JP4896565B2 - Dry carbonization system - Google Patents

Dry carbonization system Download PDF

Info

Publication number
JP4896565B2
JP4896565B2 JP2006099000A JP2006099000A JP4896565B2 JP 4896565 B2 JP4896565 B2 JP 4896565B2 JP 2006099000 A JP2006099000 A JP 2006099000A JP 2006099000 A JP2006099000 A JP 2006099000A JP 4896565 B2 JP4896565 B2 JP 4896565B2
Authority
JP
Japan
Prior art keywords
pyrolysis
heat
organic waste
measuring
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006099000A
Other languages
Japanese (ja)
Other versions
JP2007270018A (en
Inventor
英武 仕入
良 中島
潔 今井
巨太郎 居安
恵二朗 安村
幸司 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006099000A priority Critical patent/JP4896565B2/en
Publication of JP2007270018A publication Critical patent/JP2007270018A/en
Application granted granted Critical
Publication of JP4896565B2 publication Critical patent/JP4896565B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Treatment Of Sludge (AREA)
  • Coke Industry (AREA)

Description

本発明は、脱水汚泥などの有機系廃棄物を熱分解して炭化処理する乾燥炭化システムに関する。   The present invention relates to a dry carbonization system that thermally decomposes and carbonizes organic waste such as dewatered sludge.

汚泥等の有機系廃棄物を乾燥・炭化するシステムでは、有機系廃棄物を熱分解炉に投入し、これを低酸素状態で加熱して、熱分解ガスである可燃性の乾留ガスと炭化物である熱分解残渣とに分離して排出するようにしている。この場合、炭化工程で発生した乾留ガスを燃焼させ、炭化工程における熱分解炉の熱源とすることは良く知られている(例えば、特許文献1、2参照)。
特開2003−183665号公報 特開2003−340496号公報
In a system that dries and carbonizes organic waste such as sludge, the organic waste is put into a pyrolysis furnace and heated in a low-oxygen state to produce combustible dry distillation gas and carbide as pyrolysis gas. It is separated into a certain thermal decomposition residue and discharged. In this case, it is well known to combust the dry distillation gas generated in the carbonization step and use it as a heat source for the pyrolysis furnace in the carbonization step (see, for example, Patent Documents 1 and 2).
JP 2003-183665 A JP 2003-340696 A

この場合、乾留ガスの発生量は、汚泥等の有機系廃棄物の含水率や性状変化等によってばらつきが生じる。このため、発生した乾留ガスだけでは炭化工程を維持できない場合がある。このような場合、補助燃料による追い炊きが必要となる。   In this case, the amount of carbonized gas generated varies depending on the moisture content or property change of organic waste such as sludge. For this reason, the carbonization process may not be maintained only with the generated dry distillation gas. In such a case, additional cooking with auxiliary fuel is required.

本発明の目的は、効率的に炭化処理することにより、汚泥等の有機系廃棄物の含水率や性状等が変化しても補助燃料による追炊きをほとんど必要とせず、発生した乾留ガスにより炭化工程を維持できるエネルギー効率の高い乾燥炭化システムを提供することにある。   The purpose of the present invention is to perform carbonization efficiently, and even if the moisture content or properties of organic waste such as sludge changes, almost no additional cooking with auxiliary fuel is required, and carbonization is performed by the generated dry distillation gas. An object of the present invention is to provide an energy efficient dry carbonization system capable of maintaining a process.

本発明の乾燥炭化システムは、投入された有機系廃棄物を低酸素状態で加熱して熱分解し、熱分解ガスと熱分解残渣とに分離して排出する熱分解炉と、この熱分解炉からの熱分解ガス及び必要に応じて補助燃料を導入して燃焼用空気と共に燃焼させ、その燃焼熱で前記熱分解炉を加熱する加熱炉と、前記熱分解炉に投入される有機系廃棄物を加熱してその含水率を低下させる乾燥機と、前記加熱炉から排出される燃焼排ガスの熱エネルギーを回収する熱交換器とを備え、前記熱交換器として、乾燥機と熱分解炉の投入部との間に設けられ、加熱炉から排出される燃焼排ガスを熱源として前記乾燥機で乾燥された廃棄物を予熱するプレヒータを用いることを特徴とする The dry carbonization system of the present invention includes a pyrolysis furnace that heats and decomposes input organic waste in a low oxygen state, separates it into pyrolysis gas and pyrolysis residue, and the pyrolysis furnace. A pyrolysis gas from the gas and a supplementary fuel as necessary, combusted together with combustion air, and heating the pyrolysis furnace with the combustion heat, and organic waste introduced into the pyrolysis furnace And a heat exchanger for recovering the thermal energy of the combustion exhaust gas discharged from the heating furnace, and supplying the dryer and the pyrolysis furnace as the heat exchanger provided between the parts, characterized by using a preheater for preheating the dried waste by the dryer combustion exhaust gas discharged as a heat source from the heating furnace.

また、本発明では、投入される有機系廃棄物の含水率や投入量、発熱量を計測する計測手段、補助燃料の温度や流量を計測する計測手段、熱分解ガスの温度や流量を計測する計測手段、燃焼用空気の温度や流量を計測する計測手段、熱分解残渣の発生量や温度を計測する計測手段、及び燃焼排ガスの温度や流量を計測する計測手段をそれぞれ設け、これら計測手段による計測値から有機系廃棄物、補助燃料、熱分解ガス、及び燃焼用空気の保有熱量の総和を熱分解炉及び加熱炉からなる炭化炉への入熱として求め、前記熱分解ガス、熱分解残渣、及び燃焼排ガスの保有熱量の総和を前記炭化炉からの出熱として求め、これら入熱と出熱の熱収支から、補助燃料を使うことなく発生した熱分解ガスの燃焼だけで有機系廃棄物を熱分解することのできる有機系廃棄物の投入量と含水率との関係を算出する演算装置を設け、さらに、前記有機系廃棄物の含水率計測値を用い、上記演算装置により求められた有機系廃棄物の投入量と含水率との関係から、有機系廃棄物の投入量を、補助燃料を使うことなく発生した熱分解ガスの燃焼だけで有機系廃棄物を熱分解することのできる投入量に制御する制御装置を設けるとよい。   In the present invention, the measuring means for measuring the moisture content and input amount of the organic waste to be input, the calorific value, the measuring means for measuring the temperature and flow rate of the auxiliary fuel, and the temperature and flow rate of the pyrolysis gas are measured. Measuring means, measuring means for measuring the temperature and flow rate of combustion air, measuring means for measuring the generation amount and temperature of pyrolysis residue, and measuring means for measuring the temperature and flow rate of combustion exhaust gas are provided, respectively. From the measured values, the total amount of heat stored in the organic waste, auxiliary fuel, pyrolysis gas, and combustion air is obtained as heat input to the carbonization furnace comprising the pyrolysis furnace and the heating furnace, and the pyrolysis gas and pyrolysis residue And the total amount of heat stored in the combustion exhaust gas as the heat output from the carbonization furnace. From the heat balance of these input and output heats, organic waste can be obtained simply by combustion of pyrolysis gas generated without using auxiliary fuel. Of pyrolyzing A calculation device for calculating the relationship between the amount of organic waste input and the water content, and using the measured water content of the organic waste, the input of the organic waste determined by the above calculation device Control that controls the amount of input of organic waste to the amount of input that can pyrolyze organic waste only by combustion of pyrolysis gas generated without using auxiliary fuel, based on the relationship between the amount and moisture content A device may be provided.

また、本発明では、制御装置は、有機系廃棄物の投入量計測値を用い、上記演算装置により求められた有機系廃棄物の投入量と含水率との関係から、有機系廃棄物の含水率を、補助燃料を使うことなく発生した熱分解ガスの燃焼だけで有機系廃棄物を熱分解することのできる含水率に制御する構成でもよい。   Further, in the present invention, the control device uses the measured value of the amount of input of organic waste, and determines the water content of the organic waste from the relationship between the amount of input of organic waste and the water content determined by the arithmetic device. The rate may be controlled to a moisture content that can pyrolyze organic waste only by combustion of pyrolysis gas generated without using auxiliary fuel.

また、本発明では、演算装置は、炭化炉への入熱と出熱の熱収支から、補助燃料を使うことなく発生した熱分解ガスの燃焼だけで有機系廃棄物を熱分解することのできる有機系廃棄物の投入量と発熱量との関係を算出し、制御装置は、有機系廃棄物の発熱量計測値を用い、上記演算装置により求められた有機系廃棄物の投入量と発熱量との関係から、有機系廃棄物の投入量を、補助燃料を使うことなく発生した熱分解ガスの燃焼だけで有機系廃棄物を熱分解することのできる投入量に制御する構成でもよい。   Further, in the present invention, the arithmetic unit can thermally decompose organic waste by combustion of pyrolysis gas generated without using auxiliary fuel from the heat balance of heat input to and output from the carbonization furnace. The relationship between the input amount of organic waste and the calorific value is calculated, and the control device uses the calorific value measurement value of the organic waste, and the input amount of organic waste and the calorific value obtained by the above arithmetic unit. Therefore, a configuration may be adopted in which the input amount of organic waste is controlled to an input amount capable of thermally decomposing organic waste only by combustion of pyrolysis gas generated without using auxiliary fuel.

本発明によれば、炭化工程で生じる加熱用燃焼排ガスの熱量を回収することにより高いエネルギー効率を得ることができる。また、入熱と出熱の熱収支から、補助燃料を使うことなく、発生した熱分解ガスの燃焼だけで有機系廃棄物を熱分解する、有機系廃棄物の投入量と含水率との関係又は投入量と発熱量との関係を求めることにより、補助燃料を要しない、いわゆる自燃運転を行なうこともできる。   According to the present invention, high energy efficiency can be obtained by recovering the amount of heat of the combustion exhaust gas for heating generated in the carbonization step. In addition, the relationship between the input amount of organic waste and the moisture content, which decomposes organic waste by simply burning the generated pyrolysis gas without using auxiliary fuel, based on the heat balance of input and output heat. Alternatively, a so-called self-burning operation that does not require auxiliary fuel can be performed by obtaining the relationship between the input amount and the heat generation amount.

以下、本発明による乾燥炭化システムの一実施の形態について、図面を用いて詳細に説明する。   Hereinafter, an embodiment of a dry carbonization system according to the present invention will be described in detail with reference to the drawings.

まず、図1で示す実施の形態を説明する。図1において、2は本システムの主体となる熱分解炉で、後述する乾燥機1を経て投入された有機系廃棄物を低酸素状態で加熱して熱分解し、熱分解ガス(可燃性の乾留ガス)23と熱分解残渣(炭化物)13とに分離して排出する。3は加熱炉で、熱分解炉2からの熱分解ガス23及び補助燃料22を導入して燃焼用空気24と共に燃焼させ、その燃焼熱で熱分解炉2を加熱する。これら熱分解炉2及び加熱炉3の組み合わせを炭化炉8と呼ぶ。   First, the embodiment shown in FIG. 1 will be described. In FIG. 1, reference numeral 2 denotes a pyrolysis furnace which is a main component of the present system. Organic waste introduced through a dryer 1 described later is heated and pyrolyzed in a low oxygen state to produce pyrolysis gas (combustible gas). (Distilled gas) 23 and pyrolysis residue (carbide) 13 are separated and discharged. Reference numeral 3 denotes a heating furnace, which introduces the pyrolysis gas 23 and the auxiliary fuel 22 from the pyrolysis furnace 2 and burns them together with the combustion air 24, and heats the pyrolysis furnace 2 with the combustion heat. A combination of the pyrolysis furnace 2 and the heating furnace 3 is called a carbonization furnace 8.

前記乾燥機1は、熱分解炉2に投入される有機系廃棄物を加熱して乾燥させ、その含水率を低下させる。例えば、有機系廃棄物が脱水汚泥の場合、乾燥前の汚泥11は、一般に含水率85%程度であるが、乾燥機1を減ることにより含水率50%程度の乾燥汚泥12となる。4aは熱交換器(この例では、廃熱ボイラ)で、加熱炉3から排出される燃焼排ガスの熱エネルギーを回収する。この熱交換器として用いられる廃熱ボイラ4aは、水26を導入して蒸気27を発生させ、この発生した蒸気を乾燥機1の熱源として供給する。乾燥機1では図示しない加熱ジャケットに廃熱ボイラ4aからの蒸気が供給され、汚泥を加熱し乾燥させる。この乾燥により生じた蒸気21は外部に排出される。   The dryer 1 heats and dries organic waste put into the pyrolysis furnace 2 and reduces its moisture content. For example, when the organic waste is dehydrated sludge, the sludge 11 before drying generally has a moisture content of about 85%, but by reducing the dryer 1, it becomes a dried sludge 12 with a moisture content of about 50%. 4a is a heat exchanger (in this example, a waste heat boiler), and collects the thermal energy of the combustion exhaust gas discharged from the heating furnace 3. The waste heat boiler 4a used as the heat exchanger introduces water 26 to generate steam 27, and supplies the generated steam as a heat source of the dryer 1. In the dryer 1, steam from the waste heat boiler 4a is supplied to a heating jacket (not shown) to heat and dry the sludge. The vapor 21 generated by this drying is discharged to the outside.

上記構成において乾燥機1は、有機系廃棄物(例えば、脱水汚泥)11を乾燥し、乾燥廃棄物(乾燥汚泥)12と蒸気21に分離する。乾燥廃棄物12は、熱分解炉2に投入され、低酸素状態で、加熱炉3により外部から間接的に加熱され、熱分解する。その結果、熱分解残渣(炭化物)13と可燃性の熱分解ガス(乾留ガス)23とに分離される。加熱炉3の燃料には、熱分解炉2で発生した熱分解ガス23を用いる。この他に、機器の立ち上げ時等で熱分解ガス23のみでは十分な燃焼が得られない場合など、必要に応じて補助燃料22を使用する。   In the above configuration, the dryer 1 dries organic waste (for example, dehydrated sludge) 11 and separates it into dry waste (dried sludge) 12 and steam 21. The dry waste 12 is put into the pyrolysis furnace 2 and is indirectly heated from the outside by the heating furnace 3 in a low oxygen state and pyrolyzed. As a result, it is separated into pyrolysis residue (carbide) 13 and combustible pyrolysis gas (dry distillation gas) 23. As a fuel for the heating furnace 3, a pyrolysis gas 23 generated in the pyrolysis furnace 2 is used. In addition to this, auxiliary fuel 22 is used as necessary, for example, when the pyrolysis gas 23 alone cannot obtain sufficient combustion at the time of starting up the equipment.

加熱炉3の燃焼排ガス25から熱エネルギーを回収する熱交換器として廃熱ボイラ4aが設けられており、この廃熱ボイラ4aに供給された水26は排ガス25の熱により蒸気27に変換され、乾燥機1に供給される。   A waste heat boiler 4a is provided as a heat exchanger that recovers thermal energy from the combustion exhaust gas 25 of the heating furnace 3, and water 26 supplied to the waste heat boiler 4a is converted into steam 27 by the heat of the exhaust gas 25, Supplied to the dryer 1.

本実施の形態では、有機系廃棄物11中の水分は乾燥機1で蒸気21として分離排出されるため、熱分解炉2で蒸発する蒸気量がその分減少する。このため、熱分解炉2で発生する熱分解ガス23が蒸発で希釈される度合いが少なくなり、発熱量が向上する。また、加熱器3からの燃焼排ガス25の持つ熱エネルギーは蒸気として回収され、乾燥機1の熱源に利用可能となる。   In the present embodiment, the moisture in the organic waste 11 is separated and discharged as the vapor 21 by the dryer 1, so the amount of vapor evaporated in the pyrolysis furnace 2 is reduced accordingly. For this reason, the degree to which the pyrolysis gas 23 generated in the pyrolysis furnace 2 is diluted by evaporation is reduced, and the calorific value is improved. Further, the thermal energy of the combustion exhaust gas 25 from the heater 3 is recovered as steam and can be used as a heat source for the dryer 1.

このように、熱分解ガス23の発熱量が向上するので、補助燃料22はほとんど必要なく、その消費量が大幅に減少する。また、従来外部燃料により生成していた蒸気を自己の排ガスのエネルギーで賄えるため、エネルギー効率が向上し乾燥機1のランニングコストを低減することができる。   Thus, since the calorific value of the pyrolysis gas 23 is improved, the auxiliary fuel 22 is almost unnecessary, and its consumption is greatly reduced. Moreover, since the steam conventionally generated by the external fuel can be covered with the energy of its own exhaust gas, the energy efficiency is improved and the running cost of the dryer 1 can be reduced.

次に、図2で示す実施の形態を説明する。なお、図1で示した構成と同一の部分には同一の符号を付し、重複する説明は省略する。   Next, the embodiment shown in FIG. 2 will be described. In addition, the same code | symbol is attached | subjected to the part same as the structure shown in FIG. 1, and the overlapping description is abbreviate | omitted.

この実施の形態では、加熱炉3の燃焼排ガス25からエネルギーを回収する熱交換器として空気熱交換器4bを用いている。この空気熱交換器4bは燃焼用空気24の予熱器として用いられており、空気予熱器4bに供給された空気28は排ガス25の熱により高温空気29に変換され、加熱炉3の燃焼用空気24として供給される。   In this embodiment, the air heat exchanger 4b is used as a heat exchanger that recovers energy from the combustion exhaust gas 25 of the heating furnace 3. The air heat exchanger 4b is used as a preheater for the combustion air 24, and the air 28 supplied to the air preheater 4b is converted into high-temperature air 29 by the heat of the exhaust gas 25, and the combustion air for the heating furnace 3 is used. 24 is supplied.

この実施の形態では、燃焼排ガス25の持つ熱エネルギーは顕熱として回収され、加熱炉3への入熱が増加する。すなわち、高温空気の顕熱分、加熱炉3への入熱が増加するため、熱分解ガス23の消費量を減少させることが可能となる。したがって、補助燃料22を用いることなく、発生した熱分解ガス23のみを燃料として炭化する自燃運転可能領域が広がる。   In this embodiment, the thermal energy of the combustion exhaust gas 25 is recovered as sensible heat, and the heat input to the heating furnace 3 increases. That is, since the amount of sensible heat of high-temperature air and heat input to the heating furnace 3 are increased, the consumption of the pyrolysis gas 23 can be reduced. Therefore, the self-combustible operation range in which only the generated pyrolysis gas 23 is carbonized as fuel without using the auxiliary fuel 22 is expanded.

次に、図3で示す実施の形態を説明する。ここでも、図1及び図2で示した構成と同一の部分には同一の符号を付し、重複する説明は省略する。   Next, the embodiment shown in FIG. 3 will be described. Also here, the same components as those shown in FIGS. 1 and 2 are denoted by the same reference numerals, and redundant description is omitted.

この実施の形態では加熱炉3の燃焼排ガス25からエネルギーを回収する熱交換器として、乾燥廃棄物12を予熱するプレヒータ4cを用い、これを熱分解炉2前段に設ける。すなわち、乾燥機1で乾燥された乾燥廃棄物を、プレヒータ4cにより排ガス25の熱で加熱し、水分をさらに減少させる。   In this embodiment, a preheater 4c for preheating dry waste 12 is used as a heat exchanger for recovering energy from the combustion exhaust gas 25 of the heating furnace 3, and this is provided in the front stage of the pyrolysis furnace 2. That is, the dry waste dried by the dryer 1 is heated by the heat of the exhaust gas 25 by the preheater 4c, and moisture is further reduced.

この実施の形態では、熱分解炉2へ供給される乾燥汚泥の含水率がさらに一層低下する。このように乾燥廃棄物の含水率が一層減少するため、補助燃料22を用いることなく発生した熱分解ガス23のみを燃料として炭化する自燃運転可能領域が広がる。   In this embodiment, the moisture content of the dried sludge supplied to the pyrolysis furnace 2 is further reduced. As described above, since the moisture content of the dry waste is further reduced, a self-combustible operation range in which only the pyrolysis gas 23 generated without using the auxiliary fuel 22 is carbonized as fuel is expanded.

また、図示していないが、乾燥機1の前段には、一般に有機系廃棄物11の沈降工程が設けられている。そこで、加熱炉2から排出される燃焼排ガスの全部または一部をこの沈降工程に加熱源として加え、水熱反応により沈降性を高め、有機系廃棄物11の含水率を予め低下させるようにしてもよい。   Moreover, although not shown in figure, generally the sedimentation process of the organic waste 11 is provided in the front | former stage of the dryer 1. FIG. Therefore, all or part of the combustion exhaust gas discharged from the heating furnace 2 is added as a heating source to the sedimentation process, so that sedimentation is improved by a hydrothermal reaction, and the moisture content of the organic waste 11 is reduced in advance. Also good.

この場合も、熱分解炉2へ供給される乾燥汚泥の含水率が減少するため、補助燃料22を用いることなく発生した熱分解ガス23のみを燃料として炭化する自燃運転可能領域が広がる。   Also in this case, since the moisture content of the dried sludge supplied to the pyrolysis furnace 2 is reduced, the self-combustion operable region in which only the pyrolysis gas 23 generated without using the auxiliary fuel 22 is carbonized is expanded.

次に、図4乃至図6で示す実施の形態を説明する。なお、ここでも図1,2,3と同一の部分には同一の符号を付し、重複する説明は省略する。   Next, the embodiment shown in FIGS. 4 to 6 will be described. In addition, the same code | symbol is attached | subjected to the part same as FIG.1, 2,3 here, and the overlapping description is abbreviate | omitted.

この実施の形態は、炭化炉8の上述した自燃運転に関するものである。図4において、熱分解炉2は、その入口部(図示左端部)に、乾燥廃棄物12の投入量を調整可能な供給装置5を持っている。また、出口側(図示右側)には、熱分解炉2から排出された熱分解残渣13を搬送する残渣排出装置7がもうけられている。   This embodiment relates to the above-described self-combustion operation of the carbonization furnace 8. In FIG. 4, the pyrolysis furnace 2 has a supply device 5 capable of adjusting the input amount of the dry waste 12 at the inlet portion (the left end portion in the drawing). In addition, a residue discharge device 7 that conveys the pyrolysis residue 13 discharged from the pyrolysis furnace 2 is provided on the outlet side (the right side in the figure).

加熱炉3には燃焼用のバーナ6が設けられている。このバーナ6には、燃料として熱分解炉2で生成された熱分解ガス23及びプロパンガスなどの補助燃料22、さらには燃焼用空気24がそれぞれ供給可能に構成されている。   The heating furnace 3 is provided with a burner 6 for combustion. The burner 6 is configured to be able to supply, as fuel, auxiliary fuel 22 such as pyrolysis gas 23 and propane gas generated in the pyrolysis furnace 2, and further combustion air 24.

熱分解炉2内に投入される乾燥廃棄物12に対しては、その含水率や投入量、発熱量を計測する計測手段101が設けられている。また、熱分解炉2に対しては、その内部の温度を計測する計測手段102が設けられている。また、加熱炉3に対しても、その内部の温度を計測する計測手段103が設けられている。さらに、熱分解残渣13の発生量や温度を計測する計測手段106、熱分解炉2で発生する熱分解ガス23の温度と流量を計測する計測手段107、補助燃料22の温度や流量を計測する計測手段108、燃焼用空気24の温度や流量を計測する計測手段109、がそれぞれ設けられている。   Measuring means 101 for measuring the moisture content, input amount, and calorific value of the dry waste 12 input into the pyrolysis furnace 2 is provided. The pyrolysis furnace 2 is provided with a measuring means 102 for measuring the temperature inside. The heating furnace 3 is also provided with measuring means 103 that measures the temperature inside. Furthermore, the measuring means 106 for measuring the generation amount and temperature of the pyrolysis residue 13, the measuring means 107 for measuring the temperature and flow rate of the pyrolysis gas 23 generated in the pyrolysis furnace 2, and the temperature and flow rate of the auxiliary fuel 22 are measured. Measuring means 108 and measuring means 109 for measuring the temperature and flow rate of the combustion air 24 are provided.

104は演算装置で、上述した各計測手段により計測され、収集された運転データからプラント(炭化システム8)のエネルギー収支を計算する。105は制御装置で、演算装置104からのデータをもとにプラントを制御する。これらの演算及び制御機能については以下説明する。   Reference numeral 104 denotes an arithmetic unit which calculates the energy balance of the plant (carbonization system 8) from the operation data measured and collected by the above-described measuring means. A control device 105 controls the plant based on data from the arithmetic device 104. These calculation and control functions will be described below.

図4に示す炭化炉8への入熱は、乾燥廃棄物12と補助燃料22と熱分解ガス23と燃焼用空気24の保有熱量の総和となり、計測手段101、107,108,109で採取したデータをもとに演算装置104にて計算される。一方、炭化炉8からの出熱は、熱分解ガス23と熱分解残渣13と排ガス25の保有熱量の総和となり、計測手段102,106,107で採取したデータをもとに演算装置104にて計算される。そして、これら入熱と出熱の熱収支から、補助燃料22を使うことなく発生した熱分解ガス23の燃焼だけで乾燥廃棄物12を熱分解する(自燃)ことのできる乾燥廃棄物12の投入量と含水率との関係、または乾燥廃棄物12の投入量と発熱量との関係が、演算装置104にて算出される。   The heat input to the carbonization furnace 8 shown in FIG. 4 is the sum of the amount of heat held by the dry waste 12, the auxiliary fuel 22, the pyrolysis gas 23, and the combustion air 24, and is collected by the measuring means 101, 107, 108, 109. Calculation is performed by the arithmetic unit 104 based on the data. On the other hand, the heat output from the carbonization furnace 8 is the total amount of heat stored in the pyrolysis gas 23, pyrolysis residue 13, and exhaust gas 25, and is calculated by the arithmetic unit 104 based on data collected by the measuring means 102, 106, and 107. Calculated. Then, from the heat balance of the heat input and output heat, the dry waste 12 that can pyrolyze (self-combust) the dry waste 12 only by burning the pyrolysis gas 23 generated without using the auxiliary fuel 22 is input. The calculation device 104 calculates the relationship between the amount and the moisture content, or the relationship between the amount of the dry waste 12 input and the calorific value.

図5は、乾燥廃棄物12の投入量と含水率との関係を自燃可能な範囲で表した図である。すなわち、上述した熱収支に基くバランス計算により、投入される乾燥廃棄物12について、ある含水率のもとで自燃可能な最低限の投入量を求め、これをプロットしたものが図示曲線である。したがって、この曲線より上側の投入量では、補助燃料22無しの自燃により乾燥廃棄物12を熱分解できる。図5から明らかなように、熱分解炉2に投入される乾燥廃棄物12の含水率が低ければ、投入量が少なくても自燃することができるが、含水率が高い場合は、多くの乾燥廃棄物を投入して熱分解ガスの発生量を多くしないと自燃することができないことをあらわしている。   FIG. 5 is a diagram showing the relationship between the input amount of the dry waste 12 and the water content within a range where self-combustion is possible. In other words, the illustrated curve is obtained by plotting the minimum input amount that can be combusted under a certain moisture content for the input dry waste 12 by the balance calculation based on the heat balance described above. Therefore, the dry waste 12 can be pyrolyzed by the self-combustion without the auxiliary fuel 22 at the input amount above this curve. As is clear from FIG. 5, if the moisture content of the dry waste 12 put into the pyrolysis furnace 2 is low, it can be self-combusted even if the amount is small, but if the moisture content is high, a lot of drying is performed. This means that if you do not increase the amount of pyrolysis gas generated by adding waste, you cannot burn yourself.

そこで、上述した投入量と含水率との関係を用い、計測手段101により計測した乾燥廃棄物12の含水率から、演算装置104において自燃に必要な乾燥廃棄物12の投入量を算出し、制御装置105で供給装置5を制御して自燃範囲に収まるように投入量を調整することができる。また逆に、計測手段101により乾燥廃棄物12の投入量を計測し、この乾燥廃棄物12の投入量から、演算装置104によって自燃に必要な乾燥廃棄物12の含水率を算出し、制御装置105で乾燥機1の運転を制御して、自燃範囲に収まるように乾燥廃棄物12の含水率を調整することができる。   Therefore, by using the relationship between the input amount and the water content described above, the input amount of the dry waste 12 necessary for self-combustion is calculated by the arithmetic unit 104 from the water content of the dry waste 12 measured by the measuring means 101, and controlled. The supply amount can be adjusted so as to be within the self-combustion range by controlling the supply device 5 with the device 105. Conversely, the input amount of the dry waste 12 is measured by the measuring means 101, and the moisture content of the dry waste 12 necessary for self-combustion is calculated by the arithmetic unit 104 from the input amount of the dry waste 12, and the control device By controlling the operation of the dryer 1 at 105, the moisture content of the dry waste 12 can be adjusted so that it falls within the self-combustion range.

図6は、乾燥廃棄物12の投入量と発熱量との関係を自燃可能な範囲で表した図である。すなわち、上述した熱収支に基くバランス計算により、投入される乾燥廃棄物12について、その発熱量に対する自燃可能な最低限の投入量を求め、これをプロットしたものが図示曲線である。したがって、この曲線より上側の投入量では、補助燃料22無しの自燃により乾燥廃棄物12を熱分解できる。図6から明らかなように、熱分解炉2に投入される乾燥廃棄物12の発熱量が低ければ、多くの乾燥廃棄物12を投入してもなかなか自燃することができない。しかし、発熱量が高い場合は、乾燥廃棄物12の投入量が少なくても多くの多くの熱量を生じるので、補助燃料22を要することなく自然により乾燥廃棄物12を熱分解することができる。   FIG. 6 is a diagram showing the relationship between the input amount of the dry waste 12 and the calorific value within a range where self-combustion is possible. In other words, by the balance calculation based on the heat balance described above, the minimum input amount capable of self-combustion with respect to the calorific value of the dry waste 12 to be input is obtained, and plotted is the illustrated curve. Therefore, the dry waste 12 can be pyrolyzed by the self-combustion without the auxiliary fuel 22 at the input amount above this curve. As is apparent from FIG. 6, if the amount of heat generated by the dry waste 12 put into the pyrolysis furnace 2 is low, even if a large amount of dry waste 12 is put in, it is difficult to self-combust. However, when the calorific value is high, a large amount of heat is generated even if the input amount of the dry waste 12 is small, so that the dry waste 12 can be pyrolyzed naturally without requiring the auxiliary fuel 22.

乾燥廃棄物12の発熱量はこの乾燥廃棄物12の組成などから求めることができ、計測手段101によりオンラインで計測することも可能である。したがって、図6で示した投入量と発熱量との関係を用い、計測手段101により計測した乾燥廃棄物12の発熱量から、演算装置104によって自燃に必要な乾燥廃棄物12の投入量を算出し、制御装置105で供給装置5を制御して自燃範囲に収まるように投入量を調整することができる。   The calorific value of the dry waste 12 can be obtained from the composition of the dry waste 12 or the like, and can be measured online by the measuring means 101. Therefore, using the relationship between the input amount and the calorific value shown in FIG. 6, the input amount of the dry waste 12 necessary for self-combustion is calculated by the arithmetic unit 104 from the calorific value of the dry waste 12 measured by the measuring means 101. Then, the control device 105 can control the supply device 5 to adjust the input amount so as to be within the self-combustion range.

このように各計測値を演算し、それに基いて制御すれば、乾燥廃棄物の含水率、投入量、発熱量が変動しても、それに追従し自燃範囲にプラント状態を維持することができるので、ランニングコストを低減することができる。   If each measurement value is calculated and controlled based on this, even if the moisture content, input amount, and calorific value of the dry waste fluctuate, the plant state can be maintained within the self-combustion range following it. , Running costs can be reduced.

なお、図4において、熱分解炉2内への供給装置5に空気投入装置9を設け、熱分解炉2内へ投入される空気量を調整するように構成すると、熱分解炉2内の酸素濃度を制御することが可能となるため、熱分解炉2内における乾燥廃棄物中の炭素等、可燃物の燃焼割合を調節でき、熱分解残渣13の性状を制御できる。したがって、熱分解残渣(炭化物)13のリサイクル用途に応じて炭素や灰分の含有量を調節できる。   In FIG. 4, when the air supply device 9 is provided in the supply device 5 into the pyrolysis furnace 2 so as to adjust the amount of air introduced into the pyrolysis furnace 2, oxygen in the pyrolysis furnace 2 is obtained. Since the concentration can be controlled, the combustion ratio of combustible materials such as carbon in the dry waste in the pyrolysis furnace 2 can be adjusted, and the properties of the pyrolysis residue 13 can be controlled. Therefore, the carbon and ash content can be adjusted according to the recycling application of the pyrolysis residue (carbide) 13.

本発明による乾燥炭化システムの一実施の形態を示すブロック構成図である。It is a block block diagram which shows one Embodiment of the dry carbonization system by this invention. 本発明による乾燥炭化システムの他の実施の形態を示すブロック構成図である。It is a block block diagram which shows other embodiment of the dry carbonization system by this invention. 本発明による乾燥炭化システムのさらに他の一実施の形態を示すブロック構成図である。It is a block block diagram which shows other one Embodiment of the dry carbonization system by this invention. 本発明による乾燥炭化システムの一実施の形態における演算・制御部分を示すブロック構成図である。It is a block block diagram which shows the calculation and control part in one Embodiment of the dry carbonization system by this invention. 図4のシステムにより求められた乾燥廃棄物の、自燃可能な投入量と含水率との関係を表す特性図である。It is a characteristic view showing the relationship between the input amount which can be combusted, and the moisture content of the dry waste calculated | required by the system of FIG. 図4のシステムにより求められた乾燥廃棄物の、自燃可能な投入量と発熱量との関係を表す特性図である。FIG. 5 is a characteristic diagram showing the relationship between the amount of heat that can be combusted and the calorific value of dry waste determined by the system of FIG. 4.

符号の説明Explanation of symbols

1 乾燥機
2 熱分解炉
3 加熱炉
4 熱交換器
4a 廃熱ボイラ
4b 空気熱交換器
4c プレヒータ
8 炭化炉
12 乾燥廃棄物
13 熱分解残渣(炭化物)
22 補助燃料
23 熱分解ガス
24 燃焼用空気
25 燃焼排ガス
101,102,103,106,107,108,109 計測手段
104 演算装置
105 制御装置
DESCRIPTION OF SYMBOLS 1 Dryer 2 Pyrolysis furnace 3 Heating furnace 4 Heat exchanger 4a Waste heat boiler 4b Air heat exchanger 4c Preheater 8 Carbonization furnace 12 Dry waste 13 Pyrolysis residue (carbide)
DESCRIPTION OF SYMBOLS 22 Auxiliary fuel 23 Pyrolysis gas 24 Combustion air 25 Combustion exhaust gas 101,102,103,106,107,108,109 Measuring means 104 Arithmetic unit 105 Control apparatus

Claims (4)

投入された有機系廃棄物を低酸素状態で加熱して熱分解し、熱分解ガスと熱分解残渣とに分離して排出する熱分解炉と、
この熱分解炉からの熱分解ガス及び必要に応じて補助燃料を導入して燃焼用空気と共に燃焼させ、その燃焼熱で前記熱分解炉を加熱する加熱炉と、
前記熱分解炉に投入される有機系廃棄物を加熱してその含水率を低下させる乾燥機と、
前記加熱炉から排出される燃焼排ガスの熱エネルギーを回収する熱交換器とを備え
前記熱交換器として、乾燥機と熱分解炉の投入部との間に設けられ、加熱炉から排出される燃焼排ガスを熱源として前記乾燥機で乾燥された廃棄物を予熱するプレヒータを用いる
ことを特徴とする乾燥炭化システム。
A pyrolysis furnace that heats and decomposes the input organic waste in a low oxygen state, separates it into pyrolysis gas and pyrolysis residue, and discharges it,
A heating furnace that introduces pyrolysis gas from the pyrolysis furnace and, if necessary, auxiliary fuel and burns it with combustion air, and heats the pyrolysis furnace with the combustion heat;
A dryer for reducing the water content by heating the organic waste charged into the pyrolysis furnace;
A heat exchanger that recovers the thermal energy of the combustion exhaust gas discharged from the heating furnace ,
As the heat exchanger, a preheater that is provided between the dryer and the input portion of the pyrolysis furnace and preheats the waste dried by the dryer using the combustion exhaust gas discharged from the heating furnace as a heat source is used. Inui燥炭system shall be the feature.
投入される有機系廃棄物の含水率や投入量、発熱量を計測する計測手段、補助燃料の温度や流量を計測する計測手段、熱分解ガスの温度や流量を計測する計測手段、燃焼用空気の温度や流量を計測する計測手段、熱分解残渣の発生量や温度を計測する計測手段、及び燃焼排ガスの温度や流量を計測する計測手段をそれぞれ設け、
これら計測手段による計測値から有機系廃棄物、補助燃料、熱分解ガス、及び燃焼用空気の保有熱量の総和を熱分解炉及び加熱炉からなる炭化炉への入熱として求め、前記熱分解ガス、熱分解残渣、及び燃焼排ガスの保有熱量の総和を前記炭化炉からの出熱として求め、これら入熱と出熱の熱収支から、補助燃料を使うことなく発生した熱分解ガスの燃焼だけで有機系廃棄物を熱分解することのできる有機系廃棄物の投入量と含水率との関係を算出する演算装置を設け、
さらに、前記有機系廃棄物の含水率計測値を用い、上記演算装置により求められた有機系廃棄物の投入量と含水率との関係から、有機系廃棄物の投入量を、補助燃料を使うことなく発生した熱分解ガスの燃焼だけで有機系廃棄物を熱分解することのできる投入量に制御する制御装置を設けた
ことを特徴とする請求項1に記載の乾燥炭化システム。
Measuring means for measuring moisture content, input amount, calorific value of input organic waste, measuring means for measuring auxiliary fuel temperature and flow rate, measuring means for measuring pyrolysis gas temperature and flow rate, combustion air A measuring means for measuring the temperature and flow rate of the gas, a measuring means for measuring the generation amount and temperature of the pyrolysis residue, and a measuring means for measuring the temperature and flow rate of the combustion exhaust gas,
From the measurement values obtained by these measuring means, the total amount of heat held by the organic waste, auxiliary fuel, pyrolysis gas, and combustion air is obtained as heat input to the carbonization furnace comprising the pyrolysis furnace and the heating furnace, and the pyrolysis gas Then, the total amount of retained heat of the pyrolysis residue and combustion exhaust gas is obtained as the heat output from the carbonization furnace, and from the heat balance of these input heat and output heat, only combustion of the pyrolysis gas generated without using auxiliary fuel An arithmetic unit is provided to calculate the relationship between the amount of organic waste that can be thermally decomposed and the water content,
Further, using the measured value of the moisture content of the organic waste, the input amount of the organic waste is calculated using the auxiliary fuel from the relationship between the amount of the organic waste input and the moisture content obtained by the arithmetic unit. 2. The dry carbonization system according to claim 1, wherein a control device is provided for controlling the input amount so that the organic waste can be pyrolyzed only by combustion of the pyrolysis gas generated without any problem.
投入される有機系廃棄物の含水率や投入量、発熱量を計測する計測手段、補助燃料の温度や流量を計測する計測手段、熱分解ガスの温度や流量を計測する計測手段、燃焼用空気の温度や流量を計測する計測手段、熱分解残渣の発生量や温度を計測する計測手段、及び燃焼排ガスの温度や流量を計測する計測手段をそれぞれ設け、
これら計測手段による計測値から前記有機系廃棄物、補助燃料、熱分解ガス、及び燃焼用空気の保有熱量の総和を熱分解炉及び加熱炉からなる炭化炉への入熱として求め、前記熱分解ガス、熱分解残渣、及び燃焼排ガスの保有熱量の総和を前記炭化炉からの出熱として求め、これら入熱と出熱の熱収支から、補助燃料を使うことなく発生した熱分解ガスの燃焼だけで有機系廃棄物を熱分解することのできる有機系廃棄物の投入量と含水率との関係を算出する演算装置を設け、
さらに、前記有機系廃棄物の投入量計測値を用い、上記演算装置により求められた有機系廃棄物の投入量と含水率との関係から、有機系廃棄物の含水率を、補助燃料を使うことなく発生した熱分解ガスの燃焼だけで有機系廃棄物を熱分解することのできる含水率に制御する制御装置を設けた
ことを特徴とする請求項1に記載の乾燥炭化システム。
Measuring means for measuring moisture content, input amount, calorific value of input organic waste, measuring means for measuring auxiliary fuel temperature and flow rate, measuring means for measuring pyrolysis gas temperature and flow rate, combustion air A measuring means for measuring the temperature and flow rate of the gas, a measuring means for measuring the generation amount and temperature of the pyrolysis residue, and a measuring means for measuring the temperature and flow rate of the combustion exhaust gas,
From the measured values obtained by these measuring means, the total amount of heat held by the organic waste, auxiliary fuel, pyrolysis gas, and combustion air is obtained as heat input to a carbonization furnace comprising a pyrolysis furnace and a heating furnace, and the pyrolysis is performed. Only the combustion of pyrolysis gas generated without using auxiliary fuel is obtained from the heat balance of the heat input and output heat from the sum of the retained heat quantity of gas, pyrolysis residue, and combustion exhaust gas as the heat output from the carbonization furnace. An arithmetic unit is provided that calculates the relationship between the amount of organic waste that can be pyrolyzed and the water content,
Further, using the measured value of the amount of input of organic waste, and using the relationship between the amount of input of organic waste and the water content determined by the arithmetic unit, the water content of organic waste is used as auxiliary fuel. 2. The dry carbonization system according to claim 1, further comprising a control device that controls the moisture content so that the organic waste can be pyrolyzed only by combustion of the pyrolysis gas generated without any problem.
投入される有機系廃棄物の含水率や投入量、発熱量を計測する計測手段、補助燃料の温度や流量を計測する計測手段、熱分解ガスの温度や流量を計測する計測手段、燃焼用空気の温度や流量を計測する計測手段、熱分解残渣の発生量や温度を計測する計測手段、及び燃焼排ガスの温度や流量を計測する計測手段をそれぞれ設け、
これら計測手段による計測値から前記有機系廃棄物、補助燃料、熱分解ガス、及び燃焼用空気の保有熱量の総和を熱分解炉及び加熱炉からなる炭化炉への入熱として求め、前記熱分解ガス、熱分解残渣、及び燃焼排ガスの保有熱量の総和を前記炭化炉からの出熱として求め、これら入熱と出熱の熱収支から、補助燃料を使うことなく発生した熱分解ガスの燃焼だけで有機系廃棄物を熱分解することのできる有機系廃棄物の投入量と発熱量との関係を算出する演算装置を設け、
さらに、前記有機系廃棄物の発熱量計測値を用い、上記演算装置により求められた有機系廃棄物の投入量と発熱量との関係から、有機系廃棄物の投入量を、補助燃料を使うことなく発生した熱分解ガスの燃焼だけで有機系廃棄物を熱分解することのできる投入量に制御する制御装置を設けた
ことを特徴とする請求項1に記載の乾燥炭化システム。
Measuring means for measuring moisture content, input amount, calorific value of input organic waste, measuring means for measuring auxiliary fuel temperature and flow rate, measuring means for measuring pyrolysis gas temperature and flow rate, combustion air A measuring means for measuring the temperature and flow rate of the gas, a measuring means for measuring the generation amount and temperature of the pyrolysis residue, and a measuring means for measuring the temperature and flow rate of the combustion exhaust gas,
From the measured values obtained by these measuring means, the total amount of heat held by the organic waste, auxiliary fuel, pyrolysis gas, and combustion air is obtained as heat input to a carbonization furnace comprising a pyrolysis furnace and a heating furnace, and the pyrolysis is performed. Only the combustion of pyrolysis gas generated without using auxiliary fuel is obtained from the heat balance of the heat input and output heat from the sum of the retained heat quantity of gas, pyrolysis residue, and combustion exhaust gas as the heat output from the carbonization furnace. An arithmetic unit that calculates the relationship between the amount of organic waste that can be thermally decomposed and the amount of heat generated can be provided.
Furthermore, using the measured value of the calorific value of the organic waste, the input amount of the organic waste is used as auxiliary fuel from the relationship between the calorific value of the organic waste and the calorific value obtained by the arithmetic unit. 2. The dry carbonization system according to claim 1, wherein a control device is provided for controlling the input amount so that the organic waste can be pyrolyzed only by combustion of the pyrolysis gas generated without any problem.
JP2006099000A 2006-03-31 2006-03-31 Dry carbonization system Expired - Fee Related JP4896565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006099000A JP4896565B2 (en) 2006-03-31 2006-03-31 Dry carbonization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006099000A JP4896565B2 (en) 2006-03-31 2006-03-31 Dry carbonization system

Publications (2)

Publication Number Publication Date
JP2007270018A JP2007270018A (en) 2007-10-18
JP4896565B2 true JP4896565B2 (en) 2012-03-14

Family

ID=38673140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006099000A Expired - Fee Related JP4896565B2 (en) 2006-03-31 2006-03-31 Dry carbonization system

Country Status (1)

Country Link
JP (1) JP4896565B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103968391A (en) * 2014-02-11 2014-08-06 浙江春晖环保能源有限公司 Municipal sludge compressive utilizing and processing system
CN105318334A (en) * 2015-12-04 2016-02-10 江苏碧诺环保科技有限公司 Drying and incineration system
CN105387465A (en) * 2015-12-04 2016-03-09 江苏碧诺环保科技有限公司 Incinerator

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5275309B2 (en) * 2010-09-16 2013-08-28 株式会社東芝 Waste treatment system
CN102192514B (en) * 2011-06-30 2012-08-15 天津市碧奥达思科技有限公司 Oxygen-deficiency pyrolyzing circular sludge incinerator
JP2013057498A (en) * 2012-11-02 2013-03-28 Metawater Co Ltd Sewage sludge supply device for incinerator
JP6490972B2 (en) * 2014-01-28 2019-03-27 株式会社五常 Low temperature pyrolysis furnace, low temperature pyrolysis treatment system, and low temperature pyrolysis treatment method
CN105523699B (en) * 2015-12-04 2019-03-29 江苏碧诺环保科技有限公司 A kind of sludge drying carbonizing plant and technique
CN105841160B (en) * 2016-05-23 2017-12-19 大连理工大学 A kind of organic matter self energizing is dried and pyrolysis, full constituent recycling system and process
CN107741020A (en) * 2017-11-20 2018-02-27 广东天源环境科技有限公司 A kind of solid waste desiccation charing combustion control system and control method
JP7504690B2 (en) 2020-07-22 2024-06-24 花王株式会社 Manufacturing method of carbide
KR20220149068A (en) * 2021-04-30 2022-11-08 주식회사 엘지화학 Treatment process of sludge
CN114368890B (en) * 2022-01-28 2024-09-10 玉林师范学院 Sludge carbonizer device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710398A (en) * 1980-06-23 1982-01-19 Ebara Infilco Co Ltd Treatment of muddy substance
JPH11310782A (en) * 1998-04-30 1999-11-09 Hitachi Zosen Corp Carbonizing method for sludge
JP2001235133A (en) * 2000-02-23 2001-08-31 Nippon Steel Corp Operating method of vertical self-burning type carbonizing furnace for organic waste
JP3839304B2 (en) * 2001-11-02 2006-11-01 株式会社日立製作所 Waste pyrolysis apparatus and control method thereof
JP4390524B2 (en) * 2003-10-27 2009-12-24 カワサキプラントシステムズ株式会社 Organic waste treatment method and treatment system
JP2005274018A (en) * 2004-03-24 2005-10-06 Meidensha Corp Indirect heating working system and indirect heating working method
JP3861093B2 (en) * 2004-05-07 2006-12-20 東京電力株式会社 Method and apparatus for converting sludge into fuel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103968391A (en) * 2014-02-11 2014-08-06 浙江春晖环保能源有限公司 Municipal sludge compressive utilizing and processing system
CN103968391B (en) * 2014-02-11 2017-01-11 浙江春晖环保能源有限公司 Municipal sludge compressive utilizing and processing system
CN105318334A (en) * 2015-12-04 2016-02-10 江苏碧诺环保科技有限公司 Drying and incineration system
CN105387465A (en) * 2015-12-04 2016-03-09 江苏碧诺环保科技有限公司 Incinerator
CN105318334B (en) * 2015-12-04 2017-12-22 江苏碧诺环保科技有限公司 A kind of drying and incineration system
CN105387465B (en) * 2015-12-04 2018-06-29 江苏碧诺环保科技有限公司 A kind of incinerator

Also Published As

Publication number Publication date
JP2007270018A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP4896565B2 (en) Dry carbonization system
JP4987428B2 (en) High moisture content organic waste treatment method and treatment equipment
JP4502331B2 (en) Method and system for cogeneration with a carbonization furnace
JP5148809B2 (en) Method and apparatus for converting sludge into fuel
JP2008201964A (en) Process and system for producing solid fuel
JP2011080664A (en) Method and device for thermal-decomposing, carbonizing, and gasifying waste
JP6000739B2 (en) Dry carbonization system
TWI332563B (en)
JP2005319373A (en) Method and apparatus for converting sludge into fuel
JP2008280244A (en) Method of processing organic based waste
JP4855644B2 (en) Organic waste disposal methods
TW200907041A (en) Method and apparatus for carbonization treatment of highly hydrous organic matter
JP4916916B2 (en) Kiln furnace, waste gasification system
JP2008088310A (en) High temperature carbonization method and high temperature carbonization apparatus
JP6319931B1 (en) Palm EFB pyrolysis gasification power generation system
JP5275309B2 (en) Waste treatment system
RU2011111430A (en) METHOD FOR COAL GASIFICATION AND DIRECT PRODUCTION OF IRON AND SYSTEM FOR THIS
JP2005199157A (en) Method and apparatus for carbonization treatment of sludge, and power generation method
JP2007163078A (en) Waste disposal method and device
JP5804971B2 (en) Modified coal production facility
JP2006207969A (en) Waste disposal facility
EP2986914B1 (en) Improvements in waste processing
JP4373263B2 (en) Carbonization method for sludge containing organic matter
JP5631099B2 (en) Carbide manufacturing plant and carbide manufacturing method
JP2001220121A (en) Method for manufacturing activated carbon from waste and manufacturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees