JP4899182B2 - Method for producing anion exchanger - Google Patents

Method for producing anion exchanger Download PDF

Info

Publication number
JP4899182B2
JP4899182B2 JP2006078886A JP2006078886A JP4899182B2 JP 4899182 B2 JP4899182 B2 JP 4899182B2 JP 2006078886 A JP2006078886 A JP 2006078886A JP 2006078886 A JP2006078886 A JP 2006078886A JP 4899182 B2 JP4899182 B2 JP 4899182B2
Authority
JP
Japan
Prior art keywords
containing compound
solid
anion exchanger
water
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006078886A
Other languages
Japanese (ja)
Other versions
JP2007253030A (en
Inventor
晃成 苑田
ラメシュ チトラカー
聡子 手束
幸治 坂根
孝弘 廣津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006078886A priority Critical patent/JP4899182B2/en
Publication of JP2007253030A publication Critical patent/JP2007253030A/en
Application granted granted Critical
Publication of JP4899182B2 publication Critical patent/JP4899182B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、アニオン交換体の製造方法に関する。   The present invention relates to a method for producing an anion exchanger.

工場や家庭から排出される排水中のリン酸、硝酸などのアニオンは、河川、湖沼、海水の富栄養化の原因となり、環境破壊を引き起すことから、これを除去・回収する技術開発が求められている。   Anions such as phosphoric acid and nitric acid in wastewater discharged from factories and households cause eutrophication of rivers, lakes, and seawater, and cause environmental destruction. It has been.

これまでにアニオン交換体として、マグネシウム−アルミニウム系の層状複水酸化物(Layered double hydroxides; LDH)(特許文献1)が知られ、これは、例えば塩化マグネシウム、塩化アルミニウムとアルカリ(例えば水酸化ナトリウム)を混合し、必要に応じて加熱して製造される。この反応は、pHのコントロールが得られるアニオン交換体の性能に影響するので、塩化マグネシウム、塩化アルミニウムとアルカリを徐々に混合してpHを調整しながら製造する必要があり、操作が煩雑で時間がかかるため、より簡便な製造法が求められていた。
特開2000-290012
So far, magnesium-aluminum layered double hydroxides (LDH) (Patent Document 1) have been known as anion exchangers, which include, for example, magnesium chloride, aluminum chloride and alkali (for example, sodium hydroxide). ) Are mixed and heated as necessary. Since this reaction affects the performance of the anion exchanger that can control the pH, it is necessary to produce it while gradually adjusting the pH by gradually mixing magnesium chloride, aluminum chloride and alkali, which is complicated and time-consuming. Therefore, a simpler production method has been demanded.
JP2000-290012

本発明は、アニオン交換体を効率的に製造する技術を提供することを目的とする。   An object of this invention is to provide the technique which manufactures an anion exchanger efficiently.

本発明者らは、上記課題に鑑み検討を重ねた結果、塩基性で固体のMg含有化合物またはZn含有化合物と、酸性で固体または液体のAl含有化合物またはFe含有化合物を固−固系又は固−液系で混合することで、pHを調整しなくても高性能のアニオン交換体が得られることを見出した。   As a result of repeated investigations in view of the above problems, the present inventors have determined that a solid, solid Mg-containing compound or Zn-containing compound and an acidic, solid or liquid Al-containing compound or Fe-containing compound are solid-solid or solid. -It has been found that by mixing in a liquid system, a high-performance anion exchanger can be obtained without adjusting the pH.

本発明は、以下のアニオン交換体の製造方法を提供するものである:
1. MgAl系、MgFe系、ZnAl系またはZnFe系のアニオン交換体の製造方法であって、塩基性で固体のMg含有化合物またはZn含有化合物と、酸性で固体または液体のAl含有化合物またはFe含有化合物を混合し、固形のMg含有化合物またはZn含有化合物を含有する固−固系または固−液系で反応させることを特徴とする、アニオン交換体の製造方法。
2. 塩基性のMg含有化合物またはZn含有化合物が、MgOまたはZnOであり、Al含有化合物またはFe含有化合物が、Alハロゲン化物またはFeハロゲン化物である、項1に記載のアニオン交換体の製造方法。
The present invention provides the following anion exchanger production method:
1. A method for producing an MgAl-based, MgFe-based, ZnAl-based or ZnFe-based anion exchanger comprising a basic solid Mg-containing compound or Zn-containing compound and an acidic solid or liquid Al-containing compound or Fe-containing compound. A method for producing an anion exchanger, comprising mixing and reacting in a solid-solid system or a solid-liquid system containing a solid Mg-containing compound or Zn-containing compound.
2. Item 2. The method for producing an anion exchanger according to Item 1, wherein the basic Mg-containing compound or Zn-containing compound is MgO or ZnO, and the Al-containing compound or Fe-containing compound is Al halide or Fe halide.

本発明によれば、高性能のMgAl系、MgFe系、ZnAl系またはZnFe系のアニオン交換体を簡便に製造することができる。 According to the present invention, a high-performance MgAl-based, MgFe-based, ZnAl-based or ZnFe-based anion exchanger can be easily produced.

本発明の特徴は、塩基性で固体のMg含有化合物またはZn含有化合物と酸性で固体または液体のAl含有化合物またはFe含有化合物を混合し、Mg含有化合物またはZn含有化合物の固−固系または固−液系で反応させると、固−固界面もしくは固−液界面で徐々に中和反応が起こり、pHの調整をすることなく、高性能のアニオン交換体が得られる点にある。
本発明で使用するMg含有化合物としては、MgO、Mg(OH)が挙げられ、MgOは固固系もしくは固液系のいずれでも使用され、Mg(OH)は固−固系で使用するのが好ましい。
Zn含有化合物としては、ZnO、Zn(OH)が挙げられ、ZnOは固固系もしくは固液系のいずれでも使用され、Zn(OH)は固−固系で使用するのが好ましい。
MgO、ZnOは水に難溶性であり、固液系であってもわずかに水に溶解する。このMgOと溶液中のAl含有化合物(例えばAlCl)またはFe含有化合物(例えばFeCl
)が反応してMgAl系、MgFe系、ZnAl系またはZnFe系のアニオン交換体
が形成されて沈殿し平衡がずれることによりMgO、ZnOなどの水難溶性かつ塩基性化合物が徐々に溶解し、アニオン交換体の沈殿が形成される。Alハロゲン化物(例えばA
lCl)やFeハロゲン化物(例えばFeCl)などの水溶液は酸性を示すが、pH調
整の必要性はなく、これらの水溶液中から高性能のアニオン交換体が沈殿する。
Al含有化合物としては、ハロゲン化物、オキシハロゲン化物、酸化物、水酸化物、硝酸塩、硫酸塩、過塩素酸などが挙げられる。好ましくはAlCl,AlBr、AlI、AlFなどのハロゲン化物、特に好ましくAlClが挙げられる。
Fe含有化合物としては、ハロゲン化物、オキシハロゲン化物、酸化物、水酸化物、硝酸塩、硫酸塩、過塩素酸などが挙げられる。好ましくはFeCl,FeBr、FeI、FeFなどのFeなどのハロゲン化物、特に好ましくFeCl。鉄の酸化数は、三価が好ましいが二価や零価であっても、また混合物であっても構わない。
固固系で反応させる場合、無水条件であってもよいが、わずかに水が存在している方が、反応が促進される。水は、Mg含有化合物、Zn含有化合物、Al含有化合物、Fe含有化合物などの付着水または結晶水(水和物)に由来してもよく、無水物を使用する場合には、反応促進のために水を適量(固−固系を保つ程度)加えるのが望ましい。
固液系で反応させる場合、水の含量は特に限定されないが、Mg含有化合物またはZn含有化合物が一部のみ溶解する程度の量の水を使用することができる。MgO、ZnOなどの水難溶性の化合物を用いる場合には多量の水を使用することができる。
反応温度は、例えば0〜200℃程度の温度でよいが、好ましくは10〜50℃程度、さらに好ましくは20〜40℃程度である。反応時間は、反応条件によるが、通常1時間以上、3日程度で有利に進行する。好ましい反応時間は10時間から2日程度である。一般に難溶性のMgO、ZnOなどの比率が高く、固固系で反応させた場合反応時間が長くなり、難溶性のMgO、ZnOなどの比率が低く、固液系で反応させた場合反応時間が短くなる傾向にある。
Mg含有化合物またはZn含有化合物と、Al含有化合物またはFe含有化合物の配合比率(モル比)は、ほぼ最終的に得られるMgAl系、MgFe系、ZnAl系またはZnFe系のアニオン交換体のモル比に反映されるため、所望のモル比でこれらを混合すればよい。
本発明の方法により得られるアニオン交換体において、MgAl系、MgFe系、ZnAl系はLDH(層状複水酸化物)になる。
本発明の反応では、反応混合物を撹拌して行うのが望ましいが、必ずしも必要ではない。撹拌は、撹拌羽根を用いる攪拌機、磁気攪拌機、あるいは容器を振盪することなどにより行うことができる。
本発明で得られるアニオン交換体は、無水物であってもよく、任意の数の水が付着又は水和した水和物の形態であってもよい。
本発明のアニオン交換体は、リン酸、硝酸などのアニオン交換に好ましく使用される。
A feature of the present invention is that a basic solid Mg-containing compound or Zn-containing compound is mixed with an acidic solid or liquid Al-containing compound or Fe-containing compound, and the solid-solid system or solid-state of the Mg-containing compound or Zn-containing compound is mixed. -When the reaction is carried out in a liquid system, a neutralization reaction occurs gradually at the solid-solid interface or solid-liquid interface, and a high-performance anion exchanger can be obtained without adjusting the pH.
Examples of the Mg-containing compound used in the present invention include MgO and Mg (OH) 2. MgO is used in either a solid-solid system or a solid-liquid system, and Mg (OH) 2 is used in a solid-solid system. Is preferred.
Examples of the Zn-containing compound include ZnO and Zn (OH) 2. ZnO is used in either a solid-solid system or a solid-liquid system, and Zn (OH) 2 is preferably used in a solid-solid system.
MgO and ZnO are sparingly soluble in water and are slightly soluble in water even in a solid-liquid system. The MgO and an Al-containing compound (eg, AlCl 3 ) or Fe-containing compound (eg, FeCl) in the solution
3 ) reacts to form MgAl, MgFe, ZnAl, or ZnFe anion exchangers that precipitate and shift in equilibrium, thereby slowly dissolving poorly water-soluble and basic compounds such as MgO and ZnO, An exchanger precipitate is formed. Al halide (eg A
Although aqueous solutions such as lCl 3 ) and Fe halides (eg, FeCl 3 ) are acidic, there is no need for pH adjustment, and high-performance anion exchangers precipitate from these aqueous solutions.
Examples of the Al-containing compound include halides, oxyhalides, oxides, hydroxides, nitrates, sulfates, and perchloric acid. Preferred are halides such as AlCl 3 , AlBr 3 , AlI 3 and AlF 3 , and particularly preferred is AlCl 3 .
Examples of Fe-containing compounds include halides, oxyhalides, oxides, hydroxides, nitrates, sulfates, and perchloric acid. Preferably halides such as Fe such as FeCl 3 , FeBr 3 , FeI 3 , FeF 3 , particularly preferably FeCl 3 . The oxidation number of iron is preferably trivalent, but may be divalent, zero-valent, or a mixture.
When the reaction is carried out in a solid-solid system, it may be under anhydrous conditions, but the reaction is promoted when a slight amount of water is present. Water may be derived from adhering water or crystal water (hydrate) such as Mg-containing compound, Zn-containing compound, Al-containing compound, Fe-containing compound, etc. It is desirable to add an appropriate amount of water (a degree that keeps the solid-solid system).
When the reaction is carried out in a solid-liquid system, the content of water is not particularly limited, but an amount of water that can dissolve only a part of the Mg-containing compound or Zn-containing compound can be used. When a poorly water-soluble compound such as MgO or ZnO is used, a large amount of water can be used.
The reaction temperature may be, for example, about 0 to 200 ° C., preferably about 10 to 50 ° C., more preferably about 20 to 40 ° C. Although the reaction time depends on the reaction conditions, it usually proceeds advantageously in about 1 hour or more and about 3 days. The preferred reaction time is about 10 hours to 2 days. Generally, the ratio of poorly soluble MgO, ZnO, etc. is high, and the reaction time is long when reacted in a solid-solid system, while the ratio of poorly soluble MgO, ZnO, etc. is low, and the reaction time is reacted in a solid-liquid system. It tends to be shorter.
The compounding ratio (molar ratio) of the Mg-containing compound or Zn-containing compound and the Al-containing compound or Fe-containing compound is almost equal to the molar ratio of the MgAl-based, MgFe-based, ZnAl-based, or ZnFe-based anion exchanger to be finally obtained. Since these are reflected, these may be mixed at a desired molar ratio.
In the anion exchanger obtained by the method of the present invention, the MgAl-based, MgFe-based, and ZnAl-based materials become LDH (layered double hydroxide).
In the reaction of the present invention, it is desirable to carry out the reaction mixture with stirring, but this is not always necessary. Stirring can be performed by a stirrer using a stirring blade, a magnetic stirrer, or shaking a container.
The anion exchanger obtained in the present invention may be an anhydride, or may be in the form of a hydrate with any number of water attached or hydrated.
The anion exchanger of the present invention is preferably used for anion exchange such as phosphoric acid and nitric acid.

本発明のアニオン交換体は、例えば造粒などの操作を行い成形体とし、カラムなどに充填し、該カラムに燐を含む排水を流すことによりアニオンの吸着ないし回収を行うことができる。   The anion exchanger of the present invention can be subjected to, for example, granulation or the like to form a molded body, filled in a column or the like, and an anion can be adsorbed or recovered by flowing a waste water containing phosphorus through the column.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
実施例1
MgO (1.0g)と、0.12M または0.08Mまたは0.06M AlCl3(100ml)を200mlのフラスコ中で混合し、30℃で2日間撹拌した。反応混合液を遠心分離して上澄みを捨て、水50mlで洗浄した。沈殿物を回収し、30℃で1日乾燥して、Mg/Al=2,3,4のLDHからなるアニオン交換体を得た。得られたアニオン交換体のX線回折パターンを図1に示す。
試験例1
実施例1で得られたアニオン交換体0.1gを使用し、100mg-P/L濃度のNaH2PO4の水溶液100mL(pH=7.5〜8.5) と1日間接触させて、リン吸着量を測定した。結果を図2に示す。
実施例2
MgO (0.5g)と、0.12M または0.08Mまたは0.06M FeCl3(50ml)を200mlのフラスコ中で混合し、室温で1日間撹拌した。反応混合液を遠心分離して上澄みを捨て、水50mlで洗浄した。沈殿物を回収し、30℃で1日間乾燥して、Mg/Fe=2,3,4のLDHからなるアニオン交換体を得た。得られたアニオン交換体のX線回折パターンを図3に示す。
試験例2
実施例2で得られたアニオン交換体0.1gを使用し、100mg-P/L濃度のNaH2PO4の水溶液100mL(pH=9.0〜9.2) と1日間接触させて、リン吸着量を測定した。結果を図4に示す。
実施例3
ZnO (1.0g)と、0.12M または0.08Mまたは0.06M AlCl3(50ml)を200mlのフラスコ中で混合し、室温で1日間撹拌した。反応混合液を遠心分離して上澄みを捨て、水50mlで洗浄した。沈殿物を回収し、30℃で1日乾燥して、Zn/Al=2,3,4のLDHからなるアニオン交換体を得た。得られたアニオン交換体のX線回折パターンを図5に示す。
実施例4
ZnO (2.0g)と、AlCl3・6H2O (1.5-3g)を乳鉢中で混合・粉砕し、テフロン(登録商標)内筒耐圧容器に移し、150℃で1日間処理した。反応物を水50mlで洗浄・風乾し、LDH様アニオン交換体を得た。得られたアニオン交換体のX線回折パターンを図6に示す。ZnAl-2S, ZnAl-3S, ZnAl-4Sは、各々Zn/Al混合比2,3,4で、生成物の分析値は、それぞれ1.74, 1.94, 3.50であった。
試験例3
実施例3(Zn/Al=2,3,4)、実施例4(ZnAl-2S)で得られたアニオン交換体0.1gを使用し、100mg-P/L濃度のNaH2PO4の水溶液100mL(pH=5.7〜6.7) と1日間接触させて、リン吸着量を測定した。結果を図7に示す。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited at all by these Examples.
Example 1
MgO (1.0 g) and 0.12M or 0.08M or 0.06M AlCl 3 (100 ml) were mixed in a 200 ml flask and stirred at 30 ° C. for 2 days. The reaction mixture was centrifuged and the supernatant was discarded and washed with 50 ml of water. The precipitate was collected and dried at 30 ° C. for 1 day to obtain an anion exchanger composed of LDH with Mg / Al = 2,3,4. The X-ray diffraction pattern of the obtained anion exchanger is shown in FIG.
Test example 1
Using 0.1 g of the anion exchanger obtained in Example 1, it was brought into contact with 100 mL of an aqueous solution of NaH 2 PO 4 having a concentration of 100 mg-P / L (pH = 7.5 to 8.5) for 1 day, and the phosphorus adsorption amount was measured. . The result is shown in figure 2.
Example 2
MgO (0.5 g) and 0.12M or 0.08M or 0.06M FeCl 3 (50 ml) were mixed in a 200 ml flask and stirred at room temperature for 1 day. The reaction mixture was centrifuged and the supernatant was discarded and washed with 50 ml of water. The precipitate was collected and dried at 30 ° C. for 1 day to obtain an anion exchanger composed of LDH with Mg / Fe = 2, 3, and 4. The X-ray diffraction pattern of the obtained anion exchanger is shown in FIG.
Test example 2
Using 0.1 g of the anion exchanger obtained in Example 2, it was brought into contact with 100 mL of an aqueous solution of NaH 2 PO 4 having a concentration of 100 mg-P / L (pH = 9.0 to 9.2) for 1 day, and the phosphorus adsorption amount was measured. . The results are shown in FIG.
Example 3
ZnO (1.0 g) and 0.12M or 0.08M or 0.06M AlCl 3 (50 ml) were mixed in a 200 ml flask and stirred at room temperature for 1 day. The reaction mixture was centrifuged and the supernatant was discarded and washed with 50 ml of water. The precipitate was collected and dried at 30 ° C. for 1 day to obtain an anion exchanger composed of LDH of Zn / Al = 2,3,4. The X-ray diffraction pattern of the obtained anion exchanger is shown in FIG.
Example 4
ZnO (2.0 g) and AlCl 3 .6H 2 O (1.5-3 g) were mixed and ground in a mortar, transferred to a Teflon (registered trademark) inner cylinder pressure vessel, and treated at 150 ° C. for 1 day. The reaction product was washed with 50 ml of water and air-dried to obtain an LDH-like anion exchanger. The X-ray diffraction pattern of the obtained anion exchanger is shown in FIG. ZnAl-2S, ZnAl-3S, and ZnAl-4S had Zn / Al mixing ratios of 2, 3, and 4, and the analytical values of the products were 1.74, 1.94, and 3.50, respectively.
Test example 3
Using 0.1 g of the anion exchanger obtained in Example 3 (Zn / Al = 2, 3, 4) and Example 4 (ZnAl-2S), 100 mL of an aqueous solution of NaH 2 PO 4 having a concentration of 100 mg-P / L (pH = 5.7 to 6.7) was contacted for 1 day, and the phosphorus adsorption amount was measured. The results are shown in FIG.

Mg-Al系アニオン交換体のXRDパターンXRD pattern of Mg-Al anion exchanger 実施例1のアニオン交換体のリン酸取り込み量の測定結果Measurement results of phosphate uptake amount of the anion exchanger of Example 1 Mg-Fe系アニオン交換体のXRDパターンXRD pattern of Mg-Fe anion exchanger 実施例2のアニオン交換体のリン酸取り込み量の測定結果Measurement result of phosphate uptake amount of anion exchanger of Example 2 Zn-Al系アニオン交換体のXRDパターンXRD pattern of Zn-Al anion exchanger 固-固系で製造したZn-Al系アニオン交換体のXRDパターンXRD pattern of Zn-Al anion exchanger produced in solid-solid system 実施例3、4のアニオン交換体のリン酸取り込み量の測定結果。図7中、「▲」は実施例3の固-液系で製造したアニオン交換体の取り込み量を示し、「○」は実施例4の固-固系で製造したアニオン交換体の取り込み量を示す。The measurement result of the phosphate uptake amount of the anion exchangers of Examples 3 and 4. In FIG. 7, “▲” represents the uptake amount of the anion exchanger produced in the solid-liquid system of Example 3, and “◯” represents the uptake amount of the anion exchanger produced in the solid-solid system of Example 4. Show.

Claims (2)

MgAl系、MgFe系、ZnAl系またはZnFe系の層状複水酸化物型アニオン交換体の製造方法であって、塩基性で固のMg含有化合物またはZn含有化合物と、酸性で固体又は水溶液のAl含有化合物またはFe含有化合物を混合し、0〜200℃の反応温度で、固−固系または固−液系で反応させることを特徴とする、層状複水酸化物型アニオン交換体の製造方法。 MgAl system, MgFe system, ZnAl system or method of manufacturing a ZnFe based layered double hydroxide type anion exchangers, the Mg-containing compound in the solid form at basic or Zn-containing compound, a solid or an aqueous solution in acidic Al A method for producing a layered double hydroxide type anion exchanger, comprising mixing a containing compound or a Fe-containing compound and reacting in a solid-solid or solid-liquid system at a reaction temperature of 0 to 200 ° C. 塩基性のMg含有化合物またはZn含有化合物が、MgOまたはZnOであり、Al含有化合物またはFe含有化合物が、Alハロゲン化物またはFeハロゲン化物である、請求項1に記載のアニオン交換体の製造方法。

2. The method for producing an anion exchanger according to claim 1, wherein the basic Mg-containing compound or Zn-containing compound is MgO or ZnO, and the Al-containing compound or Fe-containing compound is Al halide or Fe halide.

JP2006078886A 2006-03-22 2006-03-22 Method for producing anion exchanger Expired - Fee Related JP4899182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006078886A JP4899182B2 (en) 2006-03-22 2006-03-22 Method for producing anion exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006078886A JP4899182B2 (en) 2006-03-22 2006-03-22 Method for producing anion exchanger

Publications (2)

Publication Number Publication Date
JP2007253030A JP2007253030A (en) 2007-10-04
JP4899182B2 true JP4899182B2 (en) 2012-03-21

Family

ID=38627796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006078886A Expired - Fee Related JP4899182B2 (en) 2006-03-22 2006-03-22 Method for producing anion exchanger

Country Status (1)

Country Link
JP (1) JP4899182B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY157620A (en) 2006-01-31 2016-06-30 Cytochroma Dev Inc A granular material of a solid water-soluble mixed metal compound capable of binding phosphate
GB0913525D0 (en) * 2009-08-03 2009-09-16 Ineos Healthcare Ltd Method
GB201001779D0 (en) 2010-02-04 2010-03-24 Ineos Healthcare Ltd Composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4916601B2 (en) * 1999-02-26 2012-04-18 戸田工業株式会社 Plate-like Mg-Al hydrotalcite-type particle powder and method for producing the same

Also Published As

Publication number Publication date
JP2007253030A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
Gupta et al. Microscopic, spectroscopic, and experimental approach towards understanding the phosphate adsorption onto Zn–Fe layered double hydroxide
Chitrakar et al. Selective adsorption of phosphate from seawater and wastewater by amorphous zirconium hydroxide
Zhang et al. Systematic screening of layered double hydroxides for phosphate removal and mechanism insight
CN105753022B (en) A kind of preparation method of magnesium-base layer-shaped complex hydroxide
US11198619B2 (en) Method for efficiently preparing ferrate based on nascent interfacial activity
Ali et al. New chelating ion-exchange resin synthesized via the cyclopolymerization protocol and its uptake performance for metal ion removal
JP6180235B2 (en) Hydrogen peroxide and ozone decomposition catalyst, hydrogen peroxide and ozone decomposition method
WO2004007359A1 (en) Novel zirconium phosphate and method of making same
JP4899182B2 (en) Method for producing anion exchanger
JP5878278B2 (en) Boron removal water treatment agent and water treatment method
Kameda et al. Treatment of hydrochloric acid using Mg–Al layered double hydroxide intercalated with carbonate
JP4963032B2 (en) Phosphorous adsorbent
CN103170302A (en) Active aluminum oxide fluoride-removal adsorbing material with different surface characteristics as well as preparation method and application thereof
CN103303996B (en) Application of activated aluminum oxide defluorination adsorbing material with different surface features
US20080223260A1 (en) Soil-Solidifying Agent
JP4576560B2 (en) Phosphorous adsorbent
CN101516780A (en) Hydrotalcite-like particulate material and method for production thereof
JP4863192B2 (en) Layered double hydroxides with high anion exchange ability and high carbon dioxide contamination resistance and their synthesis
JPH0657354B2 (en) Simultaneous removal method of arsenic and silicon
JP4512695B2 (en) Phosphorous adsorbent
JP2012076053A (en) Anion exchanger and method of manufacturing the same
Oladoja et al. Biogenic derived binary metal oxide as a reactive material for remediation of pyrophosphate contaminated aqua system
WO2006080467A1 (en) Hydrotalcite-like compound, bromide ion exchanger, and utilization thereof
JP5113315B2 (en) Agricultural crop mineral supplement and method for producing the same
JP2000233188A (en) Removing agent of selenium ion and arsenic ion, and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees