材65は樹脂等で形成されており、側面壁部66と天井壁部67とをもつ。保護部材65により磁場の漏れが一層抑えられている。
(Example 8)
FIG. 11 shows an eighth embodiment. The eighth embodiment has basically the same configuration as that of the first embodiment, and basically has the same functions and effects. Parts having common functions are denoted by common reference numerals. Hereinafter, the description will focus on the different parts. As shown in FIG. 11, the superconducting bulk magnet 3 is held on the upper surface of the cold head 9 accommodated in the vacuum vessel 11 via a first yoke member 61 as a magnetic field shielding member. Further, a second yoke member 62 as a magnetic field shielding member is held on the outer periphery of the upper portion of the vacuum vessel 11. The first yoke material 61 has a disc shape, and faces the lower surface of the superconducting bulk magnet 3, and the second yoke material 62 has a ring shape, and the side surfaces of the superconducting bulk magnet 3 and the side surfaces of the first yoke material 61. Face to face. For this reason, a closed loop magnetic circuit 63 that passes through the magnetic poles of the superconducting bulk magnet 3, the first yoke material 61, and the second yoke material 62 is formed. Thereby, leakage of the magnetic field is suppressed, and an object made of a magnetic material such as iron is prevented from jumping to the magnetic pole of the superconducting bulk magnet 3 during transportation. Furthermore, a container-shaped protective member 65 is detachably attached to the outside of the vacuum container 11. The protection member 65 is made of resin or the like and has a side wall portion 66 and a ceiling wall portion 67. The protective member 65 further suppresses magnetic field leakage.

超電導バルク磁石3を輸送先のスパッタリング装置に組み付けるときには、第1ヨーク材61及び第2ヨーク材62は取り付けられたままである。従って、超電導バルク磁石3を組み付けたスパッタリング装置で成膜処理を行うとき、図11に示すように、超電導バルク磁石3の磁極、第1ヨーク材61、第2ヨーク材62を透過する閉ループ状の磁気回路63が形成されており、プラズマの閉じこめに有利であり、スパッタリング成膜処理の良好化を図り得る。   When the superconducting bulk magnet 3 is assembled to the transport destination sputtering apparatus, the first yoke material 61 and the second yoke material 62 remain attached. Therefore, when the film forming process is performed by the sputtering apparatus in which the superconducting bulk magnet 3 is assembled, as shown in FIG. 11, a closed loop shape that passes through the magnetic poles of the superconducting bulk magnet 3, the first yoke material 61, and the second yoke material 62 is used. A magnetic circuit 63 is formed, which is advantageous for confining plasma, and can improve the sputtering film forming process.

(その他)上記した実施例によれば、超電導バルク磁石3はSm−Ba−Cu−O系とされているが、これに限らず、Y−Ba−Cu−O系、La−Ba−Cu−O系、La−Sr−Cu−O系、Bi−Sr−Ca−Cu−O系等とすることもできる。上記した実施例1によれば、図2に示すように、非磁性緩衝材20及びヨーク材24の双方を真空容器11に装備しているが、これに限らず、非磁性緩衝材20及びヨーク材24のうちのいずれか一方のみを真空容器11に装備することにしても良い。その他、本発明は上記し且つ図面に示した実施例のみに限定されるものではなく、必要に応じて適宜変更して実施できるものである。   (Others) According to the above-described embodiment, the superconducting bulk magnet 3 is Sm-Ba-Cu-O-based, but is not limited to this, Y-Ba-Cu-O-based, La-Ba-Cu--. O-based, La-Sr-Cu-O-based, Bi-Sr-Ca-Cu-O-based, and the like can also be used. According to the first embodiment described above, as shown in FIG. 2, both the nonmagnetic buffer material 20 and the yoke material 24 are provided in the vacuum container 11, but not limited to this, the nonmagnetic buffer material 20 and the yoke are provided. Only one of the materials 24 may be installed in the vacuum vessel 11. In addition, the present invention is not limited to the embodiments described above and shown in the drawings, and can be implemented with appropriate modifications as necessary.

上記した記載から次の技術的思想も把握することができる。
(付記項1)超電導遷移温度以下に冷却され磁場を捕捉することにより外部に磁場を発する超電導バルク磁石と、超電導バルク磁石を浸漬させる液体冷媒とを用意し、前記超電導バルク磁石を液体冷媒に浸漬させ、超電導バルク磁石の磁場を発生させた状態で、液体冷媒に覆われた超電導バルク磁石を運搬することを特徴とする超電導バルク磁石の輸送方法。
(付記項2)超電導遷移温度以下に冷却され磁場を捕捉することにより外部に磁場を発する超電導バルク磁石と、超電導バルク磁石を浸漬させる液体冷媒とを用意し、超電導バルク磁石を液体冷媒に浸漬させると共に、超電導バルク磁石を浸漬させた液体冷媒を凍結固化させ、超電導バルク磁石の磁場を発生させた状態で、凍結固化した冷媒により覆われた超電導バルク磁石を運搬することを特徴とする超電導バルク磁石の輸送方法。この場合、超電導バルク磁石を覆う冷媒が凍結固化しているため、超電導バルク磁石の固定性、保護性が向上する。一般的には輸送先では冷媒を解凍する。場合によっては解凍せず、冷媒が凍結したまま超電導バルク磁石を用いても良い。
(付記項3)付記項1,2において、比重が小さい磁場遮蔽性及び断熱性をもつフロート部材で冷媒を覆った状態で運搬することを特徴とする超電導バルク磁石の輸送方法。
The following technical idea can also be grasped from the above description.
(Supplementary Item 1) A superconducting bulk magnet that emits a magnetic field by cooling to a superconducting transition temperature and capturing a magnetic field and a liquid refrigerant that immerses the superconducting bulk magnet are prepared, and the superconducting bulk magnet is immersed in the liquid refrigerant. And transporting the superconducting bulk magnet covered with the liquid refrigerant in a state where the magnetic field of the superconducting bulk magnet is generated.
(Additional Item 2) A superconducting bulk magnet that generates a magnetic field by capturing the magnetic field after being cooled to a superconducting transition temperature and a liquid refrigerant that immerses the superconducting bulk magnet are prepared, and the superconducting bulk magnet is immersed in the liquid refrigerant. In addition, the superconducting bulk magnet is characterized by transporting the superconducting bulk magnet covered with the frozen and solidified refrigerant in a state where the liquid refrigerant immersed in the superconducting bulk magnet is frozen and solidified to generate a magnetic field of the superconducting bulk magnet. Transportation method. In this case, since the refrigerant covering the superconducting bulk magnet is frozen and solidified, the fixing property and protection of the superconducting bulk magnet are improved. Generally, the refrigerant is thawed at the transportation destination. In some cases, a superconducting bulk magnet may be used without thawing and with the refrigerant frozen.
(Additional Item 3) A method for transporting a superconducting bulk magnet according to Additional Item 1, 2, wherein the refrigerant is transported in a state where the refrigerant is covered with a float member having a magnetic field shielding property and heat insulation property having a small specific gravity.

本発明は、超電導体を着磁して超電導バルク磁石とし、その超電導バルク磁石の磁力を用いる技術に利用することができる。   The present invention can be applied to a technique in which a superconductor is magnetized to form a superconducting bulk magnet and the magnetic force of the superconducting bulk magnet is used.

実施例1にかかる装置を模式的に示す構成図である。1 is a configuration diagram schematically showing an apparatus according to Example 1. FIG. 実施例1にかかる装置の真空容器に被着している状態を模式的に示す構成図である。It is a block diagram which shows typically the state currently attached to the vacuum vessel of the apparatus concerning Example 1. FIG. 装置を車両で運搬している状態を模式的に示す構成図である。It is a block diagram which shows typically the state which is conveying the apparatus with a vehicle. 実施例2にかかる装置を模式的に示す構成図である。FIG. 6 is a configuration diagram schematically illustrating an apparatus according to a second embodiment. 実施例3にかかる装置を模式的に示す構成図である。FIG. 6 is a configuration diagram schematically illustrating an apparatus according to a third embodiment. 実施例4にかかる装置の要部を模式的に示す構成図である。FIG. 6 is a configuration diagram schematically illustrating a main part of an apparatus according to a fourth embodiment. 実施例5にかかる装置を模式的に示す構成図である。FIG. 10 is a configuration diagram schematically illustrating an apparatus according to a fifth embodiment. 実施例5にかかる超電導バルク磁石を液体冷媒と共に収容する取出容器50を模式的に示す構成図である。It is a block diagram which shows typically the extraction container 50 which accommodates the superconducting bulk magnet concerning Example 5 with a liquid refrigerant. 実施例6にかかる装置を模式的に示す構成図である。FIG. 10 is a configuration diagram schematically illustrating an apparatus according to Example 6; 実施例7にかかる装置を模式的に示す構成図である。FIG. 10 is a configuration diagram schematically illustrating an apparatus according to Example 7; 実施例8にかかる装置を模式的に示す構成図である。FIG. 10 is a configuration diagram schematically illustrating an apparatus according to an eighth embodiment.

図中、1は可動台車、2は超電導体、3は超電導バルク磁石、5は無停電電源(補助電源)、6は冷凍機、8は圧縮機、7は冷凍部、9はコールドヘッド、11は真空容器、18は車両(輸送手段)、17は車載コンセント(電力供給源)、20は非磁性緩衝材(磁場遮蔽部材)、24はヨーク材(磁場遮蔽部材)、40は貯留容器、41は液体冷媒、43は冷却装置、61は第1ヨーク材(磁場遮蔽部材)、62は第2ヨーク材(磁場遮蔽部材)、65は保護部材を示す。
In the figure, 1 is a movable carriage, 2 is a superconductor, 3 is a superconducting bulk magnet, 5 is an uninterruptible power supply (auxiliary power supply), 6 is a refrigerator, 8 is a compressor, 7 is a refrigeration unit, 9 is a cold head, 11 Is a vacuum vessel, 18 is a vehicle (transportation means), 17 is an on-vehicle outlet (power supply source), 20 is a non-magnetic cushioning material (magnetic field shielding member), 24 is a yoke material (magnetic field shielding member), 40 is a storage container, 41 Is a liquid refrigerant, 43 is a cooling device, 61 is a first yoke material (magnetic field shielding member), 62 is a second yoke material (magnetic field shielding member), and 65 is a protective member.

Claims (2)

輸送元の真空排気装置で排気される真空容器内に配設され、超電導遷移温度以下に冷却され外部に磁場を発する超電導バルク磁石となる移動可能な超電導体と、電力の供給を受けることにより前記超電導体を冷却する移動可能な冷却装置と、一定の時間電力を供給できる移動可能な補助電源とを用意すると共に、前記超電導体、前記冷却装置、前記補助電源を搭載した移動可能な可動台車とを用意する工程と、
前記超電導体を着磁させて前記超電導バルク磁石とする着磁工程と、
前記超電導バルク磁石と前記冷却装置および前記補助電源とを一体として前記可動台車に搭載し、前記補助電源から電力を前記冷却装置に供給して前記冷却装置を稼働し続けることにより、前記真空容器内を真空排気することなく前記真空容器内を封止した状態で前記真空容器内の断熱を保ち、前記超電導バルク磁石が磁場を発生した状態を維持したまま建物内を自由に運搬する運搬工程とを順に実施することを特徴とする超電導バルク磁石の輸送方法。
A movable superconductor that is disposed in a vacuum vessel that is evacuated by a vacuum evacuation device that is a transport source, is cooled to a superconducting transition temperature or lower and generates a magnetic field to the outside, and a movable superconductor that is supplied with power. A movable cooling device that cools the superconductor and a movable auxiliary power source that can supply power for a certain period of time are prepared, and a movable movable carriage equipped with the superconductor, the cooling device, and the auxiliary power source, and A process of preparing
Magnetizing the superconductor to form the superconducting bulk magnet; and
The superconducting bulk magnet, the cooling device, and the auxiliary power source are integrally mounted on the movable carriage, and electric power is supplied from the auxiliary power source to the cooling device, and the cooling device is continuously operated. The vacuum container is kept in a sealed state without evacuating the vacuum container, heat insulation is maintained in the vacuum container, and the superconducting bulk magnet is maintained in a state where a magnetic field is generated, and is transported freely in the building. A method for transporting a superconducting bulk magnet, which is performed in order.
輸送元の真空排気装置で排気される真空容器内に配設され、超電導遷移温度以下に冷却され外部に磁場を発する超電導バルク磁石となる超電導体と、電力の供給を受けることにより前記超電導体を冷却する冷却装置と、一定の時間電力を供給できる補助電源とを用意する工程と、
前記超電導体を着磁させて前記超電導バルク磁石とする着磁工程と、
前記真空容器内を真空排気することなく前記真空容器内を封止した状態で前記真空容器内の断熱を保ち、前記補助電源から電力を前記冷却装置に供給して前記冷却装置を稼働させながら前記超電導バルク磁石が磁場を発生させた状態で、前記超電導バルク磁石と前記冷却装置および前記補助電源を一体として可動台車にて建物内を自由に運搬する運搬工程とを順に実施することを特徴とする超電導バルク磁石の輸送方法。
The superconductor is disposed in a vacuum vessel evacuated by a vacuum evacuation device of the transport source, and becomes a superconducting bulk magnet that is cooled below the superconducting transition temperature and generates a magnetic field to the outside. Providing a cooling device for cooling and an auxiliary power source capable of supplying power for a certain period of time;
Magnetizing the superconductor to form the superconducting bulk magnet; and
Keeping the heat insulation in the vacuum vessel in a state where the vacuum vessel is sealed without evacuating the vacuum vessel, supplying power from the auxiliary power source to the cooling device while operating the cooling device. The superconducting bulk magnet generates a magnetic field, and the superconducting bulk magnet, the cooling device, and the auxiliary power source are integrated, and a transporting step of transporting the inside of the building freely with a movable carriage is performed in order. Transport method for superconducting bulk magnets.
JP2003289333A 2003-08-07 2003-08-07 Transport method of superconducting bulk magnet Expired - Fee Related JP4902098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003289333A JP4902098B2 (en) 2003-08-07 2003-08-07 Transport method of superconducting bulk magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003289333A JP4902098B2 (en) 2003-08-07 2003-08-07 Transport method of superconducting bulk magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009194184A Division JP4953033B2 (en) 2009-08-25 2009-08-25 Superconducting bulk magnet system

Publications (2)

Publication Number Publication Date
JP2005057218A JP2005057218A (en) 2005-03-03
JP4902098B2 true JP4902098B2 (en) 2012-03-21

Family

ID=34367708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003289333A Expired - Fee Related JP4902098B2 (en) 2003-08-07 2003-08-07 Transport method of superconducting bulk magnet

Country Status (1)

Country Link
JP (1) JP4902098B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130692A (en) * 2006-11-17 2008-06-05 Sumitomo Electric Ind Ltd Superconducting magnet and formation method therefor
JP4833875B2 (en) * 2007-01-23 2011-12-07 新日本製鐵株式会社 Magnet device using bulk oxide superconducting material
CN102680870A (en) * 2012-05-31 2012-09-19 刘志万 Insulation performance testing method of electric power devices
EP3726544B1 (en) * 2019-04-18 2021-02-24 Bruker Switzerland AG Superconducting magnet apparatus and method for magnetizing a superconductor bulk magnet by field cooling through a ferromagnetic shield

Also Published As

Publication number Publication date
JP2005057218A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
JP4018981B2 (en) Apparatus comprising a rotor and a magnetic bearing for supporting the rotor without contact
JP6283222B2 (en) Improved method and apparatus for transport and storage of cryogenic equipment
EP3555537A1 (en) Shipping container
JP2007125384A (en) Transportable magnetic resonance imaging or nuclear magnetic resonance imaging system and cryostat
JP4902098B2 (en) Transport method of superconducting bulk magnet
JP4790660B2 (en) Operation system of superconducting magnet for magnetic levitation railway vehicle
JPH05251752A (en) Composite superconductor and superconductive magnetic floating device using it
JP4953033B2 (en) Superconducting bulk magnet system
WO1992022077A1 (en) Method and apparatus for cooling oxide superconductor coil
GB2496287A (en) Systems and methods for alternatingly switching a persistent current switch between a normal mode and a superconducting mode
JP4790661B2 (en) Magnetically levitated superconducting magnet for railway vehicles
WO2010001910A1 (en) Ultra-low temperature storage container and ultra-low temperature device
JP2010262950A (en) Superconducting electromagnet and transport method therefor
CN212378305U (en) Refrigerating device, magnetic resonance system and medical equipment transportation system
AU2006236102A1 (en) An improved freight container
JP4411512B2 (en) Superconducting magnetic field generator, its excitation method, sputtering film forming apparatus using superconducting magnetic field generator, ferromagnetic attachment / detachment jig
JP2011171729A (en) Helium filling method
JP2002231522A (en) Cooling device for high-temperature superconductive coil
JP2002252111A (en) Superconducting magnet device
CN114496452B (en) Dynamic superconducting magnet and magnetic levitation train
JPH10132433A (en) Circulation method of refrigerant and cooling device
Overweg MRI main field magnets
EP3111453B1 (en) Superconducting magnet operating in occasional idling mode
KR101823379B1 (en) Cooling SystemSuperconducting Electromagnet for Magnetic Levitation Train
JP2015079786A (en) Superconducting magnet transportation container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090825

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090904

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20091002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111228

R151 Written notification of patent or utility model registration

Ref document number: 4902098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees