JP4901110B2 - Compound semiconductor epitaxial crystal and growth method thereof - Google Patents

Compound semiconductor epitaxial crystal and growth method thereof Download PDF

Info

Publication number
JP4901110B2
JP4901110B2 JP2005045100A JP2005045100A JP4901110B2 JP 4901110 B2 JP4901110 B2 JP 4901110B2 JP 2005045100 A JP2005045100 A JP 2005045100A JP 2005045100 A JP2005045100 A JP 2005045100A JP 4901110 B2 JP4901110 B2 JP 4901110B2
Authority
JP
Japan
Prior art keywords
compound semiconductor
layer
type conductive
conductive layer
epitaxial crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005045100A
Other languages
Japanese (ja)
Other versions
JP2006237037A (en
Inventor
元 桃井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2005045100A priority Critical patent/JP4901110B2/en
Publication of JP2006237037A publication Critical patent/JP2006237037A/en
Application granted granted Critical
Publication of JP4901110B2 publication Critical patent/JP4901110B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Bipolar Transistors (AREA)

Description

本発明は、薄膜を気相成長するために化学気相成長装置を用い、特にリン化インジウム(InP)や砒化インジウムガリウム(InGaAs)等の化合物半導体エピタキシャル膜を複数層成長させる有機金属気相成長法(MOCVD)に適用する技術に関する。   The present invention uses a chemical vapor deposition apparatus for vapor-depositing a thin film, and in particular, metalorganic vapor phase growth for growing a plurality of compound semiconductor epitaxial films such as indium phosphide (InP) and indium gallium arsenide (InGaAs). The present invention relates to a technique applied to the method (MOCVD).

従来、HBT(ヘテロ接合バイポーラトランジスタ)やHFET(ヘテロ接合電界効果トランジスタ)等の電子デバイスに用いるエピタキシャル結晶基体は、MOCVD法やMBE法により、InP等の化合物半導体基板上にエピタキシャル層を成長させて製造されるのが一般的である。例えば、HBT用のエピタキシャル結晶基体は、InP基板上にn型コレクタ層、p型ベース層、n型エミッタ層、n型コンタクト層を順次成長させて製造される。このうち、p型ベース層の結晶性とpn接合界面の急峻性がHBT特性を向上させる鍵となる。   Conventionally, an epitaxial crystal substrate used for an electronic device such as HBT (heterojunction bipolar transistor) or HFET (heterojunction field effect transistor) has an epitaxial layer grown on a compound semiconductor substrate such as InP by MOCVD or MBE. It is common to be manufactured. For example, an epitaxial crystal substrate for HBT is manufactured by sequentially growing an n-type collector layer, a p-type base layer, an n-type emitter layer, and an n-type contact layer on an InP substrate. Among these, the crystallinity of the p-type base layer and the steepness of the pn junction interface are the keys to improving the HBT characteristics.

一例として、前記p型ベース層はInGaAsで構成することができ、このときドーパントとしてCBr4やCCl4を用いてCを添加する手法がとられることが多い。しかしながら、InGaAsはGaAsに比較してCを添加するのが困難とされている。つまり、InとCとの結合エネルギーはGaとCとの結合エネルギーよりも小さいために、InGaAsはGaAsに比べてCが結晶内に取り込まれにくくなると推定される(非特許文献1)。 As an example, the p-type base layer can be made of InGaAs, and a technique of adding C using CBr 4 or CCl 4 as a dopant at this time is often used. However, it is difficult for InGaAs to add C compared to GaAs. That is, since the bond energy between In and C is smaller than the bond energy between Ga and C, it is estimated that InGaAs is less likely to incorporate C into the crystal than GaAs (Non-patent Document 1).

一方、InGaAsにCを添加する場合は、成長温度が低いほど添加効率は高くなることが知られている。例えば、特許文献1では、C添加のInGaAsをエピタキシャル成長させる場合は、C添加のGaAsを成長させるときの基板温度(500℃)よりも、基板温度を50〜100℃低くして成長させるようにしている。具体的には、InP基板上に、基板温度を550℃以上にしてコレクタ層を成長させた後、基板温度TBを420〜450℃以下まで降温した状態でC添加のInGaAs層を成長させ、その後、基板温度をTB+60℃以下に昇温した状態でエミッタ層を成長させることで、C添加のInGaAs層をp型ベース層として有するHBTを製造する技術が開示されている。 On the other hand, when adding C to InGaAs, it is known that the addition efficiency increases as the growth temperature decreases. For example, in Patent Document 1, when C-doped InGaAs is grown epitaxially, the substrate temperature is grown by 50 to 100 ° C. lower than the substrate temperature (500 ° C.) when C-doped GaAs is grown. Yes. Specifically, on an InP substrate, after growing the collector layer and the substrate temperature above 550 ° C., it is grown InGaAs layer of C added while the substrate temperature is lowered T B to four hundred twenty to four hundred fifty ° C. or less, Thereafter, a technique for manufacturing an HBT having a C-doped InGaAs layer as a p-type base layer by growing an emitter layer in a state where the substrate temperature is raised to T B + 60 ° C. or less is disclosed.

また、InGaAsへのCの添加効率が極めて低いため、ドーパント(例えばCBr4)の流量をIII族原料ガス(TMGaやTMIn)と同程度の流量まで増加させる必要があるが、このような条件ではCBr4とInとが反応して結晶中のIn比率が低下してしまうので、それを調整するためにTMInの流量などの調整がさらに必要となる(非特許文献2)。
特許第3502267号公報 Journal of Growth, 200(1999), pp599-602 2003IPRM, pp418-421
In addition, since the efficiency of adding C to InGaAs is extremely low, it is necessary to increase the flow rate of the dopant (for example, CBr 4 ) to the same flow rate as that of the group III source gas (TMGa or TMIn). Since CBr 4 and In react with each other to reduce the In ratio in the crystal, further adjustment of the flow rate of TMIn is necessary to adjust it (Non-patent Document 2).
Japanese Patent No. 3502267 Journal of Growth, 200 (1999), pp599-602 2003IPRM, pp418-421

ところで、InGaAs層を成長して、結晶中にCが取り込まれたとしても、アクセプタ準位の水素パッシベーションやC原子がIII族サイトに入っていないことなどにより電気的に活性化しておらず、2×1019cm-3添加しても成長直後のキャリア濃度は2×1018cm-3程度にしかならない。この場合は、熱処理などによりCをアクセプタとして活性化させることで初めて高濃度のp型伝導層を得ることができる。 By the way, even if the InGaAs layer is grown and C is taken into the crystal, it is not electrically activated due to the hydrogen passivation of the acceptor level or the absence of the C atom in the group III site. Even when × 10 19 cm −3 is added, the carrier concentration immediately after the growth is only about 2 × 10 18 cm −3 . In this case, a high-concentration p-type conductive layer can be obtained only by activating C as an acceptor by heat treatment or the like.

しかしながら、低温で成長されたC添加のInGaAsベース層はそれよりも高い温度での熱処理に対する耐性が比較的低いので、この熱処理においてベース層の結晶性やpn接合の急峻性が損なわれる虞がある。また、上記特許文献1の技術では、InGaAsベース層上にエミッタ層を成長するときの基板温度はベース層を成長するときの基板温度よりも高くなるので、その過程でベース層の結晶性やpn接合の急峻性が損なわれる虞もある。   However, since the C-doped InGaAs base layer grown at a low temperature has a relatively low resistance to heat treatment at higher temperatures, the crystallinity of the base layer and the steepness of the pn junction may be impaired during this heat treatment. . In the technique disclosed in Patent Document 1, the substrate temperature when the emitter layer is grown on the InGaAs base layer is higher than the substrate temperature when the base layer is grown. There is also a possibility that the steepness of the bonding is impaired.

また、上記非特許文献2の技術においては、InGaAsへのC添加には通常のMOCVD法では考慮する必要のない調整が必要となるため、成長条件の絞り込みが困難になるという問題がある。   Further, the technique of Non-Patent Document 2 has a problem that it is difficult to narrow down the growth conditions because the addition of C to InGaAs requires an adjustment that does not need to be taken into consideration in the ordinary MOCVD method.

本発明は、p型伝導層をC添加のInGaAsを主成分とする化合物半導体層で構成したエピタキシャル結晶であって、p型伝導層の結晶性及びpn接合の急峻性に優れ、HBT等の電子デバイス用基体として有用なエピタキシャル結晶を提供することを目的とする。   The present invention is an epitaxial crystal in which a p-type conductive layer is composed of a compound semiconductor layer containing C-doped InGaAs as a main component, and is excellent in the crystallinity of the p-type conductive layer and the steepness of the pn junction, and is an electron such as HBT. An object is to provide an epitaxial crystal useful as a substrate for a device.

本発明は、上記課題を解決するためになされたもので、化合物半導体基板上に、ハロゲン化炭素ガスを供給することによりp型不純物として炭素が添加されたInGaAsを主成分とするp型伝導層を含む複数のエピタキシャル層が積層された化合物半導体エピタキシャル結晶であって、前記p型伝導層は、アンチモンを0.5〜10モル%含有し、炭素の添加率が0.04〜0.06%、炭素の活性化率が20〜50%、炭素のキャリア濃度が1×1019 〜4×10 19 cm -3 あることを特徴とする。 The present invention has been made to solve the above problems, and a p-type conductive layer mainly composed of InGaAs in which carbon is added as a p-type impurity by supplying a halogenated carbon gas onto a compound semiconductor substrate. And a p-type conductive layer containing 0.5 to 10 mol% of antimony and a carbon addition rate of 0.04 to 0.06%. , wherein the activation ratio of carbon 20 to 50%, the carrier concentration of carbon is 1 × 10 19 ~4 × 10 19 cm -3.

例えば、前記p型伝導層は、ヘテロ接合バイポーラトランジスタのベース層として使用される。また、前記p型伝導層は、電子デバイスのp型伝導部の電極となる金属膜とのコンタクト層として使用される。   For example, the p-type conductive layer is used as a base layer of a heterojunction bipolar transistor. The p-type conductive layer is used as a contact layer with a metal film that becomes an electrode of the p-type conductive portion of the electronic device.

また、化合物半導体基板上に、p型不純物として炭素が添加されたInGaAsを主成分とするp型伝導層を含むデバイス構造が形成された化合物半導体エピタキシャル結晶の成長方法において、化学気相成長法により、砒素及びアンチモンを含む第15(5B)族原料と、インジウムとガリウムを含む第13(3B)族原料と、を供給して前記p型伝導層を成長させる際に、前記第15(5B)族原料のガス流量と、前記第13(3B)族原料のガス流量の比(V族ガス流量/III族ガス流量比)が1以上20以下であるようにした。さらに、前記p型伝導層の成長時の基板温度を450℃以上500℃以下とするようにした。   In a method for growing a compound semiconductor epitaxial crystal in which a device structure including a p-type conductive layer mainly composed of InGaAs doped with carbon as a p-type impurity is formed on a compound semiconductor substrate, a chemical vapor deposition method is used. When the p-type conductive layer is grown by supplying a Group 15 (5B) source material containing arsenic and antimony and a Group 13 (3B) source material containing indium and gallium, the 15th (5B) The ratio of the gas flow rate of the Group raw material to the gas flow rate of the Group 13 (3B) raw material (Group V gas flow rate / Group III gas flow rate ratio) was set to be 1 or more and 20 or less. Furthermore, the substrate temperature during the growth of the p-type conductive layer was set to 450 ° C. or more and 500 ° C. or less.

すなわち、p型伝導層を成長させるにあたり、従来p型伝導層として用いられていたInGaAsを成長させるときの成長条件を適用することができる。また、成長時の基板温度を上記のようにしても、p型伝導層としてのInGaAsSbへの炭素添加効率は高く、添加された炭素の活性化率も高い。   That is, in growing the p-type conductive layer, the growth conditions for growing InGaAs, which has been conventionally used as the p-type conductive layer, can be applied. Even if the substrate temperature during growth is as described above, the carbon addition efficiency to InGaAsSb as the p-type conductive layer is high, and the activation rate of the added carbon is also high.

以下に、本発明を完成するに至った経緯について説明する。
本発明者等は、GaAsSbはSbのモル分率0.5付近でInP基板と格子整合し、またCの添加効率や活性化率が比較的高いことから、p型伝導層を構成するエピタキシャル結晶として従来用いられているInGaAsに代えてGaAsSb系の化合物半導体に着目した。
Below, the background that led to the completion of the present invention will be described.
The inventors of the present invention have found that GaAsSb is lattice-matched with the InP substrate at a molar fraction of Sb of about 0.5, and that the addition efficiency and activation rate of C are relatively high. Attention has been focused on GaAsSb-based compound semiconductors in place of conventionally used InGaAs.

しかし、GaAsSbのエピタキシャル成長ではGaAsのそれと異なり、Sbを含むことによってV族ガス流量/III族ガス流量比がほぼ1に近い条件とする必要があることが知られている。ところが、V族成分のSbとAsの原料ガスとして通常は、SbにはTMSbなどの有機金属、AsにはAsH3などの水素化物が用いられ、それぞれの分解反応が反応室内で均一に進まないために、得られるGaAsSbエピタキシャル層の基板内でSb/As比率がばらつきやすい。従って、組成均一性などの制御が難しくなるという不具合があった。 However, it is known that the epitaxial growth of GaAsSb requires that the V group gas flow rate / Group III gas flow rate ratio be close to 1 by including Sb, unlike that of GaAs. However, as a source gas for the group V component Sb and As, usually, an organic metal such as TMSb is used for Sb and a hydride such as AsH 3 is used for As, and the respective decomposition reactions do not proceed uniformly in the reaction chamber. Therefore, the Sb / As ratio tends to vary within the substrate of the obtained GaAsSb epitaxial layer. Therefore, there is a problem that it is difficult to control composition uniformity and the like.

また、エピタキシャル層への取り込みにおいてもガス組成比と固相組成比の関係(分配係数)が線形ではない。実験の結果、固相組成はAsH3ガス流量に依存して大きく変化し、TMSbガス流量の寄与は小さいことがわかった。この振る舞いによってさらに、組成を均一に制御することが難しくなることになる。 In addition, the relationship (distribution coefficient) between the gas composition ratio and the solid phase composition ratio is not linear in the incorporation into the epitaxial layer. As a result of the experiment, it was found that the solid phase composition changed greatly depending on the AsH 3 gas flow rate, and the contribution of the TMSb gas flow rate was small. This behavior further makes it difficult to control the composition uniformly.

一方、GaAsSbを材料とするHBTなどのデバイスを作製する場合、その作製プロセスでのメサエッチングを行なうためのエッチャント(エッチング液)として既存の材料(InPやInGaAsなど)に適したエッチャントではきれいにエッチングできないため、従来と全く異なる新規なエッチング液を開発する必要があるという問題がある。   On the other hand, when manufacturing a device such as HBT using GaAsSb as a material, an etchant suitable for an existing material (such as InP or InGaAs) cannot be etched cleanly as an etchant (etching solution) for performing mesa etching in the manufacturing process. Therefore, there is a problem that it is necessary to develop a new etching solution that is completely different from the conventional one.

そこで、InGaAsへSbを加えたInGaAsSbを適用することで、C添加効率を高められるとともに、かつ従来と同様の方法で後工程でのエッチングが可能なp型伝導層(ベース層など)を形成できないかと考え、以下の実験を行った。   Therefore, by applying InGaAsSb obtained by adding Sb to InGaAs, it is not possible to form a p-type conductive layer (such as a base layer) that can increase the C addition efficiency and can be etched in a later process by a method similar to the conventional method. The following experiment was conducted.

まず、MOCVD法により半絶縁性InP基板上にバッファ層となるInP層を基板温度600℃で成長させた。次いで、基板温度を450〜500℃に下げ、C添加のInGaAsSb層を成長させた。このときの基板温度は、従来InGaAs層を成長させるときの基板温度(450℃以下)よりも〜30℃程度高い。その後、エピタキシャル膜表面からAsが分解脱離しないようにAsH3/H2を流しつつ基板温度を550℃に昇温し、InPキャップ層を成長させた。 First, an InP layer serving as a buffer layer was grown at a substrate temperature of 600 ° C. on a semi-insulating InP substrate by MOCVD. Next, the substrate temperature was lowered to 450 to 500 ° C., and a C-doped InGaAsSb layer was grown. The substrate temperature at this time is approximately ˜30 ° C. higher than the substrate temperature (450 ° C. or less) when the conventional InGaAs layer is grown. Thereafter, the substrate temperature was raised to 550 ° C. while flowing AsH 3 / H 2 so that As was not decomposed and desorbed from the surface of the epitaxial film, and an InP cap layer was grown.

なお、上記エピタキシャル成長において、III族原料としてTMIn,TMGa、V族原料としてPH3,AsH3,TMSbを用い、ドーパントガスにはCBr4を用いた。また、原料の供給量を正確に測定することでInGaAsSbの組成を精密に制御することができた。また、成長容器内の圧力は60Torrとし、Pb膜で精製した水素をキャリアガスとして30slmを流すことにより反応室の流れを均一化した。また、CBr4については温度30℃の恒温槽に原料ボトルを浸し蒸気圧を制御した上で水素ガスをキャリアガスとしバブリングすることで供給量を制御した。 In the epitaxial growth, TMIn and TMGa were used as Group III materials, PH 3 , AsH 3 and TMSb were used as Group V materials, and CBr 4 was used as a dopant gas. In addition, the composition of InGaAsSb could be precisely controlled by accurately measuring the amount of raw material supplied. The pressure in the growth vessel was 60 Torr, and the flow of the reaction chamber was made uniform by flowing 30 slm using hydrogen purified by the Pb film as a carrier gas. For CBr 4 , the supply amount was controlled by bubbling hydrogen gas as a carrier gas after immersing a raw material bottle in a thermostatic bath at a temperature of 30 ° C. and controlling the vapor pressure.

上述した成長方法によりInGaAsSbでp型伝導層を構成したエピタキシャル結晶を作製し、この結晶について、膜厚、電気的特性(ホール効果など)、格子不整合度(X線ロッキングカーブ)等を測定し、評価した。その結果、InGaAsに少量(例えば10モル%)のSbを加えたInGaAsSbでp型伝導層を構成する場合、GaAsSbを成長させるときの成長条件とは異なり、InGaAsを成長させるときの成長条件の延長線付近に成長条件を設定できることがわかった。具体的には、GaAsSbの場合はV族ガス流量/III族ガス流量比をほぼ1にする必要があるのに対して、InGaAsSbの場合はInGaAsの成長条件とほぼ同じで、V族ガス流量/III族ガス流量比を1以上20以下の範囲に設定することで良好なエピタキシャル結晶を成長可能であった。   An epitaxial crystal having a p-type conductive layer made of InGaAsSb was produced by the growth method described above, and the film thickness, electrical characteristics (Hall effect, etc.), lattice mismatch (X-ray rocking curve), etc. were measured. ,evaluated. As a result, when the p-type conductive layer is composed of InGaAsSb obtained by adding a small amount (for example, 10 mol%) of Sb to InGaAs, unlike the growth conditions for growing GaAsSb, the growth conditions for growing InGaAs are extended. It was found that the growth conditions can be set near the line. Specifically, in the case of GaAsSb, the V group gas flow rate / Group III gas flow rate ratio needs to be approximately 1, whereas in the case of InGaAsSb, the growth conditions of InGaAs are almost the same. A good epitaxial crystal could be grown by setting the group III gas flow ratio in the range of 1 or more and 20 or less.

さらに、InGaAsSb中のSb含有量を変えてエピタキシャル結晶を作製し、この結晶について、C添加率、キャリア濃度、活性化率、エッチング残渣を測定し、評価した。その結果、InGaAsSb中のSb含有率(モル%)を高くすると、Cの添加効率及び活性化率が高くなることが分かった。   Further, epitaxial crystals were produced by changing the Sb content in InGaAsSb, and the C addition rate, carrier concentration, activation rate, and etching residue were measured and evaluated for this crystal. As a result, it was found that when the Sb content (mol%) in InGaAsSb is increased, the C addition efficiency and the activation rate are increased.

具体的には、InGaAsSbのSb含有率が0モル%では活性化率がほとんど0に近いのに対して、0.1モル%では10%となり、0.5モル%では20%となった。また、Sb含有率が0.5モル%のときにキャリア濃度は4×1019cm-3となり、p型伝導層として要求される2×1019cm-3以上のキャリア濃度を達成できた。さらに、Sb含有率が10モル%ではCの活性化率は50%となり、30モル%では90%となり、50モル%では100%となった。 Specifically, when the Sb content of InGaAsSb was 0 mol%, the activation rate was almost 0, whereas at 0.1 mol%, it was 10%, and at 0.5 mol%, it was 20%. Further, when the Sb content was 0.5 mol%, the carrier concentration was 4 × 10 19 cm −3 , and a carrier concentration of 2 × 10 19 cm −3 or more required for the p-type conductive layer could be achieved. Furthermore, when the Sb content was 10 mol%, the activation rate of C was 50%, 30 mol% was 90%, and 50 mol% was 100%.

また、添加効率はSbを含まない場合に比べ1〜3倍となり、Sbの影響により減少するようなことは見られなかった。   Moreover, the addition efficiency was 1 to 3 times that in the case where Sb was not included, and it was not observed that the addition efficiency decreased due to the effect of Sb.

一方、Sb含有率が比較的低い範囲(10%以下)ではInGaAsをメサエッチングするためのエッチャント(燐酸系、クエン酸系、アンモニア系)を用いて比較的きれいにメサエッチングが可能で、エッチャントの選択幅も問題ないレベルであった。これに対して、Sb含有率が30%以上ではSbがエッチャント中で溶解せずに混合するためデバイス作製プロセスでのパターン異物の原因となり、従来のエッチャントは用いることはできないことがわかった。   On the other hand, in the range where the Sb content is relatively low (10% or less), it is possible to perform relatively fine mesa etching using an etchant (phosphoric acid type, citric acid type, ammonia type) for mesa etching of InGaAs. The width was at a level with no problem. On the other hand, when the Sb content is 30% or more, Sb is mixed without being dissolved in the etchant, which causes pattern foreign matters in the device manufacturing process, and it has been found that the conventional etchant cannot be used.

また、Sb含有率が比較的高い範囲(30%以上)では組成やドーピング量の均一性が劣化することが分かった。   Further, it was found that the uniformity of the composition and doping amount deteriorates in the range where the Sb content is relatively high (30% or more).

表1にInGaAsSbのSb含有率に対する各特性を示す。表1に示すように、Sb含有率を0.5モル%以上とすることでCの活性化率が20%になるとともに目標とするキャリア濃度(2×1019cm-3)を達成でき、かつ、10モル%以下とすることで従来用いていたエッチャントによるメサエッチングが可能なp型伝導層(ベース層やコンタクト層)を作製可能であることが分かった。 Table 1 shows the characteristics of InGaAsSb with respect to the Sb content. As shown in Table 1, when the Sb content is 0.5 mol% or more, the activation rate of C becomes 20% and the target carrier concentration (2 × 10 19 cm −3 ) can be achieved. In addition, it was found that a p-type conductive layer (base layer or contact layer) that can be mesa-etched with an etchant that has been conventionally used can be produced by setting the content to 10 mol% or less.

Figure 0004901110
Figure 0004901110

本発明によれば、化合物半導体基板上に、p型不純物として炭素が添加されたInGaAsを主成分とするp型伝導層を含むデバイス構造が形成された化合物半導体エピタキシャル結晶において、前記p型伝導層がアンチモンを0.5〜10モル%含有するようにしたので、Cの活性化率が高くなり目標とするキャリア濃度(2×1019cm-3)を容易に達成できるとともに、従来InGaAsのエッチングに用いていたエッチャントによるメサエッチングが可能となる。 According to the present invention, in a compound semiconductor epitaxial crystal in which a device structure including a p-type conductive layer mainly composed of InGaAs doped with carbon as a p-type impurity is formed on a compound semiconductor substrate, the p-type conductive layer is formed. Has an antimony content of 0.5 to 10 mol%, so that the activation rate of C is increased, and the target carrier concentration (2 × 10 19 cm −3 ) can be easily achieved. Mesa etching with the etchant used in the above is possible.

さらに、p型伝導層としてInGaAsSbを適用することで成長温度をInGaAsの成長温度に比較して50℃程度高くでき、p型伝導層(ベース層)の成長後にエミッタ層を成長させる場合でも成長温度の差は50℃程度になるので、InGaAsの成長後にエミッタ層を成長させる場合と比較して熱的な劣化は低減される。また、C添加のInGaAsSbはCの活性化率が高いため、従来Cを活性化させるためにp型伝導層の成長後に行われていた熱処理を行う必要はなくなる。したがって、p型伝導層の結晶性やpn接合の急峻性が損なわれるのを回避できるので、HBT等の電子デバイスの用途に適したエピタキシャル結晶となる。   Furthermore, by applying InGaAsSb as the p-type conductive layer, the growth temperature can be increased by about 50 ° C. compared to the growth temperature of InGaAs. Even when the emitter layer is grown after the growth of the p-type conductive layer (base layer), the growth temperature is increased. Therefore, the thermal deterioration is reduced as compared with the case where the emitter layer is grown after the growth of InGaAs. In addition, since C-doped InGaAsSb has a high C activation rate, it is not necessary to perform the heat treatment conventionally performed after the growth of the p-type conductive layer in order to activate C. Therefore, the crystallinity of the p-type conductive layer and the steepness of the pn junction can be avoided, so that an epitaxial crystal suitable for use in an electronic device such as an HBT is obtained.

また、成長温度の調整幅が小さくなることで成長時間を短縮できる上、Cの活性化率を上げるための熱処理工程を省略できるので、大幅に生産効率が向上される。   In addition, since the growth time can be shortened by reducing the adjustment range of the growth temperature, and the heat treatment step for increasing the C activation rate can be omitted, the production efficiency is greatly improved.

以下、本発明の好適な実施の形態として、InP/InGaAsSb系のHBTの製造方法について図面を参照して具体的に説明する。
まず、半絶縁性InP基板1の基板温度を550℃に昇温し、該基板上にコレクタ電極とのコンタクト層であるシリコン添加n型InGaAs層2をMOCVD法により成長させた。次いで、コレクタ層としてアンドープInGaAs層3を形成した。
Hereinafter, as a preferred embodiment of the present invention, a method for manufacturing an InP / InGaAsSb-based HBT will be specifically described with reference to the drawings.
First, the substrate temperature of the semi-insulating InP substrate 1 was raised to 550 ° C., and a silicon-added n-type InGaAs layer 2 serving as a contact layer with the collector electrode was grown on the substrate by MOCVD. Next, an undoped InGaAs layer 3 was formed as a collector layer.

次に、TMGa及びTMInの供給を停止してコレクタ層3の成長を中断し、AsH3を供給したまま基板温度を450〜500℃に下げた後、原料ガスの供給を再開してベース層としてC添加のp型InGaAsSb層4(p型伝導層)を成長させた。このときの成長温度は、従来ベース層としてC添加のp型InGaAs層を成長させるときの成長温度(450℃以下)よりも〜50℃程度高い。また、p型不純物のドーパントにはCBr4を用い、このCBr4は温度30℃の恒温槽に原料ボトルを浸し蒸気圧を制御した上で水素ガスをキャリアガスとしバブリングすることで供給量を制御した。 Next, the supply of TMGa and TMIn is stopped, the growth of the collector layer 3 is interrupted, the substrate temperature is lowered to 450 to 500 ° C. while AsH 3 is supplied, and then the supply of the source gas is resumed to form the base layer A C-doped p-type InGaAsSb layer 4 (p-type conductive layer) was grown. The growth temperature at this time is about ˜50 ° C. higher than the growth temperature (450 ° C. or lower) when a C-doped p-type InGaAs layer is grown as a conventional base layer. Also, CBr 4 is used as a dopant for the p-type impurity, and the supply amount of CBr 4 is controlled by bubbling hydrogen gas as a carrier gas after immersing the raw material bottle in a thermostatic bath at a temperature of 30 ° C. and controlling the vapor pressure. did.

次いで、ベース層4の成長が完了した後、TMGa,TMIn,CBr4の供給を停止してベース層4の成長を中断し、AsH3を供給したまま基板温度を550℃まで昇温した。そして、基板温度を550℃とした後、原料ガスを供給してエミッタ層であるシリコン添加n型InP層5及びエミッタ電極とのコンタクト層であるシリコン添加n型InGaAs層6を順次成長させた。これらの成長工程により、図1に示すようなC添加のInGaAsを主成分とする化合物半導体層4をHBTのベース層として使用できるエピタキシャル結晶が作製される。 Next, after the growth of the base layer 4 was completed, the supply of TMGa, TMIn, and CBr 4 was stopped, the growth of the base layer 4 was interrupted, and the substrate temperature was raised to 550 ° C. while AsH 3 was supplied. Then, after the substrate temperature was set to 550 ° C., a source gas was supplied to sequentially grow a silicon-added n-type InP layer 5 as an emitter layer and a silicon-added n-type InGaAs layer 6 as a contact layer with the emitter electrode. Through these growth steps, an epitaxial crystal that can use the compound semiconductor layer 4 mainly composed of C-doped InGaAs as shown in FIG. 1 as the base layer of the HBT is produced.

なお、上記エピタキシャル成長において、III族原料としてTMIn,TMGaを、V族原料としてPH3,AsH3,TMSbを用い、n型ドーパントガスにはCBr4を、n型ドーパントガスにはジシラン(Si26)を用いた。また、成長容器内の圧力は60Torrとし、Pb膜で精製した水素をキャリアガスとして30slmを流すことにより反応室の流れを均一化した。 In the above epitaxial growth, TMIn and TMGa are used as Group III materials, PH 3 , AsH 3 and TMSb are used as Group V materials, CBr 4 is used as an n-type dopant gas, and disilane (Si 2 H is used as an n-type dopant gas. 6 ) was used. The pressure in the growth vessel was 60 Torr, and the flow of the reaction chamber was made uniform by flowing 30 slm using hydrogen purified by the Pb film as a carrier gas.

上述した成長方法において、有機金属原料の供給量を正確に測定することでInGaAsSbの組成を精密に制御することができる。具体的には、本実施形態では、V族ガス流量/III族ガス流量比を3とすることで、p型ベース層のSb含有率を10モル%とした。   In the growth method described above, the composition of InGaAsSb can be precisely controlled by accurately measuring the supply amount of the organometallic raw material. Specifically, in this embodiment, the Sb content of the p-type base layer was set to 10 mol% by setting the group V gas flow rate / group III gas flow rate ratio to 3.

また、得られたエピタキシャル結晶において、InGaAsSbで構成されたベース層4のCキャリア濃度は1×1019cm-3で、C活性化率は50%であった。また、従来InGaAsのエッチングに用いられていたエッチャント(燐酸系、クエン酸系、アンモニア系)により、問題なくエッチングすることができた。また、従来より短いポストアニールによりほぼ100%の活性化率を得ることが可能となった。 Moreover, in the obtained epitaxial crystal, the C carrier concentration of the base layer 4 made of InGaAsSb was 1 × 10 19 cm −3 and the C activation rate was 50%. Further, etching can be performed without any problem by using an etchant (phosphoric acid-based, citric acid-based, ammonia-based) conventionally used for etching InGaAs. Moreover, it became possible to obtain an activation rate of almost 100% by post-annealing shorter than before.

さらに、電極を設けてHBTを作製し、その特性(例えば、電流増幅率等)を評価したところ、高いデバイス特性を得られることが確認できた。すなわち、上述した成長方法により得られたエピタキシャル結晶は、ベース層の結晶性及びpn接合の急峻性に優れているといえ、HBT等の電子デバイス用の基体として好適であることが確認できた。   Furthermore, when an electrode was provided to produce an HBT and its characteristics (for example, current amplification factor) were evaluated, it was confirmed that high device characteristics could be obtained. That is, it can be said that the epitaxial crystal obtained by the growth method described above is excellent in crystallinity of the base layer and steepness of the pn junction, and has been confirmed to be suitable as a substrate for an electronic device such as HBT.

以上、本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。
例えば、上記実施形態では、V族ガス流量/III族ガス流量比を3としたが、V族ガス流量/III族ガス流量比は1〜20の範囲で設定することができる。すなわち、従来p型伝導層として用いていたInGaAsの成長条件とほぼ同じ成長条件とすることができる。
As mentioned above, although the invention made by this inventor was concretely demonstrated based on embodiment, this invention is not limited to the said embodiment, It can change in the range which does not deviate from the summary.
For example, in the above embodiment, the group V gas flow rate / group III gas flow rate ratio is 3, but the group V gas flow rate / group III gas flow rate ratio can be set in the range of 1-20. That is, the growth conditions can be made almost the same as the growth conditions of InGaAs conventionally used as the p-type conductive layer.

また、p型ベース層のSb含有率を0.5〜10モル%の範囲とすることで、Cの活性化率が高くなり目標とするキャリア濃度(2×1019cm-3)を容易に達成できるとともに、従来InGaAsのエッチングに用いていたエッチャントによるメサエッチングが可能となる。 In addition, by setting the Sb content of the p-type base layer in the range of 0.5 to 10 mol%, the C activation rate is increased and the target carrier concentration (2 × 10 19 cm −3 ) can be easily obtained. This can be achieved, and mesa etching using an etchant conventionally used for etching InGaAs can be performed.

また、上記実施形態では、ベース層(p型伝導層)をC添加のInGaAsSbで構成するようにしたが、さらにベース電極とのコンタクト層を設け、この層をInGaAsSbで構成することもできる。   In the above embodiment, the base layer (p-type conductive layer) is made of C-doped InGaAsSb. However, a contact layer with the base electrode may be further provided, and this layer may be made of InGaAsSb.

本発明を適用したHBT用のエピタキシャル結晶の積層構造を示す説明図である。It is explanatory drawing which shows the laminated structure of the epitaxial crystal for HBT to which this invention is applied.

符号の説明Explanation of symbols

1 半絶縁性基板
2 コレクタ電極とのコンタクト層
3 コレクタ層
4 ベース層(C添加のp型InGaAsSb)
5 エミッタ層
6 エミッタ電極とのコンタクト層
1 Semi-insulating substrate 2 Contact layer with collector electrode 3 Collector layer 4 Base layer (C-doped p-type InGaAsSb)
5 Emitter layer 6 Contact layer with emitter electrode

Claims (5)

化合物半導体基板上に、ハロゲン化炭素ガスを供給することによりp型不純物として炭素が添加されたInGaAsを主成分とするp型伝導層を含む複数のエピタキシャル層が積層された化合物半導体エピタキシャル結晶であって、
前記p型伝導層は、アンチモンを0.5〜10モル%含有し、炭素の添加率が0.04〜0.06%、炭素の活性化率が20〜50%、炭素のキャリア濃度が1×1019 〜4×10 19 cm -3 あることを特徴とする化合物半導体エピタキシャル結晶。
A compound semiconductor epitaxial crystal in which a plurality of epitaxial layers including a p-type conductive layer mainly composed of InGaAs doped with carbon as a p-type impurity by supplying a carbon halide gas on a compound semiconductor substrate are stacked. And
The p-type conductive layer contains 0.5 to 10 mol% of antimony, has a carbon addition rate of 0.04 to 0.06%, a carbon activation rate of 20 to 50%, and a carbon carrier concentration of 1. compound semiconductor epitaxial crystal, which is a × 10 19 ~4 × 10 19 cm -3.
前記p型伝導層は、ヘテロ接合バイポーラトランジスタのベース層として使用される層であることを特徴とする請求項1に記載の化合物半導体エピタキシャル結晶。   The compound semiconductor epitaxial crystal according to claim 1, wherein the p-type conductive layer is a layer used as a base layer of a heterojunction bipolar transistor. 前記p型伝導層は、電子デバイスのp型伝導部の電極となる金属膜とのコンタクト層として使用される層であることを特徴とする請求項1または2に記載の化合物半導体エピタキシャル結晶。   The compound semiconductor epitaxial crystal according to claim 1, wherein the p-type conductive layer is a layer used as a contact layer with a metal film serving as an electrode of a p-type conductive portion of an electronic device. 請求項1から3の何れかに記載の化合物半導体エピタキシャル結晶の成長方法において、
化学気相成長法により、砒素及びアンチモンを含む第15(5B)族原料と、インジウムとガリウムを含む第13(3B)族原料と、を供給して前記p型伝導層を成長させる際に、
前記第15(5B)族原料のガス流量と、前記第13(3B)族原料のガス流量の比が1以上20以下であることを特徴とする化合物半導体エピタキシャル結晶の成長方法。
In the growth method of the compound semiconductor epitaxial crystal in any one of Claim 1 to 3,
When the p-type conductive layer is grown by supplying a Group 15 (5B) source material containing arsenic and antimony and a Group 13 (3B) source material containing indium and gallium by chemical vapor deposition.
A method of growing a compound semiconductor epitaxial crystal, wherein a ratio of a gas flow rate of the Group 15 (5B) source material to a gas flow rate of the Group 13 (3B) source material is 1 or more and 20 or less.
前記p型伝導層の成長時の基板温度を450℃以上500℃以下とすることを特徴とする請求項4に記載の化合物半導体エピタキシャル結晶の成長方法。   The method for growing a compound semiconductor epitaxial crystal according to claim 4, wherein a substrate temperature during the growth of the p-type conductive layer is set to 450 ° C. or more and 500 ° C. or less.
JP2005045100A 2005-02-22 2005-02-22 Compound semiconductor epitaxial crystal and growth method thereof Active JP4901110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005045100A JP4901110B2 (en) 2005-02-22 2005-02-22 Compound semiconductor epitaxial crystal and growth method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005045100A JP4901110B2 (en) 2005-02-22 2005-02-22 Compound semiconductor epitaxial crystal and growth method thereof

Publications (2)

Publication Number Publication Date
JP2006237037A JP2006237037A (en) 2006-09-07
JP4901110B2 true JP4901110B2 (en) 2012-03-21

Family

ID=37044400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005045100A Active JP4901110B2 (en) 2005-02-22 2005-02-22 Compound semiconductor epitaxial crystal and growth method thereof

Country Status (1)

Country Link
JP (1) JP4901110B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6193738B2 (en) * 2013-11-19 2017-09-06 日本電信電話株式会社 Method for producing semiconductor thin film and heterojunction bipolar transistor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3131929B2 (en) * 1991-09-25 2001-02-05 日本電信電話株式会社 Carbon doped compound semiconductor crystal growth method
JPH05206155A (en) * 1992-01-28 1993-08-13 Nippon Telegr & Teleph Corp <Ntt> Semiconductor thin film element
JP3628873B2 (en) * 1998-04-28 2005-03-16 富士通株式会社 Semiconductor device and manufacturing method thereof
FR2795871B1 (en) * 1999-07-01 2001-09-14 Picogiga Sa HETEROJUNCTION TRANSISTOR III-V, IN PARTICULAR HEMT FIELD-EFFECT TRANSISTOR OR BIPOLAR HETEROJUNCTION TRANSISTOR

Also Published As

Publication number Publication date
JP2006237037A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
US6559038B2 (en) Method for growing p-n heterojunction-based structures utilizing HVPE techniques
US6849862B2 (en) III-V compound semiconductor device with an AlxByInzGa1-x-y-zN1-a-bPaAsb non-continuous quantum dot layer
WO2012164750A1 (en) Nitride electronic device and method for manufacturing nitride electronic device
US6555452B2 (en) Method for growing p-type III-V compound material utilizing HVPE techniques
US20020047127A1 (en) P-N homojunction-based structures utilizing HVPE grown III-V compound layers
JP2016058693A (en) Semiconductor device, semiconductor wafer, and method of manufacturing semiconductor device
JP3177283B2 (en) Method of manufacturing GaAs device and device manufactured by the method
US20020030192A1 (en) III-V compounds semiconductor device with an AIxByInzGa1-x-y-zN non continuous quantum dot layer
US6472300B2 (en) Method for growing p-n homojunction-based structures utilizing HVPE techniques
US20020017650A1 (en) III-V compound semiconductor device with an InGaN1-x-yPxASy non-continuous quantum dot layer
US20020053679A1 (en) P-n heterojunction-based structures utilizing HVPE grown III-V compound layers
CN107887255B (en) High-resistance GaN film epitaxial growth method
JP4901110B2 (en) Compound semiconductor epitaxial crystal and growth method thereof
JPH05175150A (en) Compound semiconductor and its manufacture
JP2000068284A (en) Manufacture of heterojunction bipolar transistor, and power amplifier
JP2004128415A (en) Transistor, wafer, manufacturing method of transistor, manufacturing method of wafer, and forming method of semiconductor layer
US20120248577A1 (en) Controlled Doping in III-V Materials
KR100601772B1 (en) Method for manufacturing compound semiconductor
JP2011054685A (en) Semiconductor substrate
JP2008103546A (en) Group iii-v compound semiconductor element, and group iii-v compound semiconductor epitaxial wafer
JP2007042936A (en) Group iii-v compound semiconductor epitaxial wafer
KR101082773B1 (en) Compound semiconductor element and process for fabricating the same
US20020047135A1 (en) P-N junction-based structures utilizing HVPE grown III-V compound layers
CN117012814B (en) Epitaxial structure of InP-based heterojunction bipolar transistor and preparation method thereof
JP2006012915A (en) Group iii-v compound semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

R150 Certificate of patent or registration of utility model

Ref document number: 4901110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250