JP4899454B2 - Carbon particle composite for fuel cell and production method - Google Patents

Carbon particle composite for fuel cell and production method Download PDF

Info

Publication number
JP4899454B2
JP4899454B2 JP2005357460A JP2005357460A JP4899454B2 JP 4899454 B2 JP4899454 B2 JP 4899454B2 JP 2005357460 A JP2005357460 A JP 2005357460A JP 2005357460 A JP2005357460 A JP 2005357460A JP 4899454 B2 JP4899454 B2 JP 4899454B2
Authority
JP
Japan
Prior art keywords
group
fuel cell
reactive
carbon particle
diphenyl compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005357460A
Other languages
Japanese (ja)
Other versions
JP2007165042A (en
Inventor
竜介 原田
寧 関山
佳史 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Toyota Motor Corp
Original Assignee
Tokai Carbon Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd, Toyota Motor Corp filed Critical Tokai Carbon Co Ltd
Priority to JP2005357460A priority Critical patent/JP4899454B2/en
Publication of JP2007165042A publication Critical patent/JP2007165042A/en
Application granted granted Critical
Publication of JP4899454B2 publication Critical patent/JP4899454B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は燃料電池、例えば固体高分子型燃料電池の電極などに使用する炭素粒子複合体とその製造方法に関する。   The present invention relates to a carbon particle composite used for an electrode of a fuel cell, for example, a polymer electrolyte fuel cell, and a production method thereof.

燃料電池は、燃料が有する化学エネルギーを直接電気エネルギーに変換するもので、電気エネルギーへの変換効率が高く、特に固体高分子型燃料電池は比較的低温で、高出力の発電が可能であるため、自動車の電源をはじめとして小型の移動型電源や定置型電源として期待されている。   A fuel cell directly converts the chemical energy of fuel into electrical energy, and has high conversion efficiency into electrical energy. In particular, a polymer electrolyte fuel cell is capable of generating high output at a relatively low temperature. It is expected as a small mobile power source and a stationary power source including an automobile power source.

固体高分子型燃料電池の構造は、通常、スルホン酸基を有するフッ素樹脂系イオン交換膜のような高分子イオン交換膜からなる電解質膜と、その両面に白金などの触媒を担持させた触媒電極と、それぞれの電極に水素などの燃料ガスあるいは酸素や空気などの酸化剤ガスを供給する反応ガス供給用の凹凸溝部を設けたセパレータなどからなる単セルを、数十から数百層に積層したスタック、及びその外側に設けた2つの集電体などから構成されている。   The structure of a polymer electrolyte fuel cell is generally composed of an electrolyte membrane made of a polymer ion exchange membrane such as a fluororesin ion exchange membrane having a sulfonic acid group, and a catalyst electrode in which a catalyst such as platinum is supported on both surfaces thereof. And tens to hundreds of layers of single cells consisting of separators and the like provided with concave and convex grooves for supplying a reaction gas for supplying a fuel gas such as hydrogen or an oxidant gas such as oxygen or air to each electrode. It consists of a stack and two current collectors provided outside the stack.

単セルの構造は、図1に示すように、例えばフッ素系樹脂のイオン交換膜からなる固体高分子の電解質膜1を挟んで一対の触媒電極2、3、すなわち、アノード4およびカソード5と、その外側に形成したアノード側ガス拡散層6、カソード側ガス拡散層7、およびこれらを両側から挟持する緻密質でガス不透過性のカーボン材料や金属材料からなるセパレータ8とから構成されている。   As shown in FIG. 1, the structure of the single cell includes a pair of catalyst electrodes 2 and 3, that is, an anode 4 and a cathode 5 with a solid polymer electrolyte membrane 1 made of, for example, a fluorine-based resin ion exchange membrane interposed therebetween, The anode-side gas diffusion layer 6 and the cathode-side gas diffusion layer 7 formed on the outer side thereof, and a separator 8 made of a dense and gas-impermeable carbon material or metal material sandwiching these layers from both sides.

触媒電極2、3は白金やルテニウムなどの貴金属や有機金属錯体などの触媒を担持させた導電性炭素質多孔質体から形成され、炭素質多孔質体としては、例えば炭素短繊維やカーボンブラックを樹脂で結着した多孔質体などが用いられている。   The catalyst electrodes 2 and 3 are formed of a conductive carbonaceous porous body supporting a catalyst such as a noble metal such as platinum or ruthenium or an organometallic complex. As the carbonaceous porous body, for example, carbon short fiber or carbon black is used. A porous body bound with a resin is used.

セパレータ8には複数の溝9が設けられ、溝9とアノード側ガス拡散層6とにより燃料ガス(例えば水素ガス)の流路が、溝9とカソード側ガス拡散層7とにより酸化剤ガス(例えば空気)の流路が形成され、溝9から供給された水素ガスはアノード側ガス拡散層6を拡散してアノード4において、H→2H+2eの反応によりイオン化してHとなり電解質膜1を透過していく。 The separator 8 is provided with a plurality of grooves 9, a flow path of fuel gas (for example, hydrogen gas) is formed by the grooves 9 and the anode side gas diffusion layer 6, and an oxidant gas (by the groove 9 and the cathode side gas diffusion layer 7). For example, the hydrogen gas supplied from the groove 9 diffuses through the anode-side gas diffusion layer 6 and is ionized by the reaction of H 2 → 2H + + 2e to become H + in the anode 4. It passes through the membrane 1.

一方、溝9から供給された酸素ガスはカソード側ガス拡散層7を拡散してカソード5において、1/2O+2H+2e→HOの反応により水を生成する。燃料電池の発電機構は、この電気化学反応によって生じる電子(e)の流れを電気エネルギーとして外部回路に取り出すものである。 On the other hand, the oxygen gas supplied from the groove 9 diffuses through the cathode-side gas diffusion layer 7 and generates water by the reaction of 1 / 2O 2 + 2H + + 2e → H 2 O at the cathode 5. The power generation mechanism of the fuel cell takes out the flow of electrons (e ) generated by this electrochemical reaction as electric energy to an external circuit.

すなわち、アノード側に供給された水素ガスは触媒電極4上でイオン化されてHとなり、Hは電解質膜を水(xHO)とともにカソード側へ移動し、カソードにおいて酸素ガス(O)と反応して水を生成する。したがって、この電池反応を円滑に進行させるためには電解質膜を適度な湿潤状態に保持して水素ガスをイオン化する必要があり、通常燃料ガスおよび酸化剤ガスは電池の運転温度に近い温度の飽和水蒸気を含ませて供給し、電解質膜を適度な湿潤状態に保持している。 That is, the hydrogen gas supplied to the anode side is ionized on the catalyst electrode 4 to become H + , and H + moves through the electrolyte membrane to the cathode side together with water (xH 2 O), and oxygen gas (O 2 ) at the cathode. Reacts with water to produce water. Therefore, in order to make this battery reaction proceed smoothly, it is necessary to ionize the hydrogen gas while maintaining the electrolyte membrane in an appropriate wet state. Usually, the fuel gas and the oxidant gas are saturated at a temperature close to the operating temperature of the battery. Water vapor is supplied to keep the electrolyte membrane in a proper wet state.

一方、過剰に水分を含む場合には、過飽和状態になった水蒸気が水滴として凝縮してくることになる。このようにして反応ガス中に水滴が生じると、水の表面張力が大きいことからセパレータのガス流路に停滞し、さらに凝縮水が流路を塞いで反応ガスの流れを阻害するフラッディング現象が起こって電池反応が円滑に進まず、発電性能を低下させる問題が生じる。   On the other hand, when water is excessively contained, the supersaturated water vapor is condensed as water droplets. When water droplets are generated in the reaction gas in this way, the surface tension of the water is so great that it stagnates in the gas flow path of the separator, and a flooding phenomenon occurs that condensate blocks the flow path and inhibits the flow of the reaction gas. As a result, the battery reaction does not proceed smoothly, resulting in a problem that power generation performance is degraded.

この問題を解決するために、フッ素系の樹脂を用いて撥水性を付与することが行われている。例えば、特許文献1にはフッ素樹脂と触媒との混合方法を工夫することで燃料電池の性能向上を図ることが提案されている。しかし、触媒表面がフッ素樹脂で覆われてしまい、十分に電池性能を発揮し得ない難点がある。   In order to solve this problem, water repellency is imparted using a fluorine-based resin. For example, Patent Document 1 proposes improving the performance of a fuel cell by devising a mixing method of a fluororesin and a catalyst. However, the catalyst surface is covered with a fluororesin, and there is a drawback that the battery performance cannot be sufficiently exhibited.

また、フッ素樹脂には導電性がないため、撥水性をあげるためにフッ素樹脂の配合量を増やすと導電性が低下し、一方、導電性を確保しようとするとフッ素樹脂の配合量を少なくする必要があり、結果的に十分な撥水性を付与できない難点もある。   In addition, since fluororesin has no electrical conductivity, increasing the blending amount of fluororesin to increase water repellency decreases the conductivity. On the other hand, it is necessary to reduce the blending amount of fluororesin in order to ensure conductivity. As a result, there is a drawback that sufficient water repellency cannot be imparted.

一方、親水性を付与する方法として、特許文献2には触媒体に親水部位を有するシランカップリング剤を結合する方法が開示されている。しかしながら、この方法では貴金属触媒の担持サイトまでも親水性被膜が覆ってしまう問題や、炭素材料を覆ってしまうため導電性を低下させる問題がある。   On the other hand, as a method of imparting hydrophilicity, Patent Document 2 discloses a method of binding a silane coupling agent having a hydrophilic site to a catalyst body. However, in this method, there is a problem that the hydrophilic coating covers even the noble metal catalyst support site and a problem that the conductivity is lowered because the carbon material is covered.

また、特許文献3にはスルファニル酸を酸性水溶液中で亜硝酸ナトリウムで処理して得られるジアゾニウム塩を用いて触媒担持体に親水性を付与した後、貴金属触媒を担持する方法が開示されている。しかしながら、修飾された官能基が貴金属触媒の担持を阻害してしまい、触媒を十分に担持させることが難しい問題がある。
特開平8−264190号公報 特開2000−243404号公報 特開2003−007308号公報
Patent Document 3 discloses a method of supporting a noble metal catalyst after imparting hydrophilicity to a catalyst support using a diazonium salt obtained by treating sulfanilic acid with sodium nitrite in an acidic aqueous solution. . However, there is a problem that it is difficult to fully support the catalyst because the modified functional group inhibits the support of the noble metal catalyst.
JP-A-8-264190 JP 2000-243404 A JP 2003-007308 A

そこで、本発明はこれらの問題点の解消を図ることを目的とし、親水性に優れ、電子導電性もプロトン導電性も高い燃料電池用炭素粒子複合体、例えば触媒担持体として好適な炭素粒子複合体とその製造方法を提供することを目的とする。   Therefore, the present invention aims to solve these problems, and has excellent hydrophilicity, high electronic conductivity and proton conductivity, a carbon particle composite for fuel cells, for example, a carbon particle composite suitable as a catalyst support. It aims at providing a body and its manufacturing method.

上記の目的を達成するための本発明による燃料電池用炭素粒子複合体は、炭素粒子表面の官能基と両末端にイソシアネート基を有するジフェニル化合物の片端イソシアネート基がウレタン結合し、ジフェニル化合物の他端イソシアネート基が反応性アルキルスルホン酸の反応性基と結合したスルホン酸基により化学修飾された炭素粒子からなることを構成上の特徴とする。   In order to achieve the above object, the carbon particle composite for a fuel cell according to the present invention has a functional group on the surface of the carbon particle and one end isocyanate group of a diphenyl compound having an isocyanate group at both ends bonded to the other end of the diphenyl compound. A structural feature is that the isocyanate group is composed of carbon particles chemically modified with a sulfonic acid group bonded to a reactive group of a reactive alkylsulfonic acid.

なお、炭素粒子表面の官能基はヒドロキシル基および/またはカルボキシル基であることが好ましい。   The functional group on the carbon particle surface is preferably a hydroxyl group and / or a carboxyl group.

また、本発明による燃料電池用炭素粒子複合体の製造方法は、両末端にイソシアネート基を有するジフェニル化合物を非反応性の溶媒に溶解し、その溶液中に炭素粒子を混合してジフェニル化合物の片端イソシアネート基を炭素粒子表面の官能基とウレタン結合させ、未反応のジフェニル化合物を除去した後、非反応性の溶媒中で反応性アルキルスルホン酸を加えてジフェニル化合物の他端イソシアネート基と反応性基とを化学結合させることを構成上の特徴とする。   Also, the method for producing a carbon particle composite for a fuel cell according to the present invention comprises dissolving a diphenyl compound having an isocyanate group at both ends in a non-reactive solvent, mixing the carbon particles in the solution, and mixing one end of the diphenyl compound. After the isocyanate group is bonded to the functional group on the surface of the carbon particle by urethane and the unreacted diphenyl compound is removed, the reactive alkylsulfonic acid is added in a non-reactive solvent to add the other end isocyanate group and the reactive group of the diphenyl compound. Is a structural feature.

なお、この炭素粒子複合体は、親水性、電子導電性およびプロトン導電性に優れており、例えば燃料電池用触媒担持体として好適に用いられる。   This carbon particle composite is excellent in hydrophilicity, electronic conductivity and proton conductivity, and is suitably used, for example, as a fuel cell catalyst carrier.

本発明の燃料電池用炭素粒子複合体は、炭素粒子表面の官能基、好ましくはヒドロキシル基やカルボキシル基などの官能基と両末端にイソシアネート基を有するジフェニル化合物の片端イソシアネート基がウレタン結合で結合し、ジフェニル化合物の他端イソシアネート基が反応性アルキルスルホン酸の反応性基と結合したスルホン酸基により化学修飾された炭素粒子からなるものであり、両末端にイソシアネート基を有するジフェニル化合物の両末端イソシアネート基が炭素粒子の表面官能基と反応性アルキルスルホン酸の反応性基とそれぞれ結合して、炭素粒子がスルホン酸基により化学修飾されたものである。その結果、親水性が向上して電解質の湿潤状態が良好に維持されて、電解質と炭素粒子複合体との親和性が向上し、三相界面が増加するので、例えば優れた発電性能を示す燃料電池触媒担持体として好適に使用される。   In the carbon particle composite for a fuel cell of the present invention, a functional group on the surface of the carbon particle, preferably a functional group such as a hydroxyl group or a carboxyl group, and one end isocyanate group of a diphenyl compound having an isocyanate group at both ends are bonded by a urethane bond. The diisocyanate is composed of carbon particles chemically modified with a sulfonic acid group in which the other end isocyanate group of the diphenyl compound is bonded to the reactive group of the reactive alkyl sulfonic acid, and both ends of the diphenyl compound having an isocyanate group at both ends. The carbon particle is chemically modified with a sulfonic acid group by bonding a group to the surface functional group of the carbon particle and a reactive group of the reactive alkylsulfonic acid. As a result, the hydrophilicity is improved and the wet state of the electrolyte is well maintained, the affinity between the electrolyte and the carbon particle composite is improved, and the three-phase interface is increased. For example, a fuel exhibiting excellent power generation performance It is suitably used as a battery catalyst support.

また、本発明の燃料電池用炭素粒子複合体の製造方法は、両末端にイソシアネート基を有するジフェニル化合物を非反応性の溶媒に溶解し、その溶液中に炭素粒子を混合してジフェニル化合物の片端イソシアネート基を炭素粒子表面の官能基とウレタン結合させ、未反応のジフェニル化合物を除去した後、非反応性の溶媒中で反応性アルキルスルホン酸を加えてジフェニル化合物の他端イソシアネート基と反応性基とを化学結合させて、炭素粒子表面をスルホン酸基により化学修飾するものであり、例えば発電性能に優れた燃料電池触媒担持体を製造することができる。   Further, the method for producing a carbon particle composite for a fuel cell according to the present invention comprises dissolving a diphenyl compound having an isocyanate group at both ends in a non-reactive solvent, mixing the carbon particles in the solution, and mixing one end of the diphenyl compound. After the isocyanate group is bonded to the functional group on the surface of the carbon particle by urethane and the unreacted diphenyl compound is removed, the reactive alkylsulfonic acid is added in a non-reactive solvent to add the other end isocyanate group and the reactive group of the diphenyl compound. And the carbon particle surface is chemically modified with a sulfonic acid group. For example, a fuel cell catalyst carrier excellent in power generation performance can be produced.

本発明の燃料電池用炭素粒子複合体に用いる、炭素材の種類には制限はなく、例えば、黒鉛、カーボンブラック、ガラス状炭素、活性炭、カーボンエアロゲル、メソカーボンマイクロビーズ、炭素繊維、カーボンナノチューブ、フラーレンなどいずれも使用することができる。   There are no limitations on the type of carbon material used in the carbon particle composite for fuel cells of the present invention. For example, graphite, carbon black, glassy carbon, activated carbon, carbon aerogel, mesocarbon microbeads, carbon fibers, carbon nanotubes, Any of fullerenes can be used.

両末端にイソシアネート基を有するジフェニル化合物の片端イソシアネート基がウレタン結合する炭素粒子表面の官能基は反応性であれば特に制限はなく、ヒドロキシル基、カルボキシル基、アミノ基、スルホン基などの官能基が例示できるが、反応効率からヒドロキシル基およびカルボキシル基が好ましい。また、これらの官能基を有しない場合やその量が少ない場合には、適宜な表面処理を施すことにより、これらの官能基を生成、制御することができるし、好ましい。   The functional group on the surface of the carbon particle to which the one-end isocyanate group of the diphenyl compound having an isocyanate group at both ends is urethane-bonded is not particularly limited as long as it is reactive, and a functional group such as a hydroxyl group, a carboxyl group, an amino group, a sulfone group is present. Although it can illustrate, a hydroxyl group and a carboxyl group are preferable from reaction efficiency. Moreover, when these functional groups are not present or when the amount thereof is small, these functional groups can be generated and controlled by applying an appropriate surface treatment, which is preferable.

表面処理の方法は、例えば、下記の方法などがある。
(1)ヒドロキシル基およびカルボキシル基の生成は、オゾン、酸素、NOX 、SOX などの酸化性ガス雰囲気に炭素粒子を曝す方法、低温酸素プラズマで処理する方法、オゾン水、過酸化水素水、ペルオキソ2酸あるいはその塩類、次亜ハロゲン酸塩、重クロム酸塩、過マンガン酸塩、硝酸などの酸化剤水溶液に炭素粒子を入れて攪拌混合する方法、などの気相酸化処理や液相酸化処理する方法。
(2)アミノ基の生成は、硝酸/硫酸混合系で酸化してニトロ基を生成させ、ホルムアルデヒドなどの還元剤で還元する方法。
(3)スルホン基の生成は、濃硫酸でスルホン化する方法。
Examples of the surface treatment method include the following method.
(1) Hydroxyl and carboxyl groups are produced by exposing carbon particles to an oxidizing gas atmosphere such as ozone, oxygen, NOx, SOx, treating with low-temperature oxygen plasma, ozone water, hydrogen peroxide water, peroxo 2 Gas phase oxidation treatment or liquid phase oxidation treatment, such as a method of mixing and stirring carbon particles in an oxidizing agent aqueous solution such as acid or its salts, hypohalite, dichromate, permanganate, nitric acid, etc. Method.
(2) Amino group is generated by oxidizing with nitric acid / sulfuric acid mixed system to form nitro group and reducing with reducing agent such as formaldehyde.
(3) The sulfone group is formed by sulfonation with concentrated sulfuric acid.

なお、表面処理の程度は、例えば、ヒドロキシル基やカルボキシル基を生成させる場合には、pHが5以下程度に処理することが好ましい。   In addition, as for the grade of surface treatment, when producing | generating a hydroxyl group and a carboxyl group, for example, it is preferable to process to pH about 5 or less.

これらの官能基は、両末端にイソシアネート基を有するジフェニル化合物と反応させることにより、ジフェニル化合物の一方の片端イソシアネート基が炭素粒子表面の官能基とウレタン結合(OHOCN)してジフェニル化合物が結合される。   By reacting these functional groups with a diphenyl compound having isocyanate groups at both ends, one end isocyanate group of the diphenyl compound is bonded to a functional group on the surface of the carbon particle by a urethane bond (OHOCN) to bond the diphenyl compound. .

この反応を、両末端にイソシアネート基を有するジフェニル化合物としてメチルジフェニルジイソシアネートを例に、炭素粒子表面のヒドロキシル基とメチルジフェニルジイソシアネートの片端イソシアネート基が反応してウレタン結合した場合の反応式を化1に示した。   For this reaction, the reaction formula when the hydroxyl group on the carbon particle surface and one end isocyanate group of methyldiphenyl diisocyanate react with each other to form a urethane bond is taken as an example, using methyldiphenyl diisocyanate as the diphenyl compound having isocyanate groups at both ends. Indicated.

Figure 0004899454
Figure 0004899454

本発明の燃料電池用炭素粒子複合体は、化1のように炭素粒子表面の官能基(例えばヒドロキシル基)と、両末端にイソシアネート基を有するジフェニル化合物(例えばメチルジフェニルジイソシアネート)の一方の片端イソシアネート基がウレタン結合により結合し、また、未反応の一方の他端イソシアネート基は反応性アルキルスルホン酸の反応性基と結合して炭素粒子表面がスルホン酸基により化学修飾されたものである。   The carbon particle composite for a fuel cell according to the present invention has one end isocyanate of a diphenyl compound (for example, methyldiphenyl diisocyanate) having a functional group (for example, hydroxyl group) on the surface of the carbon particle and an isocyanate group at both ends as shown in Chemical Formula 1. The group is bonded by a urethane bond, and the other unreacted isocyanate group is bonded to the reactive group of the reactive alkylsulfonic acid, and the carbon particle surface is chemically modified with the sulfonic acid group.

すなわち、両末端にイソシアネート基を有するジフェニル化合物は、その両末端のイソシアネート基の一方の片端イソシアネート基が炭素粒子表面の官能基と結合し、一方の未反応の他端イソシアネート基は反応性アルキルスルホン酸の反応性基と結合したものであり、両末端にイソシアネート基を有するジフェニル化合物が炭素粒子表面の官能基と反応性アルキルスルホン酸とを結合させるための中間物質として機能する。   That is, in the diphenyl compound having isocyanate groups at both ends, one end isocyanate group of the isocyanate groups at both ends is bonded to the functional group on the surface of the carbon particle, and the other unreacted other isocyanate group is a reactive alkylsulfone. A diphenyl compound having an isocyanate group at both ends functions as an intermediate substance for bonding a functional group on the surface of carbon particles and a reactive alkylsulfonic acid.

この反応式を化2に例示した。化2は、化1に示した炭素粒子表面のヒドロキシル基とメチルジフェニルジイソシアネートの片端イソシアネート基がウレタン結合し、他端のイソシアネート基が反応性アルキルスルホン酸として2−アミノエタンスルホン酸のアミノ基と結合した場合の反応式を例示したものである。   This reaction formula is illustrated in Chemical Formula 2. In the chemical formula 2, the hydroxyl group on the surface of the carbon particles shown in chemical formula 1 and one end isocyanate group of methyldiphenyl diisocyanate are urethane-bonded, and the isocyanate group on the other end is a reactive alkylsulfonic acid and the amino group of 2-aminoethanesulfonic acid. The reaction formula at the time of bonding is illustrated.

Figure 0004899454
Figure 0004899454

このように、ジフェニル化合物は両末端にイソシアネート基を有していることが必要であり、一方の末端にあるイソシアネート基は炭素粒子表面の官能基と結合し、他方の末端にあるイソシアネート基は反応性アルキルスルホン酸の反応性基と結合する。   In this way, the diphenyl compound must have isocyanate groups at both ends, the isocyanate group at one end is bonded to the functional group on the surface of the carbon particle, and the isocyanate group at the other end is reacted. It couple | bonds with the reactive group of a functional alkylsulfonic acid.

この複合炭素粒子は、電子導電性およびプロトン導電性および親水性に優れており、例えば燃料電池の触媒担持体や触媒層に混合して電子導電性およびプロトン導電性を付与する材料として好適に使用することができる。   This composite carbon particle is excellent in electronic conductivity, proton conductivity, and hydrophilicity, and is suitably used as a material that imparts electron conductivity and proton conductivity by mixing with a catalyst carrier or catalyst layer of a fuel cell, for example. can do.

この燃料電池用炭素粒子複合体は、両末端にイソシアネート基を有するジフェニル化合物を非反応性の溶媒に溶解し、その溶液中に炭素粒子を混合してジフェニル化合物の片端イソシアネート基を炭素粒子表面の官能基とウレタン結合させ、未反応のジフェニル化合物を除去した後、非反応性の溶媒中で反応性アルキルスルホン酸を加えてジフェニル化合物の他端イソシアネート基と反応性基とを化学結合させることにより製造される。   In this carbon particle composite for a fuel cell, a diphenyl compound having isocyanate groups at both ends is dissolved in a non-reactive solvent, and carbon particles are mixed in the solution to convert one end isocyanate group of the diphenyl compound to the surface of the carbon particles. By removing the unreacted diphenyl compound with a functional group and urethane, and then adding a reactive alkylsulfonic acid in a non-reactive solvent to chemically bond the other end isocyanate group and the reactive group of the diphenyl compound. Manufactured.

両末端にイソシアネート基を有するジフェニル化合物としては、パラフェニレンジイソシアネート、2−クロロ−1,4−フェニルジイソシアネート、2,4−トルエンジイソシアネート(TDI)、2,6−トルエンジイソシアネート、1,5−ナフタレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、ジフェニルメタン−4,4′−ジイソシアネート(MDI)、1,3−キシレン−4,6−ジイソシアネート、ジフェニルサルファイド−4,4′−ジイソシアネート、1,4−ナフタレンジイソシアネートなどが例示され、好ましくは、MDI、TDI、HDIが用いられる。   Examples of diphenyl compounds having isocyanate groups at both ends include paraphenylene diisocyanate, 2-chloro-1,4-phenyl diisocyanate, 2,4-toluene diisocyanate (TDI), 2,6-toluene diisocyanate, and 1,5-naphthalene diisocyanate. Hexamethylene diisocyanate (HDI), diphenylmethane-4,4'-diisocyanate (MDI), 1,3-xylene-4,6-diisocyanate, diphenyl sulfide-4,4'-diisocyanate, 1,4-naphthalene diisocyanate, etc. Illustratively, MDI, TDI, and HDI are preferably used.

これらのジフェニル化合物は、ジフェニル化合物と非反応性の溶媒、例えば酢酸エチルや酢酸ブチルなどのエステル化合物あるいはメチルエチルケトンなどのケトン類の溶媒に溶解し、この溶液中に炭素粒子を添加して25〜100℃、好ましくは40〜80℃の温度で適宜時間、例えば1〜3時間攪拌混合することにより、ジフェニル化合物の片端にあるイソシアネート基と炭素粒子表面の官能基とが反応して、炭素粒子表面の官能基とウレタン結合によりジフェニル化合物を結合させる。   These diphenyl compounds are dissolved in a solvent non-reactive with the diphenyl compound, for example, an ester compound such as ethyl acetate or butyl acetate or a solvent such as ketones such as methyl ethyl ketone, and carbon particles are added to this solution to 25 to 100. The isocyanate group at one end of the diphenyl compound reacts with the functional group on the carbon particle surface by stirring and mixing at a temperature of ℃, preferably 40 to 80 ° C. for an appropriate time, for example, 1 to 3 hours. A diphenyl compound is bonded by a functional group and a urethane bond.

この場合、未反応のジフェニル化合物が残留すると炭素粒子同士が凝集結合し易く、また反応性アルキルスルホン酸との反応も阻害されるため、未反応のジフェニル化合物を除去、精製する。ジフェニル化合物の除去は、例えば高速遠心分離機により行い、溶媒を加えて遠心分離する操作を繰り返し行って、除去、精製する。   In this case, if the unreacted diphenyl compound remains, the carbon particles are easily aggregated and bonded, and the reaction with the reactive alkylsulfonic acid is also inhibited. Therefore, the unreacted diphenyl compound is removed and purified. Removal of the diphenyl compound is performed, for example, with a high-speed centrifuge, and the operation of adding a solvent and centrifuging is repeatedly performed for removal and purification.

炭素粒子表面の官能基と両末端にイソシアネート基を有するジフェニル化合物の一方の片端イソシアネート基とがウレタン結合により結合した炭素粒子は、前述の酢酸エチルや酢酸ブチルなどのエステル化合物あるいはメチルエチルケトンなどのケトン類の非反応性の溶媒に再度溶解し、反応性アルキルスルホン酸を加えて25〜100℃、好ましくは40〜80℃の温度で適宜時間、例えば1〜3時間攪拌混合して反応させることにより、反応性アルキルスルホン酸の反応性基を未反応の片端イソシアネート基と結合させることにより炭素粒子表面をスルホン酸基により化学修飾することができる。   Carbon particles in which the functional groups on the surface of the carbon particles and one end isocyanate group of the diphenyl compound having an isocyanate group at both ends are bonded by a urethane bond are the above-mentioned ester compounds such as ethyl acetate and butyl acetate or ketones such as methyl ethyl ketone. By re-dissolving in a non-reactive solvent, adding a reactive alkylsulfonic acid and stirring and mixing at a temperature of 25 to 100 ° C., preferably 40 to 80 ° C. for an appropriate time, for example, 1 to 3 hours, The carbon particle surface can be chemically modified with a sulfonic acid group by combining the reactive group of the reactive alkylsulfonic acid with an unreacted one-end isocyanate group.

反応性アルキルスルホン酸としては、反応性基とスルホン酸基を有する化合物であれば特に制限はなく、反応性基としてはヒドロキシル基、アミノ基、カルボキシル基、活性メチレン基などが例示できる。そして、反応性アルキルスルホン酸の具体例としては、例えば2−アミノエタンスルホン酸、2−アミノプロパンスルホン酸、N−(2−ヒドロキシエチル)ピペラジン−N′−(2−エタンスルホン酸)、4−(2−ヒドキシエチル)−1−ピペラジンプロパンスルホン酸などが例示できる。   The reactive alkylsulfonic acid is not particularly limited as long as it is a compound having a reactive group and a sulfonic acid group, and examples of the reactive group include a hydroxyl group, an amino group, a carboxyl group, and an active methylene group. Specific examples of the reactive alkylsulfonic acid include, for example, 2-aminoethanesulfonic acid, 2-aminopropanesulfonic acid, N- (2-hydroxyethyl) piperazine-N ′-(2-ethanesulfonic acid), 4 Examples include-(2-hydroxyethyl) -1-piperazinepropanesulfonic acid.

このようにして、両末端にイソシアネート基を有するジフェニル化合物の片端のイソシアネート基が炭素粒子の表面官能基と結合し、他端のイソシアネート基が反応性アルキルスルホン酸の反応性官能基と結合し、両末端にイソシアネート基を有するジフェニル化合物が中間体として炭素粒子と反応性アルキルスルホン酸とを結合するので、例えば燃料電池の触媒担持体として使用した場合には触媒金属を被うことなく、触媒を担持する炭素担持体と直接結合して親水性の優れた燃料電池の触媒担持体が製造される。   In this way, the isocyanate group at one end of the diphenyl compound having isocyanate groups at both ends is bonded to the surface functional group of the carbon particles, and the isocyanate group at the other end is bonded to the reactive functional group of the reactive alkylsulfonic acid, Since the diphenyl compound having isocyanate groups at both ends binds carbon particles and reactive alkylsulfonic acid as an intermediate, for example, when used as a catalyst support for a fuel cell, the catalyst is not covered with a catalyst metal. A catalyst carrier of a fuel cell having excellent hydrophilicity is produced by directly bonding to the carbon carrier to be supported.

なお、これらの処理は触媒が担持されていない炭素粒子に前記の反応を行わせた後に、生成した複合炭素粒子に触媒を担持してもよいが、表面に結合した化合物が触媒の担持の妨げとなり易いので、触媒を担持した炭素粒子に前記の反応を行わせることが好ましい。 In these treatments , after the above reaction is performed on carbon particles on which no catalyst is supported , the resulting composite carbon particles may support the catalyst, but the compound bonded to the surface prevents the catalyst from being supported. Therefore, it is preferable to cause the carbon particles carrying the catalyst to carry out the above reaction .

以下、本発明の実施例を比較例と対比して具体的に説明するが、本発明はこの実施例に何ら制約されるものではない。   Hereinafter, although the Example of this invention is described concretely compared with a comparative example, this invention is not restrict | limited to this Example at all.

比較例
触媒を担持させる炭素粒子としてカーボンブラック(米国キャボット社製、バルカンXC72−R)を用いて、塩化白金酸水溶液に浸漬してその表面に白金化合物を担持させ、還元して白金触媒を30重量%担持させた燃料電池触媒担持体を製造した。
Comparative Example Carbon black (Vulcan XC72-R, manufactured by Cabot Corp., USA) was used as the carbon particles for supporting the catalyst, immersed in an aqueous chloroplatinic acid solution to support the platinum compound on the surface, and reduced to 30 platinum catalyst. A fuel cell catalyst carrier supported by weight% was produced.

実施例
ジフェニルメタン−4,4′−ジイソシアネート(MDI)0.4gをメチルエチルケトンに溶解して10wt%の濃度の溶液を調製した。この溶液に上記比較例の燃料電池触媒担持体10gを入れて攪拌しながら室温で6時間反応させた後、溶媒と未反応のMDIを分離した。
Example A solution having a concentration of 10 wt% was prepared by dissolving 0.4 g of diphenylmethane-4,4′-diisocyanate (MDI) in methyl ethyl ketone. After adding 10 g of the fuel cell catalyst carrier of the above comparative example to this solution and reacting at room temperature for 6 hours with stirring, the solvent and unreacted MDI were separated.

次いで、メチルエチルケトン中に再分散させて、N−(2−ヒドロキシエチル)ピペラジン−N′−(2−エタンスルホン酸)を0.3g加え、攪拌しながら室温で6時間反応させた。遠心分離により溶媒と未反応のN−(2−ヒドロキシエチル)ピペラジン−N′−(2−エタンスルホン酸)を除去して、カーボンブラック粒子の表面がスルホン酸基により化学修飾された燃料電池触媒担持体を製造した。   Subsequently, the resultant was redispersed in methyl ethyl ketone, 0.3 g of N- (2-hydroxyethyl) piperazine-N ′-(2-ethanesulfonic acid) was added, and the mixture was reacted at room temperature for 6 hours with stirring. A fuel cell catalyst in which the solvent and unreacted N- (2-hydroxyethyl) piperazine-N '-(2-ethanesulfonic acid) are removed by centrifugation, and the surface of the carbon black particles is chemically modified with sulfonic acid groups A carrier was produced.

これらの触媒担持体をフッ素系電解質膜、拡散層としてのカーボンペーパー、および金属セパレータを用いて、触媒担持体をカソード電極とする燃料電池を作製して、下記の方法により電池の発電試験を行って、電流密度と電圧の関係を図2に示した。   Using these catalyst carriers as a fluorine-based electrolyte membrane, carbon paper as a diffusion layer, and a metal separator, a fuel cell using the catalyst carrier as a cathode electrode was prepared, and a power generation test of the battery was performed by the following method. The relationship between current density and voltage is shown in FIG.

発電試験;アノード側に加湿した水素を、カソード側に加湿した空気を供給し、発電性能を評価した。流量は13cmのセル面積に対し、水素は272ml/min、空気は866ml/minである。試験条件は、セル温度80℃、アノード露点60℃、カソード露点60℃である。 Power generation test: Humidified hydrogen was supplied to the anode side and humidified air was supplied to the cathode side to evaluate the power generation performance. The flow rate is 272 ml / min for hydrogen and 866 ml / min for air for a cell area of 13 cm 2 . The test conditions are a cell temperature of 80 ° C., an anode dew point of 60 ° C., and a cathode dew point of 60 ° C.

電流密度が低い場合には、高分子電解質膜の湿潤状態が好適に保持されるほど固体高分子型燃料電池の発電性能は向上する。したがって、図2より実施例の触媒担持体を用いて作製した燃料電池は、比較例の触媒担持体を用いて作製した燃料電池に比べて、親水性の向上により電解質膜の湿潤状態が好適に維持された結果、電流密度が同じ場合には電圧が高く、電池性能に優れていることが判明した。   When the current density is low, the power generation performance of the polymer electrolyte fuel cell is improved as the wet state of the polymer electrolyte membrane is suitably maintained. Therefore, the fuel cell produced using the catalyst carrier of the example from FIG. 2 has a better wet state of the electrolyte membrane due to improved hydrophilicity than the fuel cell produced using the catalyst carrier of the comparative example. As a result, it was found that when the current density was the same, the voltage was high and the battery performance was excellent.

固体高分子型燃料電池の単セルの概略構造を示す一部断面図である。It is a partial sectional view showing a schematic structure of a single cell of a polymer electrolyte fuel cell. 本発明の実施例および比較例の燃料電池触媒担持体を用いて作製した燃料電池の電流密度と電圧との関係を示したグラフである。It is the graph which showed the relationship between the current density and voltage of the fuel cell produced using the fuel cell catalyst support body of the Example of this invention, and a comparative example.

符号の説明Explanation of symbols

1 電解質膜
2 触媒電極
3 触媒電極
4 アノード
5 カソード
6 アノード側ガス拡散層
7 カソード側ガス拡散層
8 セパレータ
9 反応ガス流路
10 シール材
DESCRIPTION OF SYMBOLS 1 Electrolyte membrane 2 Catalytic electrode 3 Catalytic electrode 4 Anode 5 Cathode 6 Anode side gas diffusion layer 7 Cathode side gas diffusion layer 8 Separator 9 Reaction gas flow path 10 Sealing material

Claims (4)

炭素粒子表面の官能基と両末端にイソシアネート基を有するジフェニル化合物の片端イソシアネート基がウレタン結合し、ジフェニル化合物の他端イソシアネート基が反応性アルキルスルホン酸の反応性基と結合したスルホン酸基により化学修飾された炭素粒子からなることを特徴とする燃料電池用炭素粒子複合体。   The functional group on the surface of the carbon particle and one end isocyanate group of the diphenyl compound having an isocyanate group at both ends are urethane-bonded, and the other end isocyanate group of the diphenyl compound is chemically bonded by the sulfonic acid group bonded to the reactive group of the reactive alkylsulfonic acid. A carbon particle composite for a fuel cell, comprising a modified carbon particle. 請求項1の燃料電池用炭素粒子複合体を触媒担持体とする燃料電池用触媒担持体。   A fuel cell catalyst carrier comprising the fuel cell carbon particle composite according to claim 1 as a catalyst carrier. 両末端にイソシアネート基を有するジフェニル化合物を非反応性の溶媒に溶解し、その溶液中に炭素粒子を混合してジフェニル化合物の片端イソシアネート基を炭素粒子表面の官能基とウレタン結合させ、未反応のジフェニル化合物を除去した後、非反応性の溶媒中で反応性アルキルスルホン酸を加えてジフェニル化合物の他端イソシアネート基と反応性基とを化学結合させることを特徴とする燃料電池用炭素粒子複合体の製造方法。   A diphenyl compound having isocyanate groups at both ends is dissolved in a non-reactive solvent, carbon particles are mixed in the solution, and one end isocyanate group of the diphenyl compound is urethane-bonded to a functional group on the surface of the carbon particles, and unreacted. After removing the diphenyl compound, a reactive alkylsulfonic acid is added in a non-reactive solvent to chemically bond the other end isocyanate group and the reactive group of the diphenyl compound, and the carbon particle composite for fuel cells Manufacturing method. 請求項3の燃料電池用炭素粒子複合体を触媒担持体とする燃料電池用触媒担持体の製造方法。   A method for producing a fuel cell catalyst carrier comprising the fuel cell carbon particle composite of claim 3 as a catalyst carrier.
JP2005357460A 2005-12-12 2005-12-12 Carbon particle composite for fuel cell and production method Expired - Fee Related JP4899454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005357460A JP4899454B2 (en) 2005-12-12 2005-12-12 Carbon particle composite for fuel cell and production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005357460A JP4899454B2 (en) 2005-12-12 2005-12-12 Carbon particle composite for fuel cell and production method

Publications (2)

Publication Number Publication Date
JP2007165042A JP2007165042A (en) 2007-06-28
JP4899454B2 true JP4899454B2 (en) 2012-03-21

Family

ID=38247741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005357460A Expired - Fee Related JP4899454B2 (en) 2005-12-12 2005-12-12 Carbon particle composite for fuel cell and production method

Country Status (1)

Country Link
JP (1) JP4899454B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06122512A (en) * 1991-02-20 1994-05-06 Mitsubishi Heavy Ind Ltd Method for treating surface of carbon black
JP4812248B2 (en) * 2003-01-22 2011-11-09 日東電工株式会社 Fuel cell
JP2004311060A (en) * 2003-04-02 2004-11-04 Toyota Motor Corp Electrode for fuel cell, its manufacturing method, and solid polymer fuel cell equipped with electrode

Also Published As

Publication number Publication date
JP2007165042A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
KR100684854B1 (en) Catalyst for fuel cell, method for preparing same, amd membrane-electrode assembly for fuel cell comprising same
CA2646422C (en) Fuel cell implementing fuel deficiency countermeasures at the anode and cathode
EP2626939B1 (en) Polymer electrolyte fuel cell
US20040115516A1 (en) Electrode for fuel cell and fuel cell therewith
US9059470B2 (en) Method of preparing cathode for fuel having two kinds of water-repellency
CN1237804A (en) Activation method for fuel battery
JPWO2005104280A1 (en) Fuel cell and method of manufacturing fuel cell
US20040121220A1 (en) Fuel cell electrode and fuel cell
JP3360485B2 (en) Fuel cell
JPH11135132A (en) Solid polymer electrolyte fuel cell
JP5294550B2 (en) Membrane electrode assembly and fuel cell
JP4462502B2 (en) Cathode electrode structure for fuel cell and fuel cell having the same
JP4802586B2 (en) Manufacturing method of fuel cell
JP4870360B2 (en) FUEL CELL ELECTRODE, FUEL CELL, AND METHOD FOR PRODUCING FUEL CELL ELECTRODE
WO2007119130A1 (en) Fuel cell
KR101319384B1 (en) Separator for fuel cell, and fuel cell system including the same
JP5021885B2 (en) Fuel cell
JP4899454B2 (en) Carbon particle composite for fuel cell and production method
US20240136540A1 (en) Method for producing catalyst layers for fuel cells
JP4899453B2 (en) Composite carbon particles for fuel cells and method for producing the same
JP2007165043A (en) Carbon particle complex for fuel cell, and its manufacturing method
JP2009026495A (en) Fuel cell, and electrode manufacturing method of fuel cell
JP2010211946A (en) Catalyst layer for fuel cell, and method of manufacturing the same
JP2007335268A (en) Fuel cell system and operation method of fuel cell
JP2006351320A (en) Manufacturing method of fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Ref document number: 4899454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees