JP4895026B2 - Conductive fiber and method for producing the same - Google Patents
Conductive fiber and method for producing the same Download PDFInfo
- Publication number
- JP4895026B2 JP4895026B2 JP2007048699A JP2007048699A JP4895026B2 JP 4895026 B2 JP4895026 B2 JP 4895026B2 JP 2007048699 A JP2007048699 A JP 2007048699A JP 2007048699 A JP2007048699 A JP 2007048699A JP 4895026 B2 JP4895026 B2 JP 4895026B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- sulfonic acid
- acid group
- monomer
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/21—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/227—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
- D06M15/233—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated aromatic, e.g. styrene
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/195—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds sulfated or sulfonated
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/21—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/356—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms
- D06M15/3562—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms containing nitrogen
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Description
本発明は導電性繊維およびその製造方法に関する。 The present invention relates to a conductive fiber and a method for producing the same.
従来、IC製造工場および引火性物質を取り扱う場所において、衣類に静電気が帯電していると静電気の放電によってICを破損したり、放電の火花が引火性物質に引火して爆発事故および火災などが発生する危険がある。このため、IC製造工場または引火性物質を取り扱う場所では、通常、作業者は静電気が帯電しないように導電性を有する衣類を着用し作業を行うのが普通である。 Conventionally, in an IC manufacturing factory and a place where flammable materials are handled, if clothes are charged with static electricity, the IC can be damaged by electrostatic discharge, or the spark of the discharge can ignite the flammable material, resulting in an explosion or fire. There is a risk of occurring. For this reason, in an IC manufacturing factory or a place where a flammable substance is handled, an operator usually wears conductive clothing so as not to be charged with static electricity.
衣類等の繊維製品に導電性を付与する方法として、帯電防止剤を塗布する、直径10〜15μm程度の極細ステンレス繊維を一部に織り込む、あるいは繊維表面を硫化銅で被覆した15〜30μm程度のアクリル繊維を用いる等の方法が知られている。 As a method for imparting electrical conductivity to textiles such as clothing, an antistatic agent is applied, an extra fine stainless steel fiber having a diameter of about 10 to 15 μm is woven in part, or the fiber surface is coated with copper sulfide. Methods such as using acrylic fibers are known.
しかしながら、極細ステンレス繊維を織り込んだ繊維製品は、耐屈曲性に劣り、折れて抜け落ちたり、繊維製品の風合いを損なったりする問題があり、また繊維製品の製織が煩雑である等の欠点があった。また、硫化銅で被覆したアクリル繊維の場合には、硫化銅粉の脱落が著しくクリーンルーム内では使用できないという欠点があった。 However, fiber products incorporating ultra-fine stainless steel fibers have inferior bending resistance, have problems such as being broken and falling off, and damaging the texture of the fiber products, and the weaving of the fiber products is complicated. . In addition, in the case of acrylic fibers coated with copper sulfide, there is a drawback that the copper sulfide powder is not easily removed in a clean room.
これらの欠点を解決することに着目し、繊維に電子共役系重合体を複合化して導電性を付与する方法が、多く提案されている。例えば、アクリル繊維を染色したのちに電子共役系重合体であるポリピロールを複合化し得られた繊維(例えば、特許文献1)や、ビニロン繊維をスルホン酸基を有する有機化合物により中和したのちにピロール系重合体を複合化した繊維(例えば、特許文献2)などがあるが、これらは導電性が十分であるとは言えず、ポリピロール薄膜の強度が弱く脱落しやすいという問題を有している。
本発明は、かかる従来技術の現状に鑑みてなされたものであり、その目的は、電子共役系重合体被膜が脱落しにくくかつ導電性を向上させた繊維を提供することにある。 The present invention has been made in view of the current state of the prior art, and an object of the present invention is to provide a fiber in which the electron-conjugated polymer film is less likely to fall off and has improved conductivity.
本発明者らは、上述の目的を達成するために鋭意検討を進めた結果、スルホン酸基を有するビニル系重合体を含有する繊維を用いることにより、電子共役系重合体を繊維により強固に結合できることを見出し、本発明に到達した。 As a result of diligent investigations to achieve the above-mentioned object, the present inventors strongly bonded an electron conjugated polymer to the fiber by using a fiber containing a vinyl polymer having a sulfonic acid group. We have found out that we can do it and have reached the present invention.
即ち、本発明は以下の手段により達成される。
(1)電子共役系重合体を生成しうる単量体であるアニリン及び/又はピロールを含有する溶液に、スルホン酸基を有するビニル系重合体を含有する繊維であって該繊維の重量に対するスルホン酸基量が0.1mmol/g以上である繊維を浸漬させた状態で前記単量体を重合させ、該繊維表面に電子共役系重合体の被覆層を形成させるにあたり、前記単量体の重合を行う前に、スルホン酸基を有するビニル系重合体を含有する繊維のスルホン酸基をH型としておくことを特徴とする導電性繊維の製造方法。
(2)スルホン酸基を有するビニル系重合体を含有する繊維が、スルホン酸基を有するビニル系単量体を含有する溶液に、水に対する膨潤度が0.5g/g以上である水膨潤性繊維を浸漬させた状態で重合を行うことによって、繊維にスルホン酸基を有するビニル系重合体を複合させたものであることを特徴とする(1)に記載の導電性繊維の製造方法。
(3)水膨潤性繊維が架橋構造およびカルボキシル基を有する繊維であることを特徴とする(2)に記載の導電性繊維の製造方法。
(4)架橋構造およびカルボキシル基を有する繊維が、アクリル繊維に1分子中の窒素数が2以上である窒素含有化合物を反応させて架橋構造を導入し、加水分解によってカルボキシル基を導入した繊維であることを特徴とする(3)に記載の導電性繊維の製造方法。
(5)架橋構造およびカルボキシル基を有する繊維のカルボキシル基量が2mmol/g以上であることを特徴とする(3)または(4)に記載の導電性繊維の製造方法。
That is, the present invention is achieved by the following means.
(1) A fiber containing a vinyl polymer having a sulfonic acid group in a solution containing aniline and / or pyrrole , which is a monomer capable of forming an electron conjugated polymer, and sulfone relative to the weight of the fiber wherein in a state where the acid group amount was immersed fiber is 0.1 mmol / g or more by polymerizing monomers, when forming a coating layer of the electron conjugated polymer to the fiber surface, the polymerization of the monomer A method for producing a conductive fiber, wherein the sulfonic acid group of a fiber containing a vinyl polymer having a sulfonic acid group is made into an H-type before performing the step .
(2) A water-swelling property in which a fiber containing a vinyl polymer having a sulfonic acid group has a degree of swelling with respect to water of 0.5 g / g or more in a solution containing a vinyl monomer having a sulfonic acid group. The method for producing a conductive fiber according to (1), wherein the polymerization is performed in a state where the fiber is immersed, so that the vinyl polymer having a sulfonic acid group is combined with the fiber.
(3) The method for producing a conductive fiber according to (2), wherein the water-swellable fiber is a fiber having a crosslinked structure and a carboxyl group.
(4) A fiber having a crosslinked structure and a carboxyl group is a fiber in which an acrylic fiber is reacted with a nitrogen-containing compound having two or more nitrogen atoms in one molecule to introduce a crosslinked structure, and a carboxyl group is introduced by hydrolysis. The method for producing a conductive fiber according to (3), which is characterized in that it exists.
(5) The method for producing conductive fibers according to (3) or (4), wherein the amount of carboxyl groups in the fiber having a crosslinked structure and carboxyl groups is 2 mmol / g or more .
本発明の導電性繊維は、スルホン酸基を有するビニル系重合体を含有する繊維を用いることにより電子共役系重合体を繊維にイオン結合させ繊維表面に強固な導電性被膜を形成させたものであり、優れた耐久性と導電性を有するものである。かかる性能を有する本発明の導電性繊維は、例えば帯電防止材、電磁シールド材、静電気対策用のOA機器の備品などとして利用することができる。 The conductive fiber of the present invention is a fiber in which an electron-conjugated polymer is ionically bonded to a fiber by using a fiber containing a vinyl polymer having a sulfonic acid group to form a strong conductive film on the fiber surface. It has excellent durability and conductivity. The conductive fiber of the present invention having such performance can be used as, for example, an antistatic material, an electromagnetic shielding material, or equipment for OA equipment for countermeasures against static electricity.
以下に本発明を詳細に説明する。本発明のスルホン酸基を有するビニル系重合体としては、スルホン酸基を有する限り、特に限定はなく、スルホン酸基を有するビニル系単量体の単独重合体や該単量体と他のビニル系単量体との共重合体などを採用することができる。スルホン酸基を有するビニル系単量体としてはビニルスルホン酸、p−スチレンスルホン酸、2−(アクリロイルアミノ)−2-メチル−1−プロパンスルホン酸、メタリルスルホン酸などの不飽和炭化水素スルホン酸およびこれらの塩類などを挙げることができる。また、共重合する場合に用いうるその他のビニル系単量体としては、スチレン、エチレン、プロピレン、塩化ビニル、酢酸ビニル、ブタジエン、アクリロニトリル、あるいはメタクリル酸メチルなどのメタクリル酸エステル類などが挙げられる。 The present invention is described in detail below. The vinyl polymer having a sulfonic acid group of the present invention is not particularly limited as long as it has a sulfonic acid group, and a homopolymer of a vinyl monomer having a sulfonic acid group or the monomer and another vinyl. A copolymer with a monomer can be used. Examples of vinyl monomers having a sulfonic acid group include unsaturated hydrocarbon sulfones such as vinyl sulfonic acid, p-styrene sulfonic acid, 2- (acryloylamino) -2-methyl-1-propane sulfonic acid, and methallyl sulfonic acid. Examples thereof include acids and salts thereof. Other vinyl monomers that can be used for copolymerization include styrene, ethylene, propylene, vinyl chloride, vinyl acetate, butadiene, acrylonitrile, and methacrylic acid esters such as methyl methacrylate.
上述したスルホン酸基を有するビニル系重合体を繊維に含有せしめる量としては、含有せしめた繊維全体の重量に対してスルホン酸基量が0.1mmol/g以上となるようにすることが必要で、好ましくは0.5mmol/g以上、さらに好ましくは1mmol/g以上、最も好ましくは2mmol/g以上である。スルホン酸基量が0.1mmol/g未満の場合には電子共役系重合体とスルホン酸基とのイオン結合の数が少なくなり、目的とする導電性の耐久性が得られない。また、スルホン酸基量が4mmol/gを超えると、十分な繊維物性を確保することができない場合がある。
The amount of the above-described vinyl polymer having a sulfonic acid group to be contained in the fiber is required to be 0.1 mmol / g or more with respect to the total weight of the fiber contained. , the good Mashiku 0.5 mmol / g or more, more preferably 1 mmol / g or more, most preferably 2 mmol / g or more. The number of ionic bonds and electron conjugated polymer and the sulfonic acid group is reduced when the sulfonic acid group amount is less than 0.1 mmol / g, have a durability of conductivity of interest is obtained. Moreover, when the amount of sulfonic acid groups exceeds 4 mmol / g, sufficient fiber physical properties may not be ensured.
スルホン酸基を有するビニル系重合体を繊維に含有せしめる方法としては、
(1)スルホン酸基を有するビニル系重合体を繊維化する
(2)繊維形成時にスルホン酸基を有するビニル系重合体粒子を練り込む
(3)形成された繊維にスルホン酸基を有するビニル系重合体を複合させる
等の方法を採用できる。特に、多量のスルホン酸基を含有せしめる場合には可紡性などの繊維形成時の制約を受けない(3)が好ましい。
As a method of incorporating a vinyl polymer having a sulfonic acid group into a fiber,
(1) Fiberizing a vinyl polymer having a sulfonic acid group (2) Kneading vinyl polymer particles having a sulfonic acid group at the time of fiber formation (3) Vinyl type having a sulfonic acid group in the formed fiber A method such as combining a polymer can be employed. In particular, when a large amount of sulfonic acid groups are contained, (3) which is not subject to restrictions during fiber formation such as spinnability is preferable.
(3)の場合の基材となる繊維に上述したスルホン酸基を有するビニル系重合体を複合させる方法としては、
A.基材となる繊維をスルホン酸基を有するビニル系重合体を含有する溶液や分散液に浸漬する
B.基材となる繊維と、スルホン酸基を有するビニル系単量体、あるいはスルホン酸基を有するビニル系単量体および該単量体と共重合しうるビニル系単量体を分散媒中で混合し、重合させる
などの方法を採用できる。
As a method of combining the above-described vinyl polymer having a sulfonic acid group with the fiber serving as a base material in the case of (3),
A. I. Immerse the base fiber in a solution or dispersion containing a vinyl polymer having a sulfonic acid group. Mixing the base fiber, vinyl monomer having a sulfonic acid group, or vinyl monomer having a sulfonic acid group and a vinyl monomer copolymerizable with the monomer in a dispersion medium Then, a method such as polymerization can be employed.
これらの複合させる方法において、溶媒あるいは分散媒としては、有機溶媒なども使用できるが環境負荷などの観点から水を使用することが望ましい。水を採用する場合、基材となる繊維としては水膨潤性繊維であることが好ましい。水膨潤性繊維であれば、浸漬時に繊維が水膨潤し、繊維表面だけでなく、内部にもスルホン酸基を有するビニル系重合体や単量体が入り込むので、より多くまた繊維内部においてもスルホン酸基を有するビニル系重合体を複合させることが可能となり、後述するように電子共役系重合体の被覆層をより強固なものとすることができる。上述のA法、B法のうち、繊維内部への入り込みやすさという観点から、分子量の小さい単量体を使用するB法がこのような特徴をより効果的に発現させることができる。 In these compounding methods, an organic solvent or the like can be used as a solvent or a dispersion medium, but it is desirable to use water from the viewpoint of environmental load. When employing water, the fiber serving as the substrate is preferably a water-swellable fiber. In the case of a water-swellable fiber, the fiber swells when immersed, and a vinyl polymer or monomer having a sulfonic acid group enters not only the fiber surface but also the inside thereof. A vinyl polymer having an acid group can be compounded, and the coating layer of the electron conjugated polymer can be made stronger as described later. Among the above-mentioned methods A and B, the method B using a monomer having a small molecular weight can express such characteristics more effectively from the viewpoint of easy entry into the fiber.
B法においては、まず、上述した水膨潤性繊維などの基材となる繊維と、スルホン酸基を有するビニル系単量体あるいはスルホン酸基を有するビニル系単量体および該単量体と共重合しうるビニル系単量体との混合液を調製する。混合液の調製方法は特に限定されるものではなく、例えば、単量体を水、または有機溶媒、またはそれらの混合液に溶かし、基材となる繊維と混合し、その後、重合開始剤を単量体溶液に含ませる方法、あるいは、重合開始剤を単量体溶液に含ませた後、基材となる繊維を混合する方法、基材となる繊維を水、または有機溶媒、またはそれらの混合液に分散させ、重合開始剤および単量体を添加する方法などが挙げられる。ここで、重合開始剤としては、単量体の種類などに応じて適宜選択すればよく、例えば、過酸化水素やアゾ系化合物などのラジカル重合開始剤を用いることができる。また、混合液中の単量体の量は、基材となる繊維に上述した量のスルホン酸基が導入されるように適宜設定すればよいが、好ましくは基材となる繊維に対して10重量%以上添加することが望ましい。 In Method B, first, a fiber serving as a base material such as the above-described water-swellable fiber, a vinyl monomer having a sulfonic acid group or a vinyl monomer having a sulfonic acid group, and the monomer are used. A mixed solution with a polymerizable vinyl monomer is prepared. The method for preparing the mixed solution is not particularly limited. For example, the monomer is dissolved in water, an organic solvent, or a mixed solution thereof, mixed with the fiber serving as the base material, and then the polymerization initiator is simply used. Method of adding to the monomer solution, or method of mixing the fiber to be the base material after adding the polymerization initiator to the monomer solution, water or organic solvent to the base material fiber, or a mixture thereof Examples thereof include a method of dispersing in a liquid and adding a polymerization initiator and a monomer. Here, the polymerization initiator may be appropriately selected according to the type of monomer, and for example, a radical polymerization initiator such as hydrogen peroxide or an azo compound may be used. Further, the amount of the monomer in the mixed solution may be appropriately set so that the above-described amount of the sulfonic acid group is introduced into the base fiber. It is desirable to add at least wt%.
重合にあたっては、反応系をpH6.0以下にする。pH6.0以下にすることで、重合が起こり、繊維中にスルホン酸基を有するビニル系重合体が複合される。特に、pHが1.0〜4.0の場合には、繊維中に多くの重合体が複合されるので、工業的に好ましい。一方、pHが6.0を越えると、繊維内部での重合が起こりにくく、特に導電性被膜の耐久性が不十分となりやすい。pH6.0以下にする方法は特に限定されず、酸を添加するなどして、重合時に反応系がpH6.0以下になっていればよい。 In the polymerization, the reaction system is adjusted to pH 6.0 or less. By controlling the pH to 6.0 or less, polymerization occurs and a vinyl polymer having a sulfonic acid group in the fiber is combined. In particular, when the pH is 1.0 to 4.0, many polymers are complexed in the fiber, which is industrially preferable. On the other hand, when the pH exceeds 6.0, polymerization inside the fiber hardly occurs, and in particular, the durability of the conductive film tends to be insufficient. The method for adjusting the pH to 6.0 or lower is not particularly limited, and it is sufficient that the reaction system has a pH of 6.0 or lower during the polymerization by adding an acid or the like.
重合温度は、特に限定されないが、比較的低温とすることで、重合速度が遅くなり多くの重合体が複合されるようになる。しかし、重合速度が遅くなりすぎると、重合体が効率よく複合されない。そのため重合温度としては40〜80℃が好ましい。また、重合時間は、重合温度や単量体濃度を勘案して適宜設定すればよいが、概ね2〜20時間が工業的には好ましい。 The polymerization temperature is not particularly limited, but by setting it to a relatively low temperature, the polymerization rate becomes slow and many polymers are combined. However, if the polymerization rate is too slow, the polymer is not efficiently combined. Therefore, the polymerization temperature is preferably 40 to 80 ° C. The polymerization time may be appropriately set in consideration of the polymerization temperature and the monomer concentration, but is generally preferably 2 to 20 hours industrially.
また、B法を採用する場合、水膨潤性繊維の膨潤度としては、好ましくは0.5g/g以上、より好ましくは1.0g/g以上であることが望ましい。膨潤度が0.5g/gに満たない場合には、スルホン酸基を有する単量体が繊維内部にまで十分に入り込まず、十分に機能が得られないことがある。また、洗濯など水分に接触する可能性がある用途などに利用される場合には、膨潤度が0.5〜4.5g/gであることが好ましい。膨潤度が4.5g/gを超えると、水膨潤時の繊維物性が低下し問題を生じることがある。 When the method B is adopted, the degree of swelling of the water-swellable fiber is preferably 0.5 g / g or more, more preferably 1.0 g / g or more. When the degree of swelling is less than 0.5 g / g, the monomer having a sulfonic acid group does not sufficiently enter the fiber, and the function may not be sufficiently obtained. Moreover, when using for the use etc. which may contact moisture, such as washing, it is preferable that swelling degree is 0.5-4.5 g / g. If the degree of swelling exceeds 4.5 g / g, the fiber physical properties during water swelling may deteriorate and cause problems.
かかる水膨潤性繊維としては、特に限定はなく、例えば、天然繊維やレーヨン、アセテートなどの合成繊維、あるいは、これらの繊維やナイロン、ポリエステル、アクリルなどの疎水性繊維にグラフト重合したり、架橋したりすることによって水膨潤性を高めた繊維などを使用することができるが、中でも、架橋構造およびカルボキシル基を有する繊維を好適に用いることができる。架橋構造およびカルボキシル基を有する繊維は、カルボキシル基によって高い親水性を有するが、架橋構造の存在によって水溶性とならずに水膨潤性を発現でき、繊維物性も十分なレベルとすることが可能である。また、繊維中のカルボキシル基および架橋構造の量を調整することにより、水に対する膨潤度を調整することが可能である。上述した0.5g/g以上の膨潤度を得ようとすれば、カルボキシル基量としては、架橋度合いやカルボキシル基の対イオンの種類にもよるが、少なくとも0.5mmol/g以上、好ましくは2mmol/g以上であることが望ましい。カルボキシル基量が0.5mmol/g未満の場合にはカルボキシル基量が少ないため、十分な膨潤度が得られない。 Such water-swellable fibers are not particularly limited. For example, natural fibers, synthetic fibers such as rayon and acetate, or these fibers and hydrophobic fibers such as nylon, polyester, and acrylic are graft-polymerized or crosslinked. However, among these, a fiber having a crosslinked structure and a carboxyl group can be preferably used. A fiber having a cross-linked structure and a carboxyl group has high hydrophilicity due to the carboxyl group, but the presence of the cross-linked structure can exhibit water swellability without becoming water-soluble, and the fiber physical properties can also be at a sufficient level. is there. Further, the degree of swelling with respect to water can be adjusted by adjusting the amount of carboxyl groups and cross-linked structures in the fiber. In order to obtain the degree of swelling of 0.5 g / g or more as described above, the amount of carboxyl groups depends on the degree of crosslinking and the type of counter ion of the carboxyl group, but is at least 0.5 mmol / g, preferably 2 mmol. / G or more is desirable. When the amount of carboxyl groups is less than 0.5 mmol / g, the amount of carboxyl groups is small, so that a sufficient degree of swelling cannot be obtained.
架橋構造およびカルボキシル基を有する繊維の代表的な例としては、カルボキシル基含有単量体と、該カルボキシル基と反応してエステル架橋構造を形成できるヒドロキシル基含有単量体などが共重合され、かつエステル架橋結合が導入されてなるポリアクリル酸系架橋体繊維、無水マレイン酸系架橋体繊維、アルギン酸系架橋体繊維や、アクリル繊維に1分子中の窒素数が2以上である窒素含有化合物により架橋を導入した後、加水分解することによりカルボキシル基を導入した繊維などを挙げることができる。特に、後者の繊維は1分子中の窒素数が2以上である窒素含有化合物による架橋条件および加水分解条件をコントロールすることにより、膨潤度が高く、しかも繊維強度にも優れた繊維が得られるため、本発明に採用される水膨潤性繊維として好ましいものである。 As a typical example of a fiber having a crosslinked structure and a carboxyl group, a carboxyl group-containing monomer and a hydroxyl group-containing monomer capable of forming an ester crosslinked structure by reacting with the carboxyl group are copolymerized, and Cross-linked with polyacrylic acid-based cross-linked fiber, maleic anhydride-based cross-linked fiber, alginic acid-based cross-linked fiber, or a nitrogen-containing compound having 2 or more nitrogen atoms in one molecule. Examples thereof include fibers introduced with a carboxyl group by hydrolysis after introduction of. In particular, the latter fiber has a high degree of swelling and excellent fiber strength by controlling the crosslinking and hydrolysis conditions with a nitrogen-containing compound having 2 or more nitrogen atoms in one molecule. The water-swellable fiber employed in the present invention is preferable.
アクリル繊維に1分子中の窒素数が2以上である窒素含有化合物により架橋を導入した後、加水分解することによりカルボキシル基を導入した繊維は以下のような方法で得ることができる。 A fiber in which a carboxyl group is introduced by introducing a crosslink into the acrylic fiber with a nitrogen-containing compound having 2 or more nitrogen atoms in one molecule and then hydrolyzing can be obtained by the following method.
アクリル繊維としては、アクリロニトリル単独重合体またはアクリロニトリルを40重量%以上、好ましくは50重量%以上、より好ましくは80重量%以上含有するアクリロニトリル系共重合体により形成された繊維を採用することができる。なお、アクリロニトリルと共重合させる単量体については、特に制限はなく、適宜選択すればよい。 As the acrylic fiber, a fiber formed of an acrylonitrile copolymer containing acrylonitrile homopolymer or acrylonitrile in an amount of 40% by weight or more, preferably 50% by weight or more, more preferably 80% by weight or more can be employed. The monomer copolymerized with acrylonitrile is not particularly limited and may be appropriately selected.
アクリル繊維は1分子中の窒素数が2以上である窒素含有化合物による架橋導入処理を施される。該架橋導入処理に採用しうる1分子中の窒素数が2以上である窒素含有化合物としては、水加ヒドラジン、硫酸ヒドラジン、塩酸ヒドラジン、臭素酸ヒドラジン等のヒドラジン系化合物やエチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、ポリエチレンイミン等のアミノ基を複数有する化合物等が例示される。中でもヒドラジン系化合物は、反応しやすく、コスト的にも有利であり、好ましい。 The acrylic fiber is subjected to crosslinking introduction treatment with a nitrogen-containing compound having 2 or more nitrogen atoms in one molecule. Examples of the nitrogen-containing compound having 2 or more nitrogen atoms in one molecule that can be used for the crosslinking introduction treatment include hydrazine compounds such as hydrazine hydrate, hydrazine sulfate, hydrazine hydrochloride, hydrazine bromate, ethylenediamine, hexamethylenediamine, Examples thereof include compounds having a plurality of amino groups such as diethylenetriamine, triethylenetetramine, and polyethyleneimine. Of these, hydrazine compounds are preferable because they are easy to react and advantageous in terms of cost.
上記架橋導入処理においては、アクリル繊維中のニトリル基と1分子中の窒素数が2以上である窒素含有化合物が反応して架橋構造が形成され、これに伴い繊維中の窒素含有率が増加するので、この窒素含有率の増加は架橋度合いの目安となる。本発明における水膨潤性繊維においては、上述のヒドラジン系化合物を採用する場合、窒素含有率の増加は0.1〜10重量%とするのが好ましい。なお、ここにいう窒素含有率の増加とは架橋導入処理前のアクリル繊維の窒素含有率と該処理後のアクリル繊維の窒素含有率との差をいう。 In the crosslinking introduction treatment, a nitrile group in the acrylic fiber and a nitrogen-containing compound having 2 or more nitrogen atoms in one molecule react to form a crosslinked structure, and the nitrogen content in the fiber increases accordingly. Therefore, this increase in nitrogen content is a measure of the degree of crosslinking. In the water-swellable fiber in the present invention, when the hydrazine-based compound described above is employed, the increase in nitrogen content is preferably 0.1 to 10% by weight. In addition, the increase in nitrogen content here means the difference between the nitrogen content of the acrylic fiber before the crosslinking introduction treatment and the nitrogen content of the acrylic fiber after the treatment.
また、1分子中の窒素数が2以上である窒素含有化合物による架橋導入処理の条件としては、架橋構造が形成される限りにおいて制限はなく、該化合物の溶液中にアクリル繊維を浸漬し、50〜150℃で反応させた場合に好ましい結果を得られる場合が多い。例えば、1分子中の窒素数が2以上である窒素含有化合物としてヒドラジン系化合物を用いる場合には、窒素含有率の増加を0.1〜10重量%に調整しうる条件である限り採用できるが、上述のアクリル繊維をヒドラジン系化合物の濃度5〜60重量%の水溶液中、温度50〜120℃で5時間以内で処理する方法が工業的に好ましい。 The conditions for the crosslinking introduction treatment with a nitrogen-containing compound having 2 or more nitrogen atoms in one molecule are not limited as long as a crosslinked structure is formed. Acrylic fibers are immersed in a solution of the compound, and 50 When the reaction is carried out at ˜150 ° C., favorable results are often obtained. For example, when a hydrazine compound is used as the nitrogen-containing compound having 2 or more nitrogen atoms in one molecule, it can be employed as long as the increase in nitrogen content can be adjusted to 0.1 to 10% by weight. A method of treating the above-mentioned acrylic fiber in an aqueous solution having a hydrazine compound concentration of 5 to 60% by weight at a temperature of 50 to 120 ° C. within 5 hours is industrially preferred.
1分子中の窒素数が2以上である窒素含有化合物による架橋導入処理を施された繊維は、該処理で残留した薬剤を十分に除去した後、酸処理を施しても良い。ここに使用する酸としては、特に限定されず、硝酸、硫酸、塩酸等の鉱酸や、有機酸等が挙げられる。該酸処理の条件としても、特に限定されないが、酸濃度3〜20重量%、好ましくは7〜15重量%の水溶液に、温度50〜120℃で0.5〜10時間被処理繊維浸漬するといった例が挙げられる。 The fiber subjected to the cross-linking introduction treatment with the nitrogen-containing compound having 2 or more nitrogen atoms in one molecule may be subjected to acid treatment after sufficiently removing the drug remaining in the treatment. The acid used here is not particularly limited, and examples thereof include mineral acids such as nitric acid, sulfuric acid, and hydrochloric acid, and organic acids. The conditions for the acid treatment are not particularly limited, but the treated fibers are immersed in an aqueous solution having an acid concentration of 3 to 20% by weight, preferably 7 to 15% by weight at a temperature of 50 to 120 ° C. for 0.5 to 10 hours. An example is given.
かかる架橋導入処理を経た繊維、あるいはさらに酸処理を経た繊維は、続いてアルカリ性金属化合物水溶液により加水分解処理を施される。この加水分解処理により、架橋導入処理に関与せずに残留しているニトリル基、または架橋導入処理後酸処理を施した場合には残留しているニトリル基と一部酸処理で加水分解されて生成しているアミド基がカルボキシル基に変換されるが、該カルボキシル基には使用したアルカリ性金属化合物に対応する金属イオンが結合した状態となる。 The fiber that has undergone such crosslinking introduction treatment or the fiber that has undergone further acid treatment is subsequently subjected to a hydrolysis treatment with an aqueous alkaline metal compound solution. By this hydrolysis treatment, nitrile groups that remain without being involved in the cross-linking introduction treatment, or when the acid treatment is performed after the cross-linking introduction treatment, the remaining nitrile groups are partially hydrolyzed by acid treatment. The generated amide group is converted into a carboxyl group, and a metal ion corresponding to the alkaline metal compound used is bound to the carboxyl group.
ここで使用するアルカリ性金属化合物としては、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属炭酸塩などが挙げられ、金属種としては、Li、Na、K等のアルカリ金属、Mg、Ca、Ba等のアルカリ土類金属を挙げることができる。 Examples of the alkaline metal compound used here include alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carbonates, etc., and the metal species include alkali metals such as Li, Na, and K, Mg, Alkaline earth metals such as Ca and Ba can be mentioned.
加水分解処理によって生成されるカルボキシル基の量としては、好ましくは0.5〜10mmol/g、より好ましくは2〜8mmol/gであることが望ましい。カルボキシル基の量が0.5mmol/g未満の場合には、十分な膨潤度が得られないことがあり、また10mmol/gを超える場合には、膨潤が激しくなり実用上満足し得る繊維物性が得られないなどの問題を起こすことがある。 The amount of the carboxyl group generated by the hydrolysis treatment is preferably 0.5 to 10 mmol / g, more preferably 2 to 8 mmol / g. When the amount of the carboxyl group is less than 0.5 mmol / g, a sufficient degree of swelling may not be obtained, and when it exceeds 10 mmol / g, the swelling becomes severe and the fiber physical properties that can be satisfied practically are obtained. May cause problems such as inability to obtain.
加水分解処理の条件は、必要量のカルボキシル基が生成されるように適宜設定すればよいが、好ましくは0.5〜10重量%、さらに好ましくは1〜5重量%のアルカリ性金属化合物水溶液中、温度50〜120℃で1〜10時間処理する方法が工業的、繊維物性的にも好ましい。 The conditions for the hydrolysis treatment may be appropriately set so that a necessary amount of carboxyl groups is generated, but preferably 0.5 to 10% by weight, more preferably 1 to 5% by weight in an aqueous alkaline metal compound solution, A method of treating at a temperature of 50 to 120 ° C. for 1 to 10 hours is preferable from an industrial and fiber property viewpoint.
以上のようにして、アクリル繊維に1分子中の窒素数が2以上である窒素含有化合物により架橋を導入した後、加水分解することによりカルボキシル基を導入した繊維を得ることができるが、さらに該繊維を還元剤によって還元処理した場合、上述したpH6以下への調整をしなくてもスルホン酸基を有するビニル系単量体の重合を行うことができる。なお、還元処理における条件および還元剤は特に限定されない。 As described above, after introducing crosslinking into the acrylic fiber with a nitrogen-containing compound having 2 or more nitrogen atoms in one molecule, a fiber having a carboxyl group introduced by hydrolysis can be obtained. When the fiber is reduced with a reducing agent, the vinyl monomer having a sulfonic acid group can be polymerized without adjusting the pH to 6 or less. The conditions for the reduction treatment and the reducing agent are not particularly limited.
本発明の導電性繊維は上述したスルホン酸基を有するビニル系重合体を含有する繊維に電子共役系重合体を被覆したものである。かかる電子共役系重合体としては、特に限定はないが、ポリアニリン、ポリピロール、ポリチオフェン、ポリフラン、ポリインドール、ポリセレノフェンやこれらの化合物の誘導体を使用することができる。 The conductive fiber of the present invention is obtained by coating a fiber containing a vinyl polymer having a sulfonic acid group as described above with an electron conjugated polymer. The electron conjugated polymer is not particularly limited, and polyaniline, polypyrrole, polythiophene, polyfuran, polyindole, polyselenophene, and derivatives of these compounds can be used.
スルホン酸基を有するビニル系重合体を含有する繊維に電子共役系重合体を被覆させる方法としては、
a.該繊維を電子共役系重合体溶液に浸漬する
b.該繊維を電子共役系重合体を形成しうる単量体溶液に浸漬し、重合を行う
がある。いずれの方法の場合においても、重合を行う前にスルホン酸基を有するビニル系重合体を含有する繊維中のスルホン酸基をH型すなわち−SO3Hの形としておくことが必要である。スルホン酸基をH型とすることで、電子共役系重合体とのイオン結合が形成されやすくなり、被膜が強固となって剥離を少なくすることができる。
As a method of coating a fiber containing a vinyl polymer having a sulfonic acid group with an electron conjugated polymer,
a. Dipping the fiber in an electron conjugated polymer solution b. Polymerization may be performed by immersing the fiber in a monomer solution capable of forming an electron conjugated polymer. In any method, the sulfonic acid group in the fiber containing the vinyl polymer having a sulfonic acid group needs to be in the H form, that is, in the form of —SO 3 H, before the polymerization. By making the sulfonic acid group an H-type, an ionic bond with the electron conjugated polymer can be easily formed, the film becomes strong, and peeling can be reduced.
また、溶液中ですでに電子共役系重合体が形成されているa法に比べ、b法では単量体溶液に浸漬させるため、繊維内部にまで単量体が入り込み、繊維内部でも電子共役系重合体が生成するので、被膜が強固となり好ましい。特に、上述したように水膨潤性繊維を用いて得たスルホン酸基を有するビニル系重合体を含有する繊維は、繊維内部にまでスルホン酸基を複合化しているため、繊維内部においても電子共役系重合体をイオン結合させることができ、電子共役系重合体の被覆層がより強固となるため好ましく用いることができる。 Further, compared with the method a in which an electron conjugated polymer is already formed in the solution, the method b is soaked in the monomer solution, so that the monomer enters the fiber and the electron conjugated system is also formed in the fiber. Since a polymer is formed, the coating becomes strong and preferable. In particular, as described above, the fiber containing a vinyl polymer having a sulfonic acid group obtained using a water-swellable fiber has a sulfonic acid group complexed to the inside of the fiber. It can be preferably used because the polymer can be ionically bonded and the coating layer of the electron conjugated polymer becomes stronger.
b法としては、特に限定されるものではないが、例えば(1)電子共役系重合体を形成しうる単量体を含有する処理液中にスルホン酸基を有するビニル系重合体を含有する繊維を浸漬させた後に、酸化重合剤と必要によりドーパントを添加する方法、(2)電子共役系重合体を形成しうる単量体と酸化重合剤と必要によりドーパントを添加した処理液中にスルホン酸基を有する重合体を含有する繊維を浸漬する方法などが挙げられる。特に、(1)の場合には単量体が繊維内部にまで入り込んで、電子共役系重合体が形成されるので電子共役系重合体の被服層が強固なものが得られやすく好ましい。 Although it does not specifically limit as b method, For example, (1) The fiber containing the vinyl polymer which has a sulfonic acid group in the process liquid containing the monomer which can form an electron conjugated polymer And (2) a monomer capable of forming an electron conjugated polymer, an oxidation polymerizer, and a sulfonic acid in a treatment solution to which a dopant is added if necessary. Examples thereof include a method of immersing a fiber containing a polymer having a group. In particular, in the case of (1), the monomer penetrates into the inside of the fiber to form an electron conjugated polymer, so that it is preferable to obtain a strong coating layer of the electron conjugated polymer.
本願発明においては、電子共役系重合体を形成しうる単量体としてアニリン及び/又はピロールを採用する。
In the present invention, aniline and / or employing a pyrrole as monomer capable of forming a electron conjugated polymer.
酸化重合剤の種類としては、例えば、過マンガン酸、過マンガン酸カリウム等の過マンガン酸塩、三酸化クロム酸等のクロム酸類、過酸化水素、過酸化ベンゾイル等の過酸化物、ペルオキシ二硫酸等のペルオキシ酸あるいはその塩、次亜塩素酸ナトリウム等の酸素酸あるいはその塩、塩化第二鉄、硫酸第二鉄、硝酸第二鉄、クエン酸第二鉄、p−トルエンスルホン酸第二鉄等の遷移金属化合物、あるいは過硫酸カリウム、過硫酸アンモニウム、過塩素酸第二鉄などが挙げられる。また、このような酸化重合剤は単独で使用しても2種以上で使用しても良い。 Examples of the oxidation polymerizer include permanganates such as permanganic acid and potassium permanganate, chromic acids such as chromic trioxide, peroxides such as hydrogen peroxide and benzoyl peroxide, and peroxydisulfuric acid. Peroxyacids or salts thereof, oxygen acids such as sodium hypochlorite or salts thereof, ferric chloride, ferric sulfate, ferric nitrate, ferric citrate, ferric p-toluenesulfonate Transition metal compounds such as potassium persulfate, ammonium persulfate, and ferric perchlorate. Moreover, such an oxidation polymerization agent may be used alone or in combination of two or more.
上記処理液中の電子共役系重合体を形成しうる単量体の濃度は、導電性や被膜の耐久性を勘案し適宜設定すればよいが、例えばピロールの場合であれば、スルホン酸基を有するビニル系重合体を含有する繊維に対して、0.1〜5重量%となるようにするのが好ましい。0.1重量%未満の場合においては、電子共役系重合体が複合化される量が不十分となり導電性が低下する原因となり好ましくない。また、5重量%を超える場合には、電子共役系重合体の量が多くなりすぎ、スルホン酸基とイオン結合できない電子共役系重合体が多く生成する可能性があり、脱落の原因となるために好ましくない。 The concentration of the monomer capable of forming the electron conjugated polymer in the treatment liquid may be appropriately set in consideration of conductivity and durability of the coating. For example, in the case of pyrrole, a sulfonic acid group is added. It is preferable to make it 0.1 to 5 weight% with respect to the fiber containing the vinyl-type polymer which has. When the amount is less than 0.1% by weight, the amount of the electron conjugated polymer to be complexed is insufficient, which is not preferable because it causes a decrease in conductivity. On the other hand, when the amount exceeds 5% by weight, the amount of the electron conjugated polymer becomes too large, and a lot of electron conjugated polymers that cannot be ionically bonded to the sulfonic acid group may be generated, which may cause dropping. It is not preferable.
また、酸化重合剤の添加量としては、電子共役系重合体を形成しうる単量体のモル数の0.5〜5倍とすることが好ましい。0.5倍よりも少ない場合には、電子共役系重合体の重合速度が遅くなりすぎ工業的に好ましくない。また5倍を超える場合には、電子共役系重合体の分子量が小さくなり導電性が低下する原因となるので好ましくない。 Moreover, it is preferable to set it as 0.5-5 times the number-of-moles of the monomer which can form an electron conjugated polymer as the addition amount of an oxidation polymerization agent. When it is less than 0.5 times, the polymerization rate of the electron conjugated polymer becomes too slow, which is not industrially preferable. On the other hand, when it exceeds 5 times, the molecular weight of the electron conjugated polymer is reduced, which causes a decrease in conductivity.
電子共役系重合体を得るための重合反応時間としては、30分以上が好ましく、より好ましくは2時間以上である。30分未満である場合には電子共役系重合体の重合が十分に進行せず、良好な導電性が得られないため好ましくない。 The polymerization reaction time for obtaining the electron conjugated polymer is preferably 30 minutes or more, more preferably 2 hours or more. If it is less than 30 minutes, the polymerization of the electron conjugated polymer does not proceed sufficiently, and good conductivity cannot be obtained, which is not preferable.
電子共役系重合体を得るための重合反応温度としては、30〜−20℃が好ましい。反応温度が30℃を超える場合には、電子共役系重合体の分子量が小さくなるため、良好な導電性が得られない。 The polymerization reaction temperature for obtaining the electron conjugated polymer is preferably 30 to -20 ° C. When the reaction temperature exceeds 30 ° C., the molecular weight of the electron conjugated polymer becomes small, so that good conductivity cannot be obtained.
また、電子共役系重合体を得るための重合をする際に、ドーパントを併用すれば、さらに導電性を向上することができる。ドーパントとしては、例えば、ヨウ素、臭素等のハロゲン類、五弗化リン等のルイス酸、塩化水素、硝酸等のプロトン酸、p−トルエンスルホン酸、ナフタレンスルホン酸などや、p−スチレンスルホン酸、2−(アクリロイルアミノ)−2-メチル−1−プロパンスルホン酸、メタリルスルホン酸などの不飽和炭化水素スルホン酸などのビニル系単量体を単独重合あるいは他の単量体と共重合した高分子ドーパントを使用することができる。 Moreover, when superposing | polymerizing for obtaining an electron conjugated polymer, if a dopant is used together, electroconductivity can be improved further. Examples of the dopant include halogens such as iodine and bromine, Lewis acids such as phosphorus pentafluoride, proton acids such as hydrogen chloride and nitric acid, p-toluenesulfonic acid, naphthalenesulfonic acid, p-styrenesulfonic acid, A vinyl monomer such as 2- (acryloylamino) -2-methyl-1-propanesulfonic acid or unsaturated hydrocarbon sulfonic acid such as methallylsulfonic acid is homopolymerized or copolymerized with other monomers. Molecular dopants can be used.
上述した電子共役系重合体を形成しうる単量体、酸化重合剤、ドーパント等を含有する処理液の溶媒としては、安全性の面から工業的には水が好ましく用いられるが、メタノール、エタノール、n−プロパノール、i−プロパノール、i−ブタノール、t−ブタノールなどの脂肪族アルコール類、ジエチルエーテル、テトラヒドロフランなどのエーテル類、アセトン、メチルエチルケトンなどの脂肪族ケトン類等の有機溶媒を用いることもでき、これらは単量体、酸化重合剤、ドーパントおよびスルホン酸基を有するビニル系重合体を含有する繊維に応じて適宜選択して単独でまたは2種以上を混合して使用することができる。 From the viewpoint of safety, water is preferably used industrially as the solvent for the treatment liquid containing the monomer, the oxidation polymerizer, the dopant and the like that can form the above-described electron conjugated polymer, but methanol, ethanol Organic solvents such as aliphatic alcohols such as n-propanol, i-propanol, i-butanol and t-butanol, ethers such as diethyl ether and tetrahydrofuran, and aliphatic ketones such as acetone and methyl ethyl ketone can also be used. These can be appropriately selected according to the fiber containing the monomer, the oxidation polymerizer, the dopant and the vinyl polymer having a sulfonic acid group, and can be used alone or in admixture of two or more.
また、上述のようにして電子共役系重合体を被覆した後の乾燥温度としては、特に限定はないが、なるべく低温で行うのが好ましく、40〜105℃、より好ましくは40〜80℃で行うのが良い。105℃以上の場合には、良好な導電性が得られないため好ましくない。 The drying temperature after coating the electron-conjugated polymer as described above is not particularly limited, but it is preferably as low as possible, preferably 40 to 105 ° C, more preferably 40 to 80 ° C. Is good. A temperature of 105 ° C. or higher is not preferable because good conductivity cannot be obtained.
上述してきた本発明の導電性繊維は、スルホン酸基を有するビニル系重合体を含有する繊維を用いているので、該スルホン酸基と電子共役系重合体とがイオン結合し、剥離しにくい導電性被膜が形成されている。特に、スルホン酸基を有するビニル系重合体を含有する繊維の基材繊維として水膨潤性繊維を用いた場合には、繊維表面だけでなく、繊維内部にまでスルホン酸基が導入されるので、スルホン酸基と電子共役系重合体とのイオン結合が繊維内部にまで形成され、イオン結合数も多くなるため、導電性被膜はより強固なものとなる。かかる本発明の導電性繊維は、高い導電性を示し、摩擦などによる被膜の脱落が極めて少ない耐久性に優れたものである。 Since the conductive fiber of the present invention described above uses a fiber containing a vinyl polymer having a sulfonic acid group, the sulfonic acid group and the electron conjugated polymer are ionically bonded to each other so that the conductive fiber is difficult to peel off. A functional film is formed. In particular, when a water-swellable fiber is used as a base fiber of a fiber containing a vinyl polymer having a sulfonic acid group, a sulfonic acid group is introduced not only to the fiber surface but also to the inside of the fiber. Since the ionic bond between the sulfonic acid group and the electron conjugated polymer is formed even inside the fiber and the number of ionic bonds increases, the conductive film becomes stronger. Such a conductive fiber of the present invention exhibits high conductivity and is excellent in durability with very little loss of coating due to friction or the like.
以下の実施例により本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。実施例中の部及び百分率は、断りのない限り重量基準で示す。また、実施例において記述する繊維の膨潤度、体積固有抵抗値、スルホン酸基量、被膜の耐久性は以下の方法により求めた。 The present invention will be specifically described by the following examples, but the present invention is not limited to the following examples. Parts and percentages in the examples are on a weight basis unless otherwise indicated. Moreover, the swelling degree of the fiber described in an Example, volume specific resistance value, the amount of sulfonic acid groups, and durability of the film were calculated | required with the following method.
(1)水に対する膨潤度
繊維を絶乾し、重量を測定する(X[g])。次に該繊維を水に30分以上浸漬させ、中心からサンプルまでの距離が11.5cmの遠心分離機に入れ、1200rpmで、5分間脱水し、脱水後の重量を測定する(Y[g])。膨潤度は、以下の式で計算する。
膨潤度[g/g]=(Y−X)/X
(1) Swelling degree with respect to water The fiber is absolutely dried, and the weight is measured (X [g]). Next, the fiber is immersed in water for 30 minutes or more, put into a centrifuge having a distance from the center to the sample of 11.5 cm, dehydrated at 1200 rpm for 5 minutes, and the weight after dehydration is measured (Y [g] ). The degree of swelling is calculated by the following formula.
Swelling degree [g / g] = (Y−X) / X
(2)体積固有抵抗値
予め、繊維の繊度T[dtex]及び比重d[g/cm3]を常法で測定する。次に、該繊維を0.1%ノイゲンHC水溶液中で浴比1:100として60℃、30分間スコアリング処理し、流水で洗浄後、70℃で1時間乾燥する。この繊維を6〜7cm程度の長さに切断し、20℃相対湿度65%の雰囲気下に3時間以上放置する。得られた繊維(フィラメント)を5本束とし、繊維束の一方の端に導電性接着剤を5mm程度塗布する。この繊維束に8.83mN/texの荷重を加えた状態で、導電性接着剤が塗布された位置から5cm程度離れた位置に上記導電性接着剤を塗布し(このときの導電性接着剤間距離をL[cm]とする)、測定試料とする。該測定試料に8.83mN/texの荷重を加えた状態で導電性接着剤の塗布部に電極を接続し、直流500Vを印加したときの抵抗R[Ω]をHigh RESISTANCE METER 4329A(YOKOGAWA−HEWLETT−PACKARD製)で測定し、次式より体積固有抵抗を算出した。導電性といわれるレベルには、この値が104Ω・cm未満であることが望ましく、この値を超えてしまうと導電性を得ることは難しくなってくる。また、本測定の下限は102Ω・cmである。
体積固有抵抗値[Ω・cm]=(R×T×10−6)/(L×d)
(2) Volume resistivity value In advance, the fineness T [dtex] and specific gravity d [g / cm 3 ] of the fiber are measured by a conventional method. Next, the fiber is scored in a 0.1% Neugen HC aqueous solution at a bath ratio of 1: 100 at 60 ° C. for 30 minutes, washed with running water, and dried at 70 ° C. for 1 hour. This fiber is cut into a length of about 6 to 7 cm and left in an atmosphere of 20 ° C. and a relative humidity of 65% for 3 hours or more. The obtained fibers (filaments) are made into five bundles, and a conductive adhesive is applied to about 5 mm on one end of the fiber bundle. In a state where a load of 8.83 mN / tex is applied to the fiber bundle, the conductive adhesive is applied to a position about 5 cm away from the position where the conductive adhesive is applied (between the conductive adhesives at this time). The distance is L [cm]), and the measurement sample. An electrode was connected to the application part of the conductive adhesive in a state where a load of 8.83 mN / tex was applied to the measurement sample, and the resistance R [Ω] when DC 500 V was applied was set to High REISTANCE METER 4329A (YOKOGAWA-HEWLETT The volume resistivity was calculated from the following formula. It is desirable that this value is less than 10 4 Ω · cm for a level called conductivity. If this value is exceeded, it will be difficult to obtain conductivity. The lower limit of this measurement is 10 2 Ω · cm.
Volume resistivity [Ω · cm] = (R × T × 10 −6 ) / (L × d)
(3)スルホン酸基量
繊維1gを1N−HCl水溶液50mLに30分浸漬し、十分に水洗を行った後乾燥を行った。乾燥した該繊維約0.2gを精秤し(W1[g])、これに50mLの水を加えた後、塩化ナトリウム2g、次いで0.1mol/l水酸化ナトリウム水溶液で常法に従って滴定曲線を求めた。該滴定曲線から、スルホン酸基に消費された水酸化ナトリウム水溶液消費量(V1[ml])を求め、次式によってスルホン酸基量を算出した。
スルホン酸基量[mmol/g]=(0.1×V1)/W1
なお、カルボキシル基量についても、塩化ナトリウムの添加量を0.2gとする以外はスルホン酸基の場合と同様にして求めた。
(3) 1 g of sulfonic acid-based fiber was immersed in 50 mL of 1N-HCl aqueous solution for 30 minutes, sufficiently washed with water and then dried. About 0.2 g of the dried fiber is precisely weighed (W1 [g]), 50 mL of water is added thereto, and then a titration curve is prepared according to a conventional method with 2 g of sodium chloride and then with a 0.1 mol / l sodium hydroxide aqueous solution. Asked. From the titration curve, the amount of sodium hydroxide aqueous solution consumed by the sulfonic acid groups (V1 [ml]) was determined, and the amount of sulfonic acid groups was calculated by the following equation.
Amount of sulfonic acid group [mmol / g] = (0.1 × V1) / W1
The amount of carboxyl groups was also determined in the same manner as in the case of sulfonic acid groups except that the amount of sodium chloride added was 0.2 g.
(4)被膜の耐久性
繊維を白紙に20回こすりつけ、白紙に付着した電子共役系重合体被膜の様子を以下の4段階で判定した。
◎:脱落が全くない
○:脱落がない
△:脱落が少しあり
×:脱落が多い
(4) Durability fibers of the coating were rubbed 20 times on white paper, and the state of the electron conjugated polymer coating adhering to the white paper was determined in the following four stages.
◎: No dropout ○: No dropout △: Some dropout ×: Many dropouts
また、実施例中に記載する繊維の作成方法は以下の通りである。
<水膨潤性繊維A>
アクリロニトリル90%及びアクリル酸メチル10%からなるアクリロニトリル系重合体10部を48%のチオシアン酸ナトリウム水溶液90部に溶解した紡糸原液を、常法に従って紡糸、延伸、乾燥して1.7dtexのアクリル繊維aを得た。
アクリル繊維aを、15%ヒドラジン水溶液中に添加し106℃で3時間ヒドラジン架橋導入処理を行い、水洗した。次に、3%硝酸水溶液中、99℃、1時間酸処理を行い、水洗、脱水を行った。続いて、4.5%水酸化ナトリウム水溶液に添加し、90℃、2時間加水分解を行い、イオン交換水で洗浄し、水膨潤性繊維Aを得た。該繊維の水に対する膨潤度は1.5g/gであり、カルボキシル基量は6.5mmol/gであった。
Moreover, the preparation method of the fiber described in an Example is as follows.
<Water-swellable fiber A>
A spinning stock solution prepared by dissolving 10 parts of an acrylonitrile-based polymer composed of 90% acrylonitrile and 10% methyl acrylate in 90 parts of a 48% aqueous sodium thiocyanate solution is spun, drawn, and dried according to a conventional method to obtain a 1.7 dtex acrylic fiber. a was obtained.
Acrylic fiber a was added to a 15% hydrazine aqueous solution, subjected to hydrazine crosslinking introduction treatment at 106 ° C. for 3 hours, and washed with water. Next, acid treatment was performed in a 3% nitric acid aqueous solution at 99 ° C. for 1 hour, followed by washing with water and dehydration. Subsequently, it was added to a 4.5% aqueous sodium hydroxide solution, hydrolyzed at 90 ° C. for 2 hours, and washed with ion-exchanged water to obtain a water-swellable fiber A. The degree of swelling of the fibers with respect to water was 1.5 g / g, and the amount of carboxyl groups was 6.5 mmol / g.
<水膨潤性繊維B>
上記のアクリル繊維aを、15%ヒドラジン水溶液中に添加し110℃で4.5時間ヒドラジン架橋導入処理を行い、水洗した。次に、3%硝酸水溶液中、99℃、1時間酸処理を行い、水洗、脱水を行った。続いて、4.5%水酸化ナトリウム水溶液に添加し、90℃、2時間加水分解を行い、イオン交換水で洗浄し、水膨潤性繊維Bを得た。該繊維の水に対する膨潤度は1.1g/gであり、カルボキシル基量は6.0mmol/gであった。
<Water-swellable fiber B>
The acrylic fiber a was added to a 15% hydrazine aqueous solution, subjected to hydrazine crosslinking introduction treatment at 110 ° C. for 4.5 hours, and washed with water. Next, acid treatment was performed in a 3% nitric acid aqueous solution at 99 ° C. for 1 hour, followed by washing with water and dehydration. Subsequently, it was added to a 4.5% aqueous sodium hydroxide solution, hydrolyzed at 90 ° C. for 2 hours, and washed with ion-exchanged water to obtain a water-swellable fiber B. The degree of swelling of the fiber with respect to water was 1.1 g / g, and the amount of carboxyl groups was 6.0 mmol / g.
[実施例1]
水膨潤性繊維Aを、該繊維に対して417%のp−スチレンスルホン酸ナトリウム(SPSS)を含有し、塩酸を使ってpH2に調整した水溶液に浸漬した。次いで、繊維Aに対して2.7%の過酸化水素を添加し、60℃、5時間加熱して重合を行い、水洗、脱水、乾燥を行った。得られた繊維に対して5%硝酸水溶液中、30℃、30分間の酸処理を繰り返し3回行い、スルホン酸基を有するビニル系重合体を含有する繊維1を得た。該繊維のスルホン酸基量は2.0mmol/gであった。
次に、上記繊維1を、該繊維に対してピロール4%、塩化第二鉄六水和物50%を含む水溶液に浸漬し、5℃で3時間重合を行った後、充分に水洗を行い60℃で乾燥した。得られた繊維の特性を表1に示す。
[Example 1]
The water-swellable fiber A was immersed in an aqueous solution containing 417% sodium p-styrenesulfonate (SPSS) and adjusted to pH 2 using hydrochloric acid. Subsequently, 2.7% hydrogen peroxide was added to the fiber A, and polymerization was performed by heating at 60 ° C. for 5 hours, followed by washing with water, dehydration, and drying. The obtained fiber was repeatedly subjected to acid treatment at 30 ° C. for 30 minutes in a 5% nitric acid aqueous solution three times to obtain a fiber 1 containing a vinyl polymer having a sulfonic acid group. The amount of sulfonic acid group of the fiber was 2.0 mmol / g.
Next, the fiber 1 is immersed in an aqueous solution containing 4% pyrrole and 50% ferric chloride hexahydrate with respect to the fiber, polymerized at 5 ° C. for 3 hours, and then thoroughly washed with water. Dried at 60 ° C. The properties of the obtained fiber are shown in Table 1.
[参考例1]
実施例1において、繊維1のかわりに、繊維1を作成する際の硝酸による酸処理を行わない以外は同様にして得られた繊維を用いて、参考例1の繊維を作成した。得られた繊維の特性を表1に示す。
[ Reference Example 1 ]
In Example 1, instead of the fiber 1, a fiber of Reference Example 1 was prepared using a fiber obtained in the same manner except that the acid treatment with nitric acid when the fiber 1 was prepared was not performed. The properties of the obtained fiber are shown in Table 1.
[実施例3]
実施例1において、繊維1のかわりに、繊維1を作成する際のSPSS濃度を、繊維Aに対して104%とした以外は同様にして得られた繊維を用いて、実施例3の繊維を作成した。得られた繊維の特性を表1に示す。
[Example 3]
In Example 1, instead of the fiber 1, using the fiber obtained in the same manner except that the SPSS concentration at the time of creating the fiber 1 was 104% with respect to the fiber A, the fiber of Example 3 was used. Created. The properties of the obtained fiber are shown in Table 1.
[実施例4]
実施例1において、水膨潤性繊維Aのかわりに、水膨潤性繊維Bを用いた以外は同様にして、実施例4の繊維を作成した。得られた繊維の特性を表1に示す。
[Example 4]
In Example 1, the fiber of Example 4 was produced in the same manner except that the water-swellable fiber B was used instead of the water-swellable fiber A. The properties of the obtained fiber are shown in Table 1.
[実施例5]
スルホン酸基を有するビニル系重合体を含有する繊維1を、該繊維に対して、アニリン10%、塩化第二鉄六水和物50%を含む水溶液に浸漬させ、5℃で3時間重合した後、充分に水洗を行い60℃で乾燥した。得られた繊維の特性を表1に示す。
[Example 5]
The fiber 1 containing a vinyl polymer having a sulfonic acid group was immersed in an aqueous solution containing 10% aniline and 50% ferric chloride hexahydrate and polymerized at 5 ° C. for 3 hours. Thereafter, it was thoroughly washed with water and dried at 60 ° C. The properties of the obtained fiber are shown in Table 1.
[比較例1]
水膨潤性繊維Bを5%硝酸水溶液で処理した繊維を、該繊維に対して、ピロール4%、塩化第二鉄六水和物50%を含む水溶液に浸漬させ、5℃で3時間重合を行った後、充分に水洗を行い60℃で乾燥した。得られた繊維の特性を表1に示す。
[Comparative Example 1]
A fiber obtained by treating a water-swellable fiber B with a 5% nitric acid aqueous solution is immersed in an aqueous solution containing 4% pyrrole and 50% ferric chloride hexahydrate, and polymerized at 5 ° C. for 3 hours. After performing, it washed thoroughly with water and dried at 60 degreeC. The properties of the obtained fiber are shown in Table 1.
[比較例2]
アクリル繊維aを5%硝酸水溶液で処理した繊維を、該繊維に対して、ピロール4%、塩化第二鉄六水和物50%を含む水溶液に浸漬させ、5℃で3時間重合を行った後、充分に水洗を行い、60℃で乾燥した。得られた繊維の特性を表1に示す。
[Comparative Example 2]
A fiber obtained by treating acrylic fiber a with a 5% nitric acid aqueous solution was immersed in an aqueous solution containing 4% pyrrole and 50% ferric chloride hexahydrate, and polymerized at 5 ° C. for 3 hours. Thereafter, it was thoroughly washed with water and dried at 60 ° C. The properties of the obtained fiber are shown in Table 1.
実施例1、3〜5では、体積固有抵抗値は104Ω・cm未満で導電のレベルであり、被膜の耐久性も実用的な水準にある。これに対して、比較例1および2では基材繊維中にスルホン酸基が0.1mmol/g未満しか導入されていないので、被膜の耐久性が悪く、体積固有抵抗値も実施例1、3〜4に比べて高い結果となった。
In Examples 1 and 3 to 5 , the volume resistivity value is less than 10 4 Ω · cm, which is a conductive level, and the durability of the coating is also at a practical level. On the other hand, in Comparative Examples 1 and 2, since less than 0.1 mmol / g of sulfonic acid groups were introduced into the base fiber, the durability of the coating was poor, and the volume resistivity values were also in Examples 1 and 3. The result was higher than -4 .
Claims (5)
The method for producing conductive fibers according to claim 4 or 5, wherein the amount of carboxyl groups in the fiber having a crosslinked structure and carboxyl groups is 2 mmol / g or more .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007048699A JP4895026B2 (en) | 2007-02-28 | 2007-02-28 | Conductive fiber and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007048699A JP4895026B2 (en) | 2007-02-28 | 2007-02-28 | Conductive fiber and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008208497A JP2008208497A (en) | 2008-09-11 |
JP4895026B2 true JP4895026B2 (en) | 2012-03-14 |
Family
ID=39785041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007048699A Expired - Fee Related JP4895026B2 (en) | 2007-02-28 | 2007-02-28 | Conductive fiber and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4895026B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102959718A (en) * | 2010-09-27 | 2013-03-06 | 海洋王照明科技股份有限公司 | Counter electrode for dye-sensitized solar cell and manufacturing method thereof |
FR3063501B1 (en) * | 2017-03-03 | 2021-12-10 | Association Pour La Rech Et Le Developpement De Methodes Et Processus Industriels Armines | SYNTHESIS OF ELECTRONIC FIBERS AND TEXTILES BASED ON CONDUCTIVE POLYMERS |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0618083B2 (en) * | 1985-11-05 | 1994-03-09 | アキレス株式会社 | Method for producing conductive composite |
JPH06184944A (en) * | 1992-12-18 | 1994-07-05 | Achilles Corp | Electrically conductive vinylon fiber and its production |
JP2969494B2 (en) * | 1993-02-16 | 1999-11-02 | アキレス株式会社 | Method for producing short flat fiber product, and glove having uniform dyeability and conductivity |
JPH10140420A (en) * | 1996-11-07 | 1998-05-26 | Japan Exlan Co Ltd | Inorganic fine particle-containing yarn and its production |
US20060153903A1 (en) * | 2003-07-18 | 2006-07-13 | Masao Ieno | Polymer sustainedly -release polymer amino acid derivative, cosmetic and fiber construct containing the polymer of producing the same and method for regenerating the same |
-
2007
- 2007-02-28 JP JP2007048699A patent/JP4895026B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008208497A (en) | 2008-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4621134B2 (en) | Manufacturing method of low dust generation conductive fiber sheet | |
JPWO2016158753A1 (en) | Acrylonitrile fiber for electrode, electrode containing the fiber, and lead-acid battery having the electrode | |
KR102554518B1 (en) | Dispersion stabilizer for suspension polymerization and method for preparing vinyl polymer using the same | |
JP4895026B2 (en) | Conductive fiber and method for producing the same | |
JPH10140420A (en) | Inorganic fine particle-containing yarn and its production | |
WO2006082778A1 (en) | Hydrophilic vinylidene fluoride resin composition and method for production thereof | |
KR20010043656A (en) | Crosslinked acrylic hygroscopic fiber and process for producing the same | |
JP2008261072A (en) | Method for producing low dusting conductive yarn | |
Kang et al. | X-ray photoelectron spectroscopic characterization of protonation of polyaniline films by polymeric acids | |
KR20160118415A (en) | Fabrication method for flexible and fibrous transparent electrode composing polyaniline nanowire and flexible and fibrous transparent electrode composing polyaniline nanowire using the same | |
CN113292723B (en) | Preparation method of morphology-controllable polypyrrole conductive nano material | |
CN105348523B (en) | The preparation method of polyaniline nano fiber | |
JP4830406B2 (en) | Conductive fiber | |
WO2014007345A1 (en) | Moisture-permeable waterproof fabric | |
JP3227528B2 (en) | Conductive acrylic fiber and method for producing the same | |
Misra et al. | Grafting onto starch. IV. Graft copolymerization of methyl methacrylate by use of AIBN as radical initiator | |
JP3194241B2 (en) | Method for modifying cellulose fiber | |
JP3296369B2 (en) | Conductive polymer composite latex and method for producing the same | |
CN118271829A (en) | Conductive polyurethane composite material and preparation method and application thereof | |
JP4501163B2 (en) | Alkaline battery separator | |
JP3553653B2 (en) | Fiber treatment agent mainly composed of acrylic emulsion | |
CN106832134A (en) | A kind of one-way lock water-resin material preparation method and the unidirectional water lock material for obtaining | |
EP3536716B1 (en) | Method for preparing (meth)acrylonitrile-based polymer for manufacture of carbon fiber | |
JP3528977B2 (en) | Cyanoethylated ceramic particles, ceramic-containing fiber using the same, and method for producing the same | |
JP2005206657A (en) | Conductive composition, its preparation method, conductive paint, capacitor and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090904 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110708 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110722 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110913 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111130 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111213 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4895026 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150106 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150106 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |