JP2008210602A - Catalyst carrier for fuel cell and its manufacturing method - Google Patents
Catalyst carrier for fuel cell and its manufacturing method Download PDFInfo
- Publication number
- JP2008210602A JP2008210602A JP2007044988A JP2007044988A JP2008210602A JP 2008210602 A JP2008210602 A JP 2008210602A JP 2007044988 A JP2007044988 A JP 2007044988A JP 2007044988 A JP2007044988 A JP 2007044988A JP 2008210602 A JP2008210602 A JP 2008210602A
- Authority
- JP
- Japan
- Prior art keywords
- group
- compound
- fuel cell
- catalyst
- diphenyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Description
本発明は燃料電池、例えば固体高分子型燃料電池の電極などに使用する触媒担持体とその製造方法に関する。 The present invention relates to a catalyst carrier used for a fuel cell, for example, an electrode of a polymer electrolyte fuel cell, and a method for producing the same.
燃料電池は、燃料が有する化学エネルギーを直接電気エネルギーに変換するもので、電気エネルギーへの変換効率が高く、特に固体高分子型燃料電池は比較的低温で、高出力の発電が可能であるため、自動車の電源をはじめとして小型の移動型電源や定置型電源として期待されている。 A fuel cell directly converts the chemical energy of fuel into electrical energy, and has high conversion efficiency into electrical energy. In particular, a polymer electrolyte fuel cell is capable of generating high output at a relatively low temperature. It is expected as a small mobile power source and a stationary power source including an automobile power source.
固体高分子型燃料電池の構造は、通常、スルホン酸基を有するフッ素樹脂系イオン交換膜のような高分子イオン交換膜からなる電解質膜と、その両面に白金などの触媒を担持させた触媒電極と、それぞれの電極に水素などの燃料ガスあるいは酸素や空気などの酸化剤ガスを供給する反応ガス供給用の凹凸溝部を設けたセパレータなどからなる単セルを、数十から数百層に積層したスタック、及びその外側に設けた2つの集電体などから構成されている。 The structure of a polymer electrolyte fuel cell is generally composed of an electrolyte membrane made of a polymer ion exchange membrane such as a fluororesin ion exchange membrane having a sulfonic acid group, and a catalyst electrode in which a catalyst such as platinum is supported on both surfaces thereof. And tens to hundreds of layers of single cells consisting of separators and the like provided with concave and convex grooves for supplying a reaction gas for supplying a fuel gas such as hydrogen or an oxidant gas such as oxygen or air to each electrode. It consists of a stack and two current collectors provided outside the stack.
単セルの構造は、図1に示すように、例えばフッ素系樹脂のイオン交換膜からなる固体高分子の電解質膜1を挟んで一対の触媒電極2、3、すなわち、アノード4およびカソード5と、その外側に形成したアノード側ガス拡散層6、カソード側ガス拡散層7、およびこれらを両側から挟持する緻密質でガス不透過性のカーボン材料や金属材料からなるセパレータ8とから構成されている。
As shown in FIG. 1, the structure of the single cell includes a pair of
触媒電極2、3は白金やルテニウムなどの貴金属や有機金属錯体などの触媒を担持させた導電性炭素質多孔質体から形成され、炭素質多孔質体としては炭素短繊維やカーボンブラックを樹脂で結着した多孔質体などが用いられている。
The
セパレータ8には複数の溝9が設けられ、溝9とアノード側ガス拡散層6とにより燃料ガス(例えば水素ガス)の流路が、溝9とカソード側ガス拡散層7とにより酸化剤ガス(例えば空気)の流路が形成され、溝9から供給された水素ガスはアノード側ガス拡散層6を拡散してアノード4において、H2→2H++2e−の反応によりイオン化してH+となり電解質膜1を透過していく。
The
一方、溝9から供給された酸化剤ガス(酸素)はカソード側ガス拡散層7を拡散してカソード5において、1/2O2+2H++2e−→H2Oの反応により水を生成する。燃料電池の発電機構は、この電気化学反応によって生じる電子(e−)の流れを電気エネルギーとして外部回路に取り出すものである。
On the other hand, the oxidant gas (oxygen) supplied from the
すなわち、アノード側に供給された水素ガスは触媒電極4上でイオン化されてH+となり、H+は電解質膜を水(xH2O)とともにカソード側へ移動し、カソードにおいて酸素ガス(O2)と反応して水を生成する。したがって、この電池反応を円滑に進行させるためには電解質膜を適度な湿潤状態に保持して水素ガスをイオン化する必要があり、通常燃料ガスおよび酸化剤ガスは電池の運転温度に近い温度の飽和水蒸気を含ませて供給し、電解質膜を適度な湿潤状態に保持している。
That is, the hydrogen gas supplied to the anode side is ionized on the
しかし、水分が過剰に含まれる場合には、過飽和状態になった水蒸気が水滴として凝縮してくることになる。このようにして反応ガス中に水滴が生じると、水の表面張力が大きいことからセパレータのガス流路に停滞し、さらに凝縮水が流路を塞いで反応ガスの流れを阻害するフラッディング現象が起こって電池反応が円滑に進まず、発電性能を低下させる問題が生じる。 However, when moisture is excessively contained, the supersaturated water vapor is condensed as water droplets. When water droplets are generated in the reaction gas in this way, the surface tension of the water is so great that it stagnates in the gas flow path of the separator, and a flooding phenomenon occurs that condensate blocks the flow path and inhibits the flow of the reaction gas. As a result, the battery reaction does not proceed smoothly, resulting in a problem that power generation performance is degraded.
この問題を解決するために、例えば特許文献1にはフッ素系の樹脂を用いて撥水性を付与することにより生成水を速やかに排出、除去することが開示されている。しかし、フッ素系の樹脂には導電性がないため、撥水性をあげるためにフッ素系樹脂の配合量を増やすと導電性が低下することになり、一方、導電性を確保しようとするとフッ素系樹脂の配合量を少なくする必要があり、十分な撥水性を付与することができなくなる。 In order to solve this problem, for example, Patent Document 1 discloses that generated water is quickly discharged and removed by imparting water repellency using a fluorine-based resin. However, since the fluorine-based resin is not conductive, increasing the blending amount of the fluorine-based resin in order to increase the water repellency results in a decrease in conductivity. It is necessary to reduce the blending amount, and sufficient water repellency cannot be imparted.
そこで、撥水性を付与する他の方法として、シランカップリング剤を用いることが提案されている。例えば、特許文献2には固体高分子電解質膜と、固体高分子電解質膜を挟んだ触媒反応層を有する一対の電極とを具備した燃料電池において、前記電極は、触媒粒子もしくは触媒粒子の担体の表面に、シラン化合物を化学的に接合することで形成した水素イオンの拡散層を有する燃料電池用電極が開示されている。
Thus, it has been proposed to use a silane coupling agent as another method for imparting water repellency. For example,
また、特許文献3には導電性粒子もしくは導電性多孔体の表面の少なくとも一部に、ハイドロカーボン鎖もしくはフルオロカーボン鎖の少なくとも1種を有するシラン化合物により構成した、撥水性層を形成した撥水導電性材料を構成要素とする燃料電池用電極が開示されている。
特許文献4にはイソシアネート基又は加水分解性基と含フッ素有機基とが結合しているシラン化合物が水分の存在下に反応して得られる反応生成物と、触媒粉末と、イオン交換樹脂とを含む固体高分子型燃料電池用電極が開示されている。
しかし、シランカップリング剤とはエステル結合で化学結合しているため、多量の水蒸気の存在下に電池反応が行われる燃料電池においては、加水分解によりエステル結合が切断されるおそれがある。また、触媒がシランカップリング剤で被われているため反応ガスが触媒表面へ到達する際の拡散速度が低下し、電池反応の円滑な進行が妨げられる問題が生じる。更に撥水性も十分なものではなく、酸素ガスなどの酸化性ガスの透過性も不十分なものであった。 However, since it is chemically bonded to the silane coupling agent by an ester bond, in the fuel cell in which the battery reaction is performed in the presence of a large amount of water vapor, the ester bond may be cleaved by hydrolysis. In addition, since the catalyst is covered with a silane coupling agent, the diffusion rate when the reaction gas reaches the catalyst surface is lowered, which causes a problem that the smooth progress of the cell reaction is hindered. Furthermore, the water repellency was not sufficient, and the permeability of oxidizing gas such as oxygen gas was insufficient.
そこで、本発明者はこれらの問題を解消するために鋭意研究を行い、炭素粒子表面の官能基を介してウレタン結合したジフェニルメタン基が少なくともCl原子を2個以上有する化合物の反応性基と化学結合させた炭素粒子は、導電性、撥水性、および反応ガスの透過性などにおいて、燃料電池の触媒担持体として好適であることを確認した。 Therefore, the present inventor conducted intensive research to solve these problems, and the diphenylmethane group urethane-bonded via the functional group on the surface of the carbon particle is chemically bonded to the reactive group of the compound having at least two Cl atoms. It was confirmed that the carbon particles used were suitable as a catalyst carrier for a fuel cell in terms of conductivity, water repellency, and reaction gas permeability.
すなわち、本発明はこの知見により開発されたものであって、本発明の目的は発電性能に優れた燃料電池の触媒担持体とその製造方法を提供することにある。 That is, the present invention was developed based on this finding, and an object of the present invention is to provide a fuel cell catalyst carrier having excellent power generation performance and a method for producing the same.
上記の目的を達成するための本発明による燃料電池用触媒担持体は、両末端にイソシアネート基を有するジフェニル化合物の片端イソシアネート基が炭素粒子表面の官能基とウレタン結合し、他端イソシアネート基が末端に反応性基を有する少なくともCl原子を2個以上有する化合物の反応性基と化学結合した炭素粒子からなることを構成上の特徴とする。 In order to achieve the above object, the catalyst carrier for a fuel cell according to the present invention has a diphenyl compound having an isocyanate group at both ends, one end isocyanate group of which is bonded to a functional group on the carbon particle surface, and the other end isocyanate group is terminated. It is characterized by comprising carbon particles chemically bonded to the reactive group of a compound having at least two Cl atoms having a reactive group.
また、本発明による上記燃料電池用触媒担持体の製造方法は、両末端にイソシアネート基を有するジフェニル化合物を非反応性の溶媒に溶解し、その溶液中に炭素粒子を混合してジフェニル化合物の片端イソシアネート基を炭素粒子表面の官能基とウレタン結合させ、次いで未反応のジフェニル化合物を除去した後、末端に反応性基を有する少なくともCl原子を2個以上有する化合物を加えて、末端の反応性基とジフェニル化合物の他端イソシアネート基とを化学結合させることを構成上の特徴とする。 Further, the method for producing a fuel cell catalyst carrier according to the present invention comprises dissolving a diphenyl compound having an isocyanate group at both ends in a non-reactive solvent, mixing carbon particles in the solution, and mixing one end of the diphenyl compound. After the isocyanate group is urethane-bonded to the functional group on the surface of the carbon particles, and then the unreacted diphenyl compound is removed, a compound having at least two Cl atoms having a reactive group at the terminal is added, and the terminal reactive group is added. And the other end isocyanate group of the diphenyl compound are structurally characterized.
本発明によれば、撥水性が高く疎水性が向上するのでフラッディング現象が抑制され、また導電性も高いので発電性能に優れた燃料電池用触媒担持体とその製造方法を提供することができる。 According to the present invention, since the water repellency is high and the hydrophobicity is improved, the flooding phenomenon is suppressed, and since the conductivity is high, a fuel cell catalyst carrier having excellent power generation performance and a method for producing the same can be provided.
触媒には白金、ルテニウムなど常用される触媒が用いられ、触媒を担持する炭素粒子には、例えば、黒鉛、カーボンブラック、ガラス状炭素、活性炭、カーボンエアロゲル、メソカーボンマイクロビーズ、炭素繊維、カーボンナノチューブ、フラーレンなどの炭素粒子が用いられる。 Commonly used catalysts such as platinum and ruthenium are used as the catalyst. Examples of the carbon particles supporting the catalyst include graphite, carbon black, glassy carbon, activated carbon, carbon aerogel, mesocarbon microbeads, carbon fibers, and carbon nanotubes. Carbon particles such as fullerene are used.
両末端にイソシアネート基を有するジフェニル化合物の片端イソシアネート基とウレタン結合する炭素粒子表面の官能基はイソシアネート基と化学結合する反応性基であればよく、例えば、ヒドロキシル基、カルボキシル基、アミノ基などの官能基が例示できるが、反応効率からヒドロキシル基およびカルボキシル基が好ましい。なお、これらの官能基を有しない場合やその量が少ない場合には、適宜な表面処理を施すことにより、これらの官能基を生成、制御することが好ましい。 The functional group on the surface of the carbon particle that is urethane-bonded to the one-end isocyanate group of the diphenyl compound having an isocyanate group at both ends may be a reactive group that chemically bonds to the isocyanate group, such as hydroxyl group, carboxyl group, amino group, etc. A functional group can be exemplified, but a hydroxyl group and a carboxyl group are preferable from the viewpoint of reaction efficiency. In addition, when it does not have these functional groups or when the amount is small, it is preferable to generate and control these functional groups by performing an appropriate surface treatment.
両末端にイソシアネート基を有するジフェニル化合物としては、パラフェニレンジイソシアネート、2−クロロ−1,4−フェニルジイソシアネート、2,4−トルエンジイソシアネート(TDI)、2,6−トルエンジイソシアネート、1,5−ナフタレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、ジフェニルメタン−4,4′−ジイソシアネート(MDI)、1,3−キシレン−4,6−ジイソシアネート、ジフェニルサルファイド−4,4′−ジイソシアネート、1,4−ナフタレンジイソシアネートなどが例示でき、好ましくはMDI、TDI、HDIが用いられる。 Diphenyl compounds having isocyanate groups at both ends include paraphenylene diisocyanate, 2-chloro-1,4-phenyl diisocyanate, 2,4-toluene diisocyanate (TDI), 2,6-toluene diisocyanate, 1,5-naphthalene diisocyanate. Hexamethylene diisocyanate (HDI), diphenylmethane-4,4'-diisocyanate (MDI), 1,3-xylene-4,6-diisocyanate, diphenyl sulfide-4,4'-diisocyanate, 1,4-naphthalene diisocyanate, etc. For example, MDI, TDI, and HDI are preferably used.
両末端にイソシアネート基を有するジフェニル化合物は炭素粒子表面の官能基と反応して、ジフェニル化合物の一方の片端イソシアネート基が炭素粒子表面の官能基とウレタン結合(OHOCN)してジフェニル化合物が結合される。 The diphenyl compound having an isocyanate group at both ends reacts with a functional group on the surface of the carbon particle, and one end isocyanate group of the diphenyl compound is bonded to the functional group on the surface of the carbon particle by a urethane bond (OHOCN) to bond the diphenyl compound. .
この反応を、炭素粒子としてカーボンブラック、両末端にイソシアネート基を有するジフェニル化合物としてジフェニルメタン−4,4′−ジイソシアネートを例に、カーボンブラック粒子表面のヒドロキシル基とジフェニルメタン−4,4′−ジイソシアネートの片端イソシアネート基が反応してウレタン結合した場合の反応式を化1に示した。 In this reaction, carbon black as carbon particles and diphenylmethane-4,4'-diisocyanate as diphenyl compounds having isocyanate groups at both ends are used as examples. One end of hydroxyl group on carbon black particle surface and diphenylmethane-4,4'-diisocyanate The reaction formula when the isocyanate group reacts to form a urethane bond is shown in Chemical Formula 1.
本発明の燃料電池用触媒担持体は、化1のように両末端にイソシアネート基を有するジフェニル化合物の片端イソシアネート基が炭素粒子表面の官能基とウレタン結合し、未反応の一方の他端イソシアネート基が末端に反応性基を有する少なくともCl原子を2個以上有する化合物と化学結合した炭素粒子から形成されたものである。 In the catalyst support for fuel cell of the present invention, the one-end isocyanate group of the diphenyl compound having isocyanate groups at both ends as in Chemical Formula 1 is urethane-bonded to the functional group on the surface of the carbon particles, and one unreacted isocyanate group at the other end Is formed from carbon particles chemically bonded to a compound having at least two Cl atoms having a reactive group at the terminal.
反応性基としてはアミノ基、ヒドロキシル基、カルボキシル基、エポキシ基などが例示でき、末端に反応性基を有する少なくともCl原子を2個以上有する化合物としては具体的には、例えば下記のものが例示される。 Examples of reactive groups include amino groups, hydroxyl groups, carboxyl groups, and epoxy groups. Specific examples of compounds having at least two Cl atoms having a reactive group at the terminal include the following. Is done.
2−アミノ−2,6−ジクロロフェノール、2−アミノ−3,5ジクロロピリジン、2−アミノ−4,6−ジクロロピリミジン、5−アミノ−4,6−ジクロロピリミジン、2,4−ジクロロベンジルアルコール、2,5−ジクロロベンジルアルコール、2,6−ジクロロベンジルアルコール、2,3−ジクロロアニリン、2,4−ジクロロアニリン、2,5−ジクロロアニリン、2,6−ジクロロアニリン、3,4−ジクロロアニリン、3,5−ジクロロアニリン、2,4−ジクロロ安息香酸、2,5−ジクロロ安息香酸、3,4−ジクロロ安息香酸、3,5−ジクロロ安息香酸、2,3−ジクロロフェノール、2,4−ジクロロフェノール、2,5−ジクロロフェノール、2,6−ジクロロフェノール、3,4−ジクロロフェノール、2,4,5−トリクロロアニリン、2,4,6−トリクロロアニリン、3,4,5−トリクロロアニリン、2,3,5−トリクロロフェノール、2,3,6−トリクロロフェノール、2,4,5−トリクロロフェノール、2,3,6−トリクロロフェノール、2,2,2−トリクロロエタノール。
2-amino-2,6-dichlorophenol, 2-amino-3,5 dichloropyridine, 2-amino-4,6-dichloropyrimidine, 5-amino-4,6-dichloropyrimidine, 2,4-
カーボンブラック粒子表面のヒドロキシル基とジフェニルメタン−4,4′−ジイソシアネートの片端イソシアネート基がウレタン結合した化1を例に、未結合の一方の他端イソシアネート基が、末端に反応性ヒドロキシル基を有し、3個のCl原子を有する、2,2,2−トリクロロエタノールと化学結合した場合の反応式を化2に示した。
For example, in the case where the hydroxyl group on the surface of the carbon black particle and one end isocyanate group of diphenylmethane-4,4′-diisocyanate are urethane-bonded, one unbound other isocyanate group has a reactive hydroxyl group at the end. The reaction formula in the case of chemical bonding with 2,2,2-trichloroethanol having 3 Cl atoms is shown in
このように、本発明の燃料電池用触媒担持体は、両末端にイソシアネート基を有するジフェニル化合物の片端イソシアネート基が炭素粒子表面の官能基とウレタン結合し、未結合の他端イソシアネート基がCl原子を2個以上有する化合物の反応性基と化学結合した炭素粒子からなるものであり、ジフェニル化合物が炭素粒子とCl原子を2個以上もつ化合物とを結合させる中間物質として機能している。そして、Cl原子はその高い電気陰性度から触媒の活性化および酸素ガスの透過能が高く、また導電性や撥水性も高く、燃料電池の触媒担持体として優れた性能を発揮する。 As described above, in the fuel cell catalyst carrier of the present invention, the one-end isocyanate group of the diphenyl compound having an isocyanate group at both ends is urethane-bonded to the functional group on the surface of the carbon particle, and the unbonded other-end isocyanate group is Cl atom. Are composed of carbon particles chemically bonded to a reactive group of a compound having two or more, and the diphenyl compound functions as an intermediate substance that bonds the carbon particles and a compound having two or more Cl atoms. Since the Cl atom has high electronegativity, it has high catalyst activation and oxygen gas permeability, high conductivity and water repellency, and exhibits excellent performance as a catalyst carrier for a fuel cell.
本発明の燃料電池用触媒担持体は、両末端にイソシアネート基を有するジフェニル化合物を非反応性の溶媒に溶解し、その溶液中に炭素粒子を混合してジフェニル化合物の片端イソシアネート基を炭素粒子表面の官能基とウレタン結合させ、次いで未反応のジフェニル化合物を除去した後、末端に反応性基を有する少なくともCl原子を2個以上有する化合物を加えて、末端の反応性基とジフェニル化合物の他端イソシアネート基とを化学結合させることにより製造される。 The catalyst carrier for a fuel cell of the present invention is prepared by dissolving a diphenyl compound having isocyanate groups at both ends in a non-reactive solvent, mixing carbon particles in the solution, and converting one end isocyanate group of the diphenyl compound to the surface of the carbon particles. After removing the unreacted diphenyl compound and adding a compound having at least two Cl atoms having a reactive group at the terminal, the terminal reactive group and the other end of the diphenyl compound It is produced by chemically bonding with an isocyanate group.
両末端にイソシアネート基を有するジフェニル化合物と非反応性の溶媒としては、例えば酢酸エチルや酢酸ブチルなどのエステル化合物あるいはメチルエチルケトンなどのケトン類があり、両末端にイソシアネート基を有するジフェニル化合物をこれらの溶媒に溶解し、次いで、この溶液中に炭素粒子を添加して10〜100℃の温度、好ましくは20〜60℃の温度で1〜10時間程度攪拌混合することにより、ジフェニル化合物の片端にあるイソシアネート基と炭素粒子表面の官能基とを反応させて、炭素粒子表面の官能基とウレタン結合によりジフェニル化合物を結合させる。 Non-reactive solvents with diphenyl compounds having isocyanate groups at both ends include, for example, ester compounds such as ethyl acetate and butyl acetate or ketones such as methyl ethyl ketone, and diphenyl compounds having isocyanate groups at both ends are used as these solvents. Next, by adding carbon particles to this solution and stirring and mixing at a temperature of 10 to 100 ° C., preferably 20 to 60 ° C. for about 1 to 10 hours, an isocyanate at one end of the diphenyl compound The group and the functional group on the surface of the carbon particle are reacted to bond the diphenyl compound with the functional group on the surface of the carbon particle and a urethane bond.
この場合、未反応のジフェニル化合物が残留すると炭素粒子同士が凝集結合し易く、また末端に反応性基を有する少なくともCl原子を2個以上有する化合物との反応も阻害されるため、未反応のジフェニル化合物を除去、精製する。ジフェニル化合物の除去は、例えば高速遠心分離機により行い、前記の溶媒を加えて遠心分離する操作を繰り返し行うことによって除去、精製することができる。 In this case, when the unreacted diphenyl compound remains, the carbon particles are easily aggregated and bonded, and the reaction with the compound having at least two Cl atoms having a reactive group at the terminal is also inhibited. Remove and purify compound. The removal of the diphenyl compound can be performed by, for example, a high-speed centrifuge, and can be removed and purified by repeatedly performing the operation of adding the solvent and centrifuging.
炭素粒子表面の官能基と両末端にイソシアネート基を有するジフェニル化合物の一方の片端イソシアネート基とがウレタン結合により結合した炭素粒子は、前述の酢酸エチルや酢酸ブチルなどのエステル化合物あるいはメチルエチルケトンなどのケトン類の非反応性の溶媒に再度溶解し、この溶液中に末端に反応性基を有する少なくともCl原子を2個以上有する化合物を加えて、10〜100℃の温度、好ましくは20〜60℃の温度で1〜10時間程度攪拌混合することにより、末端の反応性基とジフェニル化合物の他端イソシアネート基とを化学結合させる。 Carbon particles in which the functional group on the surface of the carbon particles and one end isocyanate group of the diphenyl compound having an isocyanate group at both ends are bonded by a urethane bond are the above-mentioned ester compounds such as ethyl acetate and butyl acetate or ketones such as methyl ethyl ketone The compound is dissolved again in a non-reactive solvent, and a compound having at least two Cl atoms having a reactive group at the terminal is added to the solution, and the temperature is 10 to 100 ° C., preferably 20 to 60 ° C. Then, the terminal reactive group and the other end isocyanate group of the diphenyl compound are chemically bonded by stirring and mixing for about 1 to 10 hours.
このようにして、両末端にイソシアネート基を有するジフェニル化合物の片端のイソシアネート基が炭素粒子の表面官能基と結合し、他端のイソシアネート基が末端に反応性基を有する少なくともCl原子を2個以上有する化合物の反応性基と結合し、両末端にイソシアネート基を有するジフェニル化合物が中間体として炭素粒子と末端に反応性基を有する少なくともCl原子を2個以上有する化合物とを結合するので、例えば燃料電池の触媒担持体として使用した場合には触媒金属を被うことなく、触媒を担持する炭素担持体と直接結合して撥水性の部位が形成され、発電効率の低下を招くことなく、効率良く電池反応を生起する燃料電池用の触媒担持体が製造される。 In this way, the isocyanate group at one end of the diphenyl compound having an isocyanate group at both ends is bonded to the surface functional group of the carbon particle, and the isocyanate group at the other end has at least two Cl atoms having a reactive group at the end. The diphenyl compound having an isocyanate group at both ends binds to a carbon particle as an intermediate and a compound having at least two Cl atoms having a reactive group at the end, for example, fuel. When used as a catalyst support for a battery, it does not cover the catalyst metal, and is directly bonded to the carbon support for supporting the catalyst to form a water-repellent part, so that the power generation efficiency is not lowered efficiently. A catalyst carrier for a fuel cell that causes a cell reaction is produced.
なお、これらの処理、すなわち両末端にイソシアネート基を有するジフェニル化合物の片端イソシアネート基を炭素粒子表面の官能基とウレタン結合させ、次いで、未結合のジフェニル化合物の他端イソシアネート基を、末端に反応性基を有する少なくともCl原子を2個以上有する化合物の反応性基と化学結合させる反応は、触媒が担持されていない炭素粒子に行って後に触媒を担持してもよいが、表面に結合した化合物が触媒の担持の妨げとなり易いので、触媒を担持した炭素粒子に行うことが好ましい。 In addition, these treatments, that is, one end isocyanate group of a diphenyl compound having an isocyanate group at both ends are urethane-bonded to a functional group on the surface of the carbon particle, and then the other end isocyanate group of the unbonded diphenyl compound is reactive at the end. The reaction for chemically bonding to the reactive group of the compound having at least two Cl atoms having a group may be carried out on carbon particles on which no catalyst is supported, and then the catalyst may be supported. Since it tends to hinder the loading of the catalyst, it is preferably carried out on the carbon particles carrying the catalyst.
以下、本発明の実施例を具体的に説明する。 Examples of the present invention will be specifically described below.
比較例
触媒を担持させる炭素粒子としてカーボンブラック(米国キャボット社製、バルカンXC72−R)を用い、カーボンブラックを塩化白金酸水溶液に入れて攪拌混合した後、濾過分離して、カーボンブラックの表面に白金化合物を付着させた。次いで、加熱、還元して白金触媒を30重量%担持させた燃料電池用触媒担持体を製造した。
Comparative Example Carbon black (Vulcan XC72-R, manufactured by Cabot Corp., USA) was used as the carbon particles for supporting the catalyst. The carbon black was placed in an aqueous chloroplatinic acid solution, stirred and mixed, and then filtered and separated on the carbon black surface. A platinum compound was deposited. Subsequently, the catalyst support for fuel cells which carried 30 weight% of platinum catalysts by heating and reduction | restoration was manufactured.
実施例
ジフェニルメタン−4,4′−ジイソシアネート(MDI)を10重量%の濃度に溶解させたメチルエチルケトン溶液に、比較例の燃料電池用触媒担持体(白金触媒を担持させたカーボンブラック)10gを入れて、攪拌しながら40℃で2時間反応させてイソシアネート基をウレタン結合させた。その後、遠心分離によりメチルエチルケトンおよび未反応のMDIを分離した。
Example 10 g of a fuel cell catalyst carrier (carbon black carrying a platinum catalyst) of a comparative example was placed in a methyl ethyl ketone solution in which diphenylmethane-4,4'-diisocyanate (MDI) was dissolved to a concentration of 10% by weight. The reaction was carried out at 40 ° C. for 2 hours while stirring to urethane bond the isocyanate groups. Thereafter, methyl ethyl ketone and unreacted MDI were separated by centrifugation.
次いで、メチルエチルケトン中に再分散させて、溶液中に2,2,2−トリクロロエタノール3gを加えて、攪拌しながら40℃で2時間反応させた。その後、遠心分離により未反応の2,2,2−トリクロロエタノールおよびメチルエチルケトンを除去して燃料電池用触媒担持体を製造した。 Subsequently, it was re-dispersed in methyl ethyl ketone, 3 g of 2,2,2-trichloroethanol was added to the solution, and the mixture was reacted at 40 ° C. for 2 hours with stirring. Thereafter, unreacted 2,2,2-trichloroethanol and methyl ethyl ketone were removed by centrifugation to produce a catalyst support for a fuel cell.
これらの触媒担持体をカソード電極とする燃料電池を作製して下記の方法で発電試験を行い、電流密度と電圧の関係を図2に示した。 A fuel cell using these catalyst carriers as cathode electrodes was prepared and a power generation test was conducted by the following method. The relationship between current density and voltage is shown in FIG.
発電試験;アノード側に加湿した水素を、カソード側に加湿した空気を供給し、発電性能を評価した。流量は13cm2のセル面積に対し、水素は272ml/min、空気は866ml/minである。試験条件は、セル温度80℃、アノード露点80℃、カソード露点80℃である。 Power generation test: Humidified hydrogen was supplied to the anode side and humidified air was supplied to the cathode side to evaluate the power generation performance. The flow rate is 272 ml / min for hydrogen and 866 ml / min for air for a cell area of 13 cm 2 . The test conditions are a cell temperature of 80 ° C., an anode dew point of 80 ° C., and a cathode dew point of 80 ° C.
電流密度が高い場合には、燃料ガスや酸化剤ガスまたは水蒸気の拡散性が高いほど触媒電極での反応が促進されるため、電圧の低下が抑制される。また、フラッディングが起こると電圧低下が生じる。したがって、図2より実施例では比較例に比べて、疎水性の向上によりフラッディングが抑制されて、電流密度が大きくなっても電圧の低下が少なく、電池性能に優れていることが分かる。 When the current density is high, the higher the diffusibility of the fuel gas, the oxidant gas, or the water vapor, the more the reaction at the catalyst electrode is promoted, so the voltage drop is suppressed. Moreover, when flooding occurs, a voltage drop occurs. Therefore, it can be seen from FIG. 2 that in the example, as compared with the comparative example, flooding is suppressed due to the improvement in hydrophobicity, and even when the current density is increased, the voltage decrease is small and the battery performance is excellent.
1 電解質膜
2 触媒電極
3 触媒電極
4 アノード
5 カソード
6 アノード側ガス拡散層
7 カソード側ガス拡散層
8 セパレータ
9 反応ガス流路
10 シール材
DESCRIPTION OF SYMBOLS 1
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007044988A JP2008210602A (en) | 2007-02-26 | 2007-02-26 | Catalyst carrier for fuel cell and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007044988A JP2008210602A (en) | 2007-02-26 | 2007-02-26 | Catalyst carrier for fuel cell and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008210602A true JP2008210602A (en) | 2008-09-11 |
Family
ID=39786744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007044988A Pending JP2008210602A (en) | 2007-02-26 | 2007-02-26 | Catalyst carrier for fuel cell and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008210602A (en) |
-
2007
- 2007-02-26 JP JP2007044988A patent/JP2008210602A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100545624B1 (en) | Electrode for fuel cell and fuel cell using the same | |
EP2626939B1 (en) | Polymer electrolyte fuel cell | |
KR100684854B1 (en) | Catalyst for fuel cell, method for preparing same, amd membrane-electrode assembly for fuel cell comprising same | |
KR20110060094A (en) | Electrode for polymer electrolyte membrane fuel cell and method for manufacturing membrane-electrode assembly using the same | |
JP4745942B2 (en) | Cathode catalyst for fuel cell, membrane electrode assembly for fuel cell, and fuel cell system | |
CN1237804A (en) | Activation method for fuel battery | |
US20100028736A1 (en) | Hybrid Ionomer Electrochemical Devices | |
JP5260009B2 (en) | Membrane electrode assembly and fuel cell | |
US20040121220A1 (en) | Fuel cell electrode and fuel cell | |
US20130115542A1 (en) | Method for producing fuel cell catalyst, fuel cell catalyst, and uses thereof | |
US7993797B2 (en) | Chemically modified catalyzed support particles for electrochemical cells | |
JP5294550B2 (en) | Membrane electrode assembly and fuel cell | |
JP4919941B2 (en) | Inspection method for polymer electrolyte membrane | |
US20090042091A1 (en) | Supported catalyst layers for direct oxidation fuel cells | |
CN101041137A (en) | Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell comprising same and fuel cell system comprising same | |
KR101319384B1 (en) | Separator for fuel cell, and fuel cell system including the same | |
JP2007265916A (en) | Fuel cell | |
KR20120061484A (en) | Preparing method of Hydrophobic polymer-Carbon support composites for Fuel cell electrode | |
JP2005174835A (en) | Electrode | |
JP4899453B2 (en) | Composite carbon particles for fuel cells and method for producing the same | |
JP2004127672A (en) | Fuel cell and drive method of fuel cell | |
JP2008210602A (en) | Catalyst carrier for fuel cell and its manufacturing method | |
JP4899454B2 (en) | Carbon particle composite for fuel cell and production method | |
JP2008123744A (en) | Manufacturing method of catalyst layer for fuel cell, and fuel cell | |
JP2007165043A (en) | Carbon particle complex for fuel cell, and its manufacturing method |