JP4899453B2 - Composite carbon particles for fuel cells and method for producing the same - Google Patents

Composite carbon particles for fuel cells and method for producing the same Download PDF

Info

Publication number
JP4899453B2
JP4899453B2 JP2005357459A JP2005357459A JP4899453B2 JP 4899453 B2 JP4899453 B2 JP 4899453B2 JP 2005357459 A JP2005357459 A JP 2005357459A JP 2005357459 A JP2005357459 A JP 2005357459A JP 4899453 B2 JP4899453 B2 JP 4899453B2
Authority
JP
Japan
Prior art keywords
carbon particles
group
fuel cell
isocyanate group
diphenyl compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005357459A
Other languages
Japanese (ja)
Other versions
JP2007165041A (en
Inventor
竜介 原田
寧 関山
佳史 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Toyota Motor Corp
Original Assignee
Tokai Carbon Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd, Toyota Motor Corp filed Critical Tokai Carbon Co Ltd
Priority to JP2005357459A priority Critical patent/JP4899453B2/en
Publication of JP2007165041A publication Critical patent/JP2007165041A/en
Application granted granted Critical
Publication of JP4899453B2 publication Critical patent/JP4899453B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

本発明は燃料電池、例えば固体高分子型燃料電池に使用される燃料電池用複合炭素粒子とその製造方法に関する。   The present invention relates to a composite carbon particle for a fuel cell used for a fuel cell, for example, a polymer electrolyte fuel cell, and a production method thereof.

燃料電池は、燃料が有する化学エネルギーを直接電気エネルギーに変換するもので、電気エネルギーへの変換効率が高く、特に固体高分子型燃料電池は比較的低温で、高出力の発電が可能であるため、自動車の電源をはじめとして小型の移動型電源や定置型電源として期待されている。   A fuel cell directly converts the chemical energy of fuel into electrical energy, and has high conversion efficiency into electrical energy. In particular, a polymer electrolyte fuel cell is capable of generating high output at a relatively low temperature. It is expected as a small mobile power source and a stationary power source including an automobile power source.

固体高分子型燃料電池の構造は、通常、スルホン酸基を有するフッ素樹脂系イオン交換膜のような高分子イオン交換膜からなる電解質膜と、その両面に白金などの触媒を担持させた触媒電極と、それぞれの電極に水素などの燃料ガスあるいは酸素や空気などの酸化剤ガスを供給する反応ガス供給用の凹凸溝部を設けたセパレータなどからなる単セルを、数十から数百層に積層したスタック、及びその外側に設けた2つの集電体などから構成されている。   The structure of a polymer electrolyte fuel cell is generally composed of an electrolyte membrane made of a polymer ion exchange membrane such as a fluororesin ion exchange membrane having a sulfonic acid group, and a catalyst electrode in which a catalyst such as platinum is supported on both surfaces thereof. And tens to hundreds of layers of single cells consisting of separators and the like provided with concave and convex grooves for supplying a reaction gas for supplying a fuel gas such as hydrogen or an oxidant gas such as oxygen or air to each electrode. It consists of a stack and two current collectors provided outside the stack.

単セルの構造は、図1に示すように、例えばフッ素系樹脂のイオン交換膜からなる固体高分子の電解質膜1を挟んで一対の触媒電極2、3、すなわち、アノード4およびカソード5と、その外側に形成したアノード側ガス拡散層6、カソード側ガス拡散層7、およびこれらを両側から挟持する緻密質でガス不透過性のカーボン材料や金属材料からなるセパレータ8とから構成されている。   As shown in FIG. 1, the structure of the single cell includes a pair of catalyst electrodes 2 and 3, that is, an anode 4 and a cathode 5 with a solid polymer electrolyte membrane 1 made of, for example, a fluorine-based resin ion exchange membrane interposed therebetween, The anode-side gas diffusion layer 6 and the cathode-side gas diffusion layer 7 formed on the outer side thereof, and a separator 8 made of a dense and gas-impermeable carbon material or metal material sandwiching these layers from both sides.

触媒電極2、3は白金やルテニウムなどの貴金属や有機金属錯体などの触媒を担持させた導電性炭素質多孔質体から形成され、炭素質多孔質体としては炭素短繊維やカーボンブラックを樹脂で結着した多孔質体などが用いられている。   The catalyst electrodes 2 and 3 are formed of a conductive carbonaceous porous body supporting a catalyst such as a noble metal such as platinum or ruthenium or an organometallic complex. The carbonaceous porous body is made of carbon short fiber or carbon black with a resin. A bonded porous body or the like is used.

セパレータ8には複数の溝9が設けられ、溝9とアノード側ガス拡散層6とにより燃料ガス(例えば水素ガス)の流路が、溝9とカソード側ガス拡散層7とにより酸化剤ガス(例えば空気)の流路が形成され、溝9から供給された水素ガスはアノード側ガス拡散層6を拡散してアノード4において、H→2H+2eの反応によりイオン化してHとなり電解質膜1を透過していく。 The separator 8 is provided with a plurality of grooves 9, a flow path of fuel gas (for example, hydrogen gas) is formed by the grooves 9 and the anode side gas diffusion layer 6, and an oxidant gas (by the groove 9 and the cathode side gas diffusion layer 7). For example, the hydrogen gas supplied from the groove 9 diffuses through the anode-side gas diffusion layer 6 and is ionized by the reaction of H 2 → 2H + + 2e to become H + in the anode 4. It passes through the membrane 1.

一方、溝9から供給された酸素ガスはカソード側ガス拡散層7を拡散してカソード5において、1/2O+2H+2e→HOの反応により水を生成する。燃料電池の発電機構は、この電気化学反応によって生じる電子(e)の流れを電気エネルギーとして外部回路に取り出すものである。 On the other hand, the oxygen gas supplied from the groove 9 diffuses through the cathode-side gas diffusion layer 7 and generates water by the reaction of 1 / 2O 2 + 2H + + 2e → H 2 O at the cathode 5. The power generation mechanism of the fuel cell takes out the flow of electrons (e ) generated by this electrochemical reaction as electric energy to an external circuit.

すなわち、アノード側に供給された水素ガスは触媒電極4上でイオン化されてHとなり、Hは電解質膜を水(xHO)とともにカソード側へ移動し、カソードにおいて酸素ガス(O)と反応して水を生成する。したがって、この電池反応を円滑に進行させるためには電解質膜を適度な湿潤状態に保持して水素ガスをイオン化する必要があり、通常燃料ガスおよび酸化剤ガスは電池の運転温度に近い温度の飽和水蒸気を含ませて供給し、電解質膜を適度な湿潤状態に保持している。 That is, the hydrogen gas supplied to the anode side is ionized on the catalyst electrode 4 to become H + , and H + moves through the electrolyte membrane to the cathode side together with water (xH 2 O), and oxygen gas (O 2 ) at the cathode. Reacts with water to produce water. Therefore, in order to make this battery reaction proceed smoothly, it is necessary to ionize the hydrogen gas while maintaining the electrolyte membrane in an appropriate wet state. Usually, the fuel gas and the oxidant gas are saturated at a temperature close to the operating temperature of the battery. Water vapor is supplied to keep the electrolyte membrane in a proper wet state.

一方、過剰に水分を含む場合には、過飽和状態になった水蒸気が水滴として凝縮してくることになる。このようにして反応ガス中に水滴が生じると、水の表面張力が大きいことからセパレータのガス流路に停滞し、さらに凝縮水が流路を塞いで反応ガスの流れを阻害するフラッディング現象が起こって電池反応が円滑に進まず、発電性能を低下させる問題が生じる。   On the other hand, when water is excessively contained, the supersaturated water vapor is condensed as water droplets. When water droplets are generated in the reaction gas in this way, the surface tension of the water is so great that it stagnates in the gas flow path of the separator, and a flooding phenomenon occurs that condensate blocks the flow path and inhibits the flow of the reaction gas. As a result, the battery reaction does not proceed smoothly, resulting in a problem that power generation performance is degraded.

この問題を解決するために、フッ素系の樹脂を用いて撥水性を付与することが行われている。しかし、フッ素樹脂には導電性がないため、撥水性をあげるためにフッ素樹脂の配合量を増やすと導電性が低下し、一方、導電性を確保しようとするとフッ素樹脂の配合量を少なくする必要があり、十分な撥水性を付与することができなくなる。   In order to solve this problem, water repellency is imparted using a fluorine-based resin. However, since the fluororesin has no electrical conductivity, increasing the blending amount of the fluororesin to increase water repellency decreases the conductivity. On the other hand, it is necessary to reduce the blending amount of the fluororesin in order to ensure conductivity. And sufficient water repellency cannot be imparted.

そこで、撥水性を付与する他の方法として、シランカップリング剤を用いることが提案されている。例えば、特許文献1には固体高分子電解質膜と、固体高分子電解質膜を挟んだ触媒反応層を有する一対の電極とを具備した燃料電池において、前記電極は、触媒粒子もしくは触媒粒子の担体の表面に、シラン化合物を化学的に接合することで形成した水素イオンの拡散層を有する燃料電池用電極が開示されている。   Thus, it has been proposed to use a silane coupling agent as another method for imparting water repellency. For example, in Patent Document 1, in a fuel cell including a solid polymer electrolyte membrane and a pair of electrodes having a catalytic reaction layer sandwiching the solid polymer electrolyte membrane, the electrodes are catalyst particles or catalyst particle carriers. An electrode for a fuel cell having a hydrogen ion diffusion layer formed by chemically bonding a silane compound on the surface is disclosed.

また、特許文献2には導電性粒子もしくは導電性多孔体の表面の少なくとも一部に、ハイドロカーボン鎖もしくはフルオロカーボン鎖の少なくとも1種を有するシラン化合物により構成した、撥水性層を形成した撥水導電性材料を構成要素とする燃料電池用電極が開示されている。   Patent Document 2 discloses a water-repellent conductive material in which a water-repellent layer composed of a silane compound having at least one hydrocarbon chain or fluorocarbon chain is formed on at least a part of the surface of conductive particles or a conductive porous body. An electrode for a fuel cell having a functional material as a constituent element is disclosed.

特許文献3にはイソシアネート基又は加水分解性基と含フッ素有機基とが結合しているシラン化合物が水分の存在下に反応して得られる反応生成物と、触媒粉末と、イオン交換樹脂とを含む固体高分子型燃料電池用電極が開示されている。
特開2000−228204号公報 特開2000−239704号公報 特開2001−135340号公報
Patent Document 3 discloses a reaction product obtained by reacting a silane compound in which an isocyanate group or a hydrolyzable group and a fluorine-containing organic group are bonded in the presence of moisture, a catalyst powder, and an ion exchange resin. A polymer electrolyte fuel cell electrode is disclosed.
JP 2000-228204 A JP 2000-239704 A JP 2001-135340 A

しかし、シランカップリング剤とはエステル結合で化学結合しているため、多量の水蒸気の存在下に電池反応が行われる燃料電池においては、加水分解によりエステル結合が切断されるおそれがある。また、触媒がシランカップリング剤で被われているため反応ガスが触媒表面へ到達する際の拡散速度が低下し、電池反応の円滑な進行が妨げられる問題が生じる。更に撥水性も十分なものではないという問題もある。   However, since it is chemically bonded to the silane coupling agent by an ester bond, in the fuel cell in which the battery reaction is performed in the presence of a large amount of water vapor, the ester bond may be cleaved by hydrolysis. In addition, since the catalyst is covered with a silane coupling agent, the diffusion rate when the reaction gas reaches the catalyst surface is lowered, which causes a problem that the smooth progress of the cell reaction is hindered. There is also a problem that the water repellency is not sufficient.

そこで、本発明はこれらの問題を解消して、高度の導電性を維持しつつ十分な撥水性を保持し、反応ガスの透過性が高く、発電性能に優れ、例えば燃料電池の触媒層、すなわち触媒担持体やガス拡散層として好適に使用することのできる燃料電池用複合炭素粒子とその製造方法を提供することを目的とする。   Therefore, the present invention solves these problems, maintains sufficient water repellency while maintaining high conductivity, has high reaction gas permeability and excellent power generation performance, for example, a catalyst layer of a fuel cell, that is, It aims at providing the composite carbon particle for fuel cells which can be used suitably as a catalyst support body or a gas diffusion layer, and its manufacturing method.

上記の目的を達成するための本発明による燃料電池用複合炭素粒子は、両末端にイソシアネート基を有するジフェニル化合物の片端イソシアネート基が炭素粒子表面の官能基とウレタン結合し、他端イソシアネート基が反応性シリコーン系ポリマーと化学結合した炭素粒子からなることを構成上の特徴とする。   In order to achieve the above object, the composite carbon particle for a fuel cell according to the present invention has a diphenyl compound having an isocyanate group at both ends, one end isocyanate group of which is bonded to a functional group on the surface of the carbon particle, and the other end isocyanate group reacts. It is characterized in that it consists of carbon particles chemically bonded to a functional silicone polymer.

また、本発明による、この燃料電池用複合炭素粒子の製造方法は、両末端にイソシアネート基を有するジフェニル化合物を非反応性の溶媒に溶解し、その溶液中に炭素粒子を混合してジフェニル化合物の片端イソシアネート基を炭素粒子表面の官能基とウレタン結合させ、未反応のジフェニル化合物を除去した後、反応性シリコーン系ポリマーを加えてジフェニル化合物の他端イソシアネート基と化学結合させることを構成上の特徴とする。   Further, according to the present invention, this method for producing composite carbon particles for fuel cells comprises dissolving a diphenyl compound having isocyanate groups at both ends in a non-reactive solvent, and mixing the carbon particles in the solution to form a diphenyl compound. Constitutional features include one end isocyanate group urethane-bonded to the functional group on the carbon particle surface, removing the unreacted diphenyl compound, and then adding a reactive silicone polymer to chemically bond to the other end isocyanate group of the diphenyl compound. And

本発明の燃料電池用複合炭素粒子は、両末端にイソシアネート基を有するジフェニル化合物の一方の片端イソシアネート基が炭素粒子表面の官能基とウレタン結合し、他の一方の片端イソシアネート基が反応性シリコーン系ポリマーと化学結合した炭素粒子からなるものであり、両末端にイソシアネート基を有するジフェニル化合物が炭素粒子と反応性シリコーン系ポリマーとを結合させる中間物質として機能する。そして、この複合炭素粒子によれば高い撥水性が付与されるので疎水性が向上し、フラッディング現象が抑制されて発電性能に優れた燃料電池が提供される。   In the composite carbon particles for a fuel cell of the present invention, one end isocyanate group of a diphenyl compound having an isocyanate group at both ends is bonded to a functional group on the surface of the carbon particle, and the other end isocyanate group is a reactive silicone type. It consists of carbon particles chemically bonded to a polymer, and a diphenyl compound having isocyanate groups at both ends functions as an intermediate substance for bonding the carbon particles and the reactive silicone polymer. Further, according to the composite carbon particles, high water repellency is imparted, so that hydrophobicity is improved, and a flooding phenomenon is suppressed, and a fuel cell excellent in power generation performance is provided.

そして、本発明の燃料電池用複合炭素粒子の製造方法によれば、両末端にイソシアネート基を有するジフェニル化合物を非反応性の溶媒に溶解し、その溶液中に炭素粒子を混合してジフェニル化合物の一方の片端イソシアネート基を炭素粒子表面の官能基とウレタン結合させ、未反応のジフェニル化合物を除去した後、反応性シリコーン系ポリマーを加えてジフェニル化合物の他の一方の片端イソシアネート基と化学結合させるものであり、発電性能に優れた燃料電池の製造が可能となる。   According to the method for producing composite carbon particles for a fuel cell of the present invention, a diphenyl compound having isocyanate groups at both ends is dissolved in a non-reactive solvent, and the carbon particles are mixed in the solution to form a diphenyl compound. One end isocyanate group is urethane-bonded to the functional group on the surface of the carbon particles, unreacted diphenyl compound is removed, and reactive silicone polymer is added to chemically bond to the other one-end isocyanate group of the diphenyl compound Thus, it is possible to manufacture a fuel cell with excellent power generation performance.

本発明の燃料電池用複合炭素粒子に適用される炭素粒子としては、炭素材の種類には制限はなく、例えば、黒鉛、カーボンブラック、ガラス状炭素、活性炭、カーボンエアロゲル、メソカーボンマイクロビーズ、炭素繊維、カーボンナノチューブ、フラーレンなどいずれも使用することができる。   The carbon particles applied to the composite carbon particles for a fuel cell of the present invention are not limited to the type of carbon material. For example, graphite, carbon black, glassy carbon, activated carbon, carbon aerogel, mesocarbon microbeads, carbon Any of fibers, carbon nanotubes, fullerenes and the like can be used.

両末端にイソシアネート基を有するジフェニル化合物の片端イソシアネート基がウレタン結合する炭素粒子表面の官能基は反応性であれば特に制限はなく、ヒドロキシル基、カルボキシル基、アミノ基、スルホン基などの官能基が例示できるが、反応効率からヒドロキシル基およびカルボキシル基が好ましい。また、これらの官能基を有しない場合やその量が少ない場合には、適宜な表面処理を施すことにより、これらの官能基を生成、制御することができる。   The functional group on the surface of the carbon particle to which the one-end isocyanate group of the diphenyl compound having an isocyanate group at both ends is urethane-bonded is not particularly limited as long as it is reactive, and a functional group such as a hydroxyl group, a carboxyl group, an amino group, a sulfone group is present. Although it can illustrate, a hydroxyl group and a carboxyl group are preferable from reaction efficiency. Moreover, when these functional groups are not present or when the amount thereof is small, these functional groups can be generated and controlled by applying an appropriate surface treatment.

表面処理の方法は、例えば、下記の方法などがある。
(1)ヒドロキシル基およびカルボキシル基の生成は、オゾン、酸素、NOX 、SOX などのガス雰囲気に炭素粒子を曝す方法、低温酸素プラズマで処理する方法、オゾン水、過酸化水素水、ペルオキソ2酸あるいはその塩類、次亜ハロゲン酸塩、重クロム酸塩、過マンガン酸塩、硝酸などの酸化剤水溶液に入れて攪拌混合する方法、などの気相酸化処理や液相酸化処理する方法。
(2)アミノ基の生成は、硝酸/硫酸混合系で酸化してニトロ基を生成させ、ホルムアルデヒドなどの還元剤で還元する方法。
(3)スルホン基の生成は、濃硫酸でスルホン化する方法。
Examples of the surface treatment method include the following method.
(1) Hydroxyl group and carboxyl group can be generated by exposing carbon particles to a gas atmosphere such as ozone, oxygen, NOx, SOx, treating with low temperature oxygen plasma, ozone water, hydrogen peroxide water, peroxodiacid or A method of vapor phase oxidation treatment or liquid phase oxidation treatment, such as a method of stirring and mixing in an aqueous solution of an oxidizing agent such as salts, hypohalite, dichromate, permanganate, nitric acid.
(2) Amino group is generated by oxidizing with nitric acid / sulfuric acid mixed system to form nitro group and reducing with reducing agent such as formaldehyde.
(3) The sulfone group is formed by sulfonation with concentrated sulfuric acid.

なお、表面処理の程度は、例えば、ヒドロキシル基やカルボキシル基を生成させる場合には、pHが5以下程度に処理することが好ましい。   In addition, as for the grade of surface treatment, when producing | generating a hydroxyl group and a carboxyl group, for example, it is preferable to process to pH about 5 or less.

これらの官能基は、両末端にイソシアネート基を有するジフェニル化合物と反応させることにより、ジフェニル化合物の一方の片端イソシアネート基が炭素粒子表面の官能基とウレタン結合(OHOCN)してジフェニル化合物が結合される。   By reacting these functional groups with a diphenyl compound having isocyanate groups at both ends, one end isocyanate group of the diphenyl compound is bonded to a functional group on the surface of the carbon particle by a urethane bond (OHOCN) to bond the diphenyl compound. .

この反応を、炭素粒子としてカーボンブラック、また両末端にイソシアネート基を有するジフェニル化合物としてメチルジフェニルジイソシアネートを例に、カーボンブラック粒子表面のヒドロキシル基とメチルジフェニルジイソシアネートの片端イソシアネート基が反応してウレタン結合した場合の反応式を化1に示した。   In this reaction, carbon black as carbon particles, and methyl diphenyl diisocyanate as an example of a diphenyl compound having isocyanate groups at both ends are used as an example. The reaction formula in this case is shown in Chemical Formula 1.

Figure 0004899453
Figure 0004899453

本発明の燃料電池用複合炭素粒子は、化1のように炭素粒子(カーボンブラック粒子)表面の官能基(ヒドロキシル基)と、両末端にイソシアネート基を有するジフェニル化合物(メチルジフェニルジイソシアネート)の一方の片端イソシアネート基がウレタン結合により結合し、未反応の一方の他端イソシアネート基が反応性シリコーン系ポリマーと化学結合した炭素粒子から形成されたものである。   The composite carbon particles for a fuel cell according to the present invention include one of a functional group (hydroxyl group) on the surface of carbon particles (carbon black particles) and a diphenyl compound (methyldiphenyl diisocyanate) having isocyanate groups at both ends as shown in Chemical Formula 1. One end isocyanate group is bonded by a urethane bond, and one unreacted other end isocyanate group is formed from carbon particles chemically bonded to a reactive silicone polymer.

すなわち、両末端にイソシアネート基を有するジフェニル化合物は、その両末端のイソシアネート基の一方の片端イソシアネート基が炭素粒子表面の官能基と結合し、一方の未反応の他端イソシアネート基は反応性シリコーン系ポリマーと結合したものであり、両末端にイソシアネート基を有するジフェニル化合物が炭素粒子表面の官能基と反応性シリコーン系ポリマーとを結合させるための中間物質として機能する。   That is, in the diphenyl compound having isocyanate groups at both ends, one end isocyanate group of the isocyanate groups at both ends is bonded to the functional group on the surface of the carbon particle, and one unreacted other end isocyanate group is a reactive silicone type. A diphenyl compound having an isocyanate group at both ends functions as an intermediate substance for bonding a functional group on the surface of carbon particles and a reactive silicone polymer.

この反応式を化2に例示した。化2は、化1に示したカーボンブラック粒子表面のヒドロキシル基とメチルジフェニルジイソシアネートとの反応によりジフェニルメタン基をウレタン結合させた後、反応性シリコーン系ポリマーとしてポリシロキサンを反応させて未結合の他端イソシアネート基がポリシロキサン基と化学結合した化学反応式を示したものである。   This reaction formula is illustrated in Chemical Formula 2. Chemical formula 2 is the reaction of the hydroxyl group on the carbon black particle surface shown in chemical formula 1 and the methyldiphenyl diisocyanate to urethane bond the diphenylmethane group, and then the polysiloxane is reacted as a reactive silicone polymer to unbond the other end. This shows a chemical reaction formula in which an isocyanate group is chemically bonded to a polysiloxane group.

Figure 0004899453
Figure 0004899453

但し、式中Rは炭素数1〜6のアルキレン基を、R〜R13は同一又は異なるアリール基、炭素数1〜6のアルキル基又は炭素数1〜10のアルコキシル基をそれぞれ示し、nは0〜200の整数を示す。 However, the formula in R 2 is an alkylene group having 1 to 6 carbon atoms, R 3 to R 13 represents the same or different aryl group, an alkyl group or an alkoxyl group having 1 to 10 carbon atoms having 1 to 6 carbon atoms, respectively, n represents an integer of 0 to 200.

このように、ジフェニル化合物は両末端にイソシアネート基を有していることが必要であり、一方の末端にあるイソシアネート基は炭素粒子表面の官能基と結合し、他方の末端にあるイソシアネート基は反応性シリコーン系ポリマーの末端反応性基と結合する。   In this way, the diphenyl compound must have isocyanate groups at both ends, the isocyanate group at one end is bonded to the functional group on the surface of the carbon particle, and the isocyanate group at the other end is reacted. It binds to the terminal reactive group of the conductive silicone polymer.

この複合炭素粒子は、導電性および撥水性に優れており、例えば燃料電池の触媒担持体や触媒層に混合して導電性を付与する材料として好適に使用することができる。   The composite carbon particles are excellent in conductivity and water repellency, and can be suitably used, for example, as a material imparting conductivity by being mixed with a catalyst carrier or a catalyst layer of a fuel cell.

この燃料電池用複合炭素粒子は、両末端にイソシアネート基を有するジフェニル化合物を非反応性の溶媒に溶解し、その溶液中に炭素粒子を混合してジフェニル化合物の片端イソシアネート基を炭素粒子表面の官能基とウレタン結合させ、未反応のジフェニル化合物を除去した後、反応性シリコーン系ポリマーを加えてジフェニル化合物の他端イソシアネート基と化学結合させることにより製造される。   In this composite carbon particle for fuel cells, a diphenyl compound having an isocyanate group at both ends is dissolved in a non-reactive solvent, and the carbon particle is mixed in the solution so that one end isocyanate group of the diphenyl compound is functionalized on the surface of the carbon particle. After the unreacted diphenyl compound is removed by urethane bonding with the group, a reactive silicone polymer is added and chemically bonded to the other end isocyanate group of the diphenyl compound.

両末端にイソシアネート基を有するジフェニル化合物としては、パラフェニレンジイソシアネート、2−クロロ−1,4−フェニルジイソシアネート、2,4−トルエンジイソシアネート(TDI)、2,6−トルエンジイソシアネート、1,5−ナフタレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、ジフェニルメタン−4,4′−ジイソシアネート(MDI)、1,3−キシレン−4,6−ジイソシアネート、ジフェニルサルファイド−4,4′−ジイソシアネート、1,4−ナフタレンジイソシアネートなどが例示され、好ましくは、MDI、TDI、HDIが用いられる。   Examples of diphenyl compounds having isocyanate groups at both ends include paraphenylene diisocyanate, 2-chloro-1,4-phenyl diisocyanate, 2,4-toluene diisocyanate (TDI), 2,6-toluene diisocyanate, and 1,5-naphthalene diisocyanate. Hexamethylene diisocyanate (HDI), diphenylmethane-4,4'-diisocyanate (MDI), 1,3-xylene-4,6-diisocyanate, diphenyl sulfide-4,4'-diisocyanate, 1,4-naphthalene diisocyanate, etc. Illustratively, MDI, TDI, and HDI are preferably used.

これらのジフェニル化合物は、ジフェニル化合物と非反応性の溶媒、例えば酢酸エチルや酢酸ブチルなどのエステル化合物あるいはメチルエチルケトンなどのケトン類の溶媒に溶解し、この溶液中に炭素粒子を添加して10〜100℃の温度で攪拌混合することにより、ジフェニル化合物の片端にあるイソシアネート基と炭素粒子表面の官能基とが反応して、炭素粒子表面の官能基とウレタン結合によりジフェニル化合物を結合させる。   These diphenyl compounds are dissolved in a solvent that is non-reactive with the diphenyl compound, for example, an ester compound such as ethyl acetate or butyl acetate, or a ketone solvent such as methyl ethyl ketone, and carbon particles are added to this solution for 10 to 100. By stirring and mixing at a temperature of ° C., the isocyanate group at one end of the diphenyl compound reacts with the functional group on the surface of the carbon particle, and the diphenyl compound is bonded to the functional group on the surface of the carbon particle with a urethane bond.

この場合、未反応のジフェニル化合物が残留すると炭素粒子同士が凝集結合し易く、また反応性シリコーン系ポリマーとの反応も阻害されるため、未反応のジフェニル化合物を除去、精製する。ジフェニル化合物の除去は、例えば高速遠心分離機により行い、溶媒を加えて遠心分離する操作を繰り返し行って、除去、精製する。   In this case, if the unreacted diphenyl compound remains, the carbon particles are easily aggregated and bonded, and the reaction with the reactive silicone polymer is also inhibited. Therefore, the unreacted diphenyl compound is removed and purified. Removal of the diphenyl compound is performed, for example, with a high-speed centrifuge, and the operation of adding a solvent and centrifuging is repeatedly performed for removal and purification.

炭素粒子表面の官能基と両末端にイソシアネート基を有するジフェニル化合物の一方の片端イソシアネート基とがウレタン結合により結合した炭素粒子は、前述の酢酸エチルや酢酸ブチルなどのエステル化合物あるいはメチルエチルケトンなどのケトン類の非反応性の溶媒に再度溶解し、この溶液中に反応性シリコーン系ポリマーを加えて10〜100℃の温度で適宜時間攪拌混合する。   Carbon particles in which the functional groups on the surface of the carbon particles and one end isocyanate group of the diphenyl compound having an isocyanate group at both ends are bonded by a urethane bond are the above-mentioned ester compounds such as ethyl acetate and butyl acetate or ketones such as methyl ethyl ketone. The reactive silicone polymer is dissolved again in this non-reactive solvent, and the solution is stirred and mixed at a temperature of 10 to 100 ° C. for an appropriate time.

反応性シリコーン系ポリマーは、末端にアミノ基、ヒドロキシル基、カルボキシル基、エポキシ基などの反応性官能基を有するポリシロキサンが用いられ、両末端に反応性官能基を有する反応性シリコーン系ポリマーは反応性が小さいので、片末端にのみ反応性官能基をもつものが好ましい。   For reactive silicone polymers, polysiloxanes with reactive functional groups such as amino groups, hydroxyl groups, carboxyl groups, and epoxy groups are used at the ends, and reactive silicone polymers with reactive functional groups at both ends are reactive. Since it has low property, those having a reactive functional group only at one end are preferred.

このようにして、両末端にイソシアネート基を有するジフェニル化合物の片端のイソシアネート基が炭素粒子の表面官能基と結合し、他端のイソシアネート基が反応性シリコーン系ポリマーの反応性官能基と結合し、両末端にイソシアネート基を有するジフェニル化合物が中間体として炭素粒子と反応性シリコーン系ポリマーとを結合するので、例えば燃料電池の触媒担持体として使用した場合には触媒金属を被うことなく触媒を担持する炭素担持体と直接結合して撥水性の部位が形成され、発電効率の低下を招くことなく、効率良く電池反応を生起する燃料電池用の触媒担持体が製造される。   In this way, the isocyanate group at one end of the diphenyl compound having isocyanate groups at both ends is bonded to the surface functional group of the carbon particles, and the isocyanate group at the other end is bonded to the reactive functional group of the reactive silicone polymer, Diphenyl compound having isocyanate groups at both ends binds carbon particles and reactive silicone polymer as an intermediate, so when used as a catalyst support for a fuel cell, for example, the catalyst is supported without covering the catalyst metal A catalyst carrier for a fuel cell is produced that is directly bonded to the carbon carrier to form a water-repellent portion and efficiently causes a cell reaction without causing a decrease in power generation efficiency.

なお、この場合、触媒が担持されていない炭素粒子に前記の反応を行わせた後に、生成した複合炭素粒子に触媒を担持してもよいが、表面に結合した化合物が触媒の担持の妨げとなり易いので、触媒を担持した炭素粒子に前記の反応を行わせることが好ましい。 In this case, after the above reaction is performed on carbon particles on which no catalyst is supported , the resulting composite carbon particles may support the catalyst. However, a compound bonded to the surface hinders catalyst support. Since it is easy, it is preferable to cause the carbon particles carrying the catalyst to carry out the above reaction .

以下、本発明の実施例を燃料電池の触媒担持体を例に比較例と対比して具体的に説明するが、本発明は以下の実施例に限定されるものではない。   Hereinafter, examples of the present invention will be specifically described using a catalyst carrier of a fuel cell as an example and compared with comparative examples. However, the present invention is not limited to the following examples.

比較例1
触媒を担持させる炭素粒子としてカーボンブラック(米国キャボット社製、バルカンXC72−R)を用いて、塩化白金酸水溶液に浸漬してその表面に白金化合物を担持させ、還元して白金触媒を30重量%担持させた燃料電池用触媒担持体を製造した。
Comparative Example 1
Using carbon black (Vulcan XC72-R, manufactured by Cabot Corp., USA) as carbon particles for supporting the catalyst, the platinum compound is supported on the surface by dipping in a chloroplatinic acid aqueous solution, and reduced to 30% by weight of the platinum catalyst. A supported fuel cell catalyst carrier was produced.

比較例2
比較例1の燃料電池用触媒担持体の表面にシランカップリング剤を吸着させてシランカップリング剤よりなる単分子膜を形成した。シランカップリング剤としては直鎖状のハイドロカーボン膜を持つCH−(CH−SiCl(nは10以上で25以下の整数)を用い、1重量%の濃度で溶解したヘキサン溶液を調製してカーボンブラックを浸漬した。次いで、脱塩酸してシランカップリング剤の撥水製の膜を形成した燃料電池用触媒担持体を製造した。
Comparative Example 2
A silane coupling agent was adsorbed on the surface of the fuel cell catalyst carrier of Comparative Example 1 to form a monomolecular film made of the silane coupling agent. As a silane coupling agent, CH 3 — (CH 2 ) n —SiCl 3 (n is an integer of 10 or more and 25 or less) having a linear hydrocarbon film is used and dissolved in a concentration of 1% by weight. And carbon black was immersed. Subsequently, a catalyst support for a fuel cell in which a water-repellent film of a silane coupling agent was formed by dehydrochlorination was produced.

実施例
ジフェニルメタン−4,4′−ジイソシアネート(MDI)を10重量%の濃度に溶解させたメチルエチルケトン溶液に、比較例1の燃料電池用触媒担持体10gを入れて、攪拌しながら40℃で2時間反応させて、ジフェニルメタン基をウレタン結合させた。その後、遠心分離により溶媒および未反応のMDIを分離した。
Example 10 g of a fuel cell catalyst carrier of Comparative Example 1 was placed in a methyl ethyl ketone solution in which diphenylmethane-4,4'-diisocyanate (MDI) was dissolved to a concentration of 10% by weight and stirred at 40 ° C. for 2 hours. The diphenylmethane group was urethane-bonded by reaction. Thereafter, the solvent and unreacted MDI were separated by centrifugation.

次いで、メチルエチルケトン中に再分散させて溶液中に反応性シリコーンポリマー(GE東芝シリコーン社製TSF4709)3gを加えて、攪拌しながら40℃で2時間反応させた。その後、遠心分離により未反応の反応性シリコーンポリマーを除去して燃料電池用触媒担持体を製造した。この燃料電池用触媒担持体とフッ素系電解質膜、拡散層としてのカーボンペーパー、および金属セパレータを用いて燃料電池のセルを構成した。   Subsequently, 3 g of a reactive silicone polymer (GE TSF4709, manufactured by GE Toshiba Silicones) was added to the solution by redispersion in methyl ethyl ketone, and the mixture was reacted at 40 ° C. for 2 hours with stirring. Thereafter, unreacted reactive silicone polymer was removed by centrifugation to produce a fuel cell catalyst carrier. A fuel cell was constructed using the fuel cell catalyst carrier, a fluorine-based electrolyte membrane, carbon paper as a diffusion layer, and a metal separator.

これらの触媒担持体を電解質材料と混練しカソード電極とする燃料電池を作製して、下記の方法により電池の発電試験を行って、電流密度と電圧の関係を図2に示した。   A fuel cell was prepared by kneading these catalyst carriers with an electrolyte material to form a cathode electrode, and a power generation test of the cell was conducted by the following method. The relationship between current density and voltage is shown in FIG.

発電試験;アノード側に加湿した水素を、カソード側に加湿した空気を供給し、発電性能を評価した。流量は13cmのセル面積に対し、水素は272ml/min、空気は866ml/minである。試験条件は、セル温度80℃、アノード露点80℃、カソード露点80℃である。 Power generation test: Humidified hydrogen was supplied to the anode side and humidified air was supplied to the cathode side to evaluate the power generation performance. The flow rate is 272 ml / min for hydrogen and 866 ml / min for air for a cell area of 13 cm 2 . The test conditions are a cell temperature of 80 ° C., an anode dew point of 80 ° C., and a cathode dew point of 80 ° C.

電流密度が高い場合には、燃料ガスや酸化剤ガスまたは水蒸気の拡散性が高いほど触媒電極での反応が促進されるため、電圧の低下が抑制される。また、フラッディングが起こると、電圧降下が大きくなる。したがって、図2より実施例では比較例に比べて、疎水性の向上によりフラッディングが抑制されて、電流密度が大きくなっても電圧の低下が少なく、電池性能に優れていることが分かる。   When the current density is high, the higher the diffusibility of the fuel gas, the oxidant gas, or the water vapor, the more the reaction at the catalyst electrode is promoted, so the voltage drop is suppressed. In addition, when flooding occurs, the voltage drop increases. Therefore, it can be seen from FIG. 2 that in the example, as compared with the comparative example, flooding is suppressed due to the improvement in hydrophobicity, and even when the current density is increased, the voltage decrease is small and the battery performance is excellent.

固体高分子型燃料電池の単セルの概略構造を示す一部断面図である。It is a partial sectional view showing a schematic structure of a single cell of a polymer electrolyte fuel cell. 本発明の実施例および比較例の燃料電池用触媒担持体を用いて作製した燃料電池の電流密度と電圧との関係を示したグラフである。It is the graph which showed the relationship between the current density of the fuel cell produced using the catalyst support body for fuel cells of the Example and comparative example of this invention, and a voltage.

符号の説明Explanation of symbols

1 電解質膜
2 触媒電極
3 触媒電極
4 アノード
5 カソード
6 アノード側ガス拡散層
7 カソード側ガス拡散層
8 セパレータ
9 反応ガス流路
10 シール材
DESCRIPTION OF SYMBOLS 1 Electrolyte membrane 2 Catalytic electrode 3 Catalytic electrode 4 Anode 5 Cathode 6 Anode side gas diffusion layer 7 Cathode side gas diffusion layer 8 Separator 9 Reaction gas flow path 10 Sealing material

Claims (4)

両末端にイソシアネート基を有するジフェニル化合物の片端イソシアネート基が炭素粒子表面の官能基とウレタン結合し、他端イソシアネート基が反応性シリコーン系ポリマーと化学結合した炭素粒子からなることを特徴とする燃料電池用複合炭素粒子。   A fuel cell comprising a diphenyl compound having an isocyanate group at both ends, one end isocyanate group of which is bonded to a functional group on the surface of the carbon particle by urethane bonding, and the other end isocyanate group chemically bonded to a reactive silicone polymer. Composite carbon particles. 両末端にイソシアネート基を有するジフェニル化合物を非反応性の溶媒に溶解し、その溶液中に炭素粒子を混合してジフェニル化合物の片端イソシアネート基を炭素粒子表面の官能基とウレタン結合させ、未反応のジフェニル化合物を除去した後、反応性シリコーン系ポリマーを加えてジフェニル化合物の他端イソシアネート基と化学結合させることを特徴とする燃料電池用複合炭素粒子の製造方法。   A diphenyl compound having isocyanate groups at both ends is dissolved in a non-reactive solvent, carbon particles are mixed in the solution, and one end isocyanate group of the diphenyl compound is urethane-bonded to a functional group on the surface of the carbon particles, and unreacted. A method for producing composite carbon particles for a fuel cell, comprising removing a diphenyl compound and then adding a reactive silicone polymer to chemically bond with the other end isocyanate group of the diphenyl compound. 請求項1記載の複合炭素粒子からなる燃料電池用触媒担持体。   A fuel cell catalyst carrier comprising the composite carbon particles according to claim 1. 請求項2記載の複合炭素粒子が触媒担持体である燃料電池用触媒担持体の製造方法。   A method for producing a catalyst carrier for fuel cells, wherein the composite carbon particles according to claim 2 are catalyst carriers.
JP2005357459A 2005-12-12 2005-12-12 Composite carbon particles for fuel cells and method for producing the same Expired - Fee Related JP4899453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005357459A JP4899453B2 (en) 2005-12-12 2005-12-12 Composite carbon particles for fuel cells and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005357459A JP4899453B2 (en) 2005-12-12 2005-12-12 Composite carbon particles for fuel cells and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007165041A JP2007165041A (en) 2007-06-28
JP4899453B2 true JP4899453B2 (en) 2012-03-21

Family

ID=38247740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005357459A Expired - Fee Related JP4899453B2 (en) 2005-12-12 2005-12-12 Composite carbon particles for fuel cells and method for producing the same

Country Status (1)

Country Link
JP (1) JP4899453B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101108446B1 (en) * 2006-09-18 2012-01-31 주식회사 엘지화학 Conductive Agent for Surface Treatment for Hydrophobic Property and Secondary Battery Containing the Same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06122512A (en) * 1991-02-20 1994-05-06 Mitsubishi Heavy Ind Ltd Method for treating surface of carbon black
JP2002008667A (en) * 2000-06-23 2002-01-11 Asahi Glass Co Ltd Electrode for solid polymer type fuel cell, and its manufacturing method
JP4812248B2 (en) * 2003-01-22 2011-11-09 日東電工株式会社 Fuel cell
JP2004311060A (en) * 2003-04-02 2004-11-04 Toyota Motor Corp Electrode for fuel cell, its manufacturing method, and solid polymer fuel cell equipped with electrode

Also Published As

Publication number Publication date
JP2007165041A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
KR100413645B1 (en) Polymer electrolyte fuel cell
KR100545624B1 (en) Electrode for fuel cell and fuel cell using the same
KR100684854B1 (en) Catalyst for fuel cell, method for preparing same, amd membrane-electrode assembly for fuel cell comprising same
EP2626939B1 (en) Polymer electrolyte fuel cell
WO2000011741A1 (en) Fuel cell and method of menufacture thereof
JP3992866B2 (en) FUEL CELL ELECTRODE AND METHOD FOR PRODUCING THE SAME
JPWO2005104280A1 (en) Fuel cell and method of manufacturing fuel cell
US20040121220A1 (en) Fuel cell electrode and fuel cell
JP5294550B2 (en) Membrane electrode assembly and fuel cell
JP4899453B2 (en) Composite carbon particles for fuel cells and method for producing the same
JP5384515B2 (en) Fuel cell electrode having two kinds of hydrophilicity, method for producing the same, membrane electrode assembly including the same, and fuel cell
JP2007265916A (en) Fuel cell
KR101319384B1 (en) Separator for fuel cell, and fuel cell system including the same
JP4899454B2 (en) Carbon particle composite for fuel cell and production method
JP2007165043A (en) Carbon particle complex for fuel cell, and its manufacturing method
JP4745988B2 (en) FUEL CELL CATALYST CATALYST AND ITS MANUFACTURING METHOD, FUEL CELL MEMBRANE-ELECTRODE ASSEMBLY CONTAINING THE CATHODE CATALYST, AND FUEL CELL SYSTEM
JP3826866B2 (en) Liquid fuel supply type fuel cell
JP2008210602A (en) Catalyst carrier for fuel cell and its manufacturing method
JP2004185900A (en) Electrode for fuel cell, film/catalyst layer junction, fuel cell, and manufacturing method of them
JP2009026495A (en) Fuel cell, and electrode manufacturing method of fuel cell
US6368488B1 (en) Modified platinum substrates for oxygen reduction
JP5057798B2 (en) Fuel cell electrode and fuel cell
JP2007018801A (en) Manufacturing method of catalyst mixture for solid polymer fuel cell, and solid polymer fuel cell using electrode containing catalyst mixture obtained by the above manufacturing method
JP2005276721A (en) Fuel cell and electrolyte film
JP2005019234A (en) Proton conductive particle, solid electrolyte film, and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Ref document number: 4899453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees