JP4893502B2 - Humidified air flow supply system to each stage of the growth shelf of the multi-stage plant growing device - Google Patents

Humidified air flow supply system to each stage of the growth shelf of the multi-stage plant growing device Download PDF

Info

Publication number
JP4893502B2
JP4893502B2 JP2007170596A JP2007170596A JP4893502B2 JP 4893502 B2 JP4893502 B2 JP 4893502B2 JP 2007170596 A JP2007170596 A JP 2007170596A JP 2007170596 A JP2007170596 A JP 2007170596A JP 4893502 B2 JP4893502 B2 JP 4893502B2
Authority
JP
Japan
Prior art keywords
stage
shelf
air flow
humidified air
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007170596A
Other languages
Japanese (ja)
Other versions
JP2009005634A (en
Inventor
徳 呉
勝美 岡部
Original Assignee
Mkvドリーム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mkvドリーム株式会社 filed Critical Mkvドリーム株式会社
Priority to JP2007170596A priority Critical patent/JP4893502B2/en
Publication of JP2009005634A publication Critical patent/JP2009005634A/en
Application granted granted Critical
Publication of JP4893502B2 publication Critical patent/JP4893502B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Description

本発明は、人工照明装置、空調装置および炭酸ガス供給装置を装備した外部環境の影響を受けない閉鎖型構造物内に設置された多段式育成棚モジュールの育成棚各段へ、加湿空気流を効果的に効率よく供給することができるシステムに関するものである。   The present invention provides a humidified air flow to each stage of a growth shelf of a multistage growth shelf module installed in a closed structure that is not affected by the external environment equipped with an artificial lighting device, an air conditioning device, and a carbon dioxide supply device. The present invention relates to a system that can be effectively and efficiently supplied.

閉鎖型構造物の内部空間に、多段式に植物育成棚を設置し、人工照明装置や空調装置さらには炭酸ガス供給装置を装備した多段式植物育成装置としては、特許文献1(WO2005/000005)や特許文献2(特開2002−291349号公報)等に記載されているような装置が知られている。この装置を、図7を参照して説明すると、遮光性断熱壁2で包囲された閉鎖型構造物1内に、上下方向に複数段の育成棚3を配した多段式育成棚モジュール4を設置し、前記育成棚3の各段の裏面にはその下方の段に載置された植物育成用培地を入れるセルトレイ(図示せず)に光を照射する人工照明装置5を設け、前記育成棚3の各段の背面には各段の前面から空気流を吸引して各段に空気流を生じさせるファン6を設け、前記閉鎖型構造物1内の雰囲気を調温調湿する空調装置7および前記雰囲気の炭酸ガス濃度を調整する炭酸ガス供給装置8を前記閉鎖型構造物1内に設置した構造を有している。
図示の例では、2つの多段式育成棚モジュール4がそれらの開放前面を向かい合わせにされて閉鎖型構造物1内に配置されており、育成棚各段に設けたファン6によって、矢印で示したような空気流が育成棚各段に生じるようにされている。2つの育成棚モジュール4の間の空間は作業空間として使用することができる。
Patent Document 1 (WO 2005/000005) is a multi-stage plant growing apparatus equipped with a multi-stage plant growing shelf in an internal space of a closed structure and equipped with an artificial lighting device, an air conditioner, and a carbon dioxide supply device. And a device as described in Japanese Patent Application Laid-Open No. 2002-291349 and the like are known. This apparatus will be described with reference to FIG. 7. A multistage growth shelf module 4 in which a plurality of growth shelves 3 are arranged in the vertical direction is installed in a closed structure 1 surrounded by a light shielding heat insulating wall 2. The rear surface of each stage of the growth shelf 3 is provided with an artificial lighting device 5 for irradiating light to a cell tray (not shown) in which a plant growth medium placed on the lower stage is placed. An air conditioner 7 for adjusting the temperature and humidity of the atmosphere in the closed structure 1 is provided on the back of each stage by providing a fan 6 that sucks an air flow from the front of each stage and generates an air flow in each stage. It has a structure in which a carbon dioxide supply device 8 for adjusting the carbon dioxide concentration of the atmosphere is installed in the closed structure 1.
In the illustrated example, two multi-stage growth shelf modules 4 are arranged in the closed structure 1 with their open fronts facing each other, and are indicated by arrows by fans 6 provided on each growth shelf. Air flow is generated in each stage of the growing shelf. The space between the two growing shelf modules 4 can be used as a work space.

かような多段式植物育成装置においては、図7には図示されていないが、育成棚3各段に底面かん水装置が配設されている。底面かん水装置としては種々の形状や形式のものがあるが、一般的には、植物育成培地を入れた複数のセルトレイを載置できるかん水トレイを有し、かん水トレイに給水口と排水口を設けた構造とされている。排水口としてはかん水トレイ底面に形成した開口が使用されるが、給水口としては種々のタイプがある。例えば、(a)かん水トレイ底面に形成した開口から養液(肥料分を含む培養液)を供給するタイプ、(b)かん水トレイ内に延長させた給水管の先端開口から養液を供給するタイプ、(c)複数の小孔を形成した給水管をかん水トレイ底面に配設して小孔から養液を供給するタイプ、等が用いられている。本明細書中では、底面かん水装置の“給水口”という用語は、(a)のかん水トレイ底面に形成した“開口”だけでなく、(b)の“給水管先端開口”や(c)の“給水管の複数小孔”も総称する用語として使用している。
底面かん水装置を使用することにより、給水口からかん水トレイに供給された養液が所定水位とされ、セルトレイ底面からかん水がなされ、残余の養液は排液として排水口から排出される。こうしたかん水操作は、植物の育成期間中に必要に応じて間欠的に行われる。
In such a multi-stage plant growing device, although not shown in FIG. 7, a bottom watering device is disposed at each stage of the growing shelf 3. There are various shapes and types of bottom watering devices, but generally there is a watering tray on which multiple cell trays containing plant growth media can be placed, and a water supply port and a water discharge port are provided on the watering tray. Structure. Although the opening formed in the bottom of the irrigation tray is used as the drainage port, there are various types as the water supply port. For example, (a) type that feeds nutrient solution (culture solution containing fertilizer) from the opening formed on the bottom of the brine tray, (b) type that feeds nutrient solution from the tip opening of the water supply pipe extended into the brine tray (C) A type in which a water supply pipe in which a plurality of small holes are formed is disposed on the bottom of the irrigation tray and the nutrient solution is supplied from the small holes is used. In this specification, the term “water supply port” of the bottom watering device is not limited to the “opening” formed on the bottom surface of the watering tray in (a), but also “bathlet opening on the water supply pipe” in (b) and (c). “Multiple holes in the water supply pipe” is also used as a generic term.
By using the bottom surface irrigation device, the nutrient solution supplied from the water supply port to the irrigation tray is set to a predetermined water level, irrigation is performed from the bottom surface of the cell tray, and the remaining nutrient solution is discharged from the drain port as drainage. Such irrigation operation is intermittently performed as necessary during the plant growing period.

多段式育成棚モジュール4の育成棚3各段の底面かん水装置へ養液を供給・排出する給排システムの一例を図8を参照して説明する。図8は、図7において向かい合わせて配置された多段式育成棚モジュール4の1つを開放前面側から見た図であり、図7に図示されている育成棚3各段の人工照明装置5およびファン6は図示を省略してある。また、図7と同じ構成部材には同じ参照番号を付すことにより説明を省略する。養液は閉鎖型構造物1外部に設置された養液タンク10に貯留されており、ポンプPにより養液供給管11を介して育成棚3各段の底面かん水装置の給水口13へ供給される。養液供給管11と各段の給水口13とは、養液供給管11から分岐する分岐管12を介して接続されている。   An example of the supply / discharge system for supplying / discharging the nutrient solution to / from the bottom irrigation device of each stage of the growth shelf 3 of the multistage type growth shelf module 4 will be described with reference to FIG. FIG. 8 is a view of one of the multistage-type growth shelf modules 4 arranged facing each other in FIG. 7 as viewed from the open front side. The artificial lighting device 5 at each stage of the growth shelf 3 shown in FIG. The fan 6 is not shown. Also, the same components as those in FIG. The nutrient solution is stored in a nutrient solution tank 10 installed outside the closed structure 1 and is supplied by the pump P to the water supply port 13 of the bottom watering device at each stage of the growth shelf 3 through the nutrient solution supply pipe 11. The The nutrient solution supply pipe 11 and the water supply port 13 of each stage are connected via a branch pipe 12 branched from the nutrient solution supply pipe 11.

育成棚3各段の底面かん水装置に給水口13から供給された養液は、底面かん水装置に載置されたセルトレイ(図示せず)の底面からかん水されてセル内に植えられた植物の育成に供される。残余の養液は底面かん水装置の排水口14から排液管15を介して排液戻し管16へ排出され、各段の排水口14からの排液はこの排液戻し管16に集められて育成棚モジュール4最下段の育成棚3下方へ導かれる。この排液戻し管16の下端は、水平に配設された排液戻し水平管17に接続され、この排液戻し水平管17は養液タンク10へ接続される。かくして、育成棚3各段からの排液は排水口14、排液管15、排液戻し管16、排液戻し水平管17を介して養液タンク10へ戻され、成分調整した後に再利用される。   The nutrient solution supplied from the water supply port 13 to the bottom watering device of each stage of the growth shelf 3 is watered from the bottom surface of a cell tray (not shown) placed on the bottom watering device and grows a plant planted in the cell. To be served. The remaining nutrient solution is discharged from the drain port 14 of the bottom irrigation device to the drainage return pipe 16 via the drainage pipe 15, and the drainage liquid from the drainage port 14 at each stage is collected in the drainage return pipe 16. It is led below the growth shelf 3 at the bottom of the growth shelf module 4. The lower end of the drainage return pipe 16 is connected to a drainage return horizontal pipe 17 disposed horizontally, and the drainage return horizontal pipe 17 is connected to the nutrient solution tank 10. Thus, the drainage liquid from each stage of the growth shelf 3 is returned to the nutrient solution tank 10 through the drain port 14, the drainage pipe 15, the drainage return pipe 16, and the drainage return horizontal pipe 17, and is reused after adjusting the components. Is done.

特許文献1にも教示されているように、多段式植物育成装置は接ぎ木苗の育苗にも用いられる。接ぎ木苗の育苗においては、先ず育成棚で台木と穂木を別個に育苗した後、台木と穂木を切断して互いに接合し、接ぎ木苗を作る。得られた接ぎ木苗も育成棚に植えて育苗されるが、接ぎ木直後の接ぎ木苗の育苗には、接ぎ木の活着を促進するために、相対湿度100%近くの高湿度の環境で育苗する養生期間が必要となる。特許文献1においては、高湿度環境が必要となる接ぎ木苗の養生期間に、図9に示したような、例えば透明アクリル樹脂からなる底板のない箱形状を有し、複数の通気孔31を備えた透光性遮蔽物30を用いて、図10に示したようにして、多段式植物育成装置の育成棚3各段に配置した底面かん水装置のセルトレイ32に植えられた接ぎ木苗33を被覆している。これにより透光性遮蔽物30内部は、接ぎ木苗や培地から蒸発した水分によって高湿度環境とすることができる。一方、接ぎ木苗33の光合成に際しては炭酸ガスが必要となるが、透光性遮蔽物30内部の高湿度状態を損なわない程度の大きさの複数の通気孔31を通じて、ファン6による育苗棚3各段に生じている空気流によりガス交換がなされ、閉鎖型構造物1内の炭酸ガス含有雰囲気を透光性遮蔽物30内へ供給することができる。   As taught in Patent Document 1, the multistage plant growing apparatus is also used for raising grafted seedlings. In the raising of the grafted seedling, first, the rootstock and the hogi are raised separately on the growing shelf, then the rootstock and the hogi are cut and joined together to make the grafted seedling. The obtained grafted seedlings are also planted on a growing shelf, and the grafted seedlings are grown in a high humidity environment with a relative humidity of nearly 100% in order to promote the grafting of the grafted seedlings immediately after grafting. Is required. In patent document 1, it has the box shape without the baseplate which consists of transparent acrylic resins, for example as shown in FIG. 9 in the curing period of the grafted seedling which requires a high-humidity environment, and includes a plurality of vent holes 31. As shown in FIG. 10, the grafted seedlings 33 planted on the cell tray 32 of the bottom watering device disposed on each stage of the growth shelf 3 of the multi-stage plant growing apparatus are covered with the transparent shield 30. ing. Thereby, the inside of the translucent shield 30 can be made into a high humidity environment by the water | moisture content evaporated from the grafted seedling or the culture medium. On the other hand, carbon dioxide gas is required for the photosynthesis of the grafted seedling 33, but each of the seedling shelves 3 by the fan 6 is passed through a plurality of vent holes 31 having a size that does not impair the high humidity state inside the translucent shield 30. Gas exchange is performed by the air flow generated in the stage, and the carbon dioxide-containing atmosphere in the closed structure 1 can be supplied into the translucent shield 30.

国際公開 WO2005/000005公報International Publication WO2005 / 000005 特開2002−291349号公報JP 2002-291349 A

図10に示したように、育成棚各段で育苗している苗を透光性遮蔽物30で覆うことによって、苗や培地から蒸発した水分を透光性遮蔽物30内に閉じこめて高湿度環境をもたらすことができる。しかしながら、例えば接ぎ木苗の養生期間は、接ぎ木直後の数日間の短期間であり、接ぎ木苗や培地からの水分蒸発のみによって透光性遮蔽物30内を高湿度環境とするのでは、短期間に所望した環境調節が行い難い場合もあり、より迅速な高湿度環境の達成が望まれる。   As shown in FIG. 10, by covering the seedlings raised in each stage of the growing shelf with the light-transmitting shielding material 30, the moisture evaporated from the seedlings and the culture medium is confined in the light-transmitting shielding material 30, and the high humidity Can bring environment. However, for example, the curing period of the grafted seedling is a short period of several days immediately after the grafting, and if the inside of the translucent shield 30 is made into a high-humidity environment only by moisture evaporation from the grafted seedling and the culture medium, it takes a short time. It may be difficult to perform the desired environmental adjustment, and it is desired to achieve a quicker high-humidity environment.

また、閉鎖型構造物1内に加湿器を設置し、閉鎖型構造物内の雰囲気全体を高湿度とし、これをファン6により空気流として育成棚3各段へ流通させ育成棚各段で高湿度環境をもたらすことも考えられる。しかし、閉鎖型構造物内の雰囲気全体を加湿器で加湿する場合、大型の加湿器あるいは多数の加湿器が必要となるため効率的でなく、さらには、閉鎖型構造物内に設置した温度センサーや湿度センサーの検知素子が高湿度環境により劣化しやくなるとともに、安価な家庭用空調装置の使用が不可能となり、高湿度環境に対応した業務用冷凍機の使用が必要となる。   In addition, a humidifier is installed in the closed structure 1, and the entire atmosphere in the closed structure is made high humidity. It is also possible to bring about a humidity environment. However, when humidifying the entire atmosphere in a closed structure with a humidifier, a large humidifier or a large number of humidifiers are required, which is not efficient. Furthermore, a temperature sensor installed in the closed structure In addition, the detection element of the humidity sensor is likely to be deteriorated by a high humidity environment, and it becomes impossible to use an inexpensive home air conditioner, and it is necessary to use a commercial refrigerator corresponding to the high humidity environment.

そこで本発明は、多段式植物育成装置の育成棚各段へ、加湿空気流を必要に応じて迅速かつ効率よく供給することができるとともに、加湿空気流の供給用配管の設置も簡略化することができる、新規かつ改良された加湿空気流供給システムを提供することを目的としてなされたものである。   Therefore, the present invention can supply a humidified air flow quickly and efficiently to each stage of the growth shelf of the multi-stage plant growing apparatus as needed, and also simplifies the installation of a supply pipe for the humidified air flow. It is an object of the present invention to provide a new and improved humidified air flow supply system capable of

すなわち本発明の多段式植物育成装置の育成棚各段への加湿空気流供給システムは、遮光性断熱壁で包囲された閉鎖型構造物内に、上下方向に複数段の育成棚を配した少なくとも1つの多段式育成棚モジュールと前記閉鎖型構造物内の雰囲気を調温調湿する空調装置と前記雰囲気の炭酸ガス濃度を調整する炭酸ガス供給装置とを設置し;前記多段式育成棚モジュールの育成棚各段に、植物育成用培地を入れた複数のセルトレイを載置でき前記セルトレイの底面から間欠的に潅水可能な給水口および排水口を備えた底面潅水装置を配設し;前記育成棚各段の裏面に、その下方の段に載置されたセルトレイに光を照射する人工照明装置を設け;
前記育成棚各段の背面に、各段の前面から空気流を吸引して各段に空気流を生じさせるファンを設け;調温調湿され炭酸ガス濃度を調整された前記雰囲気を空気流として前記育成棚各段に供給できるようにした多段式植物育成装置において:前記閉鎖型構造物内の調温調湿され炭酸ガス濃度を調整された雰囲気を吸引して加湿空気流として送出する加湿装置を前記閉鎖型構造物内に設置し;前記閉鎖型構造物外部に設置した養液タンクからポンプにより養液を前記閉鎖型構造物内の前記育成棚各段に配置した底面かん水装置の給水口へ供給する養液供給管を配設し;前記育成棚各段に配置した底面かん水装置の排水口から排出される排液を集めて前記育成棚モジュールの最下段育成棚の下方へ導く排液戻し管およびこの排液戻し管下端に接続されて排液を前記養液タンクへ戻す排液戻し水平管を配設し;前記養液タンク近傍の前記排液戻し水平管にU字型液溜部を形成し;前記加湿装置から送出される加湿空気流を導く加湿空気流導管を前記U字型液溜部上流の排液戻し水平管上流端に接続したことを特徴とするものである。
That is, the humidified airflow supply system to each stage of the growth shelf of the multi-stage plant growth apparatus of the present invention has at least a plurality of stages of growth racks arranged vertically in a closed structure surrounded by a light-shielding heat insulating wall. One multi-stage growth shelf module, an air conditioner that regulates and regulates the atmosphere in the closed structure, and a carbon dioxide supply device that adjusts the carbon dioxide concentration in the atmosphere; A bottom irrigation device having a water supply port and a drain port that can be placed on a plurality of cell trays containing a plant growth medium and can be intermittently irrigated from the bottom surface of the cell tray is disposed on each stage of the growth shelf; An artificial lighting device for irradiating light to the cell tray placed on the lower stage of each stage is provided on the back surface of each stage;
A fan that sucks an air flow from the front of each stage and generates an air stream at each stage is provided on the back of each stage of the growing shelf; the atmosphere that is temperature-controlled and adjusted in carbon dioxide concentration is used as the air stream In the multi-stage plant growing apparatus that can be supplied to each stage of the growing shelf: a humidifying apparatus that sucks the temperature-controlled and controlled atmosphere in the closed structure and adjusts the concentration of carbon dioxide gas and sends it out as a humidified air flow Is installed in the closed structure; feed water of a bottom watering device in which nutrient solution is disposed by pump from a nutrient tank installed outside the closed structure on each stage of the growth shelf in the closed structure A nutrient solution supply pipe to be supplied to the drainage solution; collecting drainage discharged from the drain port of the bottom irrigation device arranged at each stage of the growth shelf and leading the solution downward to the bottom growth shelf of the growth shelf module Connected to the return pipe and the lower end of the drainage return pipe A drainage return horizontal pipe for returning the drainage liquid to the nutrient solution tank is provided; a U-shaped liquid reservoir is formed in the drainage return horizontal pipe near the nutrient solution tank; and sent from the humidifier The humidified air flow conduit for guiding the humidified air flow is connected to the upstream end of the drainage return horizontal pipe upstream of the U-shaped liquid reservoir.

本発明の好ましい実施形態においては、前記U字型液溜部の上流側の上端が下流側の上端より高い位置になるようにする。
さらに、前記加湿装置から送出される加湿空気流を導く前記加湿空気流導管の他に追加的加湿空気流導管を別途設け、前記育成棚モジュールの最上段育成棚の排液戻し管上端に接続するようにしてもよい。
In a preferred embodiment of the present invention, the upper end on the upstream side of the U-shaped liquid reservoir is positioned higher than the upper end on the downstream side.
Further, in addition to the humidified air flow conduit for guiding the humidified air flow delivered from the humidifier, an additional humidified air flow conduit is separately provided and connected to the upper end of the drainage return pipe of the uppermost growth shelf of the growth shelf module. You may do it.

本発明の加湿空気流供給システムによれば、加湿装置から送出される加湿空気
流を導く加湿空気流導管を、排液戻し水平管の上流端に接続するという極めて簡単な配管構成によって、かん水停止時に加湿装置から加湿空気流を送出すれば、排液の流れていない排液戻し水平管、排液戻し管、排液管を介して底面かん水装置の排水口から育成棚各段へ加湿空気流を分配供給することができる。換言すれば、育成棚各段に配置した底面かん水装置からの排液の排出系に使用されている排液戻し水平管、排液戻し管および排液管を、育成棚各段への加湿空気流の供給用配管として共用することができる。その結果、加湿装置からの加湿空気流を育成棚各段へ分配供給するための配管を別途設ける必要がない。
According to the humidified air flow supply system of the present invention, the brazing water is stopped by a very simple piping configuration in which the humidified air flow conduit for guiding the humidified air flow sent from the humidifier is connected to the upstream end of the drainage return horizontal pipe. If a humidified air flow is sometimes sent from the humidifier, the humidified air flow from the drainage port of the bottom irrigation device to each stage of the growth shelf via the drainage return horizontal pipe, drainage return pipe, and drainage pipe where no drainage flows Can be dispensed. In other words, the drainage return horizontal pipe, drainage return pipe and drainage pipe used in the drainage discharge system from the bottom irrigation device arranged at each stage of the growth shelf are connected to the humidified air to each stage of the growth shelf. Can be shared as a flow supply pipe. As a result, there is no need to separately provide a pipe for distributing and supplying the humidified air flow from the humidifier to each stage of the growth shelf.

また、排液戻し水平管途中に形成したU字型液溜部の上流側の上端が下流側の上端より高い位置になるようにすることによって、排液が排液戻し水平管の上流側からU字型液溜部を通って下流側の養液タンクへ流れやすくすることができる。   In addition, the upper end on the upstream side of the U-shaped liquid reservoir formed in the middle of the drainage return horizontal pipe is positioned higher than the upper end on the downstream side, so that the drainage is made from the upstream side of the drainage return horizontal pipe. It can be made easy to flow through the U-shaped liquid reservoir to the nutrient solution tank on the downstream side.

さらに、加湿装置から送出される加湿空気流を導く加湿空気流導管の他に追加的加湿空気流導管を別途設けることによって、育成棚モジュールの育成棚各段へ追加的に加湿空気流を供給することができるため、育成棚各段での高湿度環境の達成をより一層迅速に行うことが可能となる。   Furthermore, in addition to the humidified air flow conduit for guiding the humidified air flow delivered from the humidifier, an additional humidified air flow conduit is separately provided to supply additional humidified air flow to each stage of the growing shelf of the growing shelf module. Therefore, it is possible to achieve a high humidity environment at each stage of the growing shelf even more quickly.

図1は、多段式育成棚モジュール4の育成棚3各段への本発明による加湿空気流供給システムの基本概念を説明する説明図であり、従来の養液給排システムの説明図である図8と同じ構成要素には同じ参照番号を付すことにより、説明を省略する。
図1に示す本発明の加湿空気流供給システムにおいては、図8に示す従来の養液給排システムを利用するのであるが、閉鎖型構造物1内部に新たに加湿装置20が設けられている。この加湿装置20は、閉鎖型構造物1内の空調装置7により調温調湿され、炭酸ガス供給装置8により炭酸ガス濃度を調整された閉鎖型構造物内雰囲気を吸引して、加湿装置20内で加湿した後、加湿空気を送出する機能を備えている。加湿装置20から送出される加湿空気は、加湿空気流導管22に導かれる。加湿装置20からの加湿空気の送出・停止は、加湿装置20内に設けた送風ファン21の回転・停止により行うことができる。また、養液タンク10近傍の排液戻し水平管17には、排液戻し水平管をU字型に曲折したU字型液溜部23を形成し、このU字型液溜部23の上流の排液戻し水平管17の上流端17aに加湿空気流導管22を接続する。
FIG. 1 is an explanatory view for explaining a basic concept of a humidified air flow supply system according to the present invention to each stage of a growth shelf 3 of a multistage type growth shelf module 4, and is an explanatory view of a conventional nutrient solution supply / discharge system. The same constituent elements as those in FIG.
In the humidified air flow supply system of the present invention shown in FIG. 1, the conventional nutrient solution supply / discharge system shown in FIG. 8 is used, but a humidifier 20 is newly provided inside the closed structure 1. . The humidifier 20 is controlled in humidity by the air conditioner 7 in the closed structure 1 and sucks the atmosphere in the closed structure in which the carbon dioxide gas concentration is adjusted by the carbon dioxide supply device 8. After humidifying the inside, it has a function of sending out humidified air. The humidified air delivered from the humidifier 20 is guided to the humidified air flow conduit 22. The sending / stopping of the humidified air from the humidifier 20 can be performed by rotating / stopping the blower fan 21 provided in the humidifier 20. Further, the drainage return horizontal pipe 17 in the vicinity of the nutrient solution tank 10 is formed with a U-shaped liquid reservoir 23 formed by bending the drainage return horizontal pipe into a U-shape, and upstream of the U-shaped liquid reservoir 23. A humidified air flow conduit 22 is connected to the upstream end 17 a of the drainage return horizontal pipe 17.

図1に図示した加湿空気流供給システムの動作を以下に説明する。
多段式育成棚モジュール4の育成棚3各段に配置した底面かん水装置への養液の供給・排出は、図8における動作と同様である。すなわち、ポンプPを起動して養液タンク10から汲み上げられた養液は養液供給管11に導かれ、育成棚3各段への分岐管12を介して給水口13から底面かん水装置へ供給される。養液は底面かん水装置に載置されたセルトレイ(図示せず)の底面からかん水され、残余の養液は底面かん水装置の排水口14から排液管15を介して排液戻し管16へ排出される。育成棚3各段の排水口14からの排液は排液戻し管16に集められて育成棚モジュール最下段の育成棚下方へ導かれ、さらに排液戻し水平管17を通り、U字型液溜部23を通過して養液タンク10へ戻される。
The operation of the humidified air flow supply system shown in FIG. 1 will be described below.
The supply and discharge of the nutrient solution to the bottom watering device arranged in each stage of the growth shelf 3 of the multistage type growth shelf module 4 is the same as the operation in FIG. That is, the nutrient solution pumped up from the nutrient solution tank 10 by starting the pump P is guided to the nutrient solution supply pipe 11 and supplied from the water supply port 13 to the bottom irrigation device via the branch pipe 12 to each stage of the growth shelf 3. Is done. The nutrient solution is irrigated from the bottom surface of a cell tray (not shown) placed on the bottom irrigation device, and the remaining nutrient solution is discharged from the drain port 14 of the bottom irrigation device to the drainage return pipe 16 through the drainage pipe 15. Is done. The drainage from the drainage outlet 14 of each stage of the growth shelf 3 is collected in the drainage return pipe 16 and guided to the lower part of the growth shelf at the bottom of the growth shelf module, and further passes through the drainage return horizontal pipe 17 to be U-shaped liquid. It passes through the reservoir 23 and is returned to the nutrient solution tank 10.

かん水を停止する場合には、ポンプPを停止して養液タンク10から養液供給管11への養液の供給を停止し、底面かん水装置の排水口14から残余の養液をすべて排出させればよい。このとき、育成棚3各段の排液管15、排液戻し管16および排液戻し水平管17内には排液が実質的に残っていない状態となるが、U字型液溜部23には、図2の拡大図に示したように排液が溜まった状態となって残っている。なお、排液戻し水平管17は、排液が養液タンク10へ戻りやすくするために、養液タンク10側へ向けて若干傾斜させておくことが望ましい。   When stopping the irrigation, the pump P is stopped, the supply of the nutrient solution from the nutrient solution tank 10 to the nutrient solution supply pipe 11 is stopped, and all the remaining nutrient solution is discharged from the drain port 14 of the bottom irrigation device. Just do it. At this time, the drainage pipe 15, drainage return pipe 16, and drainage return horizontal pipe 17 at each stage of the growth shelf 3 are substantially free of drainage, but the U-shaped liquid reservoir 23. As shown in the enlarged view of FIG. It is desirable that the drainage return horizontal pipe 17 is slightly inclined toward the nutrient solution tank 10 side so that the drainage can easily return to the nutrient solution tank 10.

図2に図示したように、好ましくは、U字型液溜部23の上流側(図面の左側)の上端23aが下流側(図面の右側)の上端23bより高い位置になるようにする。このようにすることによって、U字型液溜部23の上流側の水頭圧が、下流側の水頭圧より高くなるため、排液戻し水平管17の上流側からU字型液溜部23を通って下流側に排液が流れやすくなる。排液の流れが停止したときには、U字型液溜部23の上流側と下流側で水頭圧が等しくなる位置で液が溜まる状態となる。   As shown in FIG. 2, the upper end 23a on the upstream side (left side in the drawing) of the U-shaped liquid reservoir 23 is preferably positioned higher than the upper end 23b on the downstream side (right side in the drawing). By doing in this way, since the upstream water head pressure of the U-shaped liquid reservoir 23 becomes higher than the downstream water head pressure, the U-shaped liquid reservoir 23 is moved from the upstream side of the drainage return horizontal pipe 17. The drainage liquid easily flows through the downstream side. When the flow of the drainage is stopped, the liquid is accumulated at a position where the head pressure is equal between the upstream side and the downstream side of the U-shaped liquid reservoir 23.

上述したかん水停止状態において、加湿装置20からの加湿空気を育成棚モジュール4の育成棚3各段へ供給するに際しては、加湿装置20の送風ファン21を起動させて閉鎖型構造物1内雰囲気の吸引と加湿空気の送出を行う。送出された加湿空気は加湿空気流導管22へ導かれ、排液の流れていない排液戻し水平管17へ導入されるが、U字型液溜部23に溜まっている排液(図2参照)により流通が阻止される。そのため、加湿空気流導管22内の加湿空気流(図1中に点線で示す)は排液戻し水平管17に接続された排液戻し管16へ導かれて上昇し、排液管15を介して育成棚3各段に配置した底面かん水装置の排水口14から育成棚各段へ流れ込む。かくして、加湿装置20からの加湿空気流は、育成棚3のすべての段に分散供給されて、育成棚各段のセルトレイで育成されている植物に高湿度環境を与えることができる。   When supplying humidified air from the humidifier 20 to each stage of the growth shelf 3 of the growth shelf module 4 in the above-described irrigation stop state, the blower fan 21 of the humidification device 20 is started to activate the atmosphere in the closed structure 1. Performs suction and delivery of humidified air. The sent humidified air is guided to the humidified air flow conduit 22 and is introduced into the drainage return horizontal pipe 17 where the drainage does not flow, but the drainage collected in the U-shaped liquid reservoir 23 (see FIG. 2). ) Prevents distribution. Therefore, the humidified air flow (shown by a dotted line in FIG. 1) in the humidified airflow conduit 22 is guided to the drainage return pipe 16 connected to the drainage return horizontal pipe 17 and rises through the drainage pipe 15. Then, it flows into each stage of the growth shelf from the drain port 14 of the bottom irrigation device arranged on each stage of the growth shelf 3. Thus, the humidified air flow from the humidifying device 20 is distributed and supplied to all the stages of the growing shelf 3, and can give a high humidity environment to the plants grown on the cell trays on each stage of the growing shelf.

上述したごとき本発明の加湿空気流供給システムにおいては、加湿空気流を育成棚各段へ供給するための配管として、養液のかん水停止時の排液管15、排液戻し管16および排液戻し水平管17を利用するため、加湿空気流の育成棚各段への供給配管を別途配設する必要がない。   In the humidified air flow supply system of the present invention as described above, the drainage pipe 15, the drainage return pipe 16 and the drainage when the nutrient solution is stopped are used as pipes for supplying the humidified airflow to each stage of the growth shelf. Since the return horizontal pipe 17 is used, it is not necessary to separately provide a supply pipe to each stage of the growing shelf for the humidified air flow.

本発明においては、加湿空気流の供給は養液のかん水停止時のみ行うため、かん水時に作動するポンプPとかん水停止時に作動する加湿装置20の送風ファン21とを、タイマー操作等により予め設定されたプログラムにより自動的に作動させるようにすることも可能である。   In the present invention, since the humidified air flow is supplied only when the nutrient solution is stopped, the pump P that operates during the irrigation and the blower fan 21 of the humidifier 20 that operates when the irrigation stops are set in advance by a timer operation or the like. It is also possible to automatically activate it by a program.

なお、図1の実施例においては、加湿装置20には加湿空気流導管22とは別のもう1本の追加的加湿空気流導管25を必要に応じて設けることができ、この追加的加湿空気流導管25は育成棚モジュール4の最上段育成棚3の排液戻し管16の上端16aに接続されている。かような追加的加湿空気流導管25を配設することにより、加湿装置20から加湿空気流導管22を介して育成棚各段に供給される加湿空気流(点線で示す)に加えて、追加的加湿空気流導管25を介して加湿空気流(一点鎖線で示す)を追加的に育成棚各段へ供給させることができる。   In the embodiment of FIG. 1, the humidifier 20 may be provided with another additional humidified air flow conduit 25, if necessary, separate from the humidified air flow conduit 22, and this additional humidified air. The flow conduit 25 is connected to the upper end 16 a of the drainage return pipe 16 of the uppermost growth shelf 3 of the growth shelf module 4. By providing such an additional humidified air flow conduit 25, in addition to the humidified air flow (indicated by dotted lines) supplied from the humidifier 20 to each stage of the growth shelf via the humidified air flow conduit 22, additional The humidified air flow (indicated by the alternate long and short dash line) can be additionally supplied to each stage of the growth shelf via the general humidified air flow conduit 25.

本発明の基本概念を示す図1においては、閉鎖型構造物1内に1つの多段式育成棚モジュール4を設置した場合を示しているが、図3には、複数の多段式育成棚モジュール4を設置する場合の実施例を示している。この図3においても、図1と同じ構成要素には同じ参照番号を付すことにより、説明を簡略化(省略)する。   In FIG. 1 showing the basic concept of the present invention, a case where one multi-stage growth shelf module 4 is installed in the closed structure 1 is shown, but FIG. 3 shows a plurality of multi-stage growth shelf modules 4. The Example in the case of installing is shown. Also in FIG. 3, the same reference numerals are assigned to the same components as in FIG.

図3は、閉鎖型構造物1内に3つの多段式育成棚モジュール4を配置した例を示しており、養液タンク10からポンプPにより汲み上げられた養液は養液供給管11に導かれ、さらに各育成棚モジュール4ごとに分流させ、各育成棚モジュール4の育成棚3各段に配置した底面かん水装置の給水口13へ分岐管12を介して供給される。底面かん水に用いられた残余の養液は、底面かん水装置の排水口14から排液管15を介して各育成棚モジュール4ごとに排液戻し管16に集められて各育成棚モジュール4の育成棚最下段の下方へ導かれ、さらに排液戻し水平管17へ集められて、U字型液溜部23を通過して養液タンク10へ戻される。   FIG. 3 shows an example in which three multi-stage growth shelf modules 4 are arranged in the closed structure 1, and the nutrient solution pumped up by the pump P from the nutrient solution tank 10 is guided to the nutrient solution supply pipe 11. Further, the flow is divided for each growth shelf module 4 and supplied to the water supply port 13 of the bottom watering device disposed in each stage of the growth shelf 3 of each growth shelf module 4 via the branch pipe 12. The remaining nutrient solution used for the bottom irrigation is collected from the drain port 14 of the bottom irrigation apparatus through the drainage pipe 15 to the drainage return pipe 16 for each growth shelf module 4 to grow each growth shelf module 4. The liquid is guided to the lowermost part of the shelf, further collected in the drainage return horizontal pipe 17, passed through the U-shaped liquid reservoir 23, and returned to the nutrient solution tank 10.

ポンプPを停止して養液の供給・排出を停止すると、各育成棚モジュール4の育成棚各段の排液管15、排液戻し管16および排液戻し水平管17内には排液が実質的に残っていない状態となるが、U字型液溜部23には、図2の拡大図に示したように排液が溜まった状態とされる。このかん水停止状態において、加湿装置20の送風ファン21を起動させて加湿空気の送出を行う。送出された加湿空気流(点線で示す)は、排液戻し水平管の下流端17aに接続された加湿空気流導管22へ導かれて排液戻し水平管17へ導入されるが、U字型液溜部23に溜まっている排液により流通が阻止される。そのため、排液戻し水平管17内に導入された加湿空気流は、排液戻し水平管17に接続された各育成棚モジュール4ごとの排液戻し管16へ導かれて上昇し、排液管15を介して育成棚3各段に配置した底面かん水装置の排水口14から育成棚各段へ供給される。   When the pump P is stopped and the supply / discharge of the nutrient solution is stopped, the drainage liquid is discharged into the drainage pipe 15, drainage return pipe 16 and drainage return horizontal pipe 17 at each stage of the growth shelf of each growth shelf module 4. Although it does not substantially remain, the U-shaped liquid reservoir 23 is in a state where the drainage is accumulated as shown in the enlarged view of FIG. In this irrigation stop state, the blower fan 21 of the humidifier 20 is activated to send out the humidified air. The sent humidified air flow (indicated by a dotted line) is guided to the humidified air flow conduit 22 connected to the downstream end 17a of the drainage return horizontal pipe and introduced into the drainage return horizontal pipe 17, but is U-shaped. Circulation is blocked by the drainage accumulated in the liquid reservoir 23. Therefore, the humidified air flow introduced into the drainage return horizontal pipe 17 is guided to the drainage return pipe 16 for each growth shelf module 4 connected to the drainage return horizontal pipe 17 and rises, and the drainage pipe 15 is supplied to each stage of the growing shelf from the drain port 14 of the bottom watering device arranged on each stage of the growing shelf 3.

図3の場合にも、加湿装置20には加湿空気流導管22とは別のもう1本の追加的加湿空気流導管25を必要に応じて設けることができ、この追加的加湿空気流導管25は各育成棚モジュール4の最上段の育成棚の排液戻し管16の上端16aにそれぞれ分岐接続される。かような追加的加湿空気流導管25により、加湿装置20から加湿空気流導管22を介して各育成棚モジュール4の育成棚3各段に供給される加湿空気流(点線で示す)に加えて、追加的加湿空気流導管25を介して加湿空気流(一点鎖線で示す)を追加的に各育成棚モジュール4の育成棚3各段へ供給することができる。   Also in the case of FIG. 3, the humidifier 20 can be provided with another additional humidified air flow conduit 25 if necessary, in addition to the humidified air flow conduit 22, and this additional humidified air flow conduit 25. Is branched and connected to the upper end 16a of the drainage return pipe 16 of the uppermost growth shelf of each growth shelf module 4. In addition to the humidified air flow (indicated by the dotted lines) supplied from the humidifier 20 to each stage of the growing shelf 3 of each growing shelf module 4 by the additional humidifying air flow conduit 25 as described above. Further, a humidified air flow (indicated by a one-dot chain line) can be additionally supplied to each stage of the growing shelf 3 of each growing shelf module 4 via the additional humidified air flow conduit 25.

例えば接ぎ木苗の養生に際しては100%に近い相対湿度が必要とされるが、閉鎖型構造物1内雰囲気全体を高湿度環境とするよりも、本発明のように相対湿度100%に近い加湿空気流を育成棚モジュール4の育成棚各段へ供給するシステムの方が、加湿能力の小さい加湿装置20を使用できるという利点がある。さらに、高湿度の空気流が育成棚各段を通過する際にセルトレイの培地や植物等と接触することにより相対湿度は低下するため、閉鎖型構造物1内雰囲気全体が100%に近い高湿度となることはなく、その結果、高湿度環境での使用が不可能な家庭用空調装置も使用でき、温度センサーや湿度センサーの高湿度環境での検知素子の劣化も生じにくくなる。   For example, when curing grafted seedlings, a relative humidity close to 100% is required, but humidified air close to 100% relative humidity as in the present invention, rather than making the entire atmosphere in the closed structure 1 a high humidity environment. The system that supplies the flow to each stage of the growing shelf of the growing shelf module 4 has an advantage that the humidifying device 20 having a small humidifying capacity can be used. Furthermore, since the relative humidity is lowered by contact with the culture medium, plants, etc. of the cell tray when a high humidity air flow passes through each stage of the growing shelf, the entire atmosphere in the closed structure 1 is close to 100%. As a result, it is possible to use a home air conditioner that cannot be used in a high humidity environment, and it is difficult for the temperature sensor and the humidity sensor to deteriorate in the high humidity environment.

本発明の加湿空気流供給システムのより好ましい実施形態においては、多段式植物育成装置の育成棚各段に、図9に示した透光性遮蔽物30あるいは図4に示した植物育成ユニット40を使用することによって、透光性遮蔽物30あるいは植物育成ユニット40内部に高湿度環境をより一層迅速かつ確実に生じさせることができる。   In a more preferred embodiment of the humidified air flow supply system of the present invention, the translucent shield 30 shown in FIG. 9 or the plant growing unit 40 shown in FIG. 4 is provided on each stage of the growth shelf of the multistage plant growing apparatus. By using it, a high-humidity environment can be generated more quickly and reliably in the translucent shield 30 or the plant growing unit 40.

すなわち、前述した特許文献1においては、高湿度環境が必要となる接ぎ木苗の養生期間中に、図9に示すような、例えば透明アクリル樹脂からなる底板のない箱形状を有し、複数の通気孔31を備えた透光性遮蔽物30を用いて、図10に示したようにして、多段式育成装置の育成棚3各段に配置した底面かん水装置のセルトレイ32に植えられた接ぎ木苗33を被覆している。これにより透光性遮蔽物30内部は、接ぎ木苗や培地から蒸発した水分によって高湿度環境とすることができる。本発明の加湿空気流供給システムは、育成棚各段に配置された底面かん水装置のセルトレイ32に植えられた接ぎ木苗33等の植物をかような透光性遮蔽物30で被覆して育苗する場合に、より一層効果的に適用できる。すなわち、底面かん水装置のかん水停止時に排水口14から加湿空気流を透光性遮蔽物30内に供給することにより、より一層迅速かつ確実に透光性遮蔽物30内に高湿度環境を生じさせることができるとともに、空調装置7や炭酸ガス供給装置8により温度や炭酸ガス濃度が調整された閉鎖型構造物1内雰囲気の空気流をより効率よく透光性遮蔽物30内に供給することができる。   That is, Patent Document 1 described above has a box shape without a bottom plate made of a transparent acrylic resin, for example, as shown in FIG. Using the translucent shield 30 provided with the pores 31, as shown in FIG. 10, the grafted seedlings 33 planted in the cell tray 32 of the bottom watering device arranged in each stage of the growth shelf 3 of the multistage type growth apparatus. Is covered. Thereby, the inside of the translucent shield 30 can be made into a high humidity environment by the water | moisture content evaporated from the grafted seedling or the culture medium. In the humidified air flow supply system of the present invention, plants such as grafting seedlings 33 and the like planted on the cell tray 32 of the bottom irrigation device arranged at each stage of the growing shelf are covered with such a light-shielding shield 30 to grow the seedlings. In this case, it can be applied more effectively. That is, by supplying a humidified air flow from the drain port 14 to the light-transmitting shielding object 30 when the bottom watering device stops watering, a high-humidity environment is generated in the light-transmitting shielding object 30 more quickly and reliably. In addition, the air flow in the atmosphere of the closed structure 1 whose temperature and carbon dioxide concentration are adjusted by the air conditioner 7 and the carbon dioxide supply device 8 can be more efficiently supplied into the translucent shield 30. it can.

上記した透光性遮蔽物30と同様に、その内部に高湿度環境をもたらすことができる図4に示したような植物育成ユニット40が、本件出願と同じ出願人により特願2007−110051号で提案されている。この植物育成ユニット40は底面かん水装置を一体化して設けた構造を有している。すなわち、四辺形の底壁41と4つの側壁42a、42b、42c、42dと頂壁43とからなる箱形状を有し、前面となる側壁42aを開閉自在な扉44とし、扉44の両側の側壁42c、42dに複数の通気孔45を形成し、扉44近くの底壁41の両端近傍にそれぞれ給水口13と排水口14を設けてあり、少なくとも扉44と頂壁43とを透光性材料から構成してある。   Similar to the above-described translucent shield 30, a plant growing unit 40 as shown in FIG. 4 that can provide a high-humidity environment is disclosed in Japanese Patent Application No. 2007-110051 by the same applicant as the present application. Proposed. This plant growing unit 40 has a structure in which a bottom watering device is integrated. That is, it has a box shape composed of a quadrilateral bottom wall 41, four side walls 42a, 42b, 42c, 42d and a top wall 43. The front side wall 42a is a door 44 that can be opened and closed. A plurality of ventilation holes 45 are formed in the side walls 42c and 42d, and water supply ports 13 and drainage ports 14 are respectively provided in the vicinity of both ends of the bottom wall 41 near the door 44. At least the door 44 and the top wall 43 are translucent. Consists of materials.

また、扉44に対向する背面側壁42bには、全開から全閉まで開口率を変化させる手段を備えた複数の背面スリット状開口46を形成してある。植物を植える培地を入れたセルトレイ(図示せず)を底壁41面上に載置して養液を給水口13から供給することにより底面かん水がなされ、残余の養液は排水口14から排出される。   A plurality of rear slit-like openings 46 having means for changing the opening ratio from fully open to fully closed are formed in the back side wall 42 b facing the door 44. A cell tray (not shown) containing a medium for planting the plant is placed on the bottom wall 41 surface, and the nutrient solution is supplied from the water supply port 13 to water the bottom surface, and the remaining nutrient solution is discharged from the drain port 14. Is done.

背面スリット状開口46の開口率を変化させる手段の一例としては図5に示したような開口率調整板47が使用できる。この開口率調整板47には、背面側壁42bに形成した複数の背面スリット状開口46と形状、寸法が略同じ複数のスリット状開口47が形成されており、背面側壁42b外面に固定した一組の案内枠49、49により背面側壁42bの外面にスライド自在に保持されている。この開口率調整板47を、背面側壁42b外面に対してスライドさせることにより、図6(A)に示したように、背面スリット状開口46と開口率調整板47のスリット状開口48とが全く重ならない位置では開口率0%(全閉)、図6(B)に示したように半分重なった位置では開口率50%(半開)、図6(C)に示したように完全に重なった位置では開口率100%(全開)の状態となり、全開から全閉までの間で任意の開口率に変化させることができる。
かような構造の植物育成ユニット40を使用することにより、前面の扉44とその背面側壁42bに設けた背面スリット状開口46を開閉することにより、高湿度環境をもたらす遮蔽状態だけでなく、開放状態の育成も行うことができる。
As an example of means for changing the aperture ratio of the rear slit-shaped opening 46, an aperture ratio adjusting plate 47 as shown in FIG. 5 can be used. The aperture ratio adjusting plate 47 is formed with a plurality of slit-like openings 47 having substantially the same shape and dimensions as the plurality of back-side slit-like openings 46 formed on the back-side wall 42b, and is fixed to the outer surface of the back-side wall 42b. The guide frames 49, 49 are slidably held on the outer surface of the rear side wall 42b. By sliding the aperture ratio adjusting plate 47 with respect to the outer surface of the rear side wall 42b, the rear slit-shaped opening 46 and the slit-shaped opening 48 of the aperture ratio adjusting plate 47 are completely removed as shown in FIG. When the position does not overlap, the aperture ratio is 0% (fully closed), as shown in FIG. 6B, the aperture ratio is 50% (half open), and the aperture ratio is completely overlapped as shown in FIG. 6C. At the position, the aperture ratio is 100% (fully open), and the aperture ratio can be changed to an arbitrary aperture ratio from fully open to fully closed.
By using the plant growing unit 40 having such a structure, the front door 44 and the rear slit-like opening 46 provided in the rear side wall 42b are opened and closed, so that not only a shielding state that brings about a high humidity environment but also an open state. The state can also be nurtured.

本発明の加湿空気流供給システムは、育成棚3各段に図4の植物育成ユニット40を配置した場合にも、より一層効果的に適用できる。すなわち、植物育成に際して高湿度環境が必要となるときは、植物育成ユニット40の前面の扉44とその背面に設けた背面スリット状開口46を閉状態とすることによって植物育成ユニット40内部をセルトレイ内の培地や植物から蒸発した水分によって高湿度環境とすることができるが、本発明の加湿空気流供給システムを用いて底面かん水装置のかん水停止時に排水口14から加湿空気流を植物育成ユニット40内に供給することにより、より一層迅速かつ確実に植物育成ユニット40内に高湿度環境を生じさせることができるとともに、空調装置7や炭酸ガス供給装置8により温度や炭酸ガス濃度が調整された閉鎖型構造物1内雰囲気の空気流をより効率よく植物育成ユニット40内に供給することができる。図4に図示した植物育成ユニット40は、特に高湿度環境を必要としない植物育成期間には前面の扉44と背面スリット状開口46を開状態とすればよく、図9に図示した透光性遮蔽物30のように育成棚3各段から取り除く作業を必要としない利点がある。   The humidified air flow supply system of the present invention can be applied more effectively even when the plant growing unit 40 of FIG. That is, when a high humidity environment is required for plant growth, the inside of the plant growth unit 40 is placed in the cell tray by closing the front door 44 of the plant growth unit 40 and the rear slit-like opening 46 provided on the rear surface thereof. Although it can be made into a high humidity environment by the water evaporated from the culture medium or the plant, the humidified air flow is supplied from the drain port 14 to the plant growing unit 40 when the bottom watering device is stopped using the humidified air flow supply system of the present invention. In addition, a high humidity environment can be generated in the plant growing unit 40 more quickly and reliably, and the temperature and carbon dioxide concentration are adjusted by the air conditioner 7 and the carbon dioxide supply device 8. The air flow of the atmosphere in the structure 1 can be supplied into the plant growing unit 40 more efficiently. The plant growing unit 40 illustrated in FIG. 4 may open the front door 44 and the rear slit-shaped opening 46 during a plant growing period that does not particularly require a high humidity environment. There exists an advantage which does not require the operation | work removed from each stage of the growth shelf 3 like the shield 30. FIG.

本発明の加湿空気流供給システムの基本概念を示す説明図である。It is explanatory drawing which shows the basic concept of the humidification airflow supply system of this invention. 図1におけるU字型液溜部の拡大図である。It is an enlarged view of the U-shaped liquid reservoir part in FIG. 複数の多段式育成棚モジュールに本発明の加湿空気流供給システムを適用した実施例を示す説明図である。It is explanatory drawing which shows the Example which applied the humidified airflow supply system of this invention to the several multistage type | formula growth shelf module. 育成棚各段に配置できる底面かん水装置一体型植物育成ユニットの例を示す斜視図である。It is a perspective view which shows the example of the bottom irrigation apparatus integrated plant growth unit which can be arrange | positioned to each stage of a growth shelf. 図4の植物育成ユニットにおける背面スリット状開口の開口率を変化させる手段の実施例を示す斜視図である。It is a perspective view which shows the Example of the means to change the aperture ratio of the back slit-shaped opening in the plant growth unit of FIG. 図4の植物育成ユニットにおける背面スリット状開口の開口率を、(A)0%、(B)50%、(C)100%に変化させた状態を示す説明図である。It is explanatory drawing which shows the state which changed the aperture ratio of the back surface slit-like opening in the plant growth unit of FIG. 4 to (A) 0%, (B) 50%, (C) 100%. 従来の多段式植物育成装置の例を示す説明図である。It is explanatory drawing which shows the example of the conventional multistage plant growing apparatus. 従来の多段式植物育成装置における育成棚各段に配置した底面かん水装置への養液の給排システムの例を示す説明図である。It is explanatory drawing which shows the example of the supply / discharge system of the nutrient solution to the bottom irrigation apparatus arrange | positioned in the growth shelf each stage in the conventional multistage plant growing apparatus. 高湿度環境をもたらすために従来から使用されていた透光性遮蔽物の例を示す斜視図である。It is a perspective view which shows the example of the translucent shield conventionally used in order to bring about a high humidity environment. 図9の透光性遮蔽物の使用方法を示す説明図である。It is explanatory drawing which shows the usage method of the translucent shield of FIG.

符号の説明Explanation of symbols

1:閉鎖型構造物
2:遮光性断熱壁
3:育成棚
4:多段式育成棚モジュール
5:人工照明装置
6:ファン
7:空調装置
8:炭酸ガス供給装置
10:養液タンク
11:養液供給管
13:給水口
14:排水口
16:排液戻し管
16a:排液戻し管上端
17:排液戻し水平管
17a:排液戻し水平管上流端
20:加湿装置
22:加湿空気流導管
23:U字型液溜部
25:追加的加湿空気流導管
32:セルトレイ
P:ポンプ
1: Closed structure
2: Light shielding heat insulating wall 3: Growth shelf 4: Multistage growth shelf module 5: Artificial lighting device 6: Fan 7: Air conditioner 8: Carbon dioxide supply device 10: Nutrient solution tank 11: Nutrient solution supply pipe 13: Water supply port 14: Drain port 16: Drainage return pipe 16a: Drainage return pipe upper end 17: Drainage return horizontal pipe 17a: Drainage return horizontal pipe upstream end 20: Humidifier 22: Humidification air flow conduit 23: U-shaped liquid reservoir Part 25: Additional humidified air flow conduit
32: Cell tray P: Pump

Claims (3)

遮光性断熱壁で包囲された閉鎖型構造物内に、上下方向に複数段の育成棚を配した少なくとも1つの多段式育成棚モジュールと前記閉鎖型構造物内の雰囲気を調温調湿する空調装置と前記雰囲気の炭酸ガス濃度を調整する炭酸ガス供給装置とを設置し;
前記多段式育成棚モジュールの育成棚各段に、植物育成用培地を入れた複数のセルトレイを載置でき前記セルトレイの底面から間欠的に潅水可能な給水口および排水口を備えた底面潅水装置を配設し;
前記育成棚各段の裏面に、その下方の段に載置されたセルトレイに光を照射する人工照明装置を設け;
前記育成棚各段の背面に、各段の前面から空気流を吸引して各段に空気流を生じさせるファンを設け;
調温調湿され炭酸ガス濃度を調整された前記雰囲気を空気流として前記育成棚各段に供給できるようにした多段式植物育成装置において、
前記閉鎖型構造物内の調温調湿され炭酸ガス濃度を調整された雰囲気を吸引して加湿空気流として送出する加湿装置を前記閉鎖型構造物内に設置し;
前記閉鎖型構造物外部に設置した養液タンクからポンプにより養液を前記閉鎖型構造物内の前記育成棚各段に配置した底面かん水装置の給水口へ供給する養液供給管を配設し;
前記育成棚各段に配置した底面かん水装置の排水口から排出される排液を集めて前記育成棚モジュールの最下段育成棚の下方へ導く排液戻し管およびこの排液戻し管下端に接続されて排液を前記養液タンクへ戻す排液戻し水平管を配設し;
前記養液タンク近傍の前記排液戻し水平管にU字型液溜部を形成し;
前記加湿装置から送出される加湿空気流を導く加湿空気流導管を前記U字型液溜部上流の排液戻し水平管上流端に接続したことを特徴とする、多段式植物育成装置の育成棚各段への加湿空気流供給システム。
At least one multi-stage growth shelf module in which a plurality of stages of growth shelves are arranged in a vertical direction in a closed structure surrounded by a light-shielding heat insulating wall, and air conditioning that regulates the temperature of the atmosphere in the closed structure Installing a device and a carbon dioxide supply device for adjusting the carbon dioxide concentration in the atmosphere;
A bottom surface irrigation apparatus having a water supply port and a drain port that can be mounted with a plurality of cell trays containing a plant growth medium on each of the growth shelf stages of the multi-stage growth shelf module and can be intermittently irrigated from the bottom surface of the cell tray. Arranged;
An artificial lighting device for irradiating light to a cell tray placed on a lower stage of the rear side of each stage of the growing shelf;
A fan that sucks an airflow from the front of each stage and generates an airflow in each stage is provided at the back of each stage of the growing shelf;
In the multi-stage plant growing device that can supply the temperature-controlled and adjusted carbon dioxide gas concentration to each stage of the growing shelf as an air flow,
Installing a humidifying device in the closed type structure for sucking and controlling the temperature-controlled and adjusted carbon dioxide gas concentration in the closed type structure and sending it out as a humidified air flow;
A nutrient solution supply pipe for supplying a nutrient solution by a pump from a nutrient solution tank installed outside the closed structure to a water supply port of a bottom irrigation device disposed at each stage of the growth shelf in the closed structure is provided. ;
A drainage return pipe that collects drainage discharged from a drain outlet of a bottom irrigation device arranged at each stage of the growth shelf and guides it to the lower side of the lowest stage growth shelf of the growth shelf module and is connected to the lower end of the drainage return pipe. A drainage return horizontal pipe for returning the drainage liquid to the nutrient solution tank;
Forming a U-shaped liquid reservoir in the drainage return horizontal pipe in the vicinity of the nutrient solution tank;
A growing shelf for a multi-stage plant growing device, wherein a humidified air flow conduit for guiding a humidified air flow delivered from the humidifying device is connected to an upstream end of a drainage return horizontal pipe upstream of the U-shaped liquid reservoir. Humidified air flow supply system to each stage.
前記U字型液溜部の上流側の上端が下流側の上端より高い位置になるようにしたことを特徴とする請求項1に記載の多段式植物育成装置の育成棚各段への加湿空気流供給システム。   The humidified air to each stage of the growing shelf of the multi-stage plant growing apparatus according to claim 1, wherein the upper end of the upstream side of the U-shaped liquid reservoir is positioned higher than the upper end of the downstream side. Flow supply system. 前記加湿装置から送出される加湿空気流を導く前記加湿空気流導管の他に追加的加湿空気流導管を別途設け、前記育成棚モジュールの最上段育成棚の排液戻し管上端に接続したことを特徴とする請求項1または2に記載の多段式植物育成装置の育成棚各段への加湿空気流供給システム。   In addition to the humidified air flow conduit for guiding the humidified air flow delivered from the humidifier, an additional humidified air flow conduit is separately provided and connected to the upper end of the drainage return pipe of the uppermost growth shelf of the growth shelf module. The humidified airflow supply system to each stage of the growing shelf of the multistage plant growing apparatus according to claim 1 or 2, characterized by the above.
JP2007170596A 2007-06-28 2007-06-28 Humidified air flow supply system to each stage of the growth shelf of the multi-stage plant growing device Active JP4893502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007170596A JP4893502B2 (en) 2007-06-28 2007-06-28 Humidified air flow supply system to each stage of the growth shelf of the multi-stage plant growing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007170596A JP4893502B2 (en) 2007-06-28 2007-06-28 Humidified air flow supply system to each stage of the growth shelf of the multi-stage plant growing device

Publications (2)

Publication Number Publication Date
JP2009005634A JP2009005634A (en) 2009-01-15
JP4893502B2 true JP4893502B2 (en) 2012-03-07

Family

ID=40321395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007170596A Active JP4893502B2 (en) 2007-06-28 2007-06-28 Humidified air flow supply system to each stage of the growth shelf of the multi-stage plant growing device

Country Status (1)

Country Link
JP (1) JP4893502B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101259674B1 (en) 2010-06-03 2013-05-02 이유신 A plant cultivation system
KR101360235B1 (en) 2011-03-17 2014-02-11 김갑석 Dehisce device for ginseng seed
KR101316593B1 (en) * 2011-04-20 2013-10-15 대한민국 Apparatus for regulating plant growth by controling environment
CN102960229B (en) * 2012-03-22 2015-04-08 中国林业科学研究院华北林业实验中心 Stereoscopic automatic control plant aerial fog culture apparatus with novel nutrient solution supply system
JP6280313B2 (en) * 2013-05-29 2018-02-14 大和ハウス工業株式会社 Plant cultivation equipment blower
JP6089229B2 (en) * 2014-03-14 2017-03-08 パナソニックIpマネジメント株式会社 Plant cultivation equipment
EP3691440A4 (en) * 2017-10-04 2021-06-30 Muanchart, Mankaew A plant cultivation system using humidifier
CN107667710A (en) * 2017-10-26 2018-02-09 苏州大学 Assembling micro drip-irrigation plant walls
CN108738935B (en) * 2018-06-06 2023-10-17 贵州光合新植科技有限公司 Equipped multifunctional illumination planting factory
CN108496632A (en) * 2018-05-31 2018-09-07 重庆市飞龙种业有限责任公司 Fast dish culture apparatus
CN109380181A (en) * 2018-11-13 2019-02-26 宜都长江机械设备有限公司 A kind of bat moth incubator and the method that bat moth is cultivated using bat moth incubator
CN109580888A (en) * 2019-01-25 2019-04-05 天津农学院 A kind of best planting environment chamber of silage corn and its application method
CN112293101A (en) * 2020-11-12 2021-02-02 浙江江山如画农业科技有限公司 Independent irrigation type planting shed planting system
CN112293108A (en) * 2020-11-12 2021-02-02 浙江江山如画农业科技有限公司 Ecological agriculture planting system capable of giving alarm without water
CN112293109A (en) * 2020-11-12 2021-02-02 浙江江山如画农业科技有限公司 Water-saving irrigation type planting shed planting system
JP7249530B1 (en) 2022-02-08 2023-03-31 株式会社安川電機 Plant cultivation system, plant cultivation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001231376A (en) * 2000-02-25 2001-08-28 Toyota Motor Corp Nursery apparatus and nursery method
JP2003333937A (en) * 2002-05-15 2003-11-25 Shikoku Electric Power Co Inc System for raising plant

Also Published As

Publication number Publication date
JP2009005634A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
JP4893502B2 (en) Humidified air flow supply system to each stage of the growth shelf of the multi-stage plant growing device
JP6760436B2 (en) Plant cultivation methods and facilities
JP5807212B2 (en) Plant growing device, box, end unit
WO2004026023A1 (en) System for culturing seedling
CN107529732B (en) Cultivation production equipment
JP6279362B2 (en) Plant cultivation unit and plant cultivation facility
WO2014192331A1 (en) Multi-tiered shelf type plant growth device and plant growth system
JP2013034402A (en) Hydroponic device
JP5989413B2 (en) Plant cultivation apparatus and plant cultivation method
JP2001231376A (en) Nursery apparatus and nursery method
WO2006098139A1 (en) Lighting device and plant growing device equipped with the lighting device
KR102650746B1 (en) Plant cultivating apparatus
KR101460596B1 (en) pot for air-conditioning and air-conditioning system with the same
CN111903384A (en) Plant cultivation tank device and cultivation method
KR20210047702A (en) plants cultivation apparatus
JP6063667B2 (en) Hydroponics equipment
JP2013034393A (en) Watering device for plant cultivation apparatus
JP2003164229A (en) Raising seedling facility
JP6280313B2 (en) Plant cultivation equipment blower
RU2676316C1 (en) Device for plant cultivation
KR20110051917A (en) A plant culturing unit having a ventilating device
JP2014082979A (en) Plant cultivation apparatus and plant cultivation factory
CN104604664A (en) Multifunctional cultivation box
KR102497905B1 (en) Drwaer type air purification system using plant
CN212232321U (en) Plant cultivation groove device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090826

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

R150 Certificate of patent or registration of utility model

Ref document number: 4893502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350