JP2005206657A - Conductive composition, its preparation method, conductive paint, capacitor and its manufacturing method - Google Patents

Conductive composition, its preparation method, conductive paint, capacitor and its manufacturing method Download PDF

Info

Publication number
JP2005206657A
JP2005206657A JP2004013032A JP2004013032A JP2005206657A JP 2005206657 A JP2005206657 A JP 2005206657A JP 2004013032 A JP2004013032 A JP 2004013032A JP 2004013032 A JP2004013032 A JP 2004013032A JP 2005206657 A JP2005206657 A JP 2005206657A
Authority
JP
Japan
Prior art keywords
conductive
mixture
conjugated
conductive composition
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004013032A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Yoshida
一義 吉田
Hiromichi Nei
太陸 寧
Yasushi Masahiro
泰 政広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2004013032A priority Critical patent/JP2005206657A/en
Priority to EP07025102A priority patent/EP1918325A1/en
Priority to DE602004023774T priority patent/DE602004023774D1/en
Priority to US10/561,112 priority patent/US20070096066A1/en
Priority to PCT/JP2004/008844 priority patent/WO2004113441A1/en
Priority to CN201010233896XA priority patent/CN101880460B/en
Priority to EP07025180A priority patent/EP1918326B8/en
Priority to DE602004029032T priority patent/DE602004029032D1/en
Priority to EP04746313A priority patent/EP1634922B1/en
Priority to CN200710143069XA priority patent/CN101113238B/en
Priority to AT04746313T priority patent/ATE480591T1/en
Priority to DE602004025060T priority patent/DE602004025060D1/en
Priority to EP08017549.0A priority patent/EP2014718B2/en
Publication of JP2005206657A publication Critical patent/JP2005206657A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive composition which can form a solid electrolytic layer which is excellent in conductivity and heat resistance through simple steps such as application and drying, its preparation method and a conductive paint. <P>SOLUTION: The conductive composition comprises a conductive mixture comprising a cyano-containing polymer compound and a π-conjugated conductive polymer and a conductive filler. In the preparation method of the conductive composition, the conductive mixture is prepared by polymerizing a precursor monomer of the π-conjugated conductive polymer in the presence of the cyano-containing polymer compound, and the conductive filler is mixed into the conductive mixture. The conductive paint comprises the conductive composition and water or an organic solvent. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、帯電防止剤、電磁波シールド材、機能性コンデンサの陰極材料などに利用できる導電性組成物およびその製造方法と導電性塗料とに関する。さらには、コンデンサおよびその製造方法に関する。   The present invention relates to an electroconductive composition that can be used as an antistatic agent, an electromagnetic wave shielding material, a cathode material for a functional capacitor, and the like, a method for producing the same, and an electroconductive coating material. Furthermore, it is related with a capacitor | condenser and its manufacturing method.

近年、電子機器のデジタル化に伴い、これに用いられるコンデンサは高周波領域におけるインピーダンスを低下するように要求されてきている。この要求に対応すべく、例えば、アルミニウム、タンタル、ニオブなどの弁金属の多孔体からなる陽極と、前記弁金属の酸化皮膜からなる誘電体層と、固体電解質層とカーボン層と銀層とが積層した陰極とを有する、いわゆる、機能性コンデンサが使用されてきた(例えば、特許文献1参照)。
この機能性コンデンサの固体電解質層としては、ピロール、チオフェンなどのπ共役系導電性高分子が用いられる。π共役系導電性高分子の役割は、多孔体内部にまで浸透し、より大面積の誘電体層と接触して高容量化を図ると共に、誘電体層の欠損した部分をπ共役系導電性高分子で修復して誘電体層の欠損部からの漏れ電流によるリークを防止することにある。
この固体電解質層は等価直列抵抗(ESR)が低い方が高性能になることから、低ESR化を図るために高導電性が要求されている。さらには、コンデンサの使用環境が過酷になっているため、耐熱性の高いものが求められている。
In recent years, with the digitization of electronic equipment, capacitors used for this have been required to reduce the impedance in the high frequency region. In order to meet this requirement, for example, an anode made of a porous body of valve metal such as aluminum, tantalum, or niobium, a dielectric layer made of an oxide film of the valve metal, a solid electrolyte layer, a carbon layer, and a silver layer. A so-called functional capacitor having a laminated cathode has been used (for example, see Patent Document 1).
As the solid electrolyte layer of this functional capacitor, a π-conjugated conductive polymer such as pyrrole or thiophene is used. The role of the π-conjugated conductive polymer is to penetrate into the porous body and contact the dielectric layer with a larger area to increase the capacity. The purpose is to prevent leakage due to leakage current from a defect portion of the dielectric layer by repairing with a polymer.
Since the solid electrolyte layer has higher performance when the equivalent series resistance (ESR) is lower, high conductivity is required to achieve low ESR. Furthermore, since the use environment of a capacitor | condenser is severe, what has high heat resistance is calculated | required.

π共役系導電性高分子を含む固体電解質層を誘電体層上に形成する方法としては、電解重合や化学重合が採用されている。
特許文献2で開示されるような電解重合では、弁金属多孔体表面にマンガン酸化物からなる導電層を形成した後に、その導電層を電極として導電性高分子の電解重合を行う必要がある。しかしながら、導電層を形成後、導電性高分子層を電解重合することは、非常に煩雑である上に、マンガン酸化物は導電性が低いため、高導電性の導電性高分子を使用する効果が薄れてしまっていた。
As a method for forming a solid electrolyte layer containing a π-conjugated conductive polymer on a dielectric layer, electrolytic polymerization or chemical polymerization is employed.
In the electropolymerization as disclosed in Patent Document 2, after forming a conductive layer made of manganese oxide on the surface of the valve metal porous body, it is necessary to perform electropolymerization of a conductive polymer using the conductive layer as an electrode. However, the electropolymerization of the conductive polymer layer after the formation of the conductive layer is very complicated and the effect of using a highly conductive conductive polymer because manganese oxide has low conductivity. Had faded.

また、特許文献3で開示されるような化学重合では、誘電体層上でモノマーを重合するが、その重合時間が長いため、コンデンサの生産効率が大きく低下した。その上、酸化剤の洗浄を十分にできないために、酸化剤により誘電体層表面が侵されて漏れ電流特性が低下したり、耐湿性が低下したりしていた。  In addition, in the chemical polymerization disclosed in Patent Document 3, the monomer is polymerized on the dielectric layer, but the production time of the capacitor is greatly reduced because the polymerization time is long. In addition, since the oxidant cannot be sufficiently washed, the surface of the dielectric layer is eroded by the oxidant, and the leakage current characteristic is lowered or the moisture resistance is lowered.

さらに、特許文献2,3では、電解重合、化学重合をコンデンサ製造工程内で行っており、工程が煩雑であるという問題があった。そこで、特許文献4に記載されているように、スルホ基、カルボキシル基等を持つ高分子電解質を共存させながらアニリンを重合して水溶性のポリアニリンを得て、その水溶液を塗布、乾燥して工程を簡素化することが試みられている。しかし、溶媒が水であるために表面張力が大きく、多孔体内部への浸透性が劣ると共に、導電性高分子単体ではないために導電性が低かった。さらには、得られる固体電解質層は高分子電解質を含むために、導電性に湿度依存性が見られることがあった。  Further, in Patent Documents 2 and 3, electrolytic polymerization and chemical polymerization are performed in the capacitor manufacturing process, and there is a problem that the process is complicated. Therefore, as described in Patent Document 4, aniline is polymerized in the presence of a polymer electrolyte having a sulfo group, a carboxyl group or the like to obtain a water-soluble polyaniline, and the aqueous solution is applied and dried. Attempts have been made to simplify the process. However, since the solvent is water, the surface tension is large, the permeability into the porous body is inferior, and the conductivity is low because it is not a single conductive polymer. Furthermore, since the obtained solid electrolyte layer contains a polymer electrolyte, the conductivity may be dependent on humidity.

また、固体電解質層の導電性を高めるためには、例えば特許文献5に示されるように、化学重合における重合条件を高度にコントロールして製造することが試みられているが、その場合には、通常でも煩雑な工程をより複雑にすることが多く、工程の簡略化、低コスト化の障害となっていた。
特開2003−37024号公報 特開昭63−158829号公報 特開昭63−173313号公報 特開平7−105718号公報 特開平11−74157号公報
Further, in order to increase the conductivity of the solid electrolyte layer, for example, as shown in Patent Document 5, it has been attempted to produce by controlling the polymerization conditions in chemical polymerization at a high level. Usually, complicated processes are often complicated, which has been an obstacle to simplification of the process and cost reduction.
JP 2003-37024 A JP-A-63-158829 JP 63-173313 A JP-A-7-105718 Japanese Patent Laid-Open No. 11-74157

本発明は、塗布、乾燥といった簡単な工程で、導電性および耐熱性に優れた固体電解質層を形成できる導電性組成物およびその製造方法と導電性塗料とを提供することを課題とする。さらには、前記導電性組成物を用いたコンデンサとその製造方法を提供することを課題とする。  It is an object of the present invention to provide a conductive composition capable of forming a solid electrolyte layer excellent in conductivity and heat resistance, a method for producing the same, and a conductive paint by simple steps such as coating and drying. Furthermore, it aims at providing the capacitor | condenser using the said electroconductive composition, and its manufacturing method.

本発明は、以下の(1)〜(10)に示すものである。
(1)シアノ基含有高分子化合物およびπ共役系導電性高分子からなる導電性混合物と、導電性フィラーとを含んでなることを特徴とする導電性組成物。
(2)導電性フィラーは表面がπ共役系導電性高分子で覆われていることを特徴とする(1)に記載の導電性組成物。
(3)さらに、ドーパントを含むことを特徴とする(1)または(2)に記載の導電性組成物。
(4)導電性フィラーが表面にスルホ基および/またはカルボキシル基を有していることを特徴とする(1)〜(3)のいずれかに記載の導電性組成物。
(5)シアノ基含有高分子化合物とπ共役系導電性高分子との質量比が5:95〜99:1であることを特徴とする(1)〜(4)のいずれかに記載の導電性組成物。
(6)導電性混合物と導電性フィラーとの質量比が50:50〜99.9:0.1であることを特徴とする(1)〜(5)のいずれかに記載の導電性組成物。
(7)シアノ基含有高分子化合物の存在下でπ共役系導電性高分子の前駆体モノマーを重合して導電性混合物を製造し、その導電性混合物に導電性フィラーを混合することを特徴とする導電性組成物の製造方法。
(8)(1)〜(6)のいずれかに記載の導電性組成物と、水または有機溶剤とを含んでなることを特徴とする導電性塗料。
(9)弁金属の多孔体からなる陽極と、該陽極に隣接し、前記弁金属の酸化皮膜からなる誘電体層と、(1)〜(6)のいずれかに記載の導電性組成物からなる陰極とを有することを特徴とするコンデンサ。
(10)弁金属の多孔体からなる陽極上に前記弁金属の酸化皮膜からなる誘電体層を形成し、該誘電体層上に(8)に記載の導電性塗料を塗布、乾燥して、誘電体層表面に導電性組成物からなる陰極を形成することを特徴とするコンデンサの製造方法。
The present invention is shown in the following (1) to (10).
(1) A conductive composition comprising a conductive mixture composed of a cyano group-containing polymer compound and a π-conjugated conductive polymer, and a conductive filler.
(2) The conductive composition according to (1), wherein the surface of the conductive filler is covered with a π-conjugated conductive polymer.
(3) The conductive composition according to (1) or (2), further comprising a dopant.
(4) The conductive composition according to any one of (1) to (3), wherein the conductive filler has a sulfo group and / or a carboxyl group on the surface.
(5) The conductivity according to any one of (1) to (4), wherein the mass ratio of the cyano group-containing polymer compound to the π-conjugated conductive polymer is 5:95 to 99: 1. Sex composition.
(6) The conductive composition according to any one of (1) to (5), wherein the mass ratio of the conductive mixture to the conductive filler is 50:50 to 99.9: 0.1 .
(7) A π-conjugated conductive polymer precursor monomer is polymerized in the presence of a cyano group-containing polymer compound to produce a conductive mixture, and a conductive filler is mixed with the conductive mixture. A method for producing a conductive composition.
(8) A conductive paint comprising the conductive composition according to any one of (1) to (6) and water or an organic solvent.
(9) From an anode made of a porous body of valve metal, a dielectric layer made of an oxide film of the valve metal adjacent to the anode, and the conductive composition according to any one of (1) to (6) And a cathode.
(10) A dielectric layer made of an oxide film of the valve metal is formed on the anode made of a porous body of the valve metal, and the conductive paint according to (8) is applied on the dielectric layer and dried. A method for producing a capacitor, comprising forming a cathode made of a conductive composition on a surface of a dielectric layer.

本発明の導電性組成物およびその製造方法と導電性塗料では、塗布、乾燥といった簡単な工程で固体電解質層を形成することができる。また、得られた固体電解質層は導電性および耐熱性が高い。
本発明のコンデンサは性能が優れる上に、過酷な使用環境にも耐えられる。
本発明のコンデンサの製造方法では、コンデンサ製造の工程が簡略化されている。
With the conductive composition of the present invention, the production method thereof, and the conductive paint, the solid electrolyte layer can be formed by a simple process such as coating and drying. Further, the obtained solid electrolyte layer has high conductivity and heat resistance.
The capacitor of the present invention has excellent performance and can withstand harsh usage environments.
In the capacitor manufacturing method of the present invention, the capacitor manufacturing process is simplified.

はじめに、本発明の導電性組成物について説明する。
本発明の導電性組成物は、シアノ基含有高分子化合物およびπ共役系導電性高分子からなる導電性混合物と、導電性フィラーとを含んでなるものである。
First, the conductive composition of the present invention will be described.
The conductive composition of the present invention comprises a conductive mixture comprising a cyano group-containing polymer compound and a π-conjugated conductive polymer, and a conductive filler.

[シアノ基含有高分子化合物]
導電性混合物を構成するシアノ基含有高分子化合物は、分子内にシアノ基を有する高分子化合物のことであり、例えば、ポリアクリロニトリル樹脂、ポリメタクリロニトリル樹脂、アクリロニトリル−スチレン樹脂、アクリロニトリル−ブタジエン樹脂、アクリロニトリル−ブタジエン-スチレン樹脂や、水酸基あるいはアミノ基含有樹脂をシアノエチル化した樹脂、例えば、シアノエチルセルロースなどが挙げられる。
このようなシアノ基含有高分子化合物は、π共役系導電性高分子を水または有機溶剤(以下、水および有機溶剤を総称して溶媒ということがある)に溶解させる機能を有している。
[Cyano group-containing polymer compound]
The cyano group-containing polymer compound constituting the conductive mixture is a polymer compound having a cyano group in the molecule. For example, polyacrylonitrile resin, polymethacrylonitrile resin, acrylonitrile-styrene resin, acrylonitrile-butadiene resin , Acrylonitrile-butadiene-styrene resin, and resins obtained by cyanoethylation of a hydroxyl group or amino group-containing resin, such as cyanoethyl cellulose.
Such a cyano group-containing polymer compound has a function of dissolving a π-conjugated conductive polymer in water or an organic solvent (hereinafter, water and organic solvents may be collectively referred to as a solvent).

シアノ基含有高分子化合物は共重合体でもよく、例えば、上記したシアノ基を有するシアノ基含有高分子化合物に、ドーパント作用を有するスルホ基を有する重合体が1種または2種以上共重合した共重合体でもよい。スルホ基を有する重合体としては、ポリビニルスルホン酸樹脂、ポリスチレンスルホン酸樹脂、ポリアリルスルホン酸樹脂、ポリアクリルスルホン酸樹脂、ポリメタクリルスルホン酸樹脂、ポリ−2−アクリルアミド−2−メチルプロパンスルホン酸樹脂、ポリイソプレンスルホン酸樹脂等が挙げられる。  The cyano group-containing polymer compound may be a copolymer, for example, a copolymer in which one or more polymers having a sulfo group having a dopant action are copolymerized with the above-described cyano group-containing polymer compound having a cyano group. It may be a polymer. Examples of the polymer having a sulfo group include polyvinyl sulfonic acid resin, polystyrene sulfonic acid resin, polyallyl sulfonic acid resin, polyacryl sulfonic acid resin, polymethacryl sulfonic acid resin, and poly-2-acrylamido-2-methylpropane sulfonic acid resin. And polyisoprene sulfonic acid resin.

また、シアノ基含有高分子化合物には、他のビニル化合物が共重合されていてもよい。他のビニル化合物としては、例えば、スチレン、ブタジエン、アクリル酸、メタクリル酸、ヒドロキシアクリル酸、ヒドロキシメタクリル酸、アクリル酸エステル、メタクリル酸エステル、p−ビニルトルエンなどの重合性ビニル化合物が挙げられる。これら重合性ビニル化合物を共重合すれば、溶媒溶解性をコントロールすることができる。  The cyano group-containing polymer compound may be copolymerized with other vinyl compounds. Examples of the other vinyl compound include polymerizable vinyl compounds such as styrene, butadiene, acrylic acid, methacrylic acid, hydroxyacrylic acid, hydroxymethacrylic acid, acrylic acid ester, methacrylic acid ester, and p-vinyltoluene. By copolymerizing these polymerizable vinyl compounds, the solvent solubility can be controlled.

また、シアノ基含有高分子化合物は、耐衝撃性を改良するための合成ゴム成分や、耐環境特性を向上させるための老化防止剤、酸化防止剤、紫外線吸収剤を含んでいてもよい。ただし、酸化防止剤としてのアミン化合物は、π共役系導電性高分子を重合させる際に用いる酸化剤の働きを阻害することがあるので、フェノール系酸化防止剤を用いてアミン系酸化防止剤を避けたり、重合後に混合したりすることが好ましい。  The cyano group-containing polymer compound may contain a synthetic rubber component for improving impact resistance, an anti-aging agent, an antioxidant, and an ultraviolet absorber for improving environmental resistance. However, the amine compound as an antioxidant may inhibit the action of the oxidant used when polymerizing the π-conjugated conductive polymer. Therefore, an amine-based antioxidant is added using a phenol-based antioxidant. It is preferable to avoid or mix after polymerization.

[π共役系導電性高分子]
π共役系導電性高分子としては、置換あるいは無置換のポリアニリン、置換あるいは無置換のポリピロール、置換あるいは無置換のポリチオフェン、およびこれらから選ばれる1種または2種からなる(共)重合体が挙げられる。中でも、ポリピロール、ポリチオフェン、ポリN−メチルピロール、ポリ3−メチルチオフェン、ポリ3−メトキシチオフェン、これらから選ばれる1種または2種からなる(共)重合体が抵抗値、コスト、反応性の点から好ましく用いられる。
特に、ポリN−メチルピロール、ポリ3−メチルチオフェンのようなアルキル置換化合物は溶媒溶解性を向上する効果が見られることからより好ましい。アルキル基の中では導電性に悪影響を与えることがないことから、メチル基が好ましい。
[Π-conjugated conductive polymer]
Examples of the π-conjugated conductive polymer include substituted or unsubstituted polyaniline, substituted or unsubstituted polypyrrole, substituted or unsubstituted polythiophene, and one or two (co) polymers selected from these. It is done. Among them, polypyrrole, polythiophene, poly N-methylpyrrole, poly-3-methylthiophene, poly-3-methoxythiophene, and one or two (co) polymers selected from these are resistance, cost, and reactivity. Are preferably used.
In particular, alkyl-substituted compounds such as poly N-methylpyrrole and poly-3-methylthiophene are more preferable because of the effect of improving solvent solubility. Among alkyl groups, a methyl group is preferred because it does not adversely affect conductivity.

[導電性フィラー]
導電性フィラーとしては、例えば、粒径5〜5000nmのカーボン粒子、グラファイト粒子、銅、ニッケル、銀、金、錫、鉄などの金属粒子、繊維長0.1〜500μm、線径1〜1000nmのカーボンファイバー、カーボンナノチューブなどが挙げられる。これらの中でも、少量の添加で導電性を向上させることができ、分散性に優れたカーボンファイバー、カーボンナノチューブが好ましい。
また、カーボン粒子、グラファイト粒子、カーボンファイバー、カーボンナノチューブのような炭素材料は還元作用を有しており、酸素によるπ共役系導電性高分子の劣化を防ぐ働きがある点で好ましい。
[Conductive filler]
Examples of the conductive filler include carbon particles having a particle size of 5 to 5000 nm, graphite particles, metal particles such as copper, nickel, silver, gold, tin, and iron, fiber lengths of 0.1 to 500 μm, and wire diameters of 1 to 1000 nm. Examples thereof include carbon fibers and carbon nanotubes. Among these, carbon fibers and carbon nanotubes that can improve conductivity with a small amount of addition and are excellent in dispersibility are preferable.
Carbon materials such as carbon particles, graphite particles, carbon fibers, and carbon nanotubes are preferable in that they have a reducing action and have a function of preventing deterioration of the π-conjugated conductive polymer due to oxygen.

導電性フィラーはその表面にスルホ基および/またはカルボキシル基を有していることが好ましい。導電性フィラーの表面にスルホ基および/またはカルボキシル基を有していれば、π共役系導電性高分子中への分散性が向上する上に、π共役系導電性高分子へのドーパントとしても働くため、ドーパントの耐熱性を高めることができる。導電性フィラー表面にスルホ基および/またはカルボキシル基を導入する方法としては、例えば、導電性フィラーを濃硫酸処理や過酸化物処理する方法などの周知の表面処理を採用できる。  The conductive filler preferably has a sulfo group and / or a carboxyl group on its surface. If the surface of the conductive filler has a sulfo group and / or a carboxyl group, the dispersibility in the π-conjugated conductive polymer is improved, and it can be used as a dopant to the π-conjugated conductive polymer. Since it works, the heat resistance of the dopant can be increased. As a method for introducing a sulfo group and / or a carboxyl group into the surface of the conductive filler, for example, a known surface treatment such as a method of treating the conductive filler with concentrated sulfuric acid or peroxide can be employed.

また、導電性フィラーは、その表面がπ共役系導電性高分子で覆われていることが好ましい。導電性フィラーの表面がπ共役系導電性高分子で覆われていれば、誘電体層上に導電性組成物からなる固体電解質膜を形成した際に、導電性フィラーが誘電体層に直接触れて短絡することを防ぎ、確実にπ共役系導電性高分子による誘電体層修復機能を働かせることができる。
導電性フィラー表面をπ共役系導電性高分子で覆う方法としては、いわゆる、化学重合法が簡便である。化学重合法による被覆では、まず、導電性フィラーを分散した溶媒中に、π共役系導電性高分子の前躯体モノマーと必要であればドーパントとを添加し、十分攪拌混合して混合液を調製する。そして、その混合液に酸化剤を滴下して重合を進行させた後、酸化剤、残留モノマー、副生成物を除去、精製してπ共役系導電性高分子で表面が覆われた導電性フィラーを得る。
The surface of the conductive filler is preferably covered with a π-conjugated conductive polymer. If the surface of the conductive filler is covered with a π-conjugated conductive polymer, the conductive filler directly touches the dielectric layer when a solid electrolyte film made of a conductive composition is formed on the dielectric layer. Therefore, the function of repairing the dielectric layer by the π-conjugated conductive polymer can be surely activated.
As a method of covering the surface of the conductive filler with the π-conjugated conductive polymer, a so-called chemical polymerization method is simple. In the coating by the chemical polymerization method, first, a precursor monomer of a π-conjugated system conductive polymer and a dopant if necessary are added to a solvent in which a conductive filler is dispersed, and the mixture is prepared by sufficiently stirring and mixing. To do. Then, after dropping the oxidizing agent into the mixed solution to advance the polymerization, the conductive filler whose surface is covered with the π-conjugated conductive polymer by removing and purifying the oxidizing agent, residual monomer and by-products Get.

また、シアノ基含有高分子化合物とπ共役系導電性高分子とからなる導電性混合物を溶媒に溶解した溶液で導電性フィラーを処理して表面をπ共役系導電性高分子で覆ってもよい。この場合、処理に用いるシアノ基含有高分子化合物としては、導電性組成物を得るために別途配合するシアノ基含有高分子化合物と極性の異なるものが好ましい。このようにしておけば、分散処理中に溶解することを防止できる。
なお、導電性フィラー表面をπ共役系導電性高分子で覆う場合でも、表面にスルホ基やカルボキシル基を有した導電性フィラーを用いれば、このスルホ基やカルボキシル基が強力なドーパントとして働き、高導電性のπ共役系導電性高分子皮膜を形成できる。
Alternatively, the conductive filler may be treated with a solution obtained by dissolving a conductive mixture composed of a cyano group-containing polymer compound and a π-conjugated conductive polymer in a solvent, and the surface may be covered with the π-conjugated conductive polymer. . In this case, the cyano group-containing polymer compound used for the treatment is preferably a compound having a polarity different from that of the cyano group-containing polymer compound separately added to obtain a conductive composition. In this way, dissolution during the dispersion process can be prevented.
Even when the conductive filler surface is covered with a π-conjugated conductive polymer, if a conductive filler having a sulfo group or a carboxyl group on the surface is used, the sulfo group or the carboxyl group works as a strong dopant. A conductive π-conjugated conductive polymer film can be formed.

[ドーパント]
導電性組成物は、導電性と耐熱性とをともにより向上させるためにドーパントを含むことが好ましい。通常、ドーパントとしてはハロゲン化合物、ルイス酸、プロトン酸などが用いられ、具体的には、有機カルボン酸、有機スルホン酸等の有機酸、有機シアノ化合物、フラーレン、水素化フラーレン、水酸化フラーレン、カルボン酸化フラーレン、スルホン酸化フラーレンなどが挙げられる。
[Dopant]
The conductive composition preferably contains a dopant in order to improve both conductivity and heat resistance. Usually, halogen compounds, Lewis acids, proton acids, and the like are used as dopants. Specifically, organic acids such as organic carboxylic acids and organic sulfonic acids, organic cyano compounds, fullerenes, hydrogenated fullerenes, fullerene hydroxides, carboxyls Examples include fullerene oxide and sulfonated fullerene.

さらに、有機酸としては、アルキルベンゼンスルホン酸、アルキルナフタレンスルホン酸、アルキルナフタレンジスルホン酸、ナフタレンスルホン酸ホルマリン重縮合物、メラミンスルホン酸ホルマリン重縮合物、ナフタレンジスルホン酸、ナフタレントリスルホン酸、ジナフチルメタンジスルホン酸、アントラキノンスルホン酸、アントラキノンジスルホン酸、アントラセンスルホン酸、ピレンスルホン酸などが挙げられ、これらはその金属塩も使用できる。
有機シアノ化合物としては、ジクロロジシアノベンゾキノン(DDQ)、テトラシアノキノジメタン、テトラシアノアザナフタレンなどが挙げられる。
Furthermore, as organic acids, alkylbenzene sulfonic acid, alkyl naphthalene sulfonic acid, alkyl naphthalene disulfonic acid, naphthalene sulfonic acid formalin polycondensate, melamine sulfonic acid formalin polycondensate, naphthalene disulfonic acid, naphthalene trisulfonic acid, dinaphthylmethane disulfone Examples include acids, anthraquinone sulfonic acids, anthraquinone disulfonic acids, anthracene sulfonic acids, and pyrene sulfonic acids, and the metal salts thereof can also be used.
Examples of the organic cyano compound include dichlorodicyanobenzoquinone (DDQ), tetracyanoquinodimethane, and tetracyanoazanaphthalene.

この導電性組成物において、シアノ基含有高分子化合物とπ共役系導電性高分子との質量比(シアノ基含有高分子化合物:π共役系導電性高分子)は5:95〜99:1であることが好ましく、10:90〜95:5であることがより好ましく、20:80〜85:15であることが特に好ましい。この範囲であれば、導電性と溶媒溶解性とがともに高いが、π共役系導電性高分子がこの範囲より少ないと十分な導電性が得られなくなることがあり、この範囲より多いと溶媒溶解性に乏しくなる傾向にある。
また、導電性混合物と導電性フィラーとの質量比(導電性混合物:導電性フィラー)が50:50〜99.9:0.1であることが好ましく、60:40〜95:5であることがより好ましく、70:30〜90:10であることが特に好ましい。この範囲であれば、導電性と製膜性とがともに高いが、導電性フィラーがこの範囲より少ないと導電性が十分に向上しないことがあり、これより多いと製膜性が欠如したり、高価なカーボンナノチューブを用いた場合などではコスト高の原因になることがある。また、導電性組成物をコンデンサ陰極材料として用いる場合には、導電性フィラーが多すぎるとコンデンサ誘電体の漏れ電流によりショートを起こし、コンデンサとして機能しなくおそれがある。
In this conductive composition, the mass ratio of the cyano group-containing polymer compound to the π-conjugated conductive polymer (cyano group-containing polymer compound: π-conjugated conductive polymer) is 5:95 to 99: 1. It is preferably 10:90 to 95: 5, more preferably 20:80 to 85:15. Within this range, both conductivity and solvent solubility are high. However, if the π-conjugated conductive polymer is less than this range, sufficient conductivity may not be obtained. It tends to be scarce.
The mass ratio of the conductive mixture to the conductive filler (conductive mixture: conductive filler) is preferably 50:50 to 99.9: 0.1, and preferably 60:40 to 95: 5. Is more preferable, and 70:30 to 90:10 is particularly preferable. If it is in this range, both conductivity and film-forming property are high, but if the conductive filler is less than this range, the conductivity may not be sufficiently improved, and if it is more than this, film-forming property is lacking, When expensive carbon nanotubes are used, the cost may increase. In addition, when the conductive composition is used as a capacitor cathode material, if there is too much conductive filler, a short circuit may occur due to the leakage current of the capacitor dielectric, and the capacitor may not function.

以上説明した導電性組成物は、シアノ基含有高分子化合物を含有しており、このシアノ基含有高分子化合物はπ共役系導電性高分子を溶媒に可溶化させる性質を有しているため、π共役系導電性高分子を塗布して固体電解質層を形成することが可能になる。また、この導電性組成物は導電性フィラーを含有しているため、該導電性組成物から形成される固体電解質層の導電性が高くなるだけでなく、導電性フィラーは無機粒子であることから、固体電解質層の耐熱性が高くなる。  The conductive composition described above contains a cyano group-containing polymer compound, and since this cyano group-containing polymer compound has a property of solubilizing the π-conjugated conductive polymer in a solvent, It becomes possible to form a solid electrolyte layer by applying a π-conjugated conductive polymer. In addition, since the conductive composition contains a conductive filler, not only the conductivity of the solid electrolyte layer formed from the conductive composition is increased, but the conductive filler is inorganic particles. The heat resistance of the solid electrolyte layer is increased.

[導電性組成物の製造方法]
本発明の導電性組成物の製造方法は、シアノ基含有高分子化合物の存在下でπ共役系導電性高分子の前駆体モノマーを重合して導電性混合物を製造し、その導電性混合物に導電性フィラーを混合する方法である。
その製造方法の一例を以下に示す。まず、シアノ基含有高分子化合物を、これを溶解可能な溶媒に溶解し、その溶液にπ共役系導電性高分子の前躯体モノマーを添加し、十分攪拌混合してモノマー含有溶液を調製する。次いで、そのモノマー含有溶液に酸化剤を滴下して重合を進行させた後、酸化剤、残留モノマー、副生成物を除去、精製してシアノ基含有高分子化合物とπ共役系導電性高分子とからなる導電性混合物を得る。そして、この導電性混合物に導電性フィラーを添加し、十分に混合、攪拌し、分散させて導電性組成物を得る。
[Method for producing conductive composition]
In the method for producing a conductive composition of the present invention, a precursor mixture of a π-conjugated conductive polymer is polymerized in the presence of a cyano group-containing polymer compound to produce a conductive mixture, and the conductive mixture is electrically conductive. This is a method of mixing a functional filler.
An example of the manufacturing method is shown below. First, a cyano group-containing polymer compound is dissolved in a solvent that can dissolve the cyano group-containing polymer compound, and a precursor monomer of a π-conjugated conductive polymer is added to the solution, followed by thorough mixing to prepare a monomer-containing solution. Next, after an oxidant is dropped into the monomer-containing solution to advance the polymerization, the oxidant, residual monomer, and by-products are removed and purified to obtain a cyano group-containing polymer compound and a π-conjugated conductive polymer. A conductive mixture is obtained. And an electroconductive filler is added to this electroconductive mixture, and it fully mixes, stirs, and disperses, and obtains an electroconductive composition.

π共役系導電性高分子の前駆体モノマーを重合する酸化剤としては、公知のものが使用でき、例えば、塩化第二鉄、三フッ化ホウ素、塩化アルミニウムなどの金属ハロゲン化合物、過酸化水素、過酸化ベンゾイルなどの過酸化物、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウムなどの過硫酸塩、オゾン、酸素などが挙げられる。  As the oxidizing agent for polymerizing the precursor monomer of the π-conjugated conductive polymer, known ones can be used, for example, metal halogen compounds such as ferric chloride, boron trifluoride, aluminum chloride, hydrogen peroxide, Examples thereof include peroxides such as benzoyl peroxide, persulfates such as potassium persulfate, sodium persulfate, and ammonium persulfate, ozone, and oxygen.

シアノ基含有高分子化合物を溶解する溶媒としては特に限定されず、例えば、水、メタノール、エタノール、プロピレンカーボネート、N−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、シクロヘキサノン、アセトン、メチルエチルケトン、メチルイソブチルケトン、トルエンなどの単独もしくは混合溶媒に溶解すればよい。これらの中でも、水以外の有機溶剤であれば表面張力が小さく、多孔体内部への浸透性が高くなるので、導電性がより高くなる。  The solvent for dissolving the cyano group-containing polymer compound is not particularly limited. For example, water, methanol, ethanol, propylene carbonate, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, cyclohexanone, acetone, methyl ethyl ketone, methyl isobutyl ketone, toluene And the like may be dissolved alone or in a mixed solvent. Among these, an organic solvent other than water has low surface tension and high permeability into the porous body, so that the conductivity becomes higher.

上記製造方法においては、ドーパントをπ共役系導電性高分子の前躯体モノマーとともに添加してもよいし、導電性混合物に添加してもよい。
なお、導電性フィラーの導電性混合物への混合は、導電性混合物に直接添加にすることに限定されず、例えば、モノマー含有溶液に導電性フィラーを添加し、導電性高分子の重合反応の際に共存させて導電性混合物に混合しても特に問題はない。
In the said manufacturing method, a dopant may be added with the precursor monomer of (pi) conjugated system conductive polymer, and may be added to a conductive mixture.
The mixing of the conductive filler into the conductive mixture is not limited to the direct addition to the conductive mixture. For example, the conductive filler is added to the monomer-containing solution and the conductive polymer is polymerized. There is no particular problem even if it is mixed with the conductive mixture.

以上説明した導電性組成物の製造方法では、π共役系導電性高分子の前駆体モノマーを重合する際にシアノ基含有高分子化合物が共存しているので、π共役系導電性高分子を溶媒に溶解させることができる。そのため、π共役系導電性高分子を塗布することが可能になり、塗布、乾燥といった簡単な工程で固体電解質層を誘電体層表面に形成できる。そして、固体電解質層によって誘電体欠損部からの漏れ電流を防ぐことができ、しかも、耐熱性の高い導電性フィラーを混合するので、固体電解質層の導電性および耐熱性を向上させることができる。  In the method for producing a conductive composition described above, since the cyano group-containing polymer compound coexists when the precursor monomer of the π-conjugated conductive polymer is polymerized, the π-conjugated conductive polymer is used as a solvent. Can be dissolved. Therefore, it becomes possible to apply a π-conjugated conductive polymer, and the solid electrolyte layer can be formed on the surface of the dielectric layer by a simple process such as application and drying. And since the leakage current from a dielectric defect | deletion part can be prevented with a solid electrolyte layer, and since the conductive filler with high heat resistance is mixed, the electroconductivity and heat resistance of a solid electrolyte layer can be improved.

[導電性塗料]
本発明の導電性塗料は、上述した導電性組成物と、水または有機溶剤とを含有するものである。有機溶剤としては、上述したシアノ基含有高分子化合物を溶解する溶剤のうち、水以外のものが挙げられる。
導電性塗料は、導電性組成物を水または有機溶剤に添加することで製造してもよいし、上述した導電性組成物の製造方法で得られた溶媒を含んだ導電性組成物をそのまま用いてもよい。
[Conductive paint]
The conductive paint of the present invention contains the above-described conductive composition and water or an organic solvent. As an organic solvent, things other than water are mentioned among the solvents which melt | dissolve the cyano group containing high molecular compound mentioned above.
The conductive paint may be produced by adding the conductive composition to water or an organic solvent, or the conductive composition containing the solvent obtained by the above-described method for producing a conductive composition is used as it is. May be.

[コンデンサ]
本発明のコンデンサは、弁金属の多孔体からなる陽極と、該陽極に隣接し、前記弁金属の酸化皮膜からなる誘電体層と、上記導電性組成物からなる陰極とを有するものである。このコンデンサの陰極は、上記導電性組成物から形成されているため、コンデンサは性能が優れる上に、過酷な使用環境にも耐えられる。
ここで、弁金属としてはアルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモンなどが挙げられるが、このうちコンデンサ陽極に用いられるものとしてはアルミニウム、タンタル、ニオブが好適である。
[Capacitor]
The capacitor of the present invention has an anode made of a porous body of valve metal, a dielectric layer made of an oxide film of the valve metal adjacent to the anode, and a cathode made of the conductive composition. Since the cathode of this capacitor is formed from the above conductive composition, the capacitor has excellent performance and can withstand harsh usage environments.
Here, examples of the valve metal include aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, and antimony. Among these, aluminum, tantalum, and niobium are suitable for use in the capacitor anode. is there.

本発明のコンデンサの製造方法の一例について説明する。このコンデンサの製造方法の例では、まず、弁金属の多孔体からなる陽極上に、前記弁金属の酸化皮膜からなる誘電体層を形成してコンデンサ中間体を得る。ここで、コンデンサ中間体の製造方法としては、例えば、アルミニウム箔をエッチングして表面積を増加した後、その表面を酸化処理する方法や、タンタル粒子やニオブ粒子の焼結体表面を酸化処理しペレット化する方法などが挙げられる。
次いで、コンデンサ中間体に導電性塗料を浸漬法やスプレーコート法などの方法で塗布し、その後、溶媒を乾燥して誘電体層表面に導電性組成物からなる陰極を形成してコンデンサを得る。
導電性塗料を浸漬法で塗布する場合には、例えば、コンデンサ中間体を導電性塗料に浸漬して多孔体内部にまで浸透させ、必要であれば浸漬時に超音波、振動、減圧、加熱などの操作を加えて多孔体内部への浸透を補助しても良い。また、繰り返し浸漬、乾燥を行って塗布厚みを調節してもよい。
An example of the method for manufacturing a capacitor of the present invention will be described. In this example of the capacitor manufacturing method, first, a dielectric layer made of an oxide film of the valve metal is formed on an anode made of a porous body of the valve metal to obtain a capacitor intermediate. Here, as a method of manufacturing the capacitor intermediate, for example, after etching the aluminum foil to increase the surface area, the surface is oxidized, or the surface of the sintered body of tantalum particles and niobium particles is oxidized and pellets The method of making it.
Next, a conductive paint is applied to the capacitor intermediate by a method such as dipping or spray coating, and then the solvent is dried to form a cathode made of a conductive composition on the surface of the dielectric layer to obtain a capacitor.
When applying the conductive paint by the immersion method, for example, the capacitor intermediate is immersed in the conductive paint and penetrates into the porous body, and if necessary, ultrasonic waves, vibration, reduced pressure, heating, etc. An operation may be added to assist penetration into the porous body. Further, the coating thickness may be adjusted by repeatedly dipping and drying.

本発明のコンデンサの製造方法では、誘電体層に上記導電性塗料を塗布、乾燥することで陰極を形成するので、コンデンサ製造の工程が簡略化されている。   In the method for manufacturing a capacitor according to the present invention, the cathode is formed by applying and drying the conductive paint on the dielectric layer, so that the capacitor manufacturing process is simplified.

以下、実施例により本発明をさらに詳しく説明する。
(実施例1)
(1)シアノ基含有高分子化合物の合成
アクリロニトリル50gとスチレン10gとをトルエン500ml中に溶解し、重合開始剤としてアゾビスイソブチロニトリルを1.5g添加し、50℃で5時間重合した。そして、重合により生成したポリマーをメタノールで洗浄してシアノ基含有高分子化合物を得た。
(2)導電性組成物の製造
(1)で合成したシアノ基含有高分子化合物10gをアセトニトリル90gに溶解し、ピロール50gとオクタデシルナフタレンスルホン酸ナトリウム20gとを添加し、−20℃に冷却しながら1時間攪拌してモノマー含有溶液を調製した。
このモノマー含有溶液に、塩化第二鉄250gをアセトニトリル1250mlに溶解した酸化剤溶液を、−20℃を保ちながら2時間かけて滴下し、さらに12時間攪拌を続けてピロールの重合を行った。
重合終了後、反応液に2000mlのメタノールを添加して生成物を析出し、生成した沈殿物をろ過し、次いで、ろ液が透明になるまでメタノールと純水とにより洗浄して導電性混合物を得た。この導電性混合物をジメチルアセトアミド(DMAc)に溶解して濃度5質量%の導電性混合物溶液を調製した。そして、この導電性混合物溶液の固形分100質量部に対して10質量部のカーボンナノチューブを混合し、攪拌して、導電性組成物とジメチルアセトアミドとを含む導電性塗料を得た。
Hereinafter, the present invention will be described in more detail with reference to examples.
(Example 1)
(1) Synthesis of cyano group-containing polymer compound 50 g of acrylonitrile and 10 g of styrene were dissolved in 500 ml of toluene, 1.5 g of azobisisobutyronitrile was added as a polymerization initiator, and polymerized at 50 ° C. for 5 hours. And the polymer produced | generated by superposition | polymerization was wash | cleaned with methanol, and the cyano group containing high molecular compound was obtained.
(2) Production of conductive composition 10 g of the cyano group-containing polymer synthesized in (1) was dissolved in 90 g of acetonitrile, 50 g of pyrrole and 20 g of sodium octadecylnaphthalenesulfonate were added, and the mixture was cooled to -20 ° C. A monomer-containing solution was prepared by stirring for 1 hour.
To this monomer-containing solution, an oxidant solution in which 250 g of ferric chloride was dissolved in 1250 ml of acetonitrile was added dropwise over 2 hours while maintaining −20 ° C., and stirring was further continued for 12 hours to polymerize pyrrole.
After completion of the polymerization, 2000 ml of methanol was added to the reaction solution to precipitate the product, and the generated precipitate was filtered, and then washed with methanol and pure water until the filtrate became transparent to remove the conductive mixture. Obtained. This conductive mixture was dissolved in dimethylacetamide (DMAc) to prepare a conductive mixture solution having a concentration of 5% by mass. And 10 mass parts carbon nanotube was mixed with respect to 100 mass parts of solid content of this electroconductive mixture solution, it stirred, and the electroconductive coating material containing an electroconductive composition and dimethylacetamide was obtained.

得られた導電性塗料について以下の試験方法により電気伝導度(導電性)、耐熱性を評価した。その結果を表1に示す。
<試験方法>
(a)電気伝導度
導電性塗料をPETフィルム上に厚み2μmで塗布して形成した塗膜の電気伝導度(単位;S/cm)を、導電率計(商品名:ロレスタMCP−T600)を用いて測定した(表中、「初期」の欄)。
(b)耐熱性
導電性塗料をPETフィルム上に厚み10μmで塗布し、その後、125℃のオーブンに240時間放置し、240時間放置後における電気伝導度の変化を耐熱性の指標とした。
The obtained conductive paint was evaluated for electrical conductivity (conductivity) and heat resistance by the following test methods. The results are shown in Table 1.
<Test method>
(A) Electric conductivity The electric conductivity (unit: S / cm) of a coating film formed by applying a conductive paint on a PET film with a thickness of 2 μm is measured using a conductivity meter (trade name: Loresta MCP-T600). (In the table, “initial” column).
(B) Heat resistance A conductive paint was applied to a PET film with a thickness of 10 μm and then left in an oven at 125 ° C. for 240 hours, and the change in electrical conductivity after leaving for 240 hours was used as an index of heat resistance.

Figure 2005206657
Figure 2005206657

(実施例2)
(1)シアノ基含有高分子化合物の合成
アクリロニトリル30gとメタクリル酸メチル20gとをトルエン500ml中に溶解し、重合開始剤としてアゾビスイソブチロニトリルを1.5g添加し、50℃で5時間重合した。そして、重合により生成したポリマーをメタノールで洗浄してシアノ基含有高分子化合物を得た。
(2)導電性組成物の製造
(1)で合成したシアノ基含有高分子化合物10gをアセトニトリル90gに溶解し、ピロール50gとアントラキノンジスルホン酸ナトリウム20gとを添加し、−20℃に冷却しながら1時間攪拌してモノマー含有溶液を調製した。
このモノマー含有溶液に、塩化第二鉄250gをアセトニトリル1250mlに溶解した酸化剤溶液を、−20℃を保ちながら2時間かけて滴下し、さらに12時間攪拌を続けてピロールの重合を行った。
重合終了後、反応液に2000mlのメタノールを添加して生成物を析出し、生成した沈殿物をろ過し、次いで、ろ液が透明になるまでメタノールと純水とにより洗浄して導電性混合物を得た。この導電性混合物をジメチルアセトアミド(DMAc)に溶解して濃度5質量%の導電性混合物溶液を調製した。そして、この導電性混合物溶液の固形分100質量部に対して15質量部のスルホ基含有カーボンナノチューブを混合し、攪拌して、導電性組成物とジメチルアセトアミドとを含む導電性塗料を得た。ここで、スルホ基含有カーボンナノチューブとしては、カーボンナノチューブ100gを濃硫酸1000ml中に添加し、100℃で12時間還流し、水洗、ろ別したものを用いた。
得られた導電性塗料について実施例1と同様に試験した。
(Example 2)
(1) Synthesis of cyano group-containing polymer compound 30 g of acrylonitrile and 20 g of methyl methacrylate are dissolved in 500 ml of toluene, 1.5 g of azobisisobutyronitrile is added as a polymerization initiator, and polymerization is carried out at 50 ° C. for 5 hours. did. And the polymer produced | generated by superposition | polymerization was wash | cleaned with methanol, and the cyano group containing high molecular compound was obtained.
(2) Production of conductive composition 10 g of the cyano group-containing polymer compound synthesized in (1) is dissolved in 90 g of acetonitrile, 50 g of pyrrole and 20 g of sodium anthraquinone disulfonate are added, and the mixture is cooled to −20 ° C. A monomer-containing solution was prepared by stirring for a period of time.
To this monomer-containing solution, an oxidant solution in which 250 g of ferric chloride was dissolved in 1250 ml of acetonitrile was added dropwise over 2 hours while maintaining −20 ° C., and stirring was further continued for 12 hours to polymerize pyrrole.
After completion of the polymerization, 2000 ml of methanol was added to the reaction solution to precipitate the product, and the generated precipitate was filtered, and then washed with methanol and pure water until the filtrate became transparent to remove the conductive mixture. Obtained. This conductive mixture was dissolved in dimethylacetamide (DMAc) to prepare a conductive mixture solution having a concentration of 5% by mass. And 15 mass parts sulfo group containing carbon nanotube was mixed with respect to 100 mass parts of solid content of this electroconductive mixture solution, and it stirred, and obtained the electroconductive coating material containing an electroconductive composition and dimethylacetamide. Here, as the sulfo group-containing carbon nanotube, 100 g of carbon nanotube was added to 1000 ml of concentrated sulfuric acid, refluxed at 100 ° C. for 12 hours, washed with water, and filtered.
The obtained conductive paint was tested in the same manner as in Example 1.

(実施例3)
(1)表面被覆導電性フィラーの作製
アセトニトリル100ml中に、実施例2で使用したスルホ基含有カーボンナノチューブ10gを分散し、続いて、ピロール5gとp−トルエンスルホン酸1gとを添加し、−20℃に冷却しながら1時間攪拌した。次いで、この溶液に、塩化第二鉄15gをアセトニトリル100mlに溶解した酸化剤溶液を、−20℃を保ちながら2時間かけて滴下し、さらに12時間攪拌を続けてピロールの重合を行った。この重合によってスルホ基含有カーボンナノチューブの表面にピロールが被覆した表面被覆導電性フィラーを得た。
得られた表面被覆導電性フィラーをろ別し、ろ液が透明になるまでメタノールと純水とで洗浄して、高純度の表面被覆導電性フィラーを得た。
(2)シアノ基含有高分子化合物の合成
アクリロニトリル30gとメタクリル酸メチル20gとをトルエン500ml中に溶解し、重合開始剤としてアゾビスイソブチロニトリルを1.5g添加し、50℃で5時間重合した。そして、重合により生成したポリマーをメタノールで洗浄してシアノ基含有高分子化合物を得た。
(Example 3)
(1) Production of surface-coated conductive filler In 100 ml of acetonitrile, 10 g of the sulfo group-containing carbon nanotubes used in Example 2 were dispersed, and subsequently, 5 g of pyrrole and 1 g of p-toluenesulfonic acid were added, and −20 The mixture was stirred for 1 hour while cooling to ° C. Next, an oxidant solution in which 15 g of ferric chloride was dissolved in 100 ml of acetonitrile was dropped into this solution over 2 hours while maintaining -20 ° C., and stirring was further continued for 12 hours to polymerize pyrrole. By this polymerization, a surface-coated conductive filler in which the surface of the sulfo group-containing carbon nanotube was coated with pyrrole was obtained.
The obtained surface-coated conductive filler was filtered off and washed with methanol and pure water until the filtrate became transparent to obtain a high-purity surface-coated conductive filler.
(2) Synthesis of cyano group-containing polymer compound 30 g of acrylonitrile and 20 g of methyl methacrylate are dissolved in 500 ml of toluene, 1.5 g of azobisisobutyronitrile is added as a polymerization initiator, and polymerization is carried out at 50 ° C. for 5 hours. did. And the polymer produced | generated by superposition | polymerization was wash | cleaned with methanol, and the cyano group containing high molecular compound was obtained.

(3)導電性組成物の製造
(2)で合成したシアノ基含有高分子化合物10gをアセトニトリル90gに溶解し、ピロール50gとアントラキノンジスルホン酸ナトリウム20gとを添加し、−20℃に冷却しながら1時間攪拌してモノマー含有溶液を調製した。
このモノマー含有溶液に、塩化第二鉄250gをアセトニトリル1250mlに溶解した酸化剤溶液を、−20℃を保ちながら2時間かけて滴下し、さらに12時間攪拌を続けてピロールの重合を行った。
重合終了後、反応液に2000mlのメタノールを添加して生成物を析出し、生成した沈殿物をろ過し、次いで、ろ液が透明になるまでメタノールと純水とにより洗浄して導電性混合物を得た。この導電性混合物をジメチルアセトアミド(DMAc)に溶解して濃度5質量%の導電性混合物溶液を調製した。そして、この導電性混合物溶液の固形分100質量部に対して15質量部の(1)で得た表面被覆カーボンナノチューブを混合し、攪拌して、導電性組成物とジメチルアセトアミドとを含む導電性塗料を得た。
得られた導電性塗料について実施例1と同様に試験した。
(3) Production of conductive composition 10 g of the cyano group-containing polymer compound synthesized in (2) was dissolved in 90 g of acetonitrile, 50 g of pyrrole and 20 g of sodium anthraquinone disulfonate were added, and the mixture was cooled to −20 ° C. A monomer-containing solution was prepared by stirring for a period of time.
To this monomer-containing solution, an oxidant solution in which 250 g of ferric chloride was dissolved in 1250 ml of acetonitrile was added dropwise over 2 hours while maintaining −20 ° C., and stirring was further continued for 12 hours to polymerize pyrrole.
After completion of the polymerization, 2000 ml of methanol was added to the reaction solution to precipitate the product, and the generated precipitate was filtered, and then washed with methanol and pure water until the filtrate became transparent to remove the conductive mixture. Obtained. This conductive mixture was dissolved in dimethylacetamide (DMAc) to prepare a conductive mixture solution having a concentration of 5% by mass. Then, 15 parts by mass of the surface-coated carbon nanotube obtained in (1) is mixed with 100 parts by mass of the solid content of the conductive mixture solution, and the mixture is stirred to obtain a conductive composition containing the conductive composition and dimethylacetamide. A paint was obtained.
The obtained conductive paint was tested in the same manner as in Example 1.

(比較例1)
純水100gに分子量50000のポリスチレンスルホン酸ナトリウム10gを溶解し、続いてアニリン10g添加し、5℃に冷却しながら1時間攪拌してモノマー含有溶液を調製した。
このモノマー含有溶液に、過硫酸アンモニウム250gを純水1250mlに溶解した酸化剤溶液を、5℃を保ちながら2時間かけて滴下し、さらに12時間攪拌を続けてアニリンの重合を行った。
重合終了後、重合生成物を含んだ溶液を、イオン交換樹脂を充填したカラムに数回通過させて洗浄して導電性組成物を含む液を得た。そして、その液の導電性組成物濃度を5質量%に調節して導電性塗料とした。
得られた導電性塗料について実施例1と同様に試験した。
(Comparative Example 1)
In 100 g of pure water, 10 g of sodium polystyrene sulfonate having a molecular weight of 50000 was dissolved, followed by addition of 10 g of aniline and stirring for 1 hour while cooling to 5 ° C. to prepare a monomer-containing solution.
To this monomer-containing solution, an oxidant solution in which 250 g of ammonium persulfate was dissolved in 1250 ml of pure water was added dropwise over 2 hours while maintaining 5 ° C., and stirring was further continued for 12 hours to polymerize aniline.
After the completion of the polymerization, the solution containing the polymerization product was passed through a column filled with an ion exchange resin several times and washed to obtain a liquid containing a conductive composition. And the electrically conductive composition density | concentration of the liquid was adjusted to 5 mass%, and it was set as the electrically conductive coating material.
The obtained conductive paint was tested in the same manner as in Example 1.

実施例1〜3の導電性塗料は、シアノ基含有高分子化合物とπ共役系導電性高分子と導電性フィラーとを含んでいたため、導電性が高く、耐熱性も十分に有していた。
一方、比較例1の導電性塗料は、高分子電解質を用いてπ共役系導電性高分子を水に溶解させたものであったため、導電性が低いだけでなく、耐熱性も劣っていた。
Since the conductive paints of Examples 1 to 3 contained a cyano group-containing polymer compound, a π-conjugated conductive polymer, and a conductive filler, they had high conductivity and had sufficient heat resistance. .
On the other hand, since the conductive paint of Comparative Example 1 was obtained by dissolving a π-conjugated conductive polymer in water using a polymer electrolyte, it was not only low in conductivity but also inferior in heat resistance.

本発明の導電性組成物は、アルミ電解コンデンサ、タンタル電解コンデンサ、ニオブ電解コンデンサなどの機能性コンデンサの陰極材料に好適に用いることができるだけでなく、帯電防止コーティング、帯電防止包装材などの帯電防止材や、液晶画面やプラズマディスプレイ画面の電磁波遮蔽用の電磁波シールド材や、転写ベルト、現像ロール、帯電ロール、転写ロールなどの電子写真機器部品に用いることができる。   The conductive composition of the present invention can be suitably used as a cathode material for functional capacitors such as aluminum electrolytic capacitors, tantalum electrolytic capacitors, niobium electrolytic capacitors, as well as antistatic coatings such as antistatic coatings and antistatic packaging materials. It can be used for electrophotographic equipment parts such as materials, electromagnetic wave shielding materials for shielding electromagnetic waves on liquid crystal screens and plasma display screens, transfer belts, developing rolls, charging rolls, and transfer rolls.

Claims (10)

シアノ基含有高分子化合物およびπ共役系導電性高分子からなる導電性混合物と、導電性フィラーとを含んでなることを特徴とする導電性組成物。   A conductive composition comprising a conductive mixture composed of a cyano group-containing polymer compound and a π-conjugated conductive polymer, and a conductive filler. 導電性フィラーは表面がπ共役系導電性高分子で覆われていることを特徴とする請求項1に記載の導電性組成物。   The conductive composition according to claim 1, wherein the surface of the conductive filler is covered with a π-conjugated conductive polymer. さらに、ドーパントを含むことを特徴とする請求項1または2に記載の導電性組成物。   Furthermore, a dopant is included, The electrically conductive composition of Claim 1 or 2 characterized by the above-mentioned. 導電性フィラーが表面にスルホ基および/またはカルボキシル基を有していることを特徴とする請求項1〜3のいずれかに記載の導電性組成物。   The conductive composition according to claim 1, wherein the conductive filler has a sulfo group and / or a carboxyl group on the surface. シアノ基含有高分子化合物とπ共役系導電性高分子との質量比が5:95〜99:1であることを特徴とする請求項1〜4のいずれかに記載の導電性組成物。   The conductive composition according to claim 1, wherein the mass ratio of the cyano group-containing polymer compound and the π-conjugated conductive polymer is 5:95 to 99: 1. 導電性混合物と導電性フィラーとの質量比が50:50〜99.9:0.1であることを特徴とする請求項1〜5のいずれかに記載の導電性組成物。   The conductive composition according to claim 1, wherein a mass ratio of the conductive mixture to the conductive filler is 50:50 to 99.9: 0.1. シアノ基含有高分子化合物の存在下でπ共役系導電性高分子の前駆体モノマーを重合して導電性混合物を製造し、その導電性混合物に導電性フィラーを混合することを特徴とする導電性組成物の製造方法。   Conductivity characterized in that a conductive mixture is produced by polymerizing a precursor monomer of a π-conjugated conductive polymer in the presence of a cyano group-containing polymer compound, and a conductive filler is mixed into the conductive mixture. A method for producing the composition. 請求項1〜6のいずれかに記載の導電性組成物と、水または有機溶剤とを含んでなることを特徴とする導電性塗料。   A conductive paint comprising the conductive composition according to claim 1 and water or an organic solvent. 弁金属の多孔体からなる陽極と、該陽極に隣接し、前記弁金属の酸化皮膜からなる誘電体層と、請求項1〜6のいずれかに記載の導電性組成物からなる陰極とを有することを特徴とするコンデンサ。   An anode made of a porous body of valve metal, a dielectric layer made of an oxide film of the valve metal adjacent to the anode, and a cathode made of the conductive composition according to claim 1. Capacitor characterized by that. 弁金属の多孔体からなる陽極上に前記弁金属の酸化皮膜からなる誘電体層を形成し、該誘電体層上に請求項8に記載の導電性塗料を塗布、乾燥して、誘電体層表面に導電性組成物からなる陰極を形成することを特徴とするコンデンサの製造方法。   A dielectric layer made of an oxide film of the valve metal is formed on an anode made of a porous body of the valve metal, and the conductive paint according to claim 8 is applied on the dielectric layer and dried to form a dielectric layer. A method for producing a capacitor, comprising forming a cathode made of a conductive composition on a surface.
JP2004013032A 2003-06-18 2004-01-21 Conductive composition, its preparation method, conductive paint, capacitor and its manufacturing method Pending JP2005206657A (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2004013032A JP2005206657A (en) 2004-01-21 2004-01-21 Conductive composition, its preparation method, conductive paint, capacitor and its manufacturing method
EP07025102A EP1918325A1 (en) 2003-06-18 2004-06-17 Conductive composition
DE602004023774T DE602004023774D1 (en) 2003-06-18 2004-06-17 Conductive composition
US10/561,112 US20070096066A1 (en) 2003-06-18 2004-06-17 Conductive composition, conductive coating material, conductive resin, capacitor, photoelectric transducer, and their production method
PCT/JP2004/008844 WO2004113441A1 (en) 2003-06-18 2004-06-17 Conductive composition, conductive coating material, conductive resin, capacitor, photo-electric converting element, and process for producing the same
CN201010233896XA CN101880460B (en) 2003-06-18 2004-06-17 Conductive composition and process for producing the same
EP07025180A EP1918326B8 (en) 2003-06-18 2004-06-17 Conductive composition
DE602004029032T DE602004029032D1 (en) 2003-06-18 2004-06-17 CONDUCTIVE COMPOSITION, CONDUCTIVE COATING MATERIAL, CONDUCTIVE RESIN, CONDENSER, PHOTOELECTRIC CONVERSION ELEMENT AND METHOD OF MANUFACTURING THEREOF
EP04746313A EP1634922B1 (en) 2003-06-18 2004-06-17 Conductive composition, conductive coating material, conductive resin, capacitor, photo-electric converting element, and process for producing the same
CN200710143069XA CN101113238B (en) 2003-06-18 2004-06-17 Conductive composition, and process for producing the same
AT04746313T ATE480591T1 (en) 2003-06-18 2004-06-17 CONDUCTIVE COMPOSITION, CONDUCTIVE COATING MATERIAL, CONDUCTIVE RESIN, CAPACITOR, PHOTOELECTRICAL CONVERSION ELEMENT AND PRODUCTION METHOD THEREOF
DE602004025060T DE602004025060D1 (en) 2003-06-18 2004-06-17 Conductive composition and manufacturing method therefor
EP08017549.0A EP2014718B2 (en) 2003-06-18 2004-06-17 Conductive composition, and their production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004013032A JP2005206657A (en) 2004-01-21 2004-01-21 Conductive composition, its preparation method, conductive paint, capacitor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005206657A true JP2005206657A (en) 2005-08-04

Family

ID=34899234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004013032A Pending JP2005206657A (en) 2003-06-18 2004-01-21 Conductive composition, its preparation method, conductive paint, capacitor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005206657A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078299A (en) * 2006-09-20 2008-04-03 Fujitsu Ltd Capacitor, manufacturing method thereof, and electronic board
JP2010153454A (en) * 2008-12-24 2010-07-08 Sanyo Electric Co Ltd Solid electrolytic capacitor
DE112012001014T5 (en) 2011-02-28 2013-11-28 Nec Tokin Corporation An electroconductive polymer solution and a process for producing the same, an electroconductive polymer material and a solid electrolytic capacitor using the same, and a process for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078299A (en) * 2006-09-20 2008-04-03 Fujitsu Ltd Capacitor, manufacturing method thereof, and electronic board
JP2010153454A (en) * 2008-12-24 2010-07-08 Sanyo Electric Co Ltd Solid electrolytic capacitor
DE112012001014T5 (en) 2011-02-28 2013-11-28 Nec Tokin Corporation An electroconductive polymer solution and a process for producing the same, an electroconductive polymer material and a solid electrolytic capacitor using the same, and a process for producing the same

Similar Documents

Publication Publication Date Title
EP1634922B1 (en) Conductive composition, conductive coating material, conductive resin, capacitor, photo-electric converting element, and process for producing the same
EP1391474B1 (en) Substituted polyalkylene dioxythiophene as solid state electrolyte in electrolyte capacitors
JP5191171B2 (en) Dispersant and dopant for conductive polymer synthesis, conductive polymer synthesized using the same, conductive composition containing the conductive polymer, dispersion of the conductive polymer or conductive composition, and the above Application of conductive polymer or conductive composition
WO2012157693A1 (en) Conductive polymer suspension and method for producing same, conductive polymer material, and electrolytic capacitor and method for producing same
EP2066723A1 (en) Process for preparing polythiophenes
EP2208746A1 (en) Selenium containing electrically conductive polymers and method of making electrically conductive polymers
DE10331673A1 (en) Polythiophene with alkyleneoxythiathiophene units in electrolytic capacitors
EP2238194A1 (en) Method for the production of conductive&lt;i&gt;&lt;/i&gt;polymers
TW200408659A (en) New 3, 4-alkylenedioxythiophene compounds and polymers thereof
JP4418198B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2010018698A (en) Composition for electroconductive coating and aqueous dispersion containing conductive polymer
JP2005158482A (en) Conductive composition, conductive coating, capacitor and manufacturing method of same
KR101050523B1 (en) Method for preparing core-shell structured nanoparticles comprising vinyl or acrylic polymer core and conductive polymer shell
JP4761436B2 (en) CARBON NANOTUBE-CONTAINING POLYMER, COMPOSITE HAVING COATING COMPRISING THE SAME, AND METHOD FOR PRODUCING THEM
CN101486837A (en) Conductive macromolecular solution, conductive polymer coated film and solid electrolyte
JP2007237580A (en) Surface protective film, method for producing the film, and laminate comprising the film
CN101486849B (en) Conductive paint, conductive composition and electronic component using the same
CN101488398A (en) Solid electrolyte, electrolytic capacitor using the solid electrolyte and production method for the solid electrolyte capacitor
JP2005008732A (en) Electroconductive composition, electroconductive coating material and electroconductive resin
JP4308068B2 (en) Conductive composition, conductive paint, capacitor and method for producing the same
JP2007526925A (en) Method for producing an electrically conductive coating
JP2005206657A (en) Conductive composition, its preparation method, conductive paint, capacitor and its manufacturing method
KR101890308B1 (en) Multi-layered conductive nano particles and preparation method of the same
KR20100039783A (en) Method for preparing organic solvent dispersion of conducting polymers using polymeric ionic liquid and the conducting polymer by prepared using the same
CN101303910B (en) Conductivity composite material and capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070104