JP4897867B2 - Multi-cylinder rotary compressor and manufacturing method thereof - Google Patents

Multi-cylinder rotary compressor and manufacturing method thereof Download PDF

Info

Publication number
JP4897867B2
JP4897867B2 JP2009264973A JP2009264973A JP4897867B2 JP 4897867 B2 JP4897867 B2 JP 4897867B2 JP 2009264973 A JP2009264973 A JP 2009264973A JP 2009264973 A JP2009264973 A JP 2009264973A JP 4897867 B2 JP4897867 B2 JP 4897867B2
Authority
JP
Japan
Prior art keywords
cylinder
divided
plate
crankshaft
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009264973A
Other languages
Japanese (ja)
Other versions
JP2011106427A (en
Inventor
尚史 苗村
忍 國分
俊明 岩崎
聡経 新井
智博 白畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009264973A priority Critical patent/JP4897867B2/en
Priority to CN 201010171680 priority patent/CN102072156B/en
Publication of JP2011106427A publication Critical patent/JP2011106427A/en
Application granted granted Critical
Publication of JP4897867B2 publication Critical patent/JP4897867B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

この発明は,多シリンダロータリ圧縮機及びその製造方法に関するものである。   The present invention relates to a multi-cylinder rotary compressor and a manufacturing method thereof.

従来,多シリンダロータリ圧縮機として,特許文献1に示すものがあった。この多シリンダロータリ圧縮機は,電動要素(モータ)と複数個の回転圧縮要素(第1及び第2の回転圧縮要素)を密閉容器に収納し,電動要素と複数個の回転圧縮要素を偏心部を有するクランクシャフトで連結している。そして,回転圧縮要素の間に介在する仕切板は2枚の分割板から成り,分割板に設けられた通し孔にクランクシャフトを挿通した状態で組立を行い,しかるのち2枚の分割板の外周を溶接等によって溶着固定する。上記特許文献1の回転式圧縮機によれば,仕切板が2枚に分割されており,分割面に微小な隙間が存在したとしても,仕切板外周を溶着固定することにより微小な隙間からの冷媒漏れを抑制し,性能低下の無い多シリンダロータリ圧縮機を容易に提供できる。   Conventionally, there has been a multi-cylinder rotary compressor shown in Patent Document 1. The multi-cylinder rotary compressor stores an electric element (motor) and a plurality of rotary compression elements (first and second rotary compression elements) in a hermetic container, and the electric element and the plurality of rotary compression elements are arranged in an eccentric portion. Are connected by a crankshaft having The partition plate interposed between the rotary compression elements is composed of two divided plates, and the assembly is performed with the crankshaft inserted into the through holes provided in the divided plates, and then the outer periphery of the two divided plates. Is fixed by welding or the like. According to the rotary compressor of Patent Document 1, the partition plate is divided into two pieces, and even if there is a minute gap on the divided surface, the outer periphery of the partition plate is fixed by welding and fixing. It is possible to easily provide a multi-cylinder rotary compressor that suppresses refrigerant leakage and has no performance degradation.

特開昭59−105993号公報JP 59-105993 A

従来,多シリンダロータリ圧縮機の構造において仕切板を複数に分割した場合,仕切板の接合部間の微小な隙間から冷媒漏れが生じることが性能低下の原因と考えられており,上記特許文献1においては,接合部を溶接等により溶着固定し微小な隙間からの冷媒漏れを低減する技術が説明されている。
しかしながら,2枚の分割板に板厚差がある場合において,上記の方法により微小な隙間を塞いだとしても,シリンダ内を低圧部と高圧部に分けるベーンの高さ方向の隙間からの冷媒漏れによる性能低下が生じる場合があり,問題となっていた。
Conventionally, when the partition plate is divided into a plurality of parts in the structure of the multi-cylinder rotary compressor, refrigerant leakage is considered to be caused by a minute gap between the joint portions of the partition plate. Describes a technique for reducing the leakage of refrigerant from a minute gap by welding and fixing a joint portion by welding or the like.
However, when there is a difference in thickness between the two split plates, even if a minute gap is closed by the above method, refrigerant leakage from the gap in the height direction of the vane that divides the inside of the cylinder into a low pressure portion and a high pressure portion. Performance degradation may occur due to the problem.

この発明は,前記のような問題を解決するためになされたもので,圧縮機構部を組立てた際にベーンの高さ方向の隙間からの冷媒漏れによる性能低下を抑制することができる小型大容量の多シリンダロータリ圧縮機及びその製造方法を提供することを目的とするものである。   The present invention has been made to solve the above-described problems, and has a small size and large capacity capable of suppressing performance degradation due to refrigerant leakage from the gap in the height direction of the vane when the compression mechanism is assembled. It is an object of the present invention to provide a multi-cylinder rotary compressor and a manufacturing method thereof.

この発明に係わる多シリンダロータリ圧縮機は,密閉容器内にモータ及び圧縮機構部を備え,上記圧縮機構部は,軸方向に離間して配置された複数個の偏心部と,これらの偏心部の間に位置する中間部とを有し,上記モータにより駆動されるクランクシャフト,上記複数個の偏心部外周に対応して配置された複数個のシリンダ,上記クランクシャフトの軸受を有し,上記シリンダを挟むように上記クランクシャフトの軸方向両端部に設置された枠体,上記クランクシャフトの中間部に挿入され,上記複数個のシリンダ間を仕切る仕切板,及び上記クランクシャフトの偏心部外周に回転自在に取り付けられたローラを備え,上記ローラ,上記シリンダ,上記枠体,及び上記仕切板で囲まれる空間を圧縮室として形成すると共に,上記ローラと摺動するように上記シリンダに保持されたベーンにより,上記圧縮室を低圧部と高圧部に分ける多シリンダロータリ圧縮機において,上記仕切板はその径方向の中心線に沿って分割された2つの分割板で構成され,上記ベーンに接する側の分割板の板厚が他方の分割板の板厚より大きく設定されたものである。   A multi-cylinder rotary compressor according to the present invention includes a motor and a compression mechanism in a hermetic container, and the compression mechanism includes a plurality of eccentric parts arranged apart from each other in the axial direction, and the eccentric parts. A crankshaft driven by the motor, a plurality of cylinders arranged corresponding to the outer periphery of the plurality of eccentric parts, and a bearing for the crankshaft. Frames installed at both ends in the axial direction of the crankshaft so as to sandwich the crankshaft, inserted into an intermediate part of the crankshaft, and rotated around the eccentric part of the crankshaft, and a partition plate for partitioning the plurality of cylinders A freely attached roller is formed, and a space surrounded by the roller, the cylinder, the frame, and the partition plate is formed as a compression chamber, and the roller and the slide are formed. In a multi-cylinder rotary compressor that divides the compression chamber into a low pressure portion and a high pressure portion by vanes held in the cylinder, the partition plate is divided into two divided plates along the radial center line. The thickness of the divided plate on the side in contact with the vane is set larger than the thickness of the other divided plate.

この発明に係わる多シリンダロータリ圧縮機の製造方法は,密閉容器内にモータ及び圧縮機構部を備え,上記圧縮機構部は,軸方向に離間して配置された複数個の偏心部と,これらの偏心部の間に位置する中間部とを有し,上記モータにより駆動されるクランクシャフト,上記複数個の偏心部外周に対応して配置された複数個のシリンダ,上記クランクシャフトの軸受を有し,上記シリンダを挟むように上記クランクシャフトの軸方向両端部に設置された枠体,上記クランクシャフトの中間部に挿入され,上記複数個のシリンダ間を仕切る仕切板,及び上記クランクシャフトの偏心部外周に回転自在に取り付けられたローラを備え,上記ローラ,上記シリンダ,上記枠体,及び上記仕切板で囲まれる空間を圧縮室として形成すると共に,上記ローラと摺動するように上記シリンダに保持されたベーンにより,上記圧縮室を低圧部と高圧部に分けると共に,上記仕切板はその径方向の中心線に沿って分割された2つの分割板で構成され,上記ベーンに接する側の分割板の板厚が他方の分割板の板厚より大きく設定された多シリンダロータリ圧縮機の製造方法において,上記分割板の板厚をそれぞれ測定して保管する工程と,上記保管された分割板を組立に用いる場合,上記ベーンに接する側の分割板の板厚が他方の分割板の板厚より大きくなるように選択する工程と,上記選択された分割板を上記シリンダ,及び上記枠体と締結する工程とを含むものである。   A manufacturing method of a multi-cylinder rotary compressor according to the present invention includes a motor and a compression mechanism section in a sealed container, and the compression mechanism section includes a plurality of eccentric parts arranged apart from each other in the axial direction. A crankshaft driven by the motor, a plurality of cylinders arranged corresponding to the outer circumferences of the eccentric parts, and a bearing for the crankshaft. , Frames installed at both axial ends of the crankshaft so as to sandwich the cylinder, a partition plate inserted into the intermediate portion of the crankshaft to partition the plurality of cylinders, and an eccentric portion of the crankshaft A roller rotatably attached to an outer periphery, and a space surrounded by the roller, the cylinder, the frame, and the partition plate is formed as a compression chamber; The compression chamber is divided into a low pressure portion and a high pressure portion by vanes held in the cylinder so as to slide with the roller, and the partition plate is divided into two divided plates along the radial center line. In the method of manufacturing a multi-cylinder rotary compressor, in which the thickness of the split plate on the side in contact with the vane is set larger than the thickness of the other split plate, the thickness of each of the split plates is measured and stored. And, when the stored divided plate is used for assembly, the step of selecting the divided plate on the side in contact with the vane to be larger than the thickness of the other divided plate, and the selected divided plate And a step of fastening the plate to the cylinder and the frame.

この発明は,圧縮機構部を組立てた際にベーンの高さ方向の隙間が小さくなり,ベーンの高さ方向の隙間からの冷媒漏れによる性能低下を抑制することができる小型大容量の多シリンダロータリ圧縮機を容易に得ることができる。   According to the present invention, when the compression mechanism portion is assembled, the gap in the height direction of the vane becomes small, and a small and large-capacity multi-cylinder rotary that can suppress performance degradation due to refrigerant leakage from the gap in the height direction of the vane. A compressor can be obtained easily.

この発明の実施の形態1による多シリンダロータリ圧縮機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the multicylinder rotary compressor by Embodiment 1 of this invention. 図1のA−A線における断面図である。It is sectional drawing in the AA of FIG. 図1のB−B線における断面図である。It is sectional drawing in the BB line of FIG. 実施の形態1において仕切板を構成する分割板の斜視図である。FIG. 3 is a perspective view of a dividing plate constituting the partition plate in the first embodiment. 実施の形態1において仕切板を構成する分割板の板厚差に起因する隙間を説明する断面図である。FIG. 3 is a cross-sectional view for explaining a gap due to a plate thickness difference between divided plates constituting the partition plate in the first embodiment. 実施の形態1において仕切板を構成する分割板の板厚差に起因する隙間を説明する断面図である。FIG. 3 is a cross-sectional view illustrating a gap due to a plate thickness difference between divided plates constituting the partition plate in the first embodiment. 実施の形態1におけるベーン近傍の断面図である。3 is a cross-sectional view in the vicinity of a vane in Embodiment 1. 実施の形態1によるにおいて仕切板を構成する分割板の板厚差に起因する軸受の傾きを説明する断面図である。FIG. 5 is a cross-sectional view for explaining the inclination of the bearing due to the plate thickness difference of the divided plates constituting the partition plate in the first embodiment. この発明の実施の形態2による圧縮機構部の組立方法を示すフローチャートである。It is a flowchart which shows the assembly method of the compression mechanism part by Embodiment 2 of this invention.

実施の形態1.
以下,この発明の実施の形態1による多シリンダロータリ圧縮機について図を参照して説明する。本実施の形態1では,圧縮室を2室有する2シリンダ式の冷凍・空調機用ロータリ圧縮機を例に挙げて説明する。
図1は実施の形態1の多シリンダロータリ圧縮機の縦断面図であり,図2は図1におけるA−A線の断面図,図3は図1におけるB−B線の断面図,図4は仕切板の斜視図を示す。
Embodiment 1 FIG.
A multi-cylinder rotary compressor according to Embodiment 1 of the present invention will be described below with reference to the drawings. In the first embodiment, a two-cylinder rotary compressor for a refrigeration / air conditioner having two compression chambers will be described as an example.
1 is a longitudinal sectional view of a multi-cylinder rotary compressor according to Embodiment 1, FIG. 2 is a sectional view taken along line AA in FIG. 1, FIG. 3 is a sectional view taken along line BB in FIG. Shows a perspective view of the partition plate.

本実施の形態の多シリンダロータリ圧縮機100は,密閉容器であるシェル101と,シェル101の内部に設置された駆動源であるモータ102と,同じくシェル101の内部に設置された圧縮機構部103を備える。シェル101は,上部シェル101aと中間シェル101bと下部シェル101cを有する。上部シェル101aは,外部からモータ102に電力を供給するためのガラス端子104と,圧縮された冷媒を圧縮機外部へ吐出する吐出パイプ105が設けられている。中間シェル101bは,モータ102と圧縮機構部103が固定されており,圧縮機構部103へ冷媒を導く吸入パイプ106が固定されている。吸入パイプ106は,吸入マフラ107に接続されており,吸入マフラ107内で冷媒の気液分離,及び冷媒中のゴミの除去が行われる。   The multi-cylinder rotary compressor 100 of the present embodiment includes a shell 101 that is a hermetic container, a motor 102 that is a drive source installed inside the shell 101, and a compression mechanism unit 103 that is also installed inside the shell 101. Is provided. The shell 101 includes an upper shell 101a, an intermediate shell 101b, and a lower shell 101c. The upper shell 101a is provided with a glass terminal 104 for supplying electric power to the motor 102 from the outside, and a discharge pipe 105 for discharging the compressed refrigerant to the outside of the compressor. The intermediate shell 101 b has a motor 102 and a compression mechanism 103 fixed thereto, and a suction pipe 106 that guides the refrigerant to the compression mechanism 103 is fixed. The suction pipe 106 is connected to a suction muffler 107, and gas-liquid separation of the refrigerant and removal of dust in the refrigerant are performed in the suction muffler 107.

モータ102は,固定子102aと回転子102bを有しており,回転子102bはクランクシャフト108に取り付けられている。モータ102で発生した回転トルクはクランクシャフト108を通して圧縮機構部103に伝達される。
圧縮機構部103は,クランクシャフト108,第1軸受109aが内周部に形成された第1枠体109,第1シリンダ110,第1バネ111,第1ベーン112,第1ローラ113,仕切板114,第2シリンダ115,第2軸受116aが内周部に形成された第2枠体116,第2バネ117,第2ベーン118,第2ローラ119を有している。
クランクシャフト108は,ロータ嵌合部120,第1軸受挿入部121,第1偏心部122,中間部123,第2偏心部124,第2軸受挿入部125を有している。第1偏心部122と第2偏心部124は離間して配置され,中間部123はこれらの偏心部の間に位置している。第1偏心部122と第2偏心部124は,偏心位相が180度異なっており,それぞれの外周面には第1ローラ113と第2ローラ119が回転自在に取り付けられる。
The motor 102 has a stator 102a and a rotor 102b, and the rotor 102b is attached to the crankshaft 108. The rotational torque generated by the motor 102 is transmitted to the compression mechanism unit 103 through the crankshaft 108.
The compression mechanism 103 includes a crankshaft 108, a first frame 109 having a first bearing 109a formed on the inner periphery, a first cylinder 110, a first spring 111, a first vane 112, a first roller 113, and a partition plate. 114, a second cylinder 115, a second bearing 116a, a second frame 116 formed on the inner periphery, a second spring 117, a second vane 118, and a second roller 119.
The crankshaft 108 includes a rotor fitting portion 120, a first bearing insertion portion 121, a first eccentric portion 122, an intermediate portion 123, a second eccentric portion 124, and a second bearing insertion portion 125. The first eccentric part 122 and the second eccentric part 124 are spaced from each other, and the intermediate part 123 is located between these eccentric parts. The first eccentric portion 122 and the second eccentric portion 124 have an eccentric phase that is 180 degrees different, and the first roller 113 and the second roller 119 are rotatably attached to the outer peripheral surfaces of the first eccentric portion 122 and the second eccentric portion 124, respectively.

第1枠体109の下端面,第1シリンダ110の内周面,仕切板114の上端面,及び第1ローラ113の外周面で囲まれる空間が第1圧縮室126となる。仕切板114の下端面,第2シリンダ115の内周面,第2枠体116の上端面,及び第2ローラ119の外周面で囲まれる空間が第2圧縮室127となる。第1シリンダ110及び第2シリンダ115には径方向に伸縮する第1バネ111及び第2バネ117が取り付けられており,各バネの押付け力により第1ベーン112及び第2ベーン118が第1ローラ113及び第2ローラ119の外周面に押付けられる。第1ベーン112及び第2ベーン118は第1圧縮室126及び第2圧縮室127を低圧部128と高圧部129に分ける機能を持つ。本例では,第1ベーン112と第2ベーン118の位相は等しい。   A space surrounded by the lower end surface of the first frame 109, the inner peripheral surface of the first cylinder 110, the upper end surface of the partition plate 114, and the outer peripheral surface of the first roller 113 becomes the first compression chamber 126. A space surrounded by the lower end surface of the partition plate 114, the inner peripheral surface of the second cylinder 115, the upper end surface of the second frame 116, and the outer peripheral surface of the second roller 119 is a second compression chamber 127. A first spring 111 and a second spring 117 that expand and contract in the radial direction are attached to the first cylinder 110 and the second cylinder 115, and the first vane 112 and the second vane 118 are moved to the first roller by the pressing force of each spring. 113 and the outer peripheral surface of the second roller 119. The first vane 112 and the second vane 118 have a function of dividing the first compression chamber 126 and the second compression chamber 127 into a low pressure part 128 and a high pressure part 129. In this example, the phases of the first vane 112 and the second vane 118 are equal.

図4に示すように,仕切板114は,その径方向の中心線に沿って分割された第1分割板130及び第2分割板131を組み合わせることにより構成される。ベーン112,118に接する側を第1分割板,もう一方の側を第2分割板とし,第1分割板130の板厚は第2分割板131の板厚よりわずかに大きい。第1分割板130は,上端面130a,下端面130b,分割面130c,及び外周面130dの4つの面を有する。分割面130cにはクランクシャフト108挿入用の溝130eがある。第2分割板131は,上端面131a,下端面131b,分割面131c,及び外周面131dの4つの面を有する。分割面131cにはクランクシャフト108挿入用の溝131eがある。第1分割板130及び第2分割板131には圧縮機構部103の組立に用いられるボルト締結用の通し穴130f及び131fが複数個(本例ではそれぞれ3個ずつ)設けられている。   As shown in FIG. 4, the partition plate 114 is configured by combining a first divided plate 130 and a second divided plate 131 that are divided along the radial center line. The side that contacts the vanes 112 and 118 is the first divided plate, and the other side is the second divided plate. The thickness of the first divided plate 130 is slightly larger than the thickness of the second divided plate 131. The first divided plate 130 has four surfaces: an upper end surface 130a, a lower end surface 130b, a divided surface 130c, and an outer peripheral surface 130d. The dividing surface 130c has a groove 130e for inserting the crankshaft 108. The second divided plate 131 has four surfaces: an upper end surface 131a, a lower end surface 131b, a divided surface 131c, and an outer peripheral surface 131d. The dividing surface 131c has a groove 131e for inserting the crankshaft 108. The first divided plate 130 and the second divided plate 131 are provided with a plurality of bolt fastening holes 130f and 131f (three each in this example) used for assembling the compression mechanism 103.

第1分割板130及び第2分割板131は,分割面130c及び分割面131cが接触するように組立てられる。このとき,第1仕切板130の溝130dと第2仕切板131の溝131dが向かい合わせとなり,クランクシャフト挿入穴132を形成する。クランクシャフト挿入孔132の径はクランクシャフト108の中間部123の径より大きく,第1偏心部122及び第2偏心部124の径より小さい。このような構造であるため,クランクシャフト108の偏心部の偏心量が大きいものであっても,クランクシャフト挿入孔132の径を小さくすることができ,クランクシャフト挿入孔132からの漏れを少なくすることができる。   The first divided plate 130 and the second divided plate 131 are assembled so that the divided surface 130c and the divided surface 131c are in contact with each other. At this time, the groove 130d of the first partition plate 130 and the groove 131d of the second partition plate 131 face each other to form a crankshaft insertion hole 132. The diameter of the crankshaft insertion hole 132 is larger than the diameter of the intermediate portion 123 of the crankshaft 108 and smaller than the diameters of the first eccentric portion 122 and the second eccentric portion 124. Because of such a structure, even if the eccentric amount of the eccentric portion of the crankshaft 108 is large, the diameter of the crankshaft insertion hole 132 can be reduced, and leakage from the crankshaft insertion hole 132 is reduced. be able to.

本実施の形態の多シリンダロータリ圧縮機100は,ガラス端子部105からの通電によりシェル101内部に設置されたモータ102を駆動して,第1偏心部122及び第2偏心部124を有するクランクシャフト108を回転させる。そして,吸入マフラ107及び吸入パイプ106を通じて,冷媒は,第1シリンダ110,第1ベーン112及び第1ローラ113により形成される第1圧縮室126,並びに第2シリンダ115,第2ベーン118及び第2ローラ119により形成される第2圧縮室127に吸入され,クランクシャフト108の回転に伴って圧縮され,一定の圧力になると吐出口133からシェル101内部へ吐出され,吐出パイプ105より圧縮機外部へ吐出される。   A multi-cylinder rotary compressor 100 according to the present embodiment drives a motor 102 installed in a shell 101 by energization from a glass terminal portion 105 to have a first eccentric portion 122 and a second eccentric portion 124. 108 is rotated. Then, through the suction muffler 107 and the suction pipe 106, the refrigerant passes through the first compression chamber 126 formed by the first cylinder 110, the first vane 112, and the first roller 113, and the second cylinder 115, the second vane 118, and the first. The air is sucked into the second compression chamber 127 formed by the two rollers 119, compressed as the crankshaft 108 rotates, and discharged to the inside of the shell 101 from the discharge port 133 when a constant pressure is reached. Is discharged.

ここで第1分割板130と第2分割板131の板厚に微小な差がある場合に生じる隙間について,下記に説明する。一般的に異なる2つの部品を組合わせた場合,それらの板厚には必ず微小な差が生じるが,圧縮機構部103のような気密性を必要とする機構において,わずかな隙間が性能を低下させる要因となる。   Here, the gap generated when there is a minute difference in the thickness of the first divided plate 130 and the second divided plate 131 will be described below. In general, when two different parts are combined, there will always be a slight difference in their thickness, but in a mechanism that requires airtightness such as the compression mechanism 103, a slight gap will degrade the performance. It becomes a factor to make.

第1分割板130の板厚が第2分割板131の板厚よりわずかに大きい場合をケース1,第1分割板130の板厚が第2分割板131の板厚よりわずかに薄い場合をケース2として,以下説明する。
ケース1について図5に圧縮機構部103の縦断面図を示す。第1分割板130の上側には第1バネ111と第1ベーン112が設置されており,第1分割板130の下側には第2バネ117と第2ベーン118が設置されている。第1分割板130と第2分割板131から構成される仕切板114を第1シリンダ110と第2シリンダ115で上下から挟み込んだ場合,第1分割板130の板厚が第2分割板131の板厚よりわずかに大きいため,第1分割板130と第1シリンダ110,及び第2シリンダ115が密着するのに対し,第2分割板131と第1シリンダ110,及び第2シリンダ115の間には微小な隙間が生じる。
Case 1 when the thickness of the first divided plate 130 is slightly larger than the thickness of the second divided plate 131, Case 1 when the thickness of the first divided plate 130 is slightly thinner than the thickness of the second divided plate 131 2 will be described below.
FIG. 5 shows a longitudinal sectional view of the compression mechanism 103 for the case 1. A first spring 111 and a first vane 112 are installed on the upper side of the first divided plate 130, and a second spring 117 and a second vane 118 are installed on the lower side of the first divided plate 130. When the partition plate 114 composed of the first divided plate 130 and the second divided plate 131 is sandwiched from above and below by the first cylinder 110 and the second cylinder 115, the thickness of the first divided plate 130 is equal to that of the second divided plate 131. Since it is slightly larger than the plate thickness, the first divided plate 130 and the first cylinder 110 and the second cylinder 115 are in close contact with each other, whereas the second divided plate 131 and the first cylinder 110 and the second cylinder 115 are interposed between them. Produces a minute gap.

一方ケース2について,図6に圧縮機構部103の縦断面図を示す。この場合,第2分割板131と第1シリンダ110,及び第2シリンダ115が密着し,第1分割板130と第1シリンダ110,及び第2シリンダ115間に微小な隙間が生じる。第1分割板130側にはベーン112,118が設けられているため,第1分割板130と第1シリンダ110,及び第2シリンダ115間の隙間分だけ,ベーン高さ方向の隙間が増大する。   On the other hand, FIG. 6 shows a longitudinal sectional view of the compression mechanism 103 for the case 2. In this case, the second divided plate 131, the first cylinder 110, and the second cylinder 115 are in close contact with each other, and a minute gap is generated between the first divided plate 130, the first cylinder 110, and the second cylinder 115. Since the vanes 112 and 118 are provided on the first divided plate 130 side, the gap in the vane height direction is increased by the gap between the first divided plate 130 and the first cylinder 110 and the second cylinder 115. .

図7にケース1とケース2について,それぞれベーン112により高圧部128と低圧部129が仕切られている様子を示す。ベーン高さをu,シリンダ高さをs,第1分割板130と第2分割板131の接合面の段差をtとすると,ケース1の場合は図7(a)のようにベーン高さ方向の隙間はs-uとなり,ケース2の場合は図7(b)のようにs+t-uとなる。圧縮機構部103の組立において,ベーン112とシリンダ110,115は,ベーン高さ方向の隙間が必要最小限となるように管理されており,ケース2のように圧縮機構部103を組立てた後にベーン高さ方向の隙間が増大すると,シリンダ110,115内の高圧部128から低圧部129へ冷媒漏れが生じ,性能が低下する。   FIG. 7 shows the case 1 and the case 2 in which the high pressure part 128 and the low pressure part 129 are partitioned by the vane 112, respectively. When the vane height is u, the cylinder height is s, and the level difference between the joining surfaces of the first divided plate 130 and the second divided plate 131 is t, in case 1, the vane height direction is as shown in FIG. In the case 2, the gap is s + tu as shown in FIG. 7 (b). In assembling the compression mechanism portion 103, the vane 112 and the cylinders 110 and 115 are managed so that a gap in the vane height direction is minimized, and the vane 112 is assembled after the compression mechanism portion 103 is assembled as in the case 2. When the gap in the height direction increases, refrigerant leakage occurs from the high pressure portion 128 in the cylinders 110 and 115 to the low pressure portion 129, and the performance is degraded.

ここでシリンダ110,115と仕切板114間の隙間から冷媒漏れが生じる場合と,ベーン高さ方向の隙間から冷媒漏れが生じる場合を比較すると,シリンダ110,115と仕切板114間の隙間の連通長さがベーン高さ方向の隙間の連通長さよりも長いため,シリンダ110,115と仕切板114間の隙間からの冷媒漏れによる性能低下よりベーン高さ方向の隙間からの冷媒漏れによる性能低下の方が大きい。   Here, comparing the case where the refrigerant leaks from the gap between the cylinders 110 and 115 and the partition plate 114 and the case where the refrigerant leaks from the gap in the vane height direction, the communication of the gap between the cylinders 110 and 115 and the partition plate 114 is compared. Since the length is longer than the communication length of the gap in the vane height direction, the performance deterioration due to the refrigerant leakage from the gap in the vane height direction is lower than the performance deterioration due to the refrigerant leakage from the gap between the cylinders 110, 115 and the partition plate 114. Is bigger.

図8(a)(b)に第1分割板130と第2分割板131の接合面に段差tが生じた場合,第1シリンダ110,及び第1枠体109の第1軸受109aが傾く様子を示す。シリンダ110が傾くとシリンダ110とローラ113の隙間が変化し,第1軸受109aが傾くとクランクシャフト108と第1軸受109aの隙間が変化するが,第1軸受109aの方が仕切板114から距離があるため,第1軸受109aとクランクシャフト108の隙間の変化の方がシリンダ110とローラ113の隙間の変化より大きく,性能や信頼性への影響が大きい。   8 (a) and 8 (b), when a step t occurs on the joint surface between the first divided plate 130 and the second divided plate 131, the first cylinder 109 and the first bearing 109a of the first frame 109 are inclined. Indicates. When the cylinder 110 is tilted, the gap between the cylinder 110 and the roller 113 changes. When the first bearing 109a is tilted, the gap between the crankshaft 108 and the first bearing 109a changes, but the first bearing 109a is farther from the partition plate 114. Therefore, the change in the gap between the first bearing 109a and the crankshaft 108 is larger than the change in the gap between the cylinder 110 and the roller 113, and the influence on performance and reliability is great.

第1軸受クリアランスc,第1枠体高さh,シリンダ高さs,第2分割板131の幅r,クランクシャフト半径dとすると,第1軸受の微小な傾きqについて,近似式(1),(2)が成り立つ。
r・q=t (1)
√{(h+s)+d}・q=c (2)
よって,式(3)が成り立つ。
t/r = c/√{(h+s)+d} (3)
第1軸受109aがクランクシャフト108に接触するくらい傾いた場合,第1軸受109aが磨耗し信頼性が著しく低下することから,段差tは式(4)を満たす値とすることで信頼性を確保することができる。
t<c・r/√{(h+s)+d} (4)
Assuming that the first bearing clearance c, the first frame height h, the cylinder height s, the width r of the second divided plate 131, and the crankshaft radius d, an approximate expression (1), (2) holds.
r · q = t (1)
√ {(h + s) 2 + d 2 } · q = c (2)
Therefore, Equation (3) holds.
t / r = c / √ {(h + s) 2 + d 2 } (3)
When the first bearing 109a is tilted so as to contact the crankshaft 108, the first bearing 109a is worn and the reliability is remarkably lowered. Therefore, the reliability is ensured by setting the step t to a value satisfying the equation (4). can do.
t <c ・ r / √ {(h + s) 2 + d 2 } (4)

ここで段差tが式(4)を満たす上限程度である10μmの場合において,ケース1では性能低下が生じないが,ケース2では性能低下が生じることから,第1分割板130と第2分割板131の板厚の差が10μm以下であり,第1分割板130の板厚が第2分割板131の板厚より大きいことにより,性能低下のない多シリンダロータリ圧縮機を実現することができる。   Here, in the case where the step t is about 10 μm, which is the upper limit satisfying the expression (4), the performance is not deteriorated in the case 1 but the performance is deteriorated in the case 2, so that the first divided plate 130 and the second divided plate are Since the difference in plate thickness of 131 is 10 μm or less and the plate thickness of the first divided plate 130 is larger than the plate thickness of the second divided plate 131, a multi-cylinder rotary compressor without performance degradation can be realized.

以上のように本実施の形態1によれば,複数個のシリンダを有するロータリ圧縮機において,各シリンダの間を仕切る仕切板が2つに分割され,それらの板厚に微小な差が生じた場合でも,ベーンに接する側の分割板の板厚をもう一方の側の分割板の板厚よりわずかに大きくすることにより,ベーン高さ方向の隙間からの冷媒漏れを抑制し,性能低下の無い多シリンダロータリ圧縮機を実現することができる。   As described above, according to the first embodiment, in the rotary compressor having a plurality of cylinders, the partition plates for partitioning the cylinders are divided into two parts, and there is a slight difference in the plate thicknesses. Even in this case, by making the thickness of the split plate on the side in contact with the vane slightly larger than the thickness of the split plate on the other side, refrigerant leakage from the gap in the vane height direction is suppressed, and there is no degradation in performance. A multi-cylinder rotary compressor can be realized.

実施の形態2.
次に,この発明の実施の形態2による多シリンダロータリ圧縮機の圧縮機構部103の製造方法について説明する。本実施の形態2で説明する多シリンダロータリ圧縮機は,実施の形態1で説明した多シリンダロータリ圧縮機と同様の構成とし,実施の形態2で説明する部品番号は実施の形態1と同じものを用いる。
仕切板114を構成する第1分割板130と第2分割板131は加工が終了した後,それぞれ板厚を測定し,5μmごとに区分して保管する。圧縮機構部103の部品を選択する際に,第1分割板130を選択後,第1分割板130より1区分薄い区分から第2分割板131を1枚選択する。これらの2枚の分割板を1組として扱う。
Embodiment 2. FIG.
Next, a method for manufacturing the compression mechanism 103 of the multi-cylinder rotary compressor according to Embodiment 2 of the present invention will be described. The multi-cylinder rotary compressor described in the second embodiment has the same configuration as the multi-cylinder rotary compressor described in the first embodiment, and the part numbers described in the second embodiment are the same as those in the first embodiment. Is used.
After the processing of the first divided plate 130 and the second divided plate 131 constituting the partition plate 114 is finished, the plate thickness is measured, and is divided and stored every 5 μm. When selecting the components of the compression mechanism 103, after selecting the first divided plate 130, one second divided plate 131 is selected from the sections that are one section thinner than the first divided plate 130. These two divided plates are treated as one set.

次に,圧縮機構部103の組立工程の手順を図9に示したフローチャートを基に説明する。
ステップ1では,クランクシャフト108の第1軸受挿入部121に対する第1偏心部122に第1ローラ113を取り付けた状態の偏心量を測定する。
ステップ2では,クランクシャフト108の第2軸受挿入部125に対する第2偏心部124に第2ローラ119を取り付けた状態の偏心量を測定する。
ステップ3では,第1シリンダ110と第1軸受109aを有する第1枠体109を,上記偏心量の測定結果を基にクランクシャフト108が回転した場合に第1ローラ113外周と第1シリンダ110内周の隙間が最適となるように組立てる。本例では,第1シリンダ110と第1枠体109にはそれぞれ6個のボルト穴が設けられており,ステップ3ではそのうち各3個のボルト穴にボルトを挿入して第1シリンダ110と第1枠体109を固定する。
ステップ4では,第2シリンダ115と第2軸受116aを有する第2枠体116を,上記偏心量の測定結果を基にクランクシャフト108が回転した場合に第2ローラ119外周と第2シリンダ115内周の隙間が最適となるように組立てる。本例では,第2シリンダ115と第2枠体116にはそれぞれ6個のボルト穴が設けられており,ステップ4ではそのうち各3個のボルト穴にボルトを挿入して第2シリンダ115と第2枠体116を固定する。
ステップ5では,上記ステップ3により第1枠体109を固定した第1シリンダ110に第1ベーン112と第1ローラ113を挿入する。
ステップ6では,クランクシャフト108を第1ローラ113,及び第1シリンダ110と第1枠体109の第1軸受109aに挿入する。
Next, the procedure of the assembly process of the compression mechanism unit 103 will be described based on the flowchart shown in FIG.
In step 1, the amount of eccentricity in a state where the first roller 113 is attached to the first eccentric portion 122 with respect to the first bearing insertion portion 121 of the crankshaft 108 is measured.
In step 2, the amount of eccentricity in a state where the second roller 119 is attached to the second eccentric portion 124 with respect to the second bearing insertion portion 125 of the crankshaft 108 is measured.
In step 3, the first frame 109 having the first cylinder 110 and the first bearing 109a is moved between the outer periphery of the first roller 113 and the first cylinder 110 when the crankshaft 108 is rotated based on the measurement result of the eccentricity. Assemble so that the circumferential clearance is optimal. In this example, each of the first cylinder 110 and the first frame 109 is provided with six bolt holes. In step 3, bolts are inserted into the three bolt holes, and the first cylinder 110 and the first frame 109 are inserted. One frame 109 is fixed.
In step 4, when the crankshaft 108 rotates on the second frame 116 having the second cylinder 115 and the second bearing 116 a based on the measurement result of the eccentricity, Assemble so that the circumferential clearance is optimal. In this example, each of the second cylinder 115 and the second frame 116 is provided with six bolt holes. In step 4, bolts are inserted into the three bolt holes, and the second cylinder 115 and the second frame 116 are connected. The two-frame body 116 is fixed.
In step 5, the first vane 112 and the first roller 113 are inserted into the first cylinder 110 to which the first frame 109 is fixed in step 3.
In step 6, the crankshaft 108 is inserted into the first roller 113, the first cylinder 110, and the first bearing 109 a of the first frame 109.

ステップ7では,第1分割板130と第2分割板131を第1シリンダ110上に設置する。このとき,板厚を測定して保管された分割板から第1分割板130を選択後,第1分割板130より1区分薄い区分から第2分割板131を1枚選択し,これらの2枚の分割板を1組の仕切板114として扱う。
そして,クランクシャフト108の中間部123が第1分割板130及び第2分割板131で形成されるクランクシャフト挿入穴132を通るように,第1分割板130の分割面130cと第2分割板131の分割面131cを合わせる。
ステップ8では,仕切板114の内周中心と第1シリンダ110内周中心が一致するように仕切板114の位置決めを行う。
ステップ9では,クランクシャフト108に,第2ローラ119を挿入する。
ステップ10では,第2シリンダ115に,第2ベーン118を挿入する。
ステップ11では,第2ベーン118をセットした第2シリンダ115と第2枠体116に設けられた第2軸受116aをクランクシャフト108に挿入し,第2シリンダ115を仕切板114上に設置する。
ステップ12では,第1軸受109aと第2軸受116aの中心が同軸となるように第2シリンダの位置決めを行う。
ステップ13では,ボルトにより第1枠体109,第1シリンダ110,仕切板114,第2シリンダ115,第2枠体116を固定する。
In step 7, the first divided plate 130 and the second divided plate 131 are installed on the first cylinder 110. At this time, after measuring the plate thickness and selecting the first divided plate 130 from the stored divided plates, one second divided plate 131 is selected from a section thinner than the first divided plate 130, and these two sheets are selected. Are treated as a set of partition plates 114.
Then, the split surface 130c of the first split plate 130 and the second split plate 131 so that the intermediate portion 123 of the crankshaft 108 passes through the crankshaft insertion hole 132 formed by the first split plate 130 and the second split plate 131. The divided surfaces 131c are aligned.
In step 8, the partition plate 114 is positioned so that the inner periphery center of the partition plate 114 and the inner periphery center of the first cylinder 110 coincide.
In step 9, the second roller 119 is inserted into the crankshaft 108.
In step 10, the second vane 118 is inserted into the second cylinder 115.
In step 11, the second cylinder 115 on which the second vane 118 is set and the second bearing 116 a provided on the second frame 116 are inserted into the crankshaft 108, and the second cylinder 115 is installed on the partition plate 114.
In step 12, the second cylinder is positioned so that the centers of the first bearing 109a and the second bearing 116a are coaxial.
In step 13, the first frame 109, the first cylinder 110, the partition plate 114, the second cylinder 115, and the second frame 116 are fixed with bolts.

ここで第1分割板130と第2分割板131の板厚を測定後に保管する際に,上記では板厚5μmごとに区分して保管するとしたが,5μmという値に限ることではなく,適切な値ごとに区分してもよい。
また第1分割板130と第2分割板131の形状が等しい場合,板厚測定後に第1分割板130と第2分割板131をそれぞれ別々に保管する必要がなく,適当に選択した分割板を第1分割板130とし,第1分割板130よりわずかに薄い板厚の分割板を選択し第2分割板131とすることができ,保管する部品数を削減することができる。
Here, when the thickness of the first divided plate 130 and the second divided plate 131 is stored after measurement, the above is divided and stored for each thickness of 5 μm. However, the thickness is not limited to 5 μm, but is appropriate. You may classify by value.
In addition, when the shapes of the first divided plate 130 and the second divided plate 131 are the same, it is not necessary to store the first divided plate 130 and the second divided plate 131 separately after measuring the plate thickness. As the first divided plate 130, a divided plate slightly thinner than the first divided plate 130 can be selected and used as the second divided plate 131, and the number of parts to be stored can be reduced.

以上のような製造方法をとることで,加工のばらつきにより第1分割板130と第2分割板131の板厚に差が生じたとしても,微小隙間からの冷媒漏れによる性能低下のない多シリンダロータリ圧縮機を実現することができる。   By adopting the manufacturing method as described above, even if a difference occurs in the thickness of the first divided plate 130 and the second divided plate 131 due to processing variations, the multi-cylinder does not deteriorate in performance due to refrigerant leakage from a minute gap. A rotary compressor can be realized.

100 多シリンダロータリ圧縮機,101 シェル,102 モータ,103 圧縮機構部,104 ガラス端子,105 吐出パイプ,106 吸入パイプ,107 吸入マフラ,108 クランクシャフト,109 第1枠体,109a 第1軸受,110 第1シリンダ,111 第1バネ,112 第1ベーン,113 第1ローラ,114 仕切板,115 第2シリンダ,116 第2枠体,116a 第2軸受,117 第2バネ,118 第2ベーン,119 第2ローラ,120 ロータ嵌合部,121 第1軸受挿入部,122 第1偏心部,123 中間部,124 第2偏心部,125 第2軸受挿入部,126 第1圧縮室,127 第2圧縮室,128 低圧部,129 高圧部,130 第1分割板,131 第2分割板   100 multi-cylinder rotary compressor, 101 shell, 102 motor, 103 compression mechanism, 104 glass terminal, 105 discharge pipe, 106 suction pipe, 107 suction muffler, 108 crankshaft, 109 first frame, 109a first bearing, 110 1st cylinder, 111 1st spring, 112 1st vane, 113 1st roller, 114 Partition plate, 115 2nd cylinder, 116 2nd frame, 116a 2nd bearing, 117 2nd spring, 118 2nd vane, 119 Second roller, 120 Rotor fitting portion, 121 First bearing insertion portion, 122 First eccentric portion, 123 Intermediate portion, 124 Second eccentric portion, 125 Second bearing insertion portion, 126 First compression chamber, 127 Second compression Chamber, 128 low pressure section, 129 high pressure section, 130 first divided plate, 131 second divided plate

Claims (4)

密閉容器内にモータ及び圧縮機構部を備え,
上記圧縮機構部は,
軸方向に離間して配置された複数個の偏心部と,これらの偏心部の間に位置する中間部とを有し,上記モータにより駆動されるクランクシャフト,
上記複数個の偏心部外周に対応して配置された複数個のシリンダ,
上記クランクシャフトの軸受を有し,上記シリンダを挟むように上記クランクシャフトの軸方向両端部に設置された枠体,
上記クランクシャフトの中間部に挿入され,上記複数個のシリンダ間を仕切る仕切板,
及び上記クランクシャフトの偏心部外周に回転自在に取り付けられたローラ
を備え,
上記ローラ,上記シリンダ,上記枠体,及び上記仕切板で囲まれる空間を圧縮室として形成すると共に,上記ローラと摺動するように上記シリンダに保持されたベーンにより,上記圧縮室を低圧部と高圧部に分ける多シリンダロータリ圧縮機において,
上記仕切板はその径方向の中心線に沿って分割された2つの分割板で構成され,上記ベーンに接する側の分割板の板厚が他方の分割板の板厚より大きく設定されたことを特徴とする多シリンダロータリ圧縮機。
A motor and a compression mechanism are provided in the sealed container.
The compression mechanism is
A crankshaft having a plurality of eccentric parts spaced apart in the axial direction and an intermediate part located between the eccentric parts and driven by the motor;
A plurality of cylinders arranged corresponding to the outer circumferences of the plurality of eccentric parts;
A frame having bearings for the crankshaft and installed at both axial ends of the crankshaft so as to sandwich the cylinder;
A partition plate inserted between the crankshafts and separating the plurality of cylinders;
And a roller rotatably attached to the outer periphery of the eccentric portion of the crankshaft,
A space surrounded by the roller, the cylinder, the frame, and the partition plate is formed as a compression chamber, and the compression chamber is separated from the low pressure portion by a vane that is held in the cylinder so as to slide with the roller. In a multi-cylinder rotary compressor divided into high pressure parts,
The partition plate is composed of two split plates divided along the radial center line, and the thickness of the split plate on the side in contact with the vane is set larger than the thickness of the other split plate. A featured multi-cylinder rotary compressor.
上記2つの分割板の板厚の差が10μm以下であることを特徴とする請求項1記載の多シリンダロータリ圧縮機。   2. The multi-cylinder rotary compressor according to claim 1, wherein a difference in plate thickness between the two divided plates is 10 [mu] m or less. 上記2つの分割板が同じ形状であることを特徴とする請求項1又は2記載の多シリンダロータリ圧縮機。   The multi-cylinder rotary compressor according to claim 1 or 2, wherein the two divided plates have the same shape. 密閉容器内にモータ及び圧縮機構部を備え,上記圧縮機構部は,軸方向に離間して配置された複数個の偏心部と,これらの偏心部の間に位置する中間部とを有し,上記モータにより駆動されるクランクシャフト,上記複数個の偏心部外周に対応して配置された複数個のシリンダ,上記クランクシャフトの軸受を有し,上記シリンダを挟むように上記クランクシャフトの軸方向両端部に設置された枠体,上記クランクシャフトの中間部に挿入され,上記複数個のシリンダ間を仕切る仕切板,及び上記クランクシャフトの偏心部外周に回転自在に取り付けられたローラを備え,
上記ローラ,上記シリンダ,上記枠体,及び上記仕切板で囲まれる空間を圧縮室として形成すると共に,上記ローラと摺動するように上記シリンダに保持されたベーンにより,上記圧縮室を低圧部と高圧部に分けると共に,上記仕切板はその径方向の中心線に沿って分割された2つの分割板で構成され,上記ベーンに接する側の分割板の板厚が他方の分割板の板厚より大きく設定された多シリンダロータリ圧縮機の製造方法において,
上記分割板の板厚をそれぞれ測定して保管する工程と,
上記保管された分割板を組立に用いる場合,上記ベーンに接する側の分割板の板厚が他方の分割板の板厚より大きくなるように選択する工程と,
上記選択された分割板を上記シリンダ,及び上記枠体と締結する工程とを
含むことを特徴とする多シリンダロータリ圧縮機の製造方法。
A sealed container is provided with a motor and a compression mechanism, and the compression mechanism has a plurality of eccentric parts spaced apart in the axial direction, and an intermediate part located between the eccentric parts. A crankshaft driven by the motor, a plurality of cylinders arranged corresponding to the outer circumferences of the plurality of eccentric portions, bearings of the crankshaft, and both axial ends of the crankshaft so as to sandwich the cylinder A frame body installed at a portion, a partition plate that is inserted into an intermediate portion of the crankshaft and partitions the plurality of cylinders, and a roller that is rotatably attached to the outer periphery of the eccentric portion of the crankshaft,
A space surrounded by the roller, the cylinder, the frame, and the partition plate is formed as a compression chamber, and the compression chamber is separated from the low pressure portion by a vane that is held in the cylinder so as to slide with the roller. The partition plate is composed of two divided plates divided along the radial center line, and the thickness of the divided plate on the side in contact with the vane is greater than the thickness of the other divided plate. In the manufacturing method of a large-cylinder multi-cylinder rotary compressor,
Measuring and storing the thickness of each of the divided plates;
When the stored divided plate is used for assembly, the step of selecting the thickness of the divided plate on the side in contact with the vane to be larger than the thickness of the other divided plate;
A method for manufacturing a multi-cylinder rotary compressor, comprising the step of fastening the selected divided plate to the cylinder and the frame.
JP2009264973A 2009-11-20 2009-11-20 Multi-cylinder rotary compressor and manufacturing method thereof Expired - Fee Related JP4897867B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009264973A JP4897867B2 (en) 2009-11-20 2009-11-20 Multi-cylinder rotary compressor and manufacturing method thereof
CN 201010171680 CN102072156B (en) 2009-11-20 2010-04-28 Multi-cylinder rotary compressor and manufacture method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009264973A JP4897867B2 (en) 2009-11-20 2009-11-20 Multi-cylinder rotary compressor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011106427A JP2011106427A (en) 2011-06-02
JP4897867B2 true JP4897867B2 (en) 2012-03-14

Family

ID=44030847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009264973A Expired - Fee Related JP4897867B2 (en) 2009-11-20 2009-11-20 Multi-cylinder rotary compressor and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP4897867B2 (en)
CN (1) CN102072156B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5683384B2 (en) * 2011-06-02 2015-03-11 三菱電機株式会社 Multi-cylinder rotary compressor
JP2013007296A (en) * 2011-06-23 2013-01-10 Mitsubishi Electric Corp Multi-cylinder rotary compressor and method of manufacturing the same
JP5683393B2 (en) * 2011-06-24 2015-03-11 三菱電機株式会社 Multi-cylinder rotary compressor
CZ306336B6 (en) * 2011-10-25 2016-12-07 Mitsubishi Electric Corporation Multicylinder rotary compressor and method of attaching partition board between compression chambers thereof
JP5606422B2 (en) * 2011-10-31 2014-10-15 三菱電機株式会社 Rotary compressor
JP5781019B2 (en) * 2012-06-13 2015-09-16 三菱電機株式会社 Rotary compressor
JP6025500B2 (en) * 2012-10-24 2016-11-16 三菱重工業株式会社 Rotary compressor
JP6099550B2 (en) * 2013-12-09 2017-03-22 三菱電機株式会社 Vane type two-stage compressor
CN104389788A (en) * 2014-09-22 2015-03-04 广东美芝制冷设备有限公司 Compression mechanism for multi-cylinder rotary compressor and multi-cylinder rotary compressor
CN108825499A (en) * 2018-08-03 2018-11-16 天津商业大学 Three cylinder twin-stage compressor with rolling rotor of radial equipartition sliding slot
CN112229101B (en) * 2020-10-26 2022-08-02 珠海格力节能环保制冷技术研究中心有限公司 Compressor and air conditioning system
CN117189605B (en) * 2023-11-06 2024-01-23 珠海格力电器股份有限公司 Pump body structure and compressor using same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105993A (en) * 1982-12-09 1984-06-19 Mitsubishi Electric Corp Multiple cylinder type rotary compressor
JPS63105786A (en) * 1986-10-21 1988-05-11 三菱電機株式会社 Automatic sewing machine
JPS63105786U (en) * 1986-12-27 1988-07-08
JPH109168A (en) * 1996-06-28 1998-01-13 Hitachi Ltd Rotary compressor
JP2003328972A (en) * 2002-05-09 2003-11-19 Hitachi Home & Life Solutions Inc Sealed two-cylinder rotary compressor and manufacturing method thereof

Also Published As

Publication number Publication date
CN102072156A (en) 2011-05-25
JP2011106427A (en) 2011-06-02
CN102072156B (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP4897867B2 (en) Multi-cylinder rotary compressor and manufacturing method thereof
KR101375979B1 (en) Rotary compressor
JP5284210B2 (en) Rotary compressor, manufacturing method thereof, and manufacturing apparatus thereof
JP5781019B2 (en) Rotary compressor
JP5084692B2 (en) 2-cylinder rotary compressor
US20210006103A1 (en) Motor and compressor including the same
US9145890B2 (en) Rotary compressor with dual eccentric portion
KR100432115B1 (en) Plural cylinder rotary compressor
KR101523435B1 (en) Rotary compressor
JP5679384B2 (en) Multi-cylinder rotary compressor
US8147220B2 (en) Compressor having compression element welded to closed container at three or more welding points and suction tube neither parallel nor perpendicular to a straight line connecting any two of the welding points
JP5606422B2 (en) Rotary compressor
JP5738423B2 (en) Multi-cylinder rotary compressor and method for joining partition plates of compression chamber
JP5766166B2 (en) Rotary compressor
KR101369053B1 (en) Rotary compressor
JP2015209778A (en) Rotary compressor
JP5766165B2 (en) Rotary compressor
JP6071787B2 (en) Rotary compressor
JP5734071B2 (en) Rotary compressor and method for manufacturing the same
JP2019011749A (en) Rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111222

R151 Written notification of patent or utility model registration

Ref document number: 4897867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees