JP4893729B2 - Film forming method, film forming apparatus, and storage medium - Google Patents

Film forming method, film forming apparatus, and storage medium Download PDF

Info

Publication number
JP4893729B2
JP4893729B2 JP2008309157A JP2008309157A JP4893729B2 JP 4893729 B2 JP4893729 B2 JP 4893729B2 JP 2008309157 A JP2008309157 A JP 2008309157A JP 2008309157 A JP2008309157 A JP 2008309157A JP 4893729 B2 JP4893729 B2 JP 4893729B2
Authority
JP
Japan
Prior art keywords
gas
supplying
film
thin film
silane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008309157A
Other languages
Japanese (ja)
Other versions
JP2009065203A (en
Inventor
保華 周
一秀 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2008309157A priority Critical patent/JP4893729B2/en
Publication of JP2009065203A publication Critical patent/JP2009065203A/en
Application granted granted Critical
Publication of JP4893729B2 publication Critical patent/JP4893729B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、半導体ウエハ等の被処理体に薄膜を形成する成膜方法、成膜装置及びこの成膜装置をコンピュータ制御するプログラムを記憶する記憶媒体に関する。   The present invention relates to a film forming method for forming a thin film on an object to be processed such as a semiconductor wafer, a film forming apparatus, and a storage medium for storing a program for controlling the film forming apparatus by a computer.

一般に、半導体集積回路を製造するためにはシリコン基板等よりなる半導体ウエハに対して、成膜処理、エッチング処理、酸化処理、拡散処理、改質処理、自然酸化膜の除去処理等の各種の処理が行なわれる。これらの処理を特許文献1等に開示されている縦型の、いわゆるバッチ式の熱処理装置にて行う場合には、まず、半導体ウエハを複数枚、例えば25枚程度収容できるカセットから、半導体ウエハを縦型のウエハボートへ移載してこれに多段に支持させる。このウエハボートは、例えばウエハサイズにもよるが30〜150枚程度のウエハを載置できる。このウエハボートは、排気可能な処理容器内にその下方より搬入(ロード)された後、処理容器内が気密に維持される。そして、処理ガスの流量、プロセス圧力、プロセス温度等の各種のプロセス条件を制御しつつ所定の熱処理が施される。   Generally, in order to manufacture a semiconductor integrated circuit, various processes such as a film formation process, an etching process, an oxidation process, a diffusion process, a modification process, and a natural oxide film removal process are performed on a semiconductor wafer made of a silicon substrate or the like. Is done. When these processes are performed in a so-called batch-type heat treatment apparatus disclosed in Patent Document 1 or the like, first, a semiconductor wafer is removed from a cassette that can accommodate a plurality of, for example, about 25 semiconductor wafers. It is transferred to a vertical wafer boat and is supported in multiple stages. This wafer boat can place about 30 to 150 wafers, for example, depending on the wafer size. After the wafer boat is loaded (loaded) into the evacuable processing container from below, the inside of the processing container is kept airtight. Then, a predetermined heat treatment is performed while controlling various process conditions such as the flow rate of process gas, process pressure, and process temperature.

ここで上記半導体集積回路の特性を向上させる要因の1つとして、集積回路中の絶縁膜の特性を向上させることは重要である。上記集積回路中の絶縁膜としては、一般的にはSiO 、PSG(Phospho Silicate Glass)、P(プラズマ)−SiO、P(プラズマ)−SiN、SOG(Spin On Glass)、Si (シリコン窒化膜)等が用いられる。そして、特にシリコン窒化膜は、絶縁特性がシリコン酸化膜より比較的良好なこと、及びエッチングストッパ膜や層間絶縁膜としても十分に機能することから多用される傾向にある。また同様な理由でボロン窒化膜も用いられる傾向にある。 Here, as one of the factors for improving the characteristics of the semiconductor integrated circuit, it is important to improve the characteristics of the insulating film in the integrated circuit. As the insulating film in the integrated circuit, generally, SiO 2 , PSG (Phospho Silicate Glass), P (plasma) -SiO, P (plasma) -SiN, SOG (Spin On Glass), Si 3 N 4 ( Silicon nitride film) or the like is used. In particular, the silicon nitride film tends to be frequently used because its insulating characteristics are relatively better than that of the silicon oxide film and it functions sufficiently as an etching stopper film and an interlayer insulating film. For the same reason, boron nitride films tend to be used.

半導体ウエハの表面に上述したようなシリコン窒化膜を形成するには、成膜ガスとしてモノシラン(SiH )やジクロルシラン(SiH Cl )やヘキサクロロジシラン(Si Cl )、ビス ターシャル ブチルアミノシラン(BTBAS)等のシラン系ガスを用いて熱CVD(Chemical Vapor Deposition)により成膜する方法が知られている。具体的には、シリコン窒化膜を堆積する場合には、SiH Cl +NH (特許文献1参照)或いはSi Cl +NH 等のガスの組み合わせで熱CVDによりシリコン窒化膜を形成している。
そして、上記絶縁膜の誘電率を小さくするためにシリコン窒化膜に不純物として例えばボロン(B)を添加して絶縁膜を形成するようにした提案もなされている(特許文献2)。
In order to form a silicon nitride film as described above on the surface of a semiconductor wafer, monosilane (SiH 4 ), dichlorosilane (SiH 2 Cl 2 ), hexachlorodisilane (Si 2 Cl 6 ), bis-tertiary butylaminosilane ( A method of forming a film by thermal CVD (Chemical Vapor Deposition) using a silane-based gas such as BTBAS is known. Specifically, when depositing a silicon nitride film, the silicon nitride film is formed by thermal CVD using a combination of gases such as SiH 2 Cl 2 + NH 3 (see Patent Document 1) or Si 2 Cl 6 + NH 3. Yes.
In order to reduce the dielectric constant of the insulating film, a proposal has been made to form an insulating film by adding, for example, boron (B) as an impurity to the silicon nitride film (Patent Document 2).

ところで、最近にあっては半導体集積回路の更なる高集積化及び高微細化の要求が強くなされており、回路素子の特性の向上を目的として半導体集積回路の製造工程における熱履歴も低減化することが望まれている。このような状況下において、縦型の、いわゆるバッチ式の縦型の処理装置においても、ウエハをそれ程の高温に晒さなくても目的とする処理が可能なことから、原料ガス等を間欠的に供給しながら原子レベルで1層〜数層ずつ、或いは分子レベルで1層〜数層ずつ繰り返し成膜する方法が知られている(特許文献3、4等)。このような成膜方法は一般的にはALD(Atomic Layer Deposition)と称されている。   Recently, there is a strong demand for further integration and miniaturization of semiconductor integrated circuits, and the thermal history in the manufacturing process of semiconductor integrated circuits is also reduced for the purpose of improving the characteristics of circuit elements. It is hoped that. Under such circumstances, even in a vertical type, so-called batch type vertical processing apparatus, the target processing is possible without exposing the wafer to such a high temperature. There is known a method of repeatedly forming one to several layers at the atomic level or one to several layers at the molecular level while supplying (Patent Documents 3, 4, etc.). Such a film forming method is generally referred to as ALD (Atomic Layer Deposition).

ここで従来の成膜方法としては、シラン系ガスであるジクロロシラン(以下、「DCS」とも称す)と窒化ガスであるNH ガスとを用いてシリコン窒化膜(SiN)を形成している。具体的には、処理容器内に、DCSとNH ガスとを交互に間欠的に供給し、NH ガスを供給する時にRF(高周波)を印加してプラズマを立て、窒化反応を促進するようにしている。この場合、DCSを処理容器内へ供給することにより、ウエハ表面上にDCSが分子レベルで一層、或いは複数層吸着し、そして余分なDCSを不活性ガスパージ、或いは真空引きで排除した後、NH を供給してプラズマを立てることによって低温での窒化を促進して窒化膜を形成し、この一連の工程を繰り返し行っている。 Here, as a conventional film forming method, a silicon nitride film (SiN) is formed using dichlorosilane (hereinafter also referred to as “DCS”) which is a silane-based gas and NH 3 gas which is a nitriding gas. Specifically, DCS and NH 3 gas are alternately and intermittently supplied into the processing vessel, and when NH 3 gas is supplied, RF (radio frequency) is applied to generate plasma to promote the nitriding reaction. I have to. In this case, by supplying DCS into the processing vessel, DCS is adsorbed on the wafer surface in one or more layers at the molecular level, and excess DCS is removed by inert gas purging or evacuation, and then NH 3 The plasma is generated to promote nitridation at a low temperature to form a nitride film, and this series of steps is repeated.

特開平6−275608号公報JP-A-6-275608 特開平2−93071号公報Japanese Patent Laid-Open No. 2-93071 特開平6−45256号公報JP-A-6-45256 特開平11−87341号公報Japanese Patent Application Laid-Open No. 11-87341

ところで、上述したような絶縁膜を形成した後に、この上に別の薄膜を形成する場合には、上記絶縁膜の表面が有機物やパーティクル等の汚染物が付着している可能性があるので、この汚染物を除去する目的で、上記半導体ウエハを希フッ酸等のクリーニング液に浸漬させて上記絶縁膜の表面をエッチングすることによりこの表面を非常に薄く削り取り、これにより上記汚染物を除去するクリーニング処理が行われる場合がある。
しかしながら、この場合、上記絶縁膜を例えば760℃程度の高温の熱CVDで成膜した場合には、このような高温の熱CVDで形成した絶縁膜のクリーニング時のエッチングレートはかなり小さいので、クリーニング時にこの絶縁膜が過度に削り取られることがなく、膜厚の制御性が良い状態でクリーニング処理を行うことができるが、下地層に耐熱性の低い薄膜が形成されている場合には、高温の熱CVD処理を採用できない。
By the way, after forming the insulating film as described above, when another thin film is formed thereon, there is a possibility that contaminants such as organic substances and particles adhere to the surface of the insulating film. For the purpose of removing this contaminant, the surface of the insulating film is etched very thinly by immersing the semiconductor wafer in a cleaning solution such as dilute hydrofluoric acid, thereby removing the contaminant. A cleaning process may be performed.
However, in this case, when the insulating film is formed by high-temperature thermal CVD of about 760 ° C., for example, the etching rate at the time of cleaning of the insulating film formed by such high-temperature thermal CVD is considerably small. Sometimes this insulating film is not excessively scraped off, and the cleaning process can be performed with good controllability of the film thickness, but if a thin film with low heat resistance is formed on the underlayer, Thermal CVD process cannot be adopted.

これに対して、上記絶縁膜を例えば400℃程度の低い温度でALD成膜した場合には、このような低温で形成した絶縁膜のクリーニング時のエッチングレートはかなり大きいので、クリーニング時にこの絶縁膜が過度に削り取られる場合が発生し、クリーニング処理時の膜厚の制御性が劣ってしまう、といった問題があった。またこのシリコン窒化膜は前述したようにエッチングストッパ膜や層間絶縁膜等の絶縁膜として使用する場合もあるが、この場合にはエッチングレートを十分に小さくする必要があり、従来の成膜方法では、この要請に十分に応えることはできなかった。
本発明は、以上のような問題点に着目し、これを有効に解決すべく創案されたものである。本発明の目的は、比較的低温で成膜してもクリーニング時のエッチングレートを比較的小さくでき、もってクリーニング時の膜厚の制御性を向上させることができ、且つエッチングストッパ膜や層間絶縁膜等の絶縁膜として十分機能する絶縁膜を形成することができる成膜方法、成膜装置及び記憶媒体を提供することにある。尚、本発明は、本出願人が先に出願した特願2002−381826(特開2003−282566号公報)に開示した発明の改良発明である。
On the other hand, when the ALD film is formed at a temperature as low as about 400 ° C., for example, the etching rate for cleaning the insulating film formed at such a low temperature is considerably high. There is a problem that the film thickness is excessively scraped off and the controllability of the film thickness during the cleaning process is poor. In addition, as described above, this silicon nitride film may be used as an insulating film such as an etching stopper film or an interlayer insulating film. In this case, it is necessary to sufficiently reduce the etching rate. This request was not fully met.
The present invention has been devised to pay attention to the above problems and to effectively solve them. It is an object of the present invention to reduce the etching rate during cleaning even if the film is formed at a relatively low temperature, thereby improving the controllability of the film thickness during cleaning, and to provide an etching stopper film and an interlayer insulating film. It is an object of the present invention to provide a film formation method, a film formation apparatus, and a storage medium that can form an insulating film that sufficiently functions as an insulating film. The present invention is an improved invention of the invention disclosed in Japanese Patent Application No. 2002-38826 (Japanese Patent Laid-Open No. 2003-282666) filed earlier by the present applicant.

請求項1に係る発明は、複数枚の被処理体が収容されて真空引き可能になされた処理容器内に、シラン系ガスと窒化ガスと炭化水素ガスとを供給して前記被処理体の表面にSiCN薄膜を形成する成膜方法において、前記シラン系ガスと炭化水素ガスの2種類のガスの同時供給と前記窒化ガスの供給とを間欠的に且つ交互に行うようにすると共にプラズマを用いないで前記薄膜を形成したことを特徴とする成膜方法である。
このように、上記シラン系ガスと炭化水素ガスの2種類のガスの同時供給と前記窒化ガスの供給とを間欠的に且つ交互に行うようにしてSiCN膜(シリコン・カーボン窒化膜)を形成するようにしたので、比較的低温で成膜してもクリーニング時のエッチングレートを比較的小さくでき、もってクリーニング時の膜厚の制御性を向上させることができ、且つエッチングストッパ膜や層間絶縁膜等の絶縁膜として十分機能する絶縁膜を形成することができる。
According to the first aspect of the present invention, a surface of the object to be processed is supplied by supplying a silane-based gas, a nitriding gas, and a hydrocarbon gas into a processing container in which a plurality of objects to be processed are accommodated and evacuated. In the film forming method for forming the SiCN thin film on the substrate, the simultaneous supply of the two types of silane-based gas and hydrocarbon gas and the supply of the nitriding gas are performed intermittently and alternately and plasma is not used. And forming the thin film .
In this manner, the SiCN film (silicon carbon nitride film) is formed by intermittently and alternately supplying the two types of gas, the silane-based gas and the hydrocarbon gas, and the nitriding gas. As a result, even if the film is formed at a relatively low temperature, the etching rate at the time of cleaning can be made relatively small, so that the controllability of the film thickness at the time of cleaning can be improved, and an etching stopper film, an interlayer insulating film, etc. An insulating film that functions sufficiently as an insulating film can be formed.

請求項2に係る発明は、複数枚の被処理体が収容されて真空引き可能になされた処理容器内に、窒化ガスとボロン含有ガスと炭化水素ガスとを供給して前記被処理体の表面にBCN薄膜を形成する成膜方法において、前記ボロン含有ガスと炭化水素ガスの2種類のガスの同時供給と前記窒化ガスの供給とを間欠的に且つ交互に行うようにしたことを特徴とする成膜方法である。
このように、上記ボロン含有ガスと炭化水素ガスの2種類のガスの同時供給と前記窒化ガスの供給とを間欠的に且つ交互に行うようにしてBCN膜(ボロン・カーボン窒化膜)を形成するようにしたので、比較的低温で成膜してもクリーニング時のエッチングレートを比較的小さくでき、もってクリーニング時の膜厚の制御性を向上させることができ、且つエッチングストッパ膜や層間絶縁膜等の絶縁膜として十分機能する絶縁膜を形成することができる。
According to a second aspect of the present invention, a nitriding gas, a boron-containing gas, and a hydrocarbon gas are supplied into a processing container in which a plurality of objects to be processed are accommodated so as to be evacuated. In the film forming method for forming a BCN thin film, the simultaneous supply of the two kinds of gases, the boron-containing gas and the hydrocarbon gas, and the supply of the nitriding gas are performed intermittently and alternately. This is a film forming method.
As described above, the BCN film (boron / carbon nitride film) is formed by intermittently and alternately supplying the boron-containing gas and the hydrocarbon gas simultaneously and the nitriding gas. As a result, even if the film is formed at a relatively low temperature, the etching rate at the time of cleaning can be made relatively small, so that the controllability of the film thickness at the time of cleaning can be improved, and an etching stopper film, an interlayer insulating film, etc. An insulating film that functions sufficiently as an insulating film can be formed.

この場合、例えば請求項3に規定するように、前記炭化水素ガスの供給時と前記窒化ガスの供給時との間の間欠期間には、前記処理容器内は不活性ガスパージされていること及び/又は全てのガスの供給が停止されて真空引きされている。 In this case, as specified for example inMotomeko 3, the intermittent period between the time of supply of feed during said nitriding gas of the hydrocarbon gas, the processing vessel and that are inert gas purge All gas supply is stopped and / or evacuated.

請求項4に係る発明は、複数枚の被処理体が収容されて真空引き可能になされた処理容器内に、シラン系ガスと窒化ガスとボロン含有ガスと炭化水素ガスとを供給して前記被処理体の表面に薄膜を形成する成膜方法において、前記シラン系ガスとボロン含有ガスの2種類のガスを短時間だけ同時供給する第1工程と、前記窒化ガスを短時間だけ供給してSiBN薄膜を形成する第2工程と、前記シラン系ガスと炭化水素ガスの2種類のガスを短時間だけ同時供給する第3工程と、前記窒化ガスを短時間だけ供給してSiCN薄膜を形成する第4工程とを、前記第1工程と前記第2工程と前記第3工程と前記第4工程の順序に従って1回、または複数回繰り返し行うようにしたことを特徴とする成膜方法である。 According to a fourth aspect of the present invention, a silane-based gas, a nitriding gas, a boron-containing gas, and a hydrocarbon gas are supplied into a processing container in which a plurality of objects to be processed are accommodated so as to be evacuated. In a film forming method for forming a thin film on the surface of a processing body, a first step of simultaneously supplying two types of gas, the silane-based gas and a boron-containing gas, for a short time, and supplying the nitriding gas for a short time to produce SiBN A second step of forming a thin film; a third step of simultaneously supplying two types of gas, the silane-based gas and the hydrocarbon gas, for a short time; and a step of forming a SiCN thin film by supplying the nitriding gas for a short time. The film forming method is characterized in that the four steps are repeated once or a plurality of times according to the order of the first step, the second step, the third step, and the fourth step .

このように、上記シラン系ガスとボロン含有ガスの2種類のガスを短時間だけ同時供給する第1工程と、上記窒化ガスを短時間だけ供給してSiBN薄膜を形成する第2工程と、上記シラン系ガスと炭化水素ガスの2種類のガスを短時間だけ同時供給する第3工程と、上記窒化ガスを短時間だけ供給してSiCN薄膜を形成する第4工程とを、上記順序に従って1回、または複数回繰り返し行うようにしてSiBN膜(シリコン・ボロン窒化膜)とSiCN膜(シリコン・カーボン窒化膜)との積層構造を形成するようにしたので、比較的低温で成膜してもクリーニング時のエッチングレートを比較的小さくでき、もってクリーニング時の膜厚の制御性を向上させることができ、且つエッチングストッパ膜や層間絶縁膜等の絶縁膜として十分機能する絶縁膜を形成することができる。   As described above, the first step of simultaneously supplying the two types of gas, the silane-based gas and the boron-containing gas, for a short time, the second step of forming the SiBN thin film by supplying the nitriding gas for a short time, A third step of simultaneously supplying two types of gases, a silane-based gas and a hydrocarbon gas, for a short period of time and a fourth step of forming the SiCN thin film by supplying the nitriding gas for a short period of time are performed once according to the above order Alternatively, a laminated structure of a SiBN film (silicon / boron nitride film) and a SiCN film (silicon / carbon nitride film) is formed by repeating a plurality of times. The etching rate at the time can be made relatively small, the controllability of the film thickness during cleaning can be improved, and it is sufficient as an insulating film such as an etching stopper film or an interlayer insulating film It is possible to form the ability to insulate film.

この場合、例えば請求項5に規定するように、前記シラン系ガスの供給時と前記窒化ガスの供給時との間の間欠期間には、前記処理容器内は不活性ガスパージされていること及び/又は全てのガスの供給が停止されて真空引きされている。
また例えば請求項6に規定するように、前記薄膜の成膜時の温度は、300℃〜700℃の範囲内である。
In this case, for example, as defined in claim 5, the inside of the processing vessel is purged with an inert gas during an intermittent period between the supply of the silane-based gas and the supply of the nitriding gas. Alternatively, the supply of all gas is stopped and the vacuum is drawn .
Also as defined in claim 6 In example embodiment, the temperature during the deposition of the thin film is in the range of 300 ° C. to 700 ° C..

また例えば請求項7に規定するように、前記薄膜の成膜時の圧力は、13Pa(0.1Torr)〜13300Pa(100Torr)の範囲内である。
また例えば請求項8に規定するように、前記シラン系ガスは、ジクロロシラン(DCS)、ヘキサクロロジシラン(HCD)、モノシラン[SiH ]、ジシラン[Si ]、ヘキサメチルジシラザン(HMDS)、テトラクロロシラン(TCS)、ジシリルアミン(DSA)、トリシリルアミン(TSA)、ビスターシャルブチルアミノシラン(BTBAS)よりなる群より選択される1以上のガスである。
Also for example, as prescribed in claim 7, the pressure during film formation of the thin film is in the range of 13Pa (0.1Torr) ~13300Pa (100Torr) .
For example , as defined in claim 8, the silane-based gas is dichlorosilane (DCS), hexachlorodisilane (HCD), monosilane [SiH 4 ], disilane [Si 2 H 6 ], hexamethyldisilazane (HMDS). And one or more gases selected from the group consisting of tetrachlorosilane (TCS), disilylamine (DSA), trisilylamine (TSA), and binary butylaminosilane (BTBAS).

また例えば請求項9に規定するように、前記窒化ガスは、アンモニア[NH ]、窒素[N ]、一酸化二窒素[N O]、一酸化窒素[NO]よりなる群より選択される1以上のガスである。
また例えば請求項10に規定するように、前記ボロン含有ガスは、BCl 、B 、BF 、B(CH よりなる群より選択される1以上のガスである。
また例えば請求項11に規定するように、前記炭化水素ガスは、アセチレン、エチレン、メタン、エタン、プロパン、ブタンよりなる群より選択される1以上のガスである。
For example , as defined in claim 9, the nitriding gas is selected from the group consisting of ammonia [NH 3 ], nitrogen [N 2 ], dinitrogen monoxide [N 2 O], and nitric oxide [NO]. One or more gases.
For example , as defined in claim 10, the boron-containing gas is one or more gases selected from the group consisting of BCl 3 , B 2 H 6 , BF 3 , and B (CH 3 ) 3 .
For example , as defined in claim 11, the hydrocarbon gas is one or more gases selected from the group consisting of acetylene, ethylene, methane, ethane, propane, and butane.

請求項12に係る発明は、被処理体に対して所定の薄膜を形成するための成膜装置において、真空引き可能になされた縦型の筒体状の処理容器と、前記被処理体を複数段に保持して前記処理容器内に挿脱される保持手段と、前記処理容器の外周に設けられる加熱手段と、前記処理容器内へシラン系ガスを供給するシラン系ガス供給手段と、前記処理容器内へ窒化ガスを供給する窒化ガス供給手段と、前記処理容器内へ炭化水素ガスを供給する炭化水素ガス供給手段と、前記シラン系ガスと炭化水素ガスの2種類のガスの同時供給と前記窒化ガスの供給とを間欠的に且つ交互に行うようにすると共にプラズマを用いないで前記薄膜を形成するように制御する制御手段と、を備えたことを特徴とする成膜装置である。 According to a twelfth aspect of the present invention, there is provided a film forming apparatus for forming a predetermined thin film on an object to be processed, a vertical cylindrical processing container that is evacuated, and a plurality of the objects to be processed A holding means which is held in a stage and inserted into and removed from the processing container; a heating means provided on an outer periphery of the processing container; a silane-based gas supply means for supplying a silane-based gas into the processing container; and the processing a nitriding gas supply means for supplying a nitriding gas into the container, and a hydrocarbon gas supply means for supplying a hydrocarbon gas into the processing container, and the silane-based gas and the simultaneous supply of two gases of hydrocarbon gas A film forming apparatus comprising: a control unit configured to intermittently and alternately supply the nitriding gas and control to form the thin film without using plasma.

請求項13に係る発明は、被処理体に対して所定の薄膜を形成するための成膜装置において、真空引き可能になされた縦型の筒体状の処理容器と、前記被処理体を複数段に保持して前記処理容器内に挿脱される保持手段と、前記処理容器の外周に設けられる加熱手段と、前記処理容器内へ窒化ガスを供給する窒化ガス供給手段と、前記処理容器内へボロン含有ガスを供給するボロン含有ガス供給手段と、前記処理容器内へ炭化水素ガスを供給する炭化水素ガス供給手段と、前記ボロン含有ガスと炭化水素ガスの2種類のガスの同時供給と前記窒化ガスの供給とを間欠的に且つ交互に行うように制御する制御手段と、を備えたことを特徴とする成膜装置である。 According to a thirteenth aspect of the present invention, in a film forming apparatus for forming a predetermined thin film on an object to be processed, a plurality of vertical cylindrical processing containers that can be evacuated and a plurality of the objects to be processed Holding means that is held in stages and inserted into and removed from the processing container; heating means provided on the outer periphery of the processing container; nitriding gas supply means for supplying a nitriding gas into the processing container; and inside the processing container wherein the boron-containing gas supply means for supplying a boron-containing gas, a hydrocarbon gas supply means for supplying a hydrocarbon gas into the processing container, and the boron-containing gas and the simultaneous supply of two gases of hydrocarbon gas to And a control unit that controls to supply the nitriding gas intermittently and alternately.

請求項14に係る発明は、被処理体に対して所定の薄膜を形成するための成膜装置において、真空引き可能になされた縦型の筒体状の処理容器と、前記被処理体を複数段に保持して前記処理容器内に挿脱される保持手段と、前記処理容器の外周に設けられる加熱手段と、前記処理容器内へシラン系ガスを供給するシラン系ガス供給手段と、前記処理容器内へ窒化ガスを供給する窒化ガス供給手段と、前記処理容器内へボロン含有ガスを供給するボロン含有ガス供給手段と、前記処理容器内へ炭化水素ガスを供給する炭化水素ガス供給手段と、前記シラン系ガスとボロン含有ガスの2種類のガスを短時間だけ同時供給する第1工程、前記窒化ガスを短時間だけ供給してSiBN薄膜を形成する第2工程、前記シラン系ガスと炭化水素ガスの2種類のガスを短時間だけ同時供給する第3工程及び前記窒化ガスを短時間だけ供給してSiCN薄膜を形成する第4工程とを前記第1工程と前記第2工程と前記第3工程と前記第4工程の順序に従って1回、または複数回繰り返し行うように制御する制御手段と、を備えたことを特徴とする成膜装置である。 According to a fourteenth aspect of the present invention, there is provided a film forming apparatus for forming a predetermined thin film on an object to be processed, a vertical cylindrical processing container that can be evacuated and a plurality of the objects to be processed. A holding means which is held in a stage and inserted into and removed from the processing container; a heating means provided on an outer periphery of the processing container; a silane-based gas supply means for supplying a silane-based gas into the processing container; and the processing A nitriding gas supply means for supplying a nitriding gas into the container, a boron-containing gas supply means for supplying a boron-containing gas into the processing container, and a hydrocarbon gas supply means for supplying a hydrocarbon gas into the processing container ; two first step short time simultaneously supplying a gas of the Sila emissions-based gas and a boron-containing gas carbonization, the second step of forming a SiBN thin film by supplying a short time the nitriding gas, and said silane gas Two types of hydrogen gas The gas is supplied only briefly short time co-fed third step and the nitriding gas and fourth step and said first step of forming a SiCN thin film and the second step and the third step second And a control unit that performs control so as to be repeated once or a plurality of times according to the order of the four steps .

この場合、例えば請求項15に規定するように、前記活性化手段は、前記処理容器に一体的に組み込まれている。 In this case, for example , as defined in claim 15, the activating means is integrally incorporated in the processing container.

請求項16に係る発明は、複数枚の被処理体が収容されて真空引き可能になされた処理容器内に、シラン系ガスと窒化ガスと炭化水素ガスとを供給すると共にプラズマを用いないで前記被処理体の表面にSiCN薄膜を形成するようにした成膜装置を用いて薄膜を形成するに際して、前記シラン系ガスと炭化水素ガスの2種類のガスの同時供給と前記窒化ガスの供給とを間欠的に且つ交互に行うように前記成膜装置を制御するプログラムを記憶することを特徴とする記憶媒体である。
請求項17に係る発明は、複数枚の被処理体が収容されて真空引き可能になされた処理容器内に、窒化ガスとボロン含有ガスと炭化水素ガスとを供給して前記被処理体の表面にBCN薄膜を形成するようにした成膜装置を用いて薄膜を形成するに際して、前記ボロン含有ガスと炭化水素ガスの2種類のガスの同時供給と前記窒化ガスの供給とを間欠的に且つ交互に行うように前記成膜装置を制御するプログラムを記憶することを特徴とする記憶媒体である。
According to the sixteenth aspect of the present invention, a silane-based gas, a nitriding gas, and a hydrocarbon gas are supplied into a processing container in which a plurality of objects to be processed are accommodated and evacuated, and plasma is not used. When forming a thin film using a film forming apparatus configured to form a SiCN thin film on the surface of an object to be processed, the simultaneous supply of the two gases, the silane-based gas and the hydrocarbon gas, and the supply of the nitriding gas are performed. A storage medium storing a program for controlling the film forming apparatus so as to be intermittently and alternately performed.
According to a seventeenth aspect of the present invention, a nitriding gas, a boron-containing gas, and a hydrocarbon gas are supplied into a processing container in which a plurality of objects to be processed are accommodated so as to be evacuated. When forming a thin film using a film forming apparatus for forming a BCN thin film on the substrate, the simultaneous supply of the boron-containing gas and the hydrocarbon gas and the supply of the nitriding gas are intermittently and alternately performed. A storage medium storing a program for controlling the film forming apparatus as described above.

請求項18に係る発明は、複数枚の被処理体が収容されて真空引き可能になされた処理容器内に、シラン系ガスと窒化ガスとボロン含有ガスと炭化水素ガスとを供給して前記被処理体の表面に薄膜を形成するようにした成膜装置を用いて薄膜を形成するに際して、前記シラン系ガスとボロン含有ガスの2種類のガスを短時間だけ同時供給する第1工程と、前記窒化ガスを短時間だけ供給してSiBN薄膜を形成する第2工程と、前記シラン系ガスと炭化水素ガスの2種類のガスを短時間だけ同時供給する第3工程と、前記窒化ガスを短時間だけ供給してSiCN薄膜を形成する第4工程とを、前記第1工程と前記第2工程と前記第3工程と前記第4工程の順序に従って1回、または複数回繰り返し行うように前記成膜装置を制御するプログラムを記憶することを特徴とする記憶媒体である。

According to an eighteenth aspect of the present invention, a silane-based gas, a nitriding gas, a boron-containing gas, and a hydrocarbon gas are supplied into a processing container in which a plurality of objects to be processed are accommodated so as to be evacuated. A first step of simultaneously supplying the silane-based gas and the boron-containing gas for a short time when forming a thin film using a film forming apparatus configured to form a thin film on the surface of the treatment body; A second step of forming a SiBN thin film by supplying a nitriding gas only for a short time; a third step of simultaneously supplying two types of gases, the silane-based gas and the hydrocarbon gas, for a short time; and the nitriding gas for a short time. The fourth step of forming the SiCN thin film by supplying only the first film, the second step, the third step, and the fourth step are performed once or a plurality of times according to the order of the fourth step. The program that controls the device A storage medium characterized by storing.

本発明に係る成膜方法、成膜装置及びこれをコンピュータ制御するプログラムを記憶する記憶媒体によれば、比較的低温で成膜してもクリーニング時のエッチングレートを比較的小さくでき、もってクリーニング時の膜厚の制御性を向上させることができ、且つエッチングストッパ膜や層間絶縁膜等の絶縁膜として十分機能する絶縁膜を形成することができる。   According to the film forming method, the film forming apparatus, and the storage medium for storing the program for controlling the computer according to the present invention, the etching rate at the time of cleaning can be relatively reduced even when the film is formed at a relatively low temperature. Thus, it is possible to improve the controllability of the film thickness and to form an insulating film that sufficiently functions as an insulating film such as an etching stopper film or an interlayer insulating film.

以下に、本発明に係る成膜方法、成膜装置及び記憶媒体の一実施例を添付図面に基づいて詳述する。
図1は本発明の係る成膜装置の一例を示す縦断面構成図、図2は成膜装置(加熱手段は省略)を示す横断面構成図である。尚、ここではシラン系ガスとしてジクロロシラン(DCS)を用い、窒化ガスとしてアンモニアガス(NH )を用い、ボロン含有ガスとしてBCl ガスを用い、炭化水素ガスとしてC ガス(エチレンガス)を用い、上記NH ガスをプラズマにより活性化して炭素含有の各種膜を成膜する場合を例にとって説明する。またここでは後述する本発明方法の各実施例で用いられる全てのガス供給手段について説明するが、実施例によっては用いないガス種もあり、そのような実施例を行う場合には当該ガスのガス供給手段は不要になるのは勿論である。
Hereinafter, an embodiment of a film forming method, a film forming apparatus, and a storage medium according to the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a longitudinal sectional view showing an example of a film forming apparatus according to the present invention, and FIG. 2 is a transverse sectional view showing a film forming apparatus (heating means is omitted). Here, dichlorosilane (DCS) is used as the silane gas, ammonia gas (NH 3 ) is used as the nitriding gas, BCl 3 gas is used as the boron-containing gas, and C 2 H 4 gas (ethylene gas) is used as the hydrocarbon gas. ) And the NH 3 gas is activated by plasma to form various carbon-containing films. In addition, all gas supply means used in each embodiment of the method of the present invention to be described later will be described. However, depending on the embodiment, there are gas types that are not used. Of course, the supply means becomes unnecessary.

図示するように、プラズマを形成することができるこの成膜装置2は、下端が開口された有天井の円筒体状の処理容器4を有している。この処理容器4の全体は、例えば石英により形成されており、この処理容器4内の天井には、石英製の天井板6が設けられて封止されている。また、この処理容器4の下端開口部には、例えばステンレススチールにより円筒体状に成形されたマニホールド8がOリング等のシール部材10を介して連結されている。尚、ステンレス製のマニホールド8を設けないで、全体を円筒体状の石英製の処理容器で構成した装置もある。
上記処理容器4の下端は、上記マニホールド8によって支持されており、このマニホールド8の下方より多数枚の被処理体としての半導体ウエハWを多段に載置した保持手段としての石英製のウエハボート12が昇降可能に挿脱自在になされている。本実施例の場合において、このウエハボート12の支柱12Aには、例えば50〜100枚程度の直径が300mmのウエハWを略等ピッチで多段に支持できるようになっている。
As shown in the figure, this film forming apparatus 2 capable of forming plasma has a cylindrical processing container 4 having a ceiling with a lower end opened. The entire processing container 4 is made of, for example, quartz, and a ceiling plate 6 made of quartz is provided on the ceiling in the processing container 4 and sealed. Further, a manifold 8 formed in a cylindrical shape by, for example, stainless steel is connected to a lower end opening of the processing container 4 via a seal member 10 such as an O-ring. There is also an apparatus in which a stainless steel manifold 8 is not provided and the whole is formed of a cylindrical quartz processing container.
The lower end of the processing vessel 4 is supported by the manifold 8, and a quartz wafer boat 12 as a holding means on which a plurality of semiconductor wafers W as processing objects are placed in multiple stages from below the manifold 8. Is made detachable so that it can be raised and lowered. In the case of the present embodiment, for example, about 50 to 100 wafers 300 having a diameter of 300 mm can be supported in multiple stages at substantially equal pitches on the support 12A of the wafer boat 12.

このウエハボート12は、石英製の保温筒14を介してテーブル16上に載置されており、このテーブル16は、マニホールド8の下端開口部を開閉する例えばステンレススチール製の蓋部18を貫通する回転軸20上に支持される。
そして、この回転軸20の貫通部には、例えば磁性流体シール22が介設され、この回転軸20を気密にシールしつつ回転可能に支持している。また、蓋部18の周辺部とマニホールド8の下端部には、例えばOリング等よりなるシール部材24が介設されており、処理容器4内のシール性を保持している。
上記した回転軸20は、例えばボートエレベータ等の昇降機構(図示せず)に支持されたアーム26の先端に取り付けられており、ウエハボート12及び蓋部18等を一体的に昇降して処理容器4内へ挿脱できるようになされている。尚、上記テーブル16を上記蓋部18側へ固定して設け、ウエハボート12を回転させることなくウエハWの処理を行うようにしてもよい。
The wafer boat 12 is placed on a table 16 via a quartz heat insulating cylinder 14, and the table 16 penetrates a lid 18 made of, for example, stainless steel that opens and closes the lower end opening of the manifold 8. It is supported on the rotating shaft 20.
For example, a magnetic fluid seal 22 is interposed in the penetrating portion of the rotating shaft 20, and the rotating shaft 20 is rotatably supported while hermetically sealing. In addition, a sealing member 24 made of, for example, an O-ring is interposed between the peripheral portion of the lid portion 18 and the lower end portion of the manifold 8 to maintain the sealing performance in the processing container 4.
The rotating shaft 20 is attached to the tip of an arm 26 supported by an elevating mechanism (not shown) such as a boat elevator, for example, and moves up and down integrally with the wafer boat 12, the lid 18 and the like. 4 can be inserted and removed. The table 16 may be fixed to the lid 18 side and the wafer W may be processed without rotating the wafer boat 12.

このマニホールド8には、処理容器4内の方へプラズマ化される窒化ガスとして、例えばアンモニア(NH )ガスを供給する窒化ガス供給手段28と、成膜ガスであるシラン系ガスとして例えばDCS(ジクロロシラン)ガスを供給するシラン系ガス供給手段30と、ボロン含有ガスとして例えばBCl ガスを供給するボロン含有ガス供給手段32と、炭化水素ガスとして例えばC (エチレン)ガスを供給する炭化水素ガス供給手段34と、パージガスとして不活性ガス、例えばN ガスを供給するパージガス供給手段36とが設けられる。具体的には、上記窒化ガス供給手段28は、上記マニホールド8の側壁を内側へ貫通して上方向へ屈曲されて延びる石英管よりなるガス分散ノズル38を有している。このガス分散ノズル38には、その長さ方向に沿って複数(多数)のガス噴射孔38Aが所定の間隔を隔てて形成されており、各ガス噴射孔38Aから水平方向に向けて略均一にアンモニアガスを噴射できるようになっている。 In the manifold 8, a nitriding gas supply means 28 for supplying ammonia (NH 3 ) gas, for example, as a nitriding gas that is converted into plasma toward the inside of the processing container 4, and a silane-based gas, for example, DCS (film forming gas) (Silane-based gas supply means 30 for supplying dichlorosilane) gas, boron-containing gas supply means 32 for supplying BCl 3 gas, for example, as a boron-containing gas, and C 2 H 4 (ethylene) gas, for example, as a hydrocarbon gas A hydrocarbon gas supply means 34 and a purge gas supply means 36 for supplying an inert gas such as N 2 gas as a purge gas are provided. Specifically, the nitriding gas supply means 28 has a gas dispersion nozzle 38 made of a quartz tube that extends inwardly through the side wall of the manifold 8. A plurality (a large number) of gas injection holes 38A are formed at a predetermined interval along the length direction of the gas dispersion nozzle 38, and the gas distribution nozzles 38 are substantially uniform from the gas injection holes 38A in the horizontal direction. Ammonia gas can be injected.

また同様に上記シラン系ガス供給手段30も、上記マニホールド8の側壁を内側へ貫通して上方向へ屈曲されて延びる石英管よりなるガス分散ノズル40を有している。このガス分散ノズル40には、その長さ方向に沿って複数(多数)のガス噴射孔40Aが所定の間隔を隔てて形成されており、各ガス噴射孔40Aから水平方向に向けて略均一にシラン系ガスであるDCSガスを噴射できるようになっている。また同様にボロン含有ガス供給手段32も、上記マニホールド8の側壁を内側へ貫通して上方向へ屈曲されて延びる石英管よりなるガス分散ノズル42を有している。このガス分散ノズル42には、上記シラン系ガスのガス分散ノズル40と同様にその長さ方向に沿って複数(多数)のガス噴射孔42A(図2参照)が所定の間隔を隔てて形成されており、各ガス噴射孔42Aから水平方向に向けて略均一にBCl ガスを噴射できるようになっている。 Similarly, the silane-based gas supply means 30 also has a gas dispersion nozzle 40 made of a quartz tube that extends inwardly through the side wall of the manifold 8. In the gas dispersion nozzle 40, a plurality (a large number) of gas injection holes 40A are formed at a predetermined interval along the length direction thereof. The gas distribution nozzles 40 are substantially uniform from the gas injection holes 40A in the horizontal direction. A DCS gas that is a silane-based gas can be injected. Similarly, the boron-containing gas supply means 32 also has a gas dispersion nozzle 42 made of a quartz tube that extends inwardly through the side wall of the manifold 8. The gas dispersion nozzle 42 is formed with a plurality (a large number) of gas injection holes 42A (see FIG. 2) at predetermined intervals along the length direction thereof, like the gas dispersion nozzle 40 for the silane-based gas. The BCl 3 gas can be injected substantially uniformly from the gas injection holes 42A in the horizontal direction.

また同様に炭化水素ガス供給手段34も、上記マニホールド8の側壁を内側へ貫通して上方向へ屈曲されて延びる石英管よりなるガス分散ノズル44を有している。このガス分散ノズル44には、上記シラン系ガスのガス分散ノズル44と同様にその長さ方向に沿って複数(多数)のガス噴射孔44A(図2参照)が所定の間隔を隔てて形成されており、各ガス噴射孔44Aから水平方向に向けて略均一にC ガスを噴射できるようになっている。 Similarly, the hydrocarbon gas supply means 34 also has a gas dispersion nozzle 44 made of a quartz tube that extends inwardly through the side wall of the manifold 8. In the gas dispersion nozzle 44, a plurality of (many) gas injection holes 44A (see FIG. 2) are formed at predetermined intervals along the length direction, like the gas dispersion nozzle 44 of the silane-based gas. Thus, the C 2 H 4 gas can be injected substantially uniformly from the gas injection holes 44A in the horizontal direction.

尚、前述したように、これらの4つのガス種の内、後述する成膜処理に不要なガスがある場合には、そのような成膜処理をする時、そのガス供給手段は成膜装置に設けなくてよいのは勿論である。また同様に上記パージガス供給手段36は、上記マニホールド8の側壁を貫通して設けたガスノズル46を有している。上記各ノズル38、40、42、44、46には、それぞれのガス通路48、50、52、54、56が接続されている。そして、各ガス通路48、50、52、54、56には、それぞれ開閉弁48A、50A、52A、54A、56A及びマスフローコントローラのような流量制御器48B、50B、52B、54B、56Bが介設されており、NH ガス、DCSガス、BCl ガス、C ガス及びN ガスをそれぞれ流量制御しつつ供給できるようになっている。これらの各ガスの供給、供給停止、ガス流量の制御及び後述する高周波のオン・オフ制御等は例えばコンピュータ等よりなる制御手段60により行われる。またこの制御手段60は、上記制御に加え、この装置全体の動作も制御する。そして、この制御手段60は、上記制御を行うためのプログラムが記憶されているフロッピディスクやフラッシュメモリ等よりなる記憶媒体62を有している。 As described above, when there is a gas unnecessary for the film forming process described later, among these four gas types, the gas supply means is connected to the film forming apparatus when performing such a film forming process. Of course, it is not necessary to provide it. Similarly, the purge gas supply means 36 has a gas nozzle 46 provided through the side wall of the manifold 8. Respective gas passages 48, 50, 52, 54, 56 are connected to the nozzles 38, 40, 42, 44, 46. The gas passages 48, 50, 52, 54, 56 are provided with on-off valves 48A, 50A, 52A, 54A, 56A and flow rate controllers 48B, 50B, 52B, 54B, 56B such as mass flow controllers, respectively. Thus, NH 3 gas, DCS gas, BCl 3 gas, C 2 H 4 gas, and N 2 gas can be supplied while controlling the flow rate. Supply of these gases, supply stop, control of gas flow rate, high frequency on / off control, which will be described later, and the like are performed by a control means 60 such as a computer. In addition to the above control, the control means 60 also controls the operation of the entire apparatus. The control means 60 has a storage medium 62 such as a floppy disk or a flash memory in which a program for performing the above control is stored.

一方、上記処理容器4の側壁の一部には、その高さ方向に沿ってプラズマを発生させて窒化ガスを活性化させる活性化手段66が形成されると共に、この活性化手段66に対向する処理容器4の反対側には、この内部雰囲気を真空排気するために処理容器4の側壁を、例えば上下方向へ削りとることによって形成した細長い排気口68が設けられている。具体的には、上記活性化手段66は、上記処理容器4の側壁を上下方向に沿って所定の幅で削りとることによって上下に細長い開口70を形成し、この開口70をその外側より覆うようにして断面凹部状になされた上下に細長い例えば石英製のプラズマ区画壁72を容器外壁に気密に溶接接合することにより形成されている。これにより、この処理容器4の側壁の一部を凹部状に外側へ窪ませることにより一側が処理容器4内へ開口されて連通された活性化手段66が一体的に形成されることになる。すなわちプラズマ区画壁72の内部空間は、上記処理容器4内に一体的に連通された状態となっている。上記開口70は、ウエハボート12に保持されている全てのウエハWを高さ方向においてカバーできるように上下方向に十分に長く形成されている。   On the other hand, an activation means 66 that activates a nitriding gas by generating plasma along the height direction is formed on a part of the side wall of the processing vessel 4 and faces the activation means 66. On the opposite side of the processing container 4, there is provided an elongated exhaust port 68 formed by scraping the side wall of the processing container 4 in the vertical direction, for example, in order to evacuate the internal atmosphere. Specifically, the activation means 66 forms an elongated opening 70 in the vertical direction by scraping the side wall of the processing container 4 with a predetermined width along the vertical direction, and covers the opening 70 from the outside. In this manner, the plasma partition wall 72 made of, for example, quartz, which has a concave shape in the cross section and is vertically welded to the outer wall of the container, is welded and joined. As a result, a part of the side wall of the processing container 4 is recessed outward in the shape of a recess so that the activating means 66 having one side opened into the processing container 4 and communicated therewith is integrally formed. That is, the internal space of the plasma partition wall 72 is in a state of being integrally communicated with the processing container 4. The opening 70 is formed long enough in the vertical direction so as to cover all the wafers W held by the wafer boat 12 in the height direction.

そして、上記プラズマ区画壁72の両側壁の外側面には、その長さ方向(上下方向)に沿って互いに対向するようにして細長い一対のプラズマ電極74が設けられると共に、このプラズマ電極74にはプラズマ発生用の高周波電源76が給電ライン78を介して接続されており、上記プラズマ電極74に例えば13.56MHzの高周波電圧を印加することによりプラズマを発生し得るようになっている。尚、この高周波電圧の周波数は13.56MHzに限定されず、他の周波数、例えば400kHz等を用いてもよい。
そして、上記処理容器4内を上方向に延びていく窒化ガス用のガス分散ノズル38は途中で処理容器4の半径方向外方へ屈曲されて、上記プラズマ区画壁72内の一番奥(処理容器4の中心より一番離れた部分)に位置され、この一番奥の部分に沿って上方に向けて起立させて設けられている。従って、高周波電源76がオンされている時に上記ガス分散ノズル38のガス噴射孔38Aから噴射されたアンモニアガスはここで活性化されて処理容器4の中心に向けて拡散しつつ流れるようになっている。
A pair of elongated plasma electrodes 74 are provided on the outer surfaces of both side walls of the plasma partition wall 72 so as to face each other along the length direction (vertical direction). A high frequency power source 76 for plasma generation is connected via a power supply line 78, and plasma can be generated by applying a high frequency voltage of 13.56 MHz to the plasma electrode 74, for example. The frequency of the high-frequency voltage is not limited to 13.56 MHz, and other frequencies such as 400 kHz may be used.
Then, the gas dispersion nozzle 38 for nitriding gas extending upward in the processing container 4 is bent in the radial direction of the processing container 4 in the middle, so that the innermost part of the plasma partition wall 72 (processing It is located at the farthest part from the center of the container 4) and is provided to stand upward along this innermost part. Therefore, when the high-frequency power source 76 is turned on, the ammonia gas injected from the gas injection hole 38A of the gas dispersion nozzle 38 is activated here and flows while diffusing toward the center of the processing container 4. Yes.

そして上記プラズマ区画壁72の外側には、これを覆うようにして例えば石英よりなる絶縁保護カバー80が取り付けられている。また、この絶縁保護カバー80の内側部分には、図示しない冷媒通路が設けられており、冷却された窒素ガスや冷却水を流すことにより上記プラズマ電極74を冷却し得るようになっている。
そして上記プラズマ区画壁72の開口70の外側近傍、すなわち開口70の外側(処理容器4内)には、上記シラン系ガス用のガス分散ノズル40とボロン含有ガス用のガス分散ノズル42と炭化水素ガス用のガス分散ノズル44とがそれぞれ起立させて設けられており、各ノズル40、42、44に設けた各ガス噴射孔40A、42A、44Aより処理容器4の中心方向に向けてシラン系ガスとBCl ガスとC ガスとをそれぞれ噴射し得るようになっている。
An insulating protective cover 80 made of, for example, quartz is attached to the outside of the plasma partition wall 72 so as to cover it. In addition, a refrigerant passage (not shown) is provided in an inner portion of the insulating protective cover 80 so that the plasma electrode 74 can be cooled by flowing a cooled nitrogen gas or cooling water.
In the vicinity of the outside of the opening 70 of the plasma partition wall 72, that is, outside the opening 70 (inside the processing vessel 4), the gas dispersion nozzle 40 for the silane-based gas, the gas dispersion nozzle 42 for the boron-containing gas, and the hydrocarbon. A gas dispersion nozzle 44 for gas is provided upright, and a silane-based gas is directed toward the center of the processing vessel 4 from the gas injection holes 40A, 42A, 44A provided in the nozzles 40, 42, 44. And BCl 3 gas and C 2 H 4 gas can be injected, respectively.

一方、上記開口70に対向させて設けた排気口68には、これを覆うようにして石英よりなる断面コ字状に成形された排気口カバー部材82が溶接により取り付けられている。この排気口カバー部材82は、上記処理容器4の側壁に沿って上方に延びており、処理容器4の上方のガス出口84より図示しない真空ポンプ等を介設した真空排気系により真空引きされる。そして、この処理容器4の外周を囲むようにしてこの処理容器4及びこの内部のウエハWを加熱する筒体状の加熱手段86が設けられている。   On the other hand, an exhaust port cover member 82 formed in a U-shaped cross section made of quartz is attached to the exhaust port 68 provided to face the opening 70 by welding so as to cover it. The exhaust port cover member 82 extends upward along the side wall of the processing container 4 and is evacuated from a gas outlet 84 above the processing container 4 by a vacuum exhaust system provided with a vacuum pump (not shown). . A cylindrical heating means 86 for heating the processing container 4 and the wafer W inside the processing container 4 is provided so as to surround the outer periphery of the processing container 4.

次に、以上のように構成された成膜装置2を用いて行なわれるプラズマによる本発明の成膜方法(いわゆるALD成膜)について説明する。
<成膜方法の第1実施例>
まず、本発明方法の第1実施例について説明する。
図3は本発明の成膜方法の第1実施例における各種ガスの供給のタイミングとRF(高周波)の印加タイミングを示すタイミングチャートである。この第1実施例では、シラン系ガス(DCS)と窒化ガス(NH )とボロン含有ガス(BCl )と炭化水素ガス(C )を用いて半導体ウエハ上にSiBCN薄膜を形成する。すなわち、この第1実施例では、上記シラン系ガスとボロン含有ガスと炭化水素ガスの3種類のガスの同時供給と前記窒化ガスの供給とを間欠的に且つ交互に行うようにする。
まず、常温の多数枚、例えば50〜100枚の300mmサイズのウエハWが載置された状態のウエハボート12を予め所定の温度になされた処理容器4内にその下方より上昇させてロードし、蓋部18でマニホールド8の下端開口部を閉じることにより容器内を密閉する。
Next, a film forming method (so-called ALD film forming) of the present invention using plasma performed using the film forming apparatus 2 configured as described above will be described.
<First Example of Film Formation Method>
First, a first embodiment of the method of the present invention will be described.
FIG. 3 is a timing chart showing the supply timing of various gases and the application timing of RF (high frequency) in the first embodiment of the film forming method of the present invention. In this first embodiment, a SiBCN thin film is formed on a semiconductor wafer using a silane-based gas (DCS), a nitriding gas (NH 3 ), a boron-containing gas (BCl 3 ), and a hydrocarbon gas (C 2 H 4 ). . That is, in this first embodiment, the simultaneous supply of the three types of gas, the silane-based gas, the boron-containing gas, and the hydrocarbon gas, and the supply of the nitriding gas are performed intermittently and alternately.
First, a wafer boat 12 on which a large number of normal temperature wafers, for example, 50 to 100 wafers 300 mm in size are placed, is loaded into the processing container 4 that has been set to a predetermined temperature by raising it from below. The inside of the container is sealed by closing the lower end opening of the manifold 8 with the lid 18.

そして処理容器4内を真空引きして所定のプロセス圧力に維持すると共に、加熱手段86への供給電力を増大させることにより、ウエハ温度を上昇させてプロセス温度を維持する。上記DCSガスをシラン系ガス供給手段30から供給し、BCl ガスをボロン含有ガス供給手段32から供給し、C ガスを炭化水素ガス34から供給し、そして、NH ガスを窒化ガス供給手段28から供給する。具体的には、図3に示すように、DCSガスとBCl ガスとC ガスの3種類のガスの同時供給と、NH ガスの供給とを間欠的に且つ交互に行うようにする。これにより、回転しているウエハボート12に支持されているウエハWの表面にSiBCN薄膜を形成する。この際、NH ガスを単独で供給する時に、全供給時間に亘って、或いは全供給時間の一部において高周波電源(RF電源)62をオンしてプラズマを立てるようにする。尚、図3(E)ではNH ガスの供給開始から所定時間経過してから高周波を印加するようにしている。 Then, the inside of the processing container 4 is evacuated and maintained at a predetermined process pressure, and the power supplied to the heating means 86 is increased to raise the wafer temperature and maintain the process temperature. The DCS gas is supplied from the silane-based gas supply means 30, the BCl 3 gas is supplied from the boron-containing gas supply means 32, the C 2 H 4 gas is supplied from the hydrocarbon gas 34, and the NH 3 gas is supplied as the nitriding gas. Supply from the supply means 28. Specifically, as shown in FIG. 3, the simultaneous supply of three kinds of gases, DCS gas, BCl 3 gas, and C 2 H 4 gas, and the supply of NH 3 gas are performed intermittently and alternately. To do. Thus, a SiBCN thin film is formed on the surface of the wafer W supported by the rotating wafer boat 12. At this time, when the NH 3 gas is supplied alone, plasma is generated by turning on the high frequency power source (RF power source) 62 over the entire supply time or during a part of the total supply time. In FIG. 3E, a high frequency is applied after a predetermined time has elapsed from the start of the supply of NH 3 gas.

具体的には、NH ガスはガス分散ノズル38の各ガス噴射孔38Aから水平方向へ噴射され、また、DCSガスはガス分散ノズル40の各ガス噴射孔40Aから水平方向へ噴射され、またBCl はガス分散ノズル42の各ガス噴射孔42Aから水平方向へ噴射され、またC ガスはガス分散ノズル44の各ガス噴射孔44Aから水平方向へ噴射され、各ガスが反応してSiBCN薄膜が形成される。この場合、上記各ガスは、連続的に供給されるのではなく、図3に示すようにDCS、BCl 及びC ガスは同じタイミングで間欠的に、パルス状に供給する。NH ガスは上記3種類のガスの供給からタイミングをずらして上記3種のガスの供給停止の時に供給する。そして、タイミングをずらしたガス同士は、間に間欠期間(パージ期間)90を挟んで交互に間欠的に繰り返し供給され、SiBCN薄膜を一層ずつ繰り返し積層する。すなわち、図3(A)、図3(C)及び図3(D)に示すように、DCSとBCl とC とは常に同時に、共通のタイミングで間欠的に供給される。これに対して、図3(B)に示すようにNH は上記DCS、BCl 、C ガスの供給休止期間の略中央にて単独で供給される。また間欠期間90においては真空引きが継続されて容器内に残留するガスを排除している。そして、NH ガスを単独で流す時には、図3(E)に示すようにRF電源がオンされてプラズマが立てられて、供給されるNH ガスを活性化して活性種等が作られ、反応(分解)が促進される。 Specifically, NH 3 gas is injected in the horizontal direction from each gas injection hole 38A of the gas dispersion nozzle 38, DCS gas is injected in the horizontal direction from each gas injection hole 40A of the gas dispersion nozzle 40, and BCl 3 is injected in the horizontal direction from each gas injection hole 42A of the gas dispersion nozzle 42, and C 2 H 4 gas is injected in the horizontal direction from each gas injection hole 44A in the gas dispersion nozzle 44, and each gas reacts to react with SiBCN. A thin film is formed. In this case, the above gases are not continuously supplied, but as shown in FIG. 3, DCS, BCl 3 and C 2 H 4 gases are intermittently supplied in the form of pulses at the same timing. The NH 3 gas is supplied when the supply of the three types of gas is stopped with the timing shifted from the supply of the three types of gas. Gases with different timings are alternately and repeatedly supplied with an intermittent period (purge period) 90 between them, and the SiBCN thin films are repeatedly laminated one by one. That is, as shown in FIGS. 3A, 3C, and 3D, DCS, BCl 3 and C 2 H 4 are always supplied intermittently at the same timing. On the other hand, as shown in FIG. 3 (B), NH 3 is supplied independently at substantially the center of the supply stop period of the DCS, BCl 3 , and C 2 H 4 gases. Further, during the intermittent period 90, evacuation is continued to remove the gas remaining in the container. Then, when the NH 3 gas is allowed to flow alone, as shown in FIG. 3 (E), the RF power is turned on to generate plasma, and the supplied NH 3 gas is activated to produce active species and the like. (Decomposition) is promoted.

この場合、NH ガスの供給期間の全期間に亘ってRF電源をオンしてもよいし、図3(B)及び図3(E)に示すようにNH ガスの供給開始から所定の時間Δtが経過した後に、RF電源をオンするようにしてもよい。この所定の時間ΔtとはNH ガスの流量が安定するまでの時間であり、例えば5秒程度である。このように、NH ガスの流量が安定化した後にRF電源をオンすることにより、ウエハWの面間方向(高さ方向)における活性種の濃度均一性を向上できる。また間欠期間90では、不活性ガスであるN ガスを処理容器4内へ供給して残留ガスを排除するようにしてもよいし(不活性ガスパージ)、或いは、全てのガスの供給を停止したまま真空引きを継続して行うことにより(バキュームとも称す)、処理容器4内の残留ガスを排除するようにしてもよい。更には、間欠期間90の前半はバキュームを行い、後半は不活性ガスパージを行うようにしてもよい。 In this case, the RF power supply may be turned on over the entire NH 3 gas supply period, or as shown in FIGS. 3B and 3E, a predetermined time from the start of supply of the NH 3 gas. The RF power supply may be turned on after Δt has elapsed. The predetermined time Δt is a time until the flow rate of the NH 3 gas is stabilized, and is about 5 seconds, for example. Thus, by turning on the RF power supply after the flow rate of the NH 3 gas is stabilized, the concentration uniformity of the active species in the inter-plane direction (height direction) of the wafer W can be improved. In the intermittent period 90, N 2 gas, which is an inert gas, may be supplied into the processing vessel 4 to eliminate residual gas (inert gas purge), or all gas supply is stopped. Residual gas in the processing container 4 may be removed by continuously performing vacuuming (also referred to as vacuum). Furthermore, the vacuum may be performed in the first half of the intermittent period 90 and the inert gas purge may be performed in the second half.

この場合、吸着工程であるDCS、BCl 及びC ガスの供給期間T1は10秒程度、反応工程(窒化工程)である単独のNH ガスの供給期間T2は20秒程度、パージ期間である間欠期間90の長さT3は5〜15秒程度、RF電源のオン時間T4は10秒程度であるが、これらの各時間は単に一例を示したに過ぎず、この数値に限定されない。通常、1サイクルによって形成される膜厚は1.1〜1.3Å/サイクル程度であるので、目標膜厚が例えば700Åであるならば、600サイクル程度繰り返し行うことになる。上記のように成膜処理を行うことにより、形成されるSiBCN薄膜の誘電率を非常に低くでき、且つそのドライエッチング時のエッチング耐性を大幅に向上させることができる。
その理由は、次のように考えられる。すなわち、一般的にはシリコン窒化膜(SiN)にボロンを添加するとエッチング耐性は劣化するが、上記実施例のように、更にNH ガスの供給時にプラズマでNH ガスを活性化させると窒化が促進される結果、Si−H結合が減少してエッチング耐性の強いSi−N結合が増加するからであると考えられる。
In this case, the supply period T1 of DCS, BCl 3 and C 2 H 4 gas as an adsorption process is about 10 seconds, the supply period T2 of a single NH 3 gas as a reaction process (nitriding process) is about 20 seconds, and a purge period The length T3 of the intermittent period 90 is about 5 to 15 seconds and the on-time T4 of the RF power source is about 10 seconds. However, these times are merely examples, and are not limited to these values. Usually, the film thickness formed in one cycle is about 1.1 to 1.3 mm / cycle, so if the target film thickness is 700 mm, for example, the process is repeated about 600 cycles. By performing the film formation process as described above, the dielectric constant of the formed SiBCN thin film can be made extremely low, and the etching resistance during dry etching can be greatly improved.
The reason is considered as follows. That is, generally, when boron is added to a silicon nitride film (SiN), the etching resistance is deteriorated. However, when NH 3 gas is further activated by plasma when NH 3 gas is supplied as in the above embodiment, nitridation occurs. As a result of promotion, it is considered that Si—H bonds are decreased and Si—N bonds having strong etching resistance are increased.

また、上記のように、シリコン窒化膜を成膜する際に、炭化水素ガスとして例えばC ガスを処理容器8内へ供給することにより、ウエハ表面に形成される膜中に炭素成分が含有された状態となる。このように、膜中に炭素成分が含有されると、従来の成膜温度、例えば760℃程度よりも低い温度、例えば550℃で成膜したにもかかわらず、この表面のクリーニング処理時やエッチング処理時に用いられる希フッ酸に対するエッチングレートを小さくでき、この結果、クリーニング処理時にこの薄膜が過度に削り取られることを防止して、この膜厚の制御性を向上させることが可能となる。またエッチングストッパ膜や層間絶縁膜としての機能も十分に果すことができる。 Further, as described above, when a silicon nitride film is formed, by supplying, for example, C 2 H 4 gas as a hydrocarbon gas into the processing vessel 8, carbon components are formed in the film formed on the wafer surface. It becomes a contained state. Thus, when a carbon component is contained in the film, the film is formed at a temperature lower than the conventional film formation temperature, for example, about 760 ° C., for example, 550 ° C. The etching rate for dilute hydrofluoric acid used during the treatment can be reduced. As a result, the thin film can be prevented from being excessively scraped off during the cleaning treatment, and the controllability of the film thickness can be improved. Also, it can sufficiently function as an etching stopper film and an interlayer insulating film.

またDCSガスを間欠的に供給して間欠期間T3を間欠的に設けるようにしているので、各間欠期間T3の直前で成膜されたSiBCN膜の表面が間欠期間T3で改質されて膜質が向上するので、エッチングレートを一層抑制することができる。この間欠処理時の原子レベルの作用は次のように考えられる。すなわち、炭素原子を含有するSiBCN膜の成膜時には、この薄膜の最表面にDCSガス中の付着乃至堆積時に脱離できなかったCl原子が活性化状態で結合しているが、DCSガスの供給が停止される間欠期間T3を設けることで、この間欠期間T3においてC ガスやNH ガス中のC原子やN原子が上記薄膜最表面のCl原子と置換されて膜中のCl成分が減少し、結果的にエッチングレートを抑制でき、特にC ガスを用いることにより膜中に取り込まれるC原子の量が増加することとなるのでエッチングレートを一層抑制することが可能となる。
またシリコン窒化膜にボロンと炭素を添加すると、入れない場合と比較して成膜レートが20〜30%程度上げることができる。この理由は、炭素の添加によりウエハ表面に対するボロンの吸着が促進されるからである、と考えられる。
Further, since the DCS gas is intermittently supplied and the intermittent period T3 is intermittently provided, the surface of the SiBCN film formed immediately before each intermittent period T3 is modified in the intermittent period T3, and the film quality is improved. Since it improves, an etching rate can be suppressed further. The action at the atomic level during this intermittent treatment is considered as follows. That is, at the time of forming a SiBCN film containing carbon atoms, Cl atoms that could not be detached during deposition or deposition in the DCS gas are bonded to the outermost surface of the thin film in an activated state. In the intermittent period T3, C atoms and N atoms in the C 2 H 4 gas and the NH 3 gas are replaced with Cl atoms on the outermost surface of the thin film, thereby providing a Cl component in the film. As a result, the etching rate can be suppressed, and in particular, the amount of C atoms taken into the film is increased by using C 2 H 4 gas, so that the etching rate can be further suppressed. .
Further, when boron and carbon are added to the silicon nitride film, the film formation rate can be increased by about 20 to 30% as compared with the case where boron and carbon are not added. The reason for this is considered that the addition of carbon promotes the adsorption of boron to the wafer surface.

ここで上記成膜処理のプロセス条件について説明すると、DCSガスの流量は50〜2000sccmの範囲内、例えば1000sccm(1slm)であり、NH ガスの流量は500〜5000sccmの範囲内、例えば1000sccmであり、BCl ガスの流量は1〜15sccmの範囲内、例えば4sccmであり、C ガスの流量は200〜2000sccmの範囲内、例えば500sccmである。ここでC ガスの流量はDCSガスの流量の3倍以下である。その理由は、炭化水素ガスであるC ガスの流量が過度に多過ぎると、膜質が急激に低下する、という不都合が生ずるからである。 Here, the process conditions of the film forming process will be described. The flow rate of DCS gas is in the range of 50 to 2000 sccm, for example, 1000 sccm (1 slm), and the flow rate of NH 3 gas is in the range of 500 to 5000 sccm, for example, 1000 sccm. The flow rate of BCl 3 gas is in the range of 1-15 sccm, for example 4 sccm, and the flow rate of C 2 H 4 gas is in the range of 200-2000 sccm, for example 500 sccm. Here, the flow rate of the C 2 H 4 gas is not more than 3 times the flow rate of the DCS gas. The reason is that if the flow rate of the C 2 H 4 gas, which is a hydrocarbon gas, is excessively large, there is a disadvantage that the film quality deteriorates rapidly.

またプロセス温度はCVD成膜処理よりも低い温度であり、具体的には300〜700℃の範囲内、好ましくは550〜630℃の範囲内である。このプロセス温度が300℃よりも低いと、反応が生ぜずにほとんど膜が堆積せず、また700℃よりも高い場合には、膜質の劣るCVDによる堆積膜が形成されてしまうのみならず、前工程ですでに形成されている金属膜等に熱的ダメージを与えてしまう。
またプロセス圧力は13Pa(0.1Torr)〜13300Pa(100Torr)の範囲内、好ましくは40Pa(0.3Torr)〜266Pa(2Torr)の範囲内であり、例えば吸着工程では1Torr、プラズマを用いる窒化工程では0.3Torrである。ここでプロセス圧力が13Paよりも小さい場合には、成膜レートが実用レベル以下になってしまう。またプロセス圧力が13300Paまでは、ウエハWに対する反応は吸着反応が主流であるので、膜質が良好な薄膜を高い成膜速度で安定的に堆積させることができ、良好な結果を得ることができる。
しかし、プロセス圧力が13300Paよりも大きくなると、反応形態が吸着反応から気相反応へ移行してこの気相反応が主流となり、この結果、膜厚の面間及び面内均一性が低下するのみならず、気相反応に起因するパーティクルが急激に増大するので好ましくない。
Further, the process temperature is lower than the CVD film forming treatment, and specifically, is in the range of 300 to 700 ° C, preferably in the range of 550 to 630 ° C. When the process temperature is lower than 300 ° C., no reaction occurs and almost no film is deposited. When the process temperature is higher than 700 ° C., not only a CVD deposited film with poor film quality is formed, but also The metal film already formed in the process will be thermally damaged.
The process pressure is in the range of 13 Pa (0.1 Torr) to 13300 Pa (100 Torr), preferably in the range of 40 Pa (0.3 Torr) to 266 Pa (2 Torr). For example, in the adsorption process, 1 Torr, in the nitriding process using plasma, 0.3 Torr. Here, when the process pressure is smaller than 13 Pa, the film forming rate becomes below the practical level. Further, since the reaction with respect to the wafer W is mainly an adsorption reaction up to a process pressure of 13300 Pa, a thin film having a good film quality can be stably deposited at a high film formation rate, and a good result can be obtained.
However, if the process pressure becomes higher than 13300 Pa, the reaction form shifts from an adsorption reaction to a gas phase reaction, and this gas phase reaction becomes the mainstream. As a result, only the inter-surface and in-plane uniformity of the film thickness decreases. In addition, the particles resulting from the gas phase reaction increase rapidly, which is not preferable.

<成膜方法の第2実施例>
次に本発明の成膜方法の第2実施例について説明する。
図4は本発明の成膜方法の第2実施例における各種ガスの供給のタイミングとRF(高周波)の印加タイミングを示すタイミングチャートである。
この第2実施例ではシラン系ガス(DCS)と窒化ガス(NH )と炭化水素ガス(C )を用いて半導体ウエハ上にSiCN薄膜(炭素含有シリコン窒化膜)を形成する。すなわち、この第2実施例では、上記シラン系ガスと炭化水素ガスの2種類のガスの同時供給と前記窒化ガスの供給とを間欠的に且つ交互に行うようにする。
<Second Example of Film Formation Method>
Next, a second embodiment of the film forming method of the present invention will be described.
FIG. 4 is a timing chart showing various gas supply timings and RF (high frequency) application timings in the second embodiment of the film forming method of the present invention.
In this second embodiment, a SiCN thin film (carbon-containing silicon nitride film) is formed on a semiconductor wafer using a silane-based gas (DCS), a nitriding gas (NH 3 ), and a hydrocarbon gas (C 2 H 4 ). That is, in the second embodiment, the simultaneous supply of the two types of gas, the silane-based gas and the hydrocarbon gas, and the supply of the nitriding gas are performed intermittently and alternately.

この第2実施例は、先の図3に示す1実施例においてボロン含有ガスであるBCl ガスの供給を全く行わないようにして成膜を行った方法に対応するものであり、膜中にはボロン(B)が添加されていない。従って、この第2実施例を行う場合には、図1に示す成膜装置において、ボロン含有ガス供給手段32は不要となる。尚、この第2実施例のプロセス条件は、ボロン含有ガスに関する条件を除き、先の第1実施例の場合と同じである。
この第2実施例の場合にも、シリコン窒化膜中に炭素成分が含有されることになるので、第1実施例の場合と同様に、従来の成膜温度、例えば760℃程度よりも低い温度、例えば550℃で成膜したにもかかわらず、この表面のクリーニング処理時やエッチング処理時に用いられる希フッ酸に対するエッチングレートを小さくでき、この結果、クリーニング処理時にこの薄膜が過度に削り取られることを防止して、この膜厚の制御性を向上させることが可能となる。またエッチングストッパ膜や層間絶縁膜としての機能も十分に果すことができる。
This second embodiment corresponds to a method in which film formation is performed in such a manner that the supply of BCl 3 gas, which is a boron-containing gas, is not performed at all in the first embodiment shown in FIG. Boron (B) is not added. Therefore, when performing the second embodiment, the boron-containing gas supply means 32 is not necessary in the film forming apparatus shown in FIG. The process conditions of the second embodiment are the same as those of the first embodiment except for the conditions relating to the boron-containing gas.
Also in the case of the second embodiment, since the carbon component is contained in the silicon nitride film, similarly to the case of the first embodiment, a temperature lower than a conventional film forming temperature, for example, about 760 ° C. For example, despite the fact that the film was formed at 550 ° C., the etching rate for dilute hydrofluoric acid used during the cleaning process or etching process of the surface can be reduced, and as a result, the thin film is excessively scraped off during the cleaning process. Therefore, the controllability of the film thickness can be improved. Also, it can sufficiently function as an etching stopper film and an interlayer insulating film.

<成膜方法の第3実施例>
次に本発明の成膜方法の第3実施例について説明する。
図5は本発明の成膜方法の第3実施例における各種ガスの供給のタイミングとRF(高周波)の印加タイミングを示すタイミングチャートである。
この第3実施例では窒化ガス(NH )とボロン含有ガスと炭化水素ガス(C )を用いて半導体ウエハ上にBCN薄膜(炭素含有ボロン窒化膜)を形成する。すなわち、この第3実施例では、上記ボロン含有ガスと炭化水素ガスの2種類のガスの同時供給と上記窒化ガスの供給とを間欠的に且つ交互に行うようにする。
<Third Example of Film Formation Method>
Next, a third embodiment of the film forming method of the present invention will be described.
FIG. 5 is a timing chart showing various gas supply timings and RF (high frequency) application timings in the third embodiment of the film forming method of the present invention.
In the third embodiment, a BCN thin film (carbon-containing boron nitride film) is formed on a semiconductor wafer using a nitriding gas (NH 3 ), a boron-containing gas, and a hydrocarbon gas (C 2 H 4 ). That is, in the third embodiment, the simultaneous supply of the two kinds of gases, the boron-containing gas and the hydrocarbon gas, and the supply of the nitriding gas are performed intermittently and alternately.

この第3実施例は、先の図3に示す第1実施例においてシラン系ガスであるDCSガスの供給を全く行わないようにして成膜を行った方法に対応するものであり、膜中にはSi(シラン)が添加されていない。従って、この第3実施例を行う場合には、図1に示す成膜装置において、シラン系ガス供給手段30は不要となる。尚、この第3実施例のプロセス条件は、シラン系ガスに関する条件を除き、先の第1実施例の場合と同じである。
この第3実施例の場合には、化学的性質がシリコンに似たボロンを用いてボロン窒化膜を形成しており、このボロン窒化膜中に炭素成分が含有されることになるので、第1実施例の場合と同様に、従来の成膜温度、例えば760℃程度よりも低い温度、例えば550℃で成膜したにもかかわらず、この表面のクリーニング処理時やエッチング処理時に用いられる希フッ酸に対するエッチングレートを小さくでき、この結果、クリーニング処理時にこの薄膜が過度に削り取られることを防止して、この膜厚の制御性を向上させることが可能となる。またエッチングストッパ膜や層間絶縁膜としての機能も十分に果すことができる。
This third embodiment corresponds to a method in which film formation is performed without supplying DCS gas, which is a silane-based gas, in the first embodiment shown in FIG. No Si (silane) is added. Therefore, when the third embodiment is performed, the silane gas supply means 30 is not necessary in the film forming apparatus shown in FIG. The process conditions of the third embodiment are the same as those of the first embodiment except for the conditions relating to the silane-based gas.
In the case of the third embodiment, the boron nitride film is formed using boron having chemical properties similar to silicon, and the boron nitride film contains a carbon component. As in the case of the example, even though the film was formed at a temperature lower than the conventional film forming temperature, for example, about 760 ° C., for example, 550 ° C., dilute hydrofluoric acid used during the surface cleaning process or the etching process As a result, the thin film can be prevented from being excessively scraped off during the cleaning process, and the controllability of the film thickness can be improved. Also, it can sufficiently function as an etching stopper film and an interlayer insulating film.

<成膜方法の第4実施例>
次に本発明の成膜方法の第4実施例について説明する。
図6は本発明の成膜方法の第4実施例における各種ガスの供給のタイミングとRF(高周波)の印加タイミングを示すタイミングチャート、図7は第4実施例で形成される薄膜の積層構造の一例を示す断面図である。
この第4実施例ではシラン系ガス(DCS)と窒化ガス(NH )とボロン含有ガス(BCl )と炭化水素ガス(C )を用いて半導体ウエハ上に図7に示すようにSiBN薄膜92とSiCN薄膜94の繰り返し積層構造を形成する。尚、上記SiBN薄膜92とSiCN薄膜94は、少なくとも共に一層形成すればよい。すなわち、この第4実施例では、上記シラン系ガスとボロン含有ガスの2種類のガスを短時間だけ同時供給する第1工程と、上記窒化ガスを短時間だけ供給してSiBN薄膜を形成する第2工程と、上記シラン系ガスと炭化水素ガスの2種類のガスを短時間だけ同時供給する第3工程と、上記窒化ガスを短時間だけ供給してSiCN薄膜を形成する第4工程とを、上記順序に従って1回、または複数回繰り返し行うようにする。
<Fourth Example of Film Formation Method>
Next, a fourth embodiment of the film forming method of the present invention will be described.
FIG. 6 is a timing chart showing various gas supply timings and RF (radio frequency) application timings in the fourth embodiment of the film forming method of the present invention, and FIG. 7 shows a laminated structure of thin films formed in the fourth embodiment. It is sectional drawing which shows an example.
In the fourth embodiment, a silane-based gas (DCS), a nitriding gas (NH 3 ), a boron-containing gas (BCl 3 ), and a hydrocarbon gas (C 2 H 4 ) are used on a semiconductor wafer as shown in FIG. A repeated stacked structure of the SiBN thin film 92 and the SiCN thin film 94 is formed. Note that at least one of the SiBN thin film 92 and the SiCN thin film 94 may be formed. That is, in the fourth embodiment, the first step of simultaneously supplying two types of gas, the silane-based gas and the boron-containing gas, for a short time, and the first step of forming the SiBN thin film by supplying the nitriding gas for a short time. Two steps, a third step of simultaneously supplying the two types of gas, the silane-based gas and the hydrocarbon gas, for a short time, and a fourth step of forming the SiCN thin film by supplying the nitriding gas for a short time. Repeat one or more times according to the above order.

この第4実施例は、先の図3に示す第1実施例において炭化水素ガスであるC ガスの供給を全く行わない成膜方法の1サイクルと図4に示す第2実施例の成膜方法の1サイクルとを連結(連続)して新たな1サイクルとし、この新たな1サイクルを1回、或いは複数回繰り返すようにして成膜を行った方法である。図7は3サイクルの処理を行った時の状態を示している。尚、この第4実施例のプロセス条件は、炭化水素ガスに関する条件を除いた先の第1実施例と先の第2実施例の場合と同じである。
この第4実施例の場合には、図7に示すように、SiBN薄膜92とSiCN薄膜94とが交互に1回、または複数層重ねられた積層構造となるので、積層構造全体から見ればSiBCN薄膜と似た特性を示すことになる。
In the fourth embodiment, one cycle of the film forming method in which the C 2 H 4 gas as the hydrocarbon gas is not supplied at all in the first embodiment shown in FIG. 3 and the second embodiment shown in FIG. This is a method in which film formation is performed by connecting (continuing) one cycle of the film formation method to a new cycle, and repeating this new cycle once or a plurality of times. FIG. 7 shows a state when three cycles of processing are performed. The process conditions of the fourth embodiment are the same as those of the first embodiment and the second embodiment except for the conditions relating to the hydrocarbon gas.
In the case of the fourth embodiment, as shown in FIG. 7, since the SiBN thin film 92 and the SiCN thin film 94 are alternately laminated once or a plurality of layers are laminated, the SiBCN is viewed from the whole laminated structure. It will show similar characteristics to the thin film.

この第4実施例の場合にも、シリコン窒化膜中に炭素成分やボロン成分が含有されることになるので、第1実施例の場合と同様に、従来の成膜温度、例えば760℃程度よりも低い温度、例えば550℃で成膜したにもかかわらず、この表面のクリーニング処理時やエッチング処理時に用いられる希フッ酸に対するエッチングレートを小さくでき、この結果、クリーニング処理時にこの薄膜が過度に削り取られることを防止して、この膜厚の制御性を向上させることが可能となる。またエッチングストッパ膜や層間絶縁膜としての機能も十分に果すことができる。また、ボロン元素も含有されるので、そのエッチング耐性を一層向上させることができる。   Also in the case of the fourth embodiment, since a carbon component and a boron component are contained in the silicon nitride film, similarly to the case of the first embodiment, the conventional film formation temperature, for example, about 760 ° C. Although the film is formed at a low temperature, for example, 550 ° C., the etching rate for dilute hydrofluoric acid used during the surface cleaning process or the etching process can be reduced. As a result, the thin film is excessively scraped off during the cleaning process. It is possible to improve the controllability of the film thickness. Also, it can sufficiently function as an etching stopper film and an interlayer insulating film. Moreover, since boron element is contained, the etching resistance can be further improved.

<各実施例の評価>
次に、上記第1乃至第3実施例を用いて各薄膜を形成して評価を行ったので、その評価結果について説明する。
図8は第1乃至第3実施例により形成された各薄膜のエッチングレートの評価結果を示すグラフである。ここでは、第1〜第3実施例を用いて形成した薄膜としてSiBCN薄膜、SiCN薄膜及びBCN薄膜の各エッチングレートをそれぞれ示しており、併せて炭素(C)成分を含まない各薄膜のエッチングレートもそれぞれ基準として併記している。この評価を行うときの成膜温度は550℃であり、エッチング液としては1%の希釈フッ化水素水を用いた。
<Evaluation of each example>
Next, since each thin film was formed and evaluated using the first to third embodiments, the evaluation result will be described.
FIG. 8 is a graph showing the evaluation results of the etching rate of each thin film formed by the first to third examples. Here, the etching rates of the SiBCN thin film, the SiCN thin film, and the BCN thin film are shown as the thin films formed using the first to third embodiments, respectively, and the etching rates of the respective thin films not containing the carbon (C) component are also shown. Are also listed as standards. The film forming temperature for this evaluation was 550 ° C., and 1% diluted hydrogen fluoride water was used as the etching solution.

図8から明らかなように、各膜中に炭素成分を入れた膜種の場合には、炭素成分を入れない膜種よりも全てエッチングレートを低下させることができ、膜質の改善を図れることが確認できた。例えばSiBCN薄膜はSiBN薄膜に対して13.8%改善することができ、SiCN薄膜はSiN薄膜に対して6.8%改善することができ、BCN薄膜はBN薄膜に対して48%改善することができ、これにより炭素を含有させることの有用性を確認することができた。   As is clear from FIG. 8, in the case of a film type in which a carbon component is included in each film, the etching rate can be lowered as compared with a film type in which no carbon component is included, and the film quality can be improved. It could be confirmed. For example, SiBCN thin film can improve 13.8% over SiBN thin film, SiCN thin film can improve 6.8% over SiN thin film, and BCN thin film can improve 48% over BN thin film. As a result, the usefulness of containing carbon could be confirmed.

上記各第1乃至第4実施例にあっては、プラズマによりNH ガスを活性化させて反応を促進させたが、NH ガスを活性化させないようにしてもよい。この場合には、プラズマを用いないことによるエネルギーの低下を補償するためにプロセス温度を少し上げて成膜処理を行うようにする。
また上記各実施例では、炭化水素ガスとしてはエチレンガスを用いたが、これに限定されず、アセチレン、エチレン、メタン、エタン、プロパン、ブタンよりなる群より選択される1または2以上のガスを用いることができる。
In each of the first to fourth embodiments described above, the NH 3 gas is activated by plasma to promote the reaction. However, the NH 3 gas may not be activated. In this case, the film forming process is performed by slightly raising the process temperature in order to compensate for a decrease in energy caused by not using plasma.
In each of the above embodiments, ethylene gas is used as the hydrocarbon gas. However, the present invention is not limited to this, and one or more gases selected from the group consisting of acetylene, ethylene, methane, ethane, propane, and butane are used. Can be used.

また上記各実施例では、シラン系ガスとしてDCSガスを用いたが、これに限定されず、ジクロロシラン(DCS)、ヘキサクロロジシラン(HCD)、モノシラン[SiH ]、ジシラン[Si ]、ヘキサメチルジシラザン(HMDS)、テトラクロロシラン(TCS)、ジシリルアミン(DSA)、トリシリルアミン(TSA)、ビスターシャルブチルアミノシラン(BTBAS)よりなる群より選択される1以上のガスを用いることができる。 In each of the above embodiments, DCS gas is used as the silane-based gas. However, the present invention is not limited to this, and dichlorosilane (DCS), hexachlorodisilane (HCD), monosilane [SiH 4 ], disilane [Si 2 H 6 ], One or more gases selected from the group consisting of hexamethyldisilazane (HMDS), tetrachlorosilane (TCS), disilylamine (DSA), trisilylamine (TSA), and binary butylaminosilane (BTBAS) can be used.

また、上記各実施例では、窒化ガスとしてNH ガスを用いたが、これに限定されず、アンモニア[NH ]、窒素[N ]、一酸化二窒素[N O]、一酸化窒素[NO]よりなる群より選択される1以上のガスを用いることができる。
また、上記各実施例では、ボロン含有ガスとしてBCl ガスを用いたが、これに限定されず、BCl 、B 、BF 、B(CH よりなる群より選択される1以上のガスを用いることができる。
また被処理体としては、半導体ウエハに限定されず、ガラス基板やLCD基板等にも本発明を適用することができる。
In each of the above embodiments, NH 3 gas is used as the nitriding gas. However, the present invention is not limited to this. Ammonia [NH 3 ], nitrogen [N 2 ], dinitrogen monoxide [N 2 O], and nitric oxide One or more gases selected from the group consisting of [NO] can be used.
In each of the above embodiments, BCl 3 gas is used as the boron-containing gas. However, the gas is not limited to this, and is selected from the group consisting of BCl 3 , B 2 H 6 , BF 3 , and B (CH 3 ) 3. One or more gases can be used.
The object to be processed is not limited to a semiconductor wafer, and the present invention can be applied to a glass substrate, an LCD substrate, and the like.

本発明の係る成膜装置の一例を示す縦断面構成図である。It is a longitudinal cross-sectional block diagram which shows an example of the film-forming apparatus which concerns on this invention. 成膜装置を示す横断面構成図である。It is a cross-sectional block diagram which shows the film-forming apparatus. 本発明の成膜方法の第1実施例における各種ガスの供給のタイミングとRF(高周波)の印加タイミングを示すタイミングチャートである。It is a timing chart which shows the supply timing of various gases in the 1st Example of the film-forming method of this invention, and the application timing of RF (high frequency). 本発明の成膜方法の第2実施例における各種ガスの供給のタイミングとRF(高周波)の印加タイミングを示すタイミングチャートである。It is a timing chart which shows the supply timing of various gases in the 2nd Example of the film-forming method of this invention, and the application timing of RF (high frequency). 本発明の成膜方法の第3実施例における各種ガスの供給のタイミングとRF(高周波)の印加タイミングを示すタイミングチャートである。It is a timing chart which shows the supply timing of various gas in the 3rd Example of the film-forming method of this invention, and the application timing of RF (high frequency). 本発明の成膜方法の第4実施例における各種ガスの供給のタイミングとRF(高周波)の印加タイミングを示すタイミングチャートである。It is a timing chart which shows the supply timing of various gases in the 4th Example of the film-forming method of this invention, and the application timing of RF (high frequency). 第4実施例で形成される薄膜の積層構造の一例を示す断面図である。It is sectional drawing which shows an example of the laminated structure of the thin film formed in 4th Example. 第1乃至第3実施例により形成された各薄膜のエッチングレートの評価結果を示すグラフである。It is a graph which shows the evaluation result of the etching rate of each thin film formed by the 1st thru | or 3rd Example.

符号の説明Explanation of symbols

2 成膜装置
4 処理容器
12 ウエハボート(保持手段)
28 窒化ガス供給手段
30 シラン系ガス供給手段
32 ボロン含有ガス供給手段
34 炭化水素ガス供給手段
38,40,42,44 ガス分散ノズル
60 制御手段
62 記憶媒体
66 活性化手段
74 プラズマ電極
76 高周波電源
86 加熱手段
W 半導体ウエハ(被処理体)
2 Film deposition apparatus 4 Processing container 12 Wafer boat (holding means)
28 Nitriding gas supply means 30 Silane-based gas supply means 32 Boron-containing gas supply means 34 Hydrocarbon gas supply means 38, 40, 42, 44 Gas dispersion nozzle 60 Control means 62 Storage medium 66 Activation means 74 Plasma electrode 76 High frequency power supply 86 Heating means W Semiconductor wafer (object to be processed)

Claims (18)

複数枚の被処理体が収容されて真空引き可能になされた処理容器内に、シラン系ガスと窒化ガスと炭化水素ガスとを供給して前記被処理体の表面にSiCN薄膜を形成する成膜方法において、
前記シラン系ガスと炭化水素ガスの2種類のガスの同時供給と前記窒化ガスの供給とを間欠的に且つ交互に行うようにすると共にプラズマを用いないで前記薄膜を形成したことを特徴とする成膜方法。
Forming a SiCN thin film on the surface of the target object by supplying a silane-based gas, a nitriding gas, and a hydrocarbon gas into a processing container in which a plurality of target objects are accommodated and evacuated. In the method
The simultaneous supply of the two types of silane-based gas and hydrocarbon gas and the supply of the nitriding gas are performed intermittently and alternately, and the thin film is formed without using plasma. Film forming method.
複数枚の被処理体が収容されて真空引き可能になされた処理容器内に、窒化ガスとボロン含有ガスと炭化水素ガスとを供給して前記被処理体の表面にBCN薄膜を形成する成膜方法において、
前記ボロン含有ガスと炭化水素ガスの2種類のガスの同時供給と前記窒化ガスの供給とを間欠的に且つ交互に行うようにしたことを特徴とする成膜方法。
Forming a BCN thin film on the surface of the target object by supplying a nitriding gas, a boron-containing gas, and a hydrocarbon gas into a processing container in which a plurality of target objects are accommodated and evacuated. In the method
A film forming method, wherein the simultaneous supply of the two types of gases, the boron-containing gas and the hydrocarbon gas, and the supply of the nitriding gas are performed intermittently and alternately.
前記炭化水素ガスの供給時と前記窒化ガスの供給時との間の間欠期間には、前記処理容器内は不活性ガスパージされていること及び/又は全てのガスの供給が停止されて真空引きされていることを特徴とする請求項1又は2記載の成膜方法。   During the intermittent period between the supply of the hydrocarbon gas and the supply of the nitriding gas, the inside of the processing vessel is purged with an inert gas and / or the supply of all the gas is stopped and evacuated. The film forming method according to claim 1, wherein: 複数枚の被処理体が収容されて真空引き可能になされた処理容器内に、シラン系ガスと窒化ガスとボロン含有ガスと炭化水素ガスとを供給して前記被処理体の表面に薄膜を形成する成膜方法において、
前記シラン系ガスとボロン含有ガスの2種類のガスを短時間だけ同時供給する第1工程と、
前記窒化ガスを短時間だけ供給してSiBN薄膜を形成する第2工程と、
前記シラン系ガスと炭化水素ガスの2種類のガスを短時間だけ同時供給する第3工程と、
前記窒化ガスを短時間だけ供給してSiCN薄膜を形成する第4工程とを、
前記第1工程と前記第2工程と前記第3工程と前記第4工程の順序に従って1回、または複数回繰り返し行うようにしたことを特徴とする成膜方法。
A thin film is formed on the surface of the object by supplying a silane-based gas, a nitriding gas, a boron-containing gas, and a hydrocarbon gas into a processing container in which a plurality of objects to be processed are accommodated and evacuated. In the film forming method to
A first step of simultaneously supplying two types of gas, the silane-based gas and the boron-containing gas, for a short time;
A second step of forming the SiBN thin film by supplying the nitriding gas only for a short time;
A third step of simultaneously supplying the two types of gas, the silane-based gas and the hydrocarbon gas, for a short time;
A fourth step of forming the SiCN thin film by supplying the nitriding gas only for a short time;
A film forming method, wherein the first step, the second step, the third step, and the fourth step are repeated once or a plurality of times according to the order of the steps .
前記シラン系ガスの供給時と前記窒化ガスの供給時との間の間欠期間には、前記処理容器内は不活性ガスパージされていること及び/又は全てのガスの供給が停止されて真空引きされていることを特徴とする請求項4記載の成膜方法。   During an intermittent period between the supply of the silane-based gas and the supply of the nitriding gas, the inside of the processing vessel is purged with an inert gas and / or the supply of all the gases is stopped and evacuated. The film forming method according to claim 4, wherein: 前記薄膜の成膜時の温度は、300℃〜700℃の範囲内であることを特徴とする請求項1乃至のいずれか一項に記載の成膜方法。 Temperature during the deposition of the thin film forming method according to any one of claims 1 to 5, characterized in that in the range of 300 ° C. to 700 ° C.. 前記薄膜の成膜時の圧力は、13Pa(0.1Torr)〜13300Pa(100Torr)の範囲内であることを特徴とする請求項1乃至6のいずれか一項に記載の成膜方法。 The pressure during the deposition of the thin film, 13Pa (0.1Torr) ~13300Pa film forming method according to any one of claims 1乃optimum 6, characterized in that in the range of (100 Torr). 前記シラン系ガスは、ジクロロシラン(DCS)、ヘキサクロロジシラン(HCD)、モノシラン[SiH ]、ジシラン[Si ]、ヘキサメチルジシラザン(HMDS)、テトラクロロシラン(TCS)、ジシリルアミン(DSA)、トリシリルアミン(TSA)、ビスターシャルブチルアミノシラン(BTBAS)よりなる群より選択される1以上のガスであることを特徴とする請求項1乃至7のいずれか一項に記載の成膜方法。 The silane-based gas is dichlorosilane (DCS), hexachlorodisilane (HCD), monosilane [SiH 4 ], disilane [Si 2 H 6 ], hexamethyldisilazane (HMDS), tetrachlorosilane (TCS), disilylamine (DSA). the film forming method according to any one of claims 1乃optimum 7, characterized in that trisilylamine (TSA), is one or more gases selected from the group consisting of Bicester-tert-butyl amino silane (BTBAS) . 前記窒化ガスは、アンモニア[NH ]、窒素[N ]、一酸化二窒素[N O]、一酸化窒素[NO]よりなる群より選択される1以上のガスであることを特徴とする請求項1乃至8のいずれか一項に記載の成膜方法。 The nitriding gas is one or more gases selected from the group consisting of ammonia [NH 3 ], nitrogen [N 2 ], dinitrogen monoxide [N 2 O], and nitric oxide [NO]. the film deposition method according to any one of claims 1乃optimum 8. 前記ボロン含有ガスは、BCl 、B 、BF 、B(CH よりなる群より選択される1以上のガスであることを特徴とする請求項2、4、5のいずれか一項に記載の成膜方法。 The boron-containing gas is one or more gases selected from the group consisting of BCl 3 , B 2 H 6 , BF 3 , and B (CH 3 ) 3. The film forming method according to claim 1. 前記炭化水素ガスは、アセチレン、エチレン、メタン、エタン、プロパン、ブタンよりなる群より選択される1以上のガスであることを特徴とする請求項1乃至10のいずれか一項に記載の成膜方法。 The hydrocarbon gas is acetylene, ethylene, methane, ethane, propane, formed according to any one of claims 1乃optimum 10, characterized in that the one or more gases selected from the group consisting of butane Membrane method. 被処理体に対して所定の薄膜を形成するための成膜装置において、
真空引き可能になされた縦型の筒体状の処理容器と、
前記被処理体を複数段に保持して前記処理容器内に挿脱される保持手段と、
前記処理容器の外周に設けられる加熱手段と、
前記処理容器内へシラン系ガスを供給するシラン系ガス供給手段と、
前記処理容器内へ窒化ガスを供給する窒化ガス供給手段と、
前記処理容器内へ炭化水素ガスを供給する炭化水素ガス供給手段と、
前記シラン系ガスと炭化水素ガスの2種類のガスの同時供給と前記窒化ガスの供給とを間欠的に且つ交互に行うようにすると共にプラズマを用いないで前記薄膜を形成するように制御する制御手段と、
を備えたことを特徴とする成膜装置。
In a film forming apparatus for forming a predetermined thin film on an object to be processed,
A vertical cylindrical processing container made evacuated,
Holding means for holding the object to be processed in a plurality of stages and being inserted into and removed from the processing container;
Heating means provided on the outer periphery of the processing container;
A silane-based gas supply means for supplying a silane-based gas into the processing vessel;
Nitriding gas supply means for supplying a nitriding gas into the processing vessel;
Hydrocarbon gas supply means for supplying hydrocarbon gas into the processing vessel ;
Controlled so as to form the thin film without using a plasma as well as to perform the supply of two gas co-feed and the nitriding gas of the silane-based gas and a hydrocarbon gas to intermittently and alternately Control means;
A film forming apparatus comprising:
被処理体に対して所定の薄膜を形成するための成膜装置において、
真空引き可能になされた縦型の筒体状の処理容器と、
前記被処理体を複数段に保持して前記処理容器内に挿脱される保持手段と、
前記処理容器の外周に設けられる加熱手段と、
前記処理容器内へ窒化ガスを供給する窒化ガス供給手段と、
前記処理容器内へボロン含有ガスを供給するボロン含有ガス供給手段と、
前記処理容器内へ炭化水素ガスを供給する炭化水素ガス供給手段と、
前記ボロン含有ガスと炭化水素ガスの2種類のガスの同時供給と前記窒化ガスの供給とを間欠的に且つ交互に行うように制御する制御手段と、
を備えたことを特徴とする成膜装置。
In a film forming apparatus for forming a predetermined thin film on an object to be processed,
A vertical cylindrical processing container made evacuated,
Holding means for holding the object to be processed in a plurality of stages and being inserted into and removed from the processing container;
Heating means provided on the outer periphery of the processing container;
Nitriding gas supply means for supplying a nitriding gas into the processing vessel;
Boron-containing gas supply means for supplying boron-containing gas into the processing vessel;
Hydrocarbon gas supply means for supplying hydrocarbon gas into the processing vessel ;
And control means for controlling so as to perform the intermittent and alternating supply of the two gas co-feed and the nitriding gas of the volume Ron-containing gas and a hydrocarbon gas,
A film forming apparatus comprising:
被処理体に対して所定の薄膜を形成するための成膜装置において、
真空引き可能になされた縦型の筒体状の処理容器と、
前記被処理体を複数段に保持して前記処理容器内に挿脱される保持手段と、
前記処理容器の外周に設けられる加熱手段と、
前記処理容器内へシラン系ガスを供給するシラン系ガス供給手段と、
前記処理容器内へ窒化ガスを供給する窒化ガス供給手段と、
前記処理容器内へボロン含有ガスを供給するボロン含有ガス供給手段と、
前記処理容器内へ炭化水素ガスを供給する炭化水素ガス供給手段と、
前記シラン系ガスとボロン含有ガスの2種類のガスを短時間だけ同時供給する第1工程、前記窒化ガスを短時間だけ供給してSiBN薄膜を形成する第2工程、前記シラン系ガスと炭化水素ガスの2種類のガスを短時間だけ同時供給する第3工程及び前記窒化ガスを短時間だけ供給してSiCN薄膜を形成する第4工程とを前記第1工程と前記第2工程と前記第3工程と前記第4工程の順序に従って1回、または複数回繰り返し行うように制御する制御手段と、
を備えたことを特徴とする成膜装置。
In a film forming apparatus for forming a predetermined thin film on an object to be processed,
A vertical cylindrical processing container made evacuated,
Holding means for holding the object to be processed in a plurality of stages and being inserted into and removed from the processing container;
Heating means provided on the outer periphery of the processing container;
A silane-based gas supply means for supplying a silane-based gas into the processing vessel;
Nitriding gas supply means for supplying a nitriding gas into the processing vessel;
Boron-containing gas supply means for supplying boron-containing gas into the processing vessel;
Hydrocarbon gas supply means for supplying hydrocarbon gas into the processing vessel ;
Two first step short time simultaneously supplying a gas of the Sila emissions-based gas and a boron-containing gas carbonization, the second step of forming a SiBN thin film by supplying a short time the nitriding gas, and said silane gas The first step, the second step, and the second step include a third step of simultaneously supplying two kinds of hydrogen gas for a short time and a fourth step of supplying the nitriding gas for a short time to form a SiCN thin film . Control means for controlling to be repeated once or a plurality of times according to the order of three steps and the fourth step ;
A film forming apparatus comprising:
前記活性化手段は、前記処理容器に一体的に組み込まれていることを特徴とする請求項12乃至14のいずれか一項に記載の成膜装置。 The film forming apparatus according to claim 12 , wherein the activating unit is integrally incorporated in the processing container. 複数枚の被処理体が収容されて真空引き可能になされた処理容器内に、シラン系ガスと窒化ガスと炭化水素ガスとを供給すると共にプラズマを用いないで前記被処理体の表面にSiCN薄膜を形成するようにした成膜装置を用いて薄膜を形成するに際して、
前記シラン系ガスと炭化水素ガスの2種類のガスの同時供給と前記窒化ガスの供給とを間欠的に且つ交互に行うように前記成膜装置を制御するプログラムを記憶することを特徴とする記憶媒体。
A SiCN thin film is supplied to the surface of the object without supplying plasma while supplying a silane-based gas, a nitriding gas, and a hydrocarbon gas into a processing container in which a plurality of objects to be processed are accommodated and evacuated. When forming a thin film using a film forming apparatus configured to form
A memory for storing a program for controlling the film forming apparatus so as to intermittently and alternately supply the two types of gases of the silane-based gas and the hydrocarbon gas and the supply of the nitriding gas alternately. Medium.
複数枚の被処理体が収容されて真空引き可能になされた処理容器内に、窒化ガスとボロン含有ガスと炭化水素ガスとを供給して前記被処理体の表面にBCN薄膜を形成するようにした成膜装置を用いて薄膜を形成するに際して、
前記ボロン含有ガスと炭化水素ガスの2種類のガスの同時供給と前記窒化ガスの供給とを間欠的に且つ交互に行うように前記成膜装置を制御するプログラムを記憶することを特徴とする記憶媒体。
A nitriding gas, a boron-containing gas, and a hydrocarbon gas are supplied into a processing container in which a plurality of objects to be processed are accommodated and evacuated to form a BCN thin film on the surface of the object to be processed. When forming a thin film using the film forming apparatus,
A memory for storing a program for controlling the film forming apparatus so as to intermittently and alternately supply the two types of gases of boron-containing gas and hydrocarbon gas and the supply of the nitriding gas intermittently. Medium.
複数枚の被処理体が収容されて真空引き可能になされた処理容器内に、シラン系ガスと窒化ガスとボロン含有ガスと炭化水素ガスとを供給して前記被処理体の表面に薄膜を形成するようにした成膜装置を用いて薄膜を形成するに際して、
前記シラン系ガスとボロン含有ガスの2種類のガスを短時間だけ同時供給する第1工程と、
前記窒化ガスを短時間だけ供給してSiBN薄膜を形成する第2工程と、
前記シラン系ガスと炭化水素ガスの2種類のガスを短時間だけ同時供給する第3工程と、
前記窒化ガスを短時間だけ供給してSiCN薄膜を形成する第4工程とを、
前記第1工程と前記第2工程と前記第3工程と前記第4工程の順序に従って1回、または複数回繰り返し行うように前記成膜装置を制御するプログラムを記憶することを特徴とする記憶媒体。
A thin film is formed on the surface of the object by supplying a silane-based gas, a nitriding gas, a boron-containing gas, and a hydrocarbon gas into a processing container in which a plurality of objects to be processed are accommodated and evacuated. When forming a thin film using a film forming apparatus designed to
A first step of simultaneously supplying two types of gas, the silane-based gas and the boron-containing gas, for a short time;
A second step of forming the SiBN thin film by supplying the nitriding gas only for a short time;
A third step of simultaneously supplying the two types of gas, the silane-based gas and the hydrocarbon gas, for a short time;
A fourth step of forming the SiCN thin film by supplying the nitriding gas only for a short time;
A storage medium storing a program for controlling the film forming apparatus to be repeated once or a plurality of times according to the order of the first step, the second step, the third step, and the fourth step. .
JP2008309157A 2005-03-09 2008-12-03 Film forming method, film forming apparatus, and storage medium Active JP4893729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008309157A JP4893729B2 (en) 2005-03-09 2008-12-03 Film forming method, film forming apparatus, and storage medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005066340 2005-03-09
JP2005066340 2005-03-09
JP2008309157A JP4893729B2 (en) 2005-03-09 2008-12-03 Film forming method, film forming apparatus, and storage medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006004191A Division JP4258518B2 (en) 2005-03-09 2006-01-11 Film forming method, film forming apparatus, and storage medium

Publications (2)

Publication Number Publication Date
JP2009065203A JP2009065203A (en) 2009-03-26
JP4893729B2 true JP4893729B2 (en) 2012-03-07

Family

ID=36993685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008309157A Active JP4893729B2 (en) 2005-03-09 2008-12-03 Film forming method, film forming apparatus, and storage medium

Country Status (2)

Country Link
JP (1) JP4893729B2 (en)
CN (1) CN100554506C (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5211464B2 (en) * 2006-10-20 2013-06-12 東京エレクトロン株式会社 Oxidizer for workpiece
JP5654862B2 (en) * 2010-04-12 2015-01-14 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus
US8637411B2 (en) 2010-04-15 2014-01-28 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
US9373500B2 (en) 2014-02-21 2016-06-21 Lam Research Corporation Plasma assisted atomic layer deposition titanium oxide for conformal encapsulation and gapfill applications
US9997357B2 (en) 2010-04-15 2018-06-12 Lam Research Corporation Capped ALD films for doping fin-shaped channel regions of 3-D IC transistors
US9287113B2 (en) 2012-11-08 2016-03-15 Novellus Systems, Inc. Methods for depositing films on sensitive substrates
US9892917B2 (en) 2010-04-15 2018-02-13 Lam Research Corporation Plasma assisted atomic layer deposition of multi-layer films for patterning applications
US9257274B2 (en) 2010-04-15 2016-02-09 Lam Research Corporation Gapfill of variable aspect ratio features with a composite PEALD and PECVD method
JP5572447B2 (en) * 2010-05-25 2014-08-13 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus
JP5675331B2 (en) * 2010-12-27 2015-02-25 東京エレクトロン株式会社 How to fill trench
JP5847566B2 (en) * 2011-01-14 2016-01-27 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing method, substrate processing apparatus, and program
JP6151335B2 (en) * 2011-01-14 2017-06-21 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus, and program
WO2013043330A1 (en) * 2011-09-23 2013-03-28 Novellus Systems, Inc. Plasma activated conformal dielectric film deposition
WO2013054655A1 (en) * 2011-10-14 2013-04-18 株式会社日立国際電気 Method for manufacturing semiconductor device, substrate processing method, substrate processing apparatus, and recording medium
JP5806612B2 (en) * 2011-12-27 2015-11-10 東京エレクトロン株式会社 Method for forming silicon oxycarbonitride film
JP6129573B2 (en) * 2013-02-13 2017-05-17 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus, and program
JP6111097B2 (en) * 2013-03-12 2017-04-05 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus, and program
JP6111106B2 (en) * 2013-03-19 2017-04-05 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus, and program
JP6159143B2 (en) 2013-05-10 2017-07-05 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus, and program
JP6170754B2 (en) 2013-06-18 2017-07-26 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus, and program
JP6291297B2 (en) 2014-03-17 2018-03-14 東京エレクトロン株式会社 Film forming method, film forming apparatus, and storage medium
JP6340251B2 (en) 2014-05-30 2018-06-06 東京エレクトロン株式会社 Method for forming SiCN film
JP6347705B2 (en) 2014-09-17 2018-06-27 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus, and program
US9564312B2 (en) 2014-11-24 2017-02-07 Lam Research Corporation Selective inhibition in atomic layer deposition of silicon-containing films
US10566187B2 (en) 2015-03-20 2020-02-18 Lam Research Corporation Ultrathin atomic layer deposition film accuracy thickness control
US9773643B1 (en) 2016-06-30 2017-09-26 Lam Research Corporation Apparatus and method for deposition and etch in gap fill
US10062563B2 (en) 2016-07-01 2018-08-28 Lam Research Corporation Selective atomic layer deposition with post-dose treatment
US10037884B2 (en) 2016-08-31 2018-07-31 Lam Research Corporation Selective atomic layer deposition for gapfill using sacrificial underlayer
US10269559B2 (en) 2017-09-13 2019-04-23 Lam Research Corporation Dielectric gapfill of high aspect ratio features utilizing a sacrificial etch cap layer
WO2020222853A1 (en) 2019-05-01 2020-11-05 Lam Research Corporation Modulated atomic layer deposition
JP2023003828A (en) * 2021-06-24 2023-01-17 東京エレクトロン株式会社 Film deposition apparatus and film deposition method
CN114515519B (en) * 2022-03-16 2022-10-04 南京工业大学 Mixed matrix carbon molecular sieve membrane, preparation method and composite membrane prepared by using same 2 H 4 /C 2 H 6 Use in separations

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200506093A (en) * 2003-04-21 2005-02-16 Aviza Tech Inc System and method for forming multi-component films
JP4658486B2 (en) * 2003-06-30 2011-03-23 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
JP3960987B2 (en) * 2004-04-23 2007-08-15 株式会社日立国際電気 Reaction vessel

Also Published As

Publication number Publication date
JP2009065203A (en) 2009-03-26
CN1831191A (en) 2006-09-13
CN100554506C (en) 2009-10-28

Similar Documents

Publication Publication Date Title
JP4893729B2 (en) Film forming method, film forming apparatus, and storage medium
JP4258518B2 (en) Film forming method, film forming apparatus, and storage medium
JP4929932B2 (en) Film forming method, film forming apparatus, and storage medium
JP4434149B2 (en) Film forming method, film forming apparatus, and storage medium
JP4935684B2 (en) Film forming method and film forming apparatus
JP5151260B2 (en) Film forming method and film forming apparatus
JP4935687B2 (en) Film forming method and film forming apparatus
JP4924437B2 (en) Film forming method and film forming apparatus
JP5233562B2 (en) Film forming method and film forming apparatus
JP5699980B2 (en) Film forming method and film forming apparatus
JP4179311B2 (en) Film forming method, film forming apparatus, and storage medium
JP5920242B2 (en) Film forming method and film forming apparatus
JP5190307B2 (en) Film forming method, film forming apparatus, and storage medium
JP6024484B2 (en) Film forming method and film forming apparatus
JP4396547B2 (en) Film forming method, film forming apparatus, and storage medium
JP4506677B2 (en) Film forming method, film forming apparatus, and storage medium
JP2009260151A (en) Method of forming metal doped layer, film forming apparatus, and storage medium
JP5887962B2 (en) Deposition equipment
JP2011135046A (en) Vertical film deposition device and using method thereof
JP2006066884A (en) Deposition method, deposition device and storage medium
JP2013093525A (en) Deposition apparatus and operation method of the same
JP5082595B2 (en) Deposition equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

R150 Certificate of patent or registration of utility model

Ref document number: 4893729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250