JP4892696B2 - Indoor air purifier - Google Patents

Indoor air purifier Download PDF

Info

Publication number
JP4892696B2
JP4892696B2 JP2005105480A JP2005105480A JP4892696B2 JP 4892696 B2 JP4892696 B2 JP 4892696B2 JP 2005105480 A JP2005105480 A JP 2005105480A JP 2005105480 A JP2005105480 A JP 2005105480A JP 4892696 B2 JP4892696 B2 JP 4892696B2
Authority
JP
Japan
Prior art keywords
activated carbon
carbon fiber
air
indoor air
fiber sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005105480A
Other languages
Japanese (ja)
Other versions
JP2006280675A (en
Inventor
茂 田中
利哉 本波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Unitika Ltd
Original Assignee
Keio University
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University, Unitika Ltd filed Critical Keio University
Priority to JP2005105480A priority Critical patent/JP4892696B2/en
Publication of JP2006280675A publication Critical patent/JP2006280675A/en
Application granted granted Critical
Publication of JP4892696B2 publication Critical patent/JP4892696B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Description

本発明は、たばこ臭に含まれるアセトアルデヒドやシックハウス症候群、及び化学薬品過
敏症などの原因物質であると考えられている室内空気中のホルムアルデヒド、ベンゼン、
トルエン、エチルベンゼン、キシレンなどの揮発性有機化合物(VOC)を除去するため
の活性炭繊維シートを使用した室内空気浄化装置に関する。
The present invention relates to formaldehyde, benzene in indoor air, which is considered to be a causative substance such as acetaldehyde contained in tobacco odor, sick house syndrome, and chemical sensitivity.
The present invention relates to an indoor air purification apparatus using an activated carbon fiber sheet for removing volatile organic compounds (VOC) such as toluene, ethylbenzene, and xylene.

シックハウス症候群、及び化学薬品過敏症などはマンション、住宅、ビルなどの建材、塗
料、接着剤などから発生するホルムアルデヒド、ベンゼン、トルエン、エチルベンゼン、
キシレンなどのVOC成分が大きな原因と考えられてきた。
Sick house syndrome, chemical sensitivity etc. are formaldehyde, benzene, toluene, ethylbenzene generated from building materials such as apartments, houses, buildings, paints, adhesives, etc.
VOC components such as xylene have been considered a major cause.

最近では、酸化チタン光触媒を用いたVOCの除去処理に関する研究が多くの研究者によ
って行われてきた。汚染空気処理量を拡大するために酸化チタンを塗布したフィルターな
どが開発されてきたが、根本的には汚染空気をフィルターで濾過処理するので、通気抵抗
を少なくするために酸化チタンの塗布量が少ないことが要求される。また、フィルターを
通過する時間は瞬時でありVOCの酸化分解の反応時間が極めて短く、高い効率でVOC
を除去するには必ずしも適していると言えない。
Recently, many researchers have conducted research on VOC removal treatment using a titanium oxide photocatalyst. In order to increase the amount of contaminated air, filters with titanium oxide applied have been developed, but since the contaminated air is fundamentally filtered with a filter, the amount of titanium oxide applied must be reduced to reduce ventilation resistance. Less is required. In addition, the time for passing through the filter is instantaneous, and the reaction time for oxidative decomposition of VOC is extremely short, and VOC is highly efficient.
It is not necessarily suitable for removing the.

また、酸化チタン光触媒を用いたVOCの除去処理技術の問題点としては、ベンゼン、ト
ルエン、エチルベンゼン、キシレン等のベンゼン環を有する芳香族炭化水素については、
最終的に無害な水(H2O)、二酸化炭素(CO2)までに酸化分解反応が進まず、種々の中間
生成物が生成し、酸化チタン光触媒の表面に中間生成物が吸着し光触媒作用を抑制する。
In addition, as a problem of VOC removal treatment technology using a titanium oxide photocatalyst, for aromatic hydrocarbons having a benzene ring such as benzene, toluene, ethylbenzene, xylene,
The final oxidative decomposition reaction does not proceed to harmless water (H 2 O) and carbon dioxide (CO 2 ), and various intermediate products are produced. The intermediate products are adsorbed on the surface of the titanium oxide photocatalyst and photocatalytic action occurs. Suppress.

さらに、塩素原子を含む塩化メチレン、1,2-ジクロロエタン、クロロホルム、トリクロロ
エチレン、テトラクロロエチレン等の揮発性有機塩素化合物の場合には、微量ではあるが
ホスゲン、塩素ガス、塩化水素と言った極めて有害な中間生成物が生成するので問題とな
る。
Furthermore, in the case of volatile organic chlorinated compounds such as methylene chloride containing chlorine atoms, 1,2-dichloroethane, chloroform, trichloroethylene, tetrachloroethylene, etc., a very harmful intermediate such as phosgene, chlorine gas, hydrogen chloride, although it is a trace amount. This is a problem because the product is produced.

したがって、ベンゼン、トルエン、エチルベンゼン、キシレン等のベンゼン環を有する芳
香族炭化水素、塩化メチレン、1,2-ジクロロエタン、クロロホルム、トリクロロエチレン
、テトラクロロエチレン等の揮発性有機塩素化合物の場合には、酸化チタン光触媒を用い
たVOCの除去処理技術が必ずしも適しているとは言えない。
Therefore, in the case of volatile organic chlorine compounds such as aromatic hydrocarbons having a benzene ring such as benzene, toluene, ethylbenzene and xylene, methylene chloride, 1,2-dichloroethane, chloroform, trichloroethylene and tetrachloroethylene, the titanium oxide photocatalyst is used. The VOC removal processing technique used is not necessarily suitable.

一方、ガス状の化学成分の除去には粒状活性炭が一般に使用されている。また、近年粒状
活性炭に代わり、繊維状の活性炭である活性炭繊維シートを用いた吸着材が開発され、空
気浄化フィルターなどに使用されている(特許文献1〜3)。
On the other hand, granular activated carbon is generally used to remove gaseous chemical components. In recent years, instead of granular activated carbon, an adsorbent using an activated carbon fiber sheet, which is fibrous activated carbon, has been developed and used in air purification filters and the like (Patent Documents 1 to 3).

本発明者らは、活性炭繊維を基材とした、特にVOCの除去性能が優れた活性炭繊維を開
発した(特許文献4〜7、非特許文献1)。
The inventors of the present invention have developed activated carbon fibers based on activated carbon fibers that are particularly excellent in VOC removal performance (Patent Documents 4 to 7, Non-Patent Document 1).

活性炭繊維は、通常の粒状活性炭に比べるとその外表面積、比表面積共に大きいので、空
間中に存在するガス成分との接触効率が高く、フィルターとして使用した場合、吸着速度
を速めることができる。
Since the activated carbon fiber has a larger outer surface area and specific surface area than ordinary granular activated carbon, the contact efficiency with the gas component existing in the space is high, and when used as a filter, the adsorption rate can be increased.

通常、これらの空気清浄機は、汚染空気をフィルター素材の平面と直交する方向に流して
フィルター素材の中を強制的に通過させて有害ガスの吸着と徐塵を同時に行う濾過方式か
、予め徐塵フィルターで粒子を捕捉した後に有害ガスをガス吸着フィルターで吸着する濾
過方式である。濾過方式で有害物質の吸着効率を上げるには、フィルターの目を細かくす
る必要があるので通気抵抗が大きくなり、多量の空気処理が困難である。
Normally, these air purifiers use a filtration method in which polluted air flows in a direction perpendicular to the plane of the filter material and is forced to pass through the filter material to simultaneously adsorb harmful gas and gradually dust. This is a filtration method in which harmful gas is adsorbed by a gas adsorption filter after particles are captured by a dust filter. In order to increase the adsorption efficiency of harmful substances by the filtration method, it is necessary to make the filter finer, so that the ventilation resistance is increased and it is difficult to treat a large amount of air.

これに対して、シート状のフィルターを平行に積層したり(特許文献8,9)、コルゲー
ト状にしたり(特許文献10〜12)して通気路となる間隙にフィルター素材の平面と平
行に汚染空気を流して空気流の圧力損失を少なくする方法もあるが、当然ながら素通りす
る被処理空気量が多くなり、接触面積を高めるためにプリーツ状やコルゲート状としても
有害物質の吸着効率が悪くなる。この方式で吸着効率を高めるのは非常に難しく、吸着効
率を高めるための工夫としては、例えば、隙間からなる奥行き方向の通路がジグザグとな
るように配設した例(特許文献13)が知られる程度である。
On the other hand, sheet-like filters are laminated in parallel (Patent Documents 8 and 9) or corrugated (Patent Documents 10 to 12) to contaminate the gap between the filter material in parallel with the plane of the filter material. Although there is a method to reduce the pressure loss of the air flow by flowing air, naturally the amount of air to be processed increases, and the adsorption efficiency of harmful substances deteriorates even if it is pleated or corrugated to increase the contact area . It is very difficult to increase the adsorption efficiency by this method, and as a device for increasing the adsorption efficiency, for example, an example (Patent Document 13) in which a passage in the depth direction including a gap is zigzag is known. Degree.

特開平6−339629号公報JP-A-6-339629 特開平7−251004号公報Japanese Patent Laid-Open No. 7-251004 特開2004−526928号公報Japanese Patent Application Laid-Open No. 2004-526928 特開2002−159852号公報JP 2002-159852 A 特開2002−219163号公報JP 2002-219163 A 特開2003−053116号公報JP 2003-053116 A 特開2004−277926号公報JP 2004-277926 A 実開平5−85416号公報Japanese Utility Model Publication 5-85416 特開平11−207140号公報Japanese Patent Laid-Open No. 11-207140 特開平5−78996号公報Japanese Patent Laid-Open No. 5-78996 特開2001−120648号公報JP 2001-120648 A 特開2003−62413号公報JP 2003-62413 A 特開2004−298316号公報JP 2004-298316 A 浅見 圭一他、工業材料、Vol.49,No.1,p.77-80,(2001年1月)Asami Shinichi et al., Industrial Materials, Vol. 49, No. 1, p. 77-80, (January 2001)

室内空気汚染への社会的関心の高まりから、 多数の空気清浄技術の研究が行われてきて
いる。空気清浄機にVOC除去効果を付加する要求も増えてきている。しかしながら、問
題の重要性に比較して、その多くの技術は、既存のフィルター法、活性炭等の吸着剤等に
よる濾過方式の除去技術を単に転用したものに過ぎず、その処理能力や処理量に疑問を持
たざるを得ないものも多い。有害ガスの吸着剤として活性炭微粒子や活性炭繊維は代表的
なものであるが、それら単独では有害ガスを十分に除去できないので、薬剤の添着や他の
除去手段との併用などの工夫が必要である。
Due to the increasing social interest in indoor air pollution, many air purification technologies have been studied. There is an increasing demand for adding a VOC removal effect to an air cleaner. However, compared to the importance of the problem, many of these technologies are simply diversions of existing filter methods and filtration methods using activated carbon and other adsorbents, etc. There are many things that must be questioned. Activated carbon fine particles and activated carbon fibers are typical as toxic gas adsorbents, but toxic gases cannot be removed sufficiently by themselves, so it is necessary to devise methods such as attaching chemicals and using other removal means in combination. .

最近では、酸化チタン光触媒を利用した室内空気清浄技術も開発されてきたが、反応槽で
のバッチ的な空気処理技術であるために、空気処理量が毎分数リットル程度と少なく、多
量の空気処理に関しては問題である。
Recently, indoor air purification technology using a titanium oxide photocatalyst has also been developed. However, because it is a batch-type air treatment technology in a reaction tank, the air treatment volume is as low as several liters per minute, and a large amount of air treatment is achieved. Is a problem.

また、ベンゼン、トルエン、エチルベンゼン、キシレン等のVOCを酸化チタン光触媒で
除去処理を行う場合、完全に二酸化炭素や水にまでに酸化分解することは困難であり、中
間生成物が生成して触媒表面に吸着し、酸化チタン光触媒の能力を低下させる。
In addition, when VOC such as benzene, toluene, ethylbenzene, xylene is removed with a titanium oxide photocatalyst, it is difficult to completely oxidize and decompose to carbon dioxide or water. Adsorbs to the titanium oxide photocatalyst and decreases its ability.

さらに、従来のフィルターを用いる濾過方式の室内空気浄化装置は、吸着材による吸着効
率を高めれば高めるほど空気中に含まれる異物粒子が吸着材に付着されてその機能低下が
早まることになり、活性炭繊維を用いた場合でもフィルターの頻繁な交換や再生が必要と
なる。また、吸着量に限界があるため、吸着量が飽和すると吸着した成分が通気の力によ
って脱離されて再放出されることになる。また、生活の場において使用される室内空気浄
化装置はできるだけ発生音の小さいことが望まれ、フィルターの圧損を小さくして空気循
環用のファンの騒音を低下させる必要があるが、吸着効果を高めることと矛盾する。
Furthermore, the filtration indoor air purification device using a conventional filter increases the adsorption efficiency by the adsorbent, so that the foreign particles contained in the air adhere to the adsorbent and the deterioration of its function is accelerated. Even when fibers are used, frequent replacement and regeneration of the filter is required. In addition, since the amount of adsorption is limited, when the amount of adsorption is saturated, the adsorbed component is desorbed and re-released by the aeration force. In addition, it is desirable that the indoor air purification device used in daily life is as low as possible, and it is necessary to reduce the pressure loss of the filter and reduce the noise of the fan for air circulation. Contradict that.

そこで、従来の技術の延長ではなく、小型の装置であっても、VOC等の有害ガス成分を
効率良く完全に除去し、しかも、大量の空気の処理を行えるとともに吸着材の機能低下が
少ない革新的な空気清浄技術の開発が必要である。
Therefore, it is not an extension of the conventional technology, and even small devices can efficiently and completely remove harmful gas components such as VOC, and can process a large amount of air and reduce the function of adsorbents. Development of efficient air purification technology is necessary.

従来、空気清浄装置のフィルターの吸着性能を発揮させるには、フィルターの平面に対し
て汚染空気を直交方向に流す濾過方式が技術的な常識であった。送風手段の低出力化によ
って騒音や振動を低減するために、シート状のフィルターを平行に積層してその間隙に汚
染空気を流す方式は、吸着性能の低下が避けられないと考えられてきた。
Conventionally, in order to exert the adsorption performance of a filter of an air cleaning device, a filtration method in which contaminated air is flowed in an orthogonal direction with respect to the plane of the filter has been a technical common sense. In order to reduce noise and vibration by reducing the output of the air blowing means, it has been considered that a method of laminating sheet-like filters in parallel and flowing contaminated air through the gap inevitably results in a decrease in adsorption performance.

活性炭繊維シートも上記のような空気を直交方向に流す方式のフィルターとして専ら使用
されてきた。通常、フィルターの吸着力は、フィルターの平面に対して除去対象成分を含
有する空気を直交方向に流して濾過した場合の、空気中の除去対象成分の平衡濃度(pp
m)とフィルターの平面における平衡吸着量(mg/g)の関係で示される。また、フィ
ルターの吸着性能は、吸着が飽和するまでの単位面積当たりの吸着容量(mmol/m2)で表す
ことができ、空気清浄装置のように長時間にわたり使用されるフィルターでは、この値が
大きいほどフィルターを交換するまでに大量の空気の処理が可能であり望ましいが、活性
炭繊維シートを用いた場合、例えば、ベンゼンの吸着容量はよくても数十mmol/m2が限界
であった。
An activated carbon fiber sheet has also been used exclusively as a filter of the above-described type in which air flows in the orthogonal direction. Usually, the adsorption power of the filter is the equilibrium concentration (pp) of the component to be removed in the air when the air containing the component to be removed is filtered in a direction orthogonal to the plane of the filter.
m) and the equilibrium adsorption amount (mg / g) in the plane of the filter. In addition, the adsorption performance of the filter can be expressed by the adsorption capacity per unit area (mmol / m 2 ) until the adsorption is saturated, and this value is used for a filter used for a long time such as an air purifier. Larger air treatment is desirable because it is possible to process a large amount of air before replacing the filter. However, when an activated carbon fiber sheet is used, for example, the benzene adsorption capacity is at most several tens mmol / m 2 .

しかしながら、本発明者は、活性炭繊維シートを拡散スクラバー方式の通気路構成材料と
して用いることによって、空気中のホルムアルデヒド、ベンゼン、トルエン、エチルベン
ゼン、キシレンなどの揮発性有機化合物(VOC)に対する吸着容量が、濾過方式で使用
する場合よりも数倍以上となり、従来知られていた吸着容量の限界を大幅に上回るという
特異で顕著な効果が得られることを見出した。
However, the present inventor uses the activated carbon fiber sheet as a diffusion scrubber type air passage constituting material, so that the adsorption capacity for volatile organic compounds (VOC) such as formaldehyde, benzene, toluene, ethylbenzene, and xylene in the air, It has been found that a unique and remarkable effect can be obtained that the number is several times or more than when used in a filtration system, and greatly exceeds the limit of the conventionally known adsorption capacity.

活性炭繊維シートを濾過方式で使用した場合に比べて、拡散スクラバーによって非濾過方
式で使用した場合になぜこのように著しく吸着容量が増大するのか、その理由は明確では
ないが、濾過方式の場合、活性炭繊維シート面に直交して空気を流すので通気抵抗が増す
と活性炭繊維シート表面に吸着されたガス成分が通気の力の作用によって脱離してしまう
のに対して、拡散スクラバーの場合は活性炭繊維シート面に平行して空気を流すので通気
抵抗はなく、また、活性炭繊維シート表面に吸着されたガス成分が通気の力の作用によっ
て脱離することが少ないことが主な要因と考えられる。
The reason why the adsorption capacity increases significantly in this way when using the non-filtration method by the diffusion scrubber compared to the case where the activated carbon fiber sheet is used in the filtration method is not clear, but in the case of the filtration method, Since air flows perpendicularly to the surface of the activated carbon fiber sheet, the gas component adsorbed on the surface of the activated carbon fiber sheet is desorbed by the action of the ventilation force when the ventilation resistance is increased, whereas in the case of a diffusion scrubber, activated carbon fiber is used. Since air flows in parallel to the sheet surface, there is no ventilation resistance, and it is thought that the main factors are that the gas components adsorbed on the activated carbon fiber sheet surface are less likely to be detached due to the action of the ventilation force.

すなわち、本発明は、通気路を構成する隙間に気体を流し、気体中に含まれるガスと粒子
の拡散係数の相違を利用してガスを選択的に通気路表面に吸着させて気体中から除去する
拡散スクラバーの通気路構成材料として活性炭繊維シートを用いて、空気中の揮発性有機
化合物を非濾過方式で活性炭繊維シートによって除去することを特徴とする活性炭繊維シ
ートを使用した室内空気浄化装置に関する
That is, the present invention allows gas to flow through the gaps constituting the air passage and selectively removes the gas from the gas by using the difference in diffusion coefficient between the gas and particles contained in the gas to selectively adsorb the gas on the air passage surface. The present invention relates to an indoor air purification apparatus using an activated carbon fiber sheet , wherein the activated carbon fiber sheet is used as an air passage constituting material of a diffusion scrubber, and volatile organic compounds in the air are removed by the activated carbon fiber sheet in a non-filtration manner. .

また、本発明は、通気路をGormley及びKennedyの拡散スクラバーの原理を表す理論式にお
いて、1パスで50%以上の有害ガス除去効率を得られる構成としたことを特徴とする上
記の活性炭繊維シートを使用した室内空気浄化装置に関する
さらに、本発明は、通気路のユニットを複数段、通気方向に直列に接続したことを特徴と
する上記の活性炭繊維シートを使用した室内空気浄化装置に関する
In addition, the present invention provides the activated carbon fiber sheet characterized in that the ventilation passage is configured to obtain a harmful gas removal efficiency of 50% or more in one pass in a theoretical formula representing the principle of the diffusion scrubber of Gormley and Kennedy. The present invention relates to an indoor air purifying apparatus using the .
Furthermore, the present invention relates to an indoor air purifying apparatus using the activated carbon fiber sheet , characterized in that a plurality of ventilation path units are connected in series in the ventilation direction .

本発明の装置による空気浄化は拡散スクラバー法の原理に基づくものであり、具体例とし
ては、活性炭繊維シートを平行に積層状に多数並べた平行板構造体とするかコルゲート状
の構造として通気路となる隙間を設けて空気浄化装置の通気路に設置するとよい。この
場合、活性炭繊維シートからなる通気路の狭い隙間にVOCを含有した汚染空気を連続的
に流すと、ガスと粒子は、従来のフィルターのように汚染空気の濾過によってガスと粒子
がフィルターの表面で同時に捕捉されるのとは異なり、濾過されることなくガスと粒子の
拡散係数の違いによって分離されて活性炭繊維シートの表面に拡散してきたVOCのみを
非濾過方式で活性炭繊維シートの表面で吸着して空気中から除去することになる。
Air purification by the apparatus of the present invention is based on the principle of diffusion scrubber method, specific examples, as a parallel plate structure and to Luke corrugated structure composed of an array of a number to the parallel laminated activated carbon fiber sheet It is good to install in the ventilation path of an air purification apparatus by providing the clearance gap used as an ventilation path. In this case, when polluted air containing VOC is continuously flowed through a narrow gap in the ventilation path made of activated carbon fiber sheet, the gas and particles are separated from the surface of the filter by filtering the polluted air like a conventional filter. In contrast to being captured at the same time, only the VOC that has been separated by the difference in diffusion coefficient of gas and particles and diffused on the surface of the activated carbon fiber sheet without being filtered.
It is adsorbed on the surface of the activated carbon fiber sheet by a non-filtration method and removed from the air.

本発明の活性炭繊維シートを使用した室内空気浄化装置は、(1)単なる活性炭繊維シー
ト面をもつ通気路によって非濾過方式で効率良くVOCの除去処理が行えること、(2)
活性炭繊維シート面を持つ通気路の狭い隙間に汚染空気を流すので、従来の濾過方式とは
異なり通気抵抗がなく、汚染空気の処理量を大きくできること、等の従来の濾過方式とは
比較にならない高効率と高い除去容量で、 VOCを除去処理できる画期的な優位性を持
っている。
The indoor air purifying apparatus using the activated carbon fiber sheet of the present invention is (1) a VOC removal process can be efficiently performed by a non-filtering method using an air passage having a simple activated carbon fiber sheet surface, (2)
Contaminated air is allowed to flow through the narrow gap in the ventilation path with the activated carbon fiber sheet surface. Unlike conventional filtration methods, there is no ventilation resistance, and the amount of contaminated air can be increased. With high efficiency and high removal capacity, it has an epoch-making advantage in removing VOCs.

活性炭繊維は、レーヨン繊維、アクリル繊維、フェノール系繊維、ピッチ系原料から工業
的に生産されている。石炭ピッチを原料として溶融紡糸法によって製造された活性炭繊維
は、例えば、太さが11〜18μm、比表面積(m2/g)700〜2500、外表面積(m2/
g)0.2〜0.7、平均細孔径(nm) 1.7〜2.1の特性を有する。ピッチ系原料から
製造された活性炭繊維の炭素含有率は約93%であり、他の原料のものより相当に高い。
Activated carbon fiber is industrially produced from rayon fiber, acrylic fiber, phenol fiber, and pitch material. The activated carbon fiber manufactured by melt spinning using coal pitch as a raw material has, for example, a thickness of 11 to 18 μm, a specific surface area (m 2 / g) of 700 to 2500, an outer surface area (m 2 /
g) 0.2-0.7 and average pore diameter (nm) 1.7-2.1. The carbon content of the activated carbon fiber produced from the pitch-based raw material is about 93%, which is considerably higher than that of the other raw materials.

これらの活性炭繊維は通常の繊維加工機械と技術を駆使してフェルト、クロス、パルプ等
との抄紙など種々の成形体に加工できる。例えば、カード機を使用して乾式シートや乾式
フェルトに成形できる。
These activated carbon fibers can be processed into various shaped articles such as paper making with felt, cloth, pulp and the like by using ordinary fiber processing machines and techniques. For example, it can be formed into a dry sheet or dry felt using a card machine.

活性炭繊維は疎水性であるため、ベンゼン、トルエン、エチルベンゼン、キシレン、有機
塩素化合物などの疎水性物質の吸着特性に優れるが、アンモニア、硫化水素、低級アルコ
ール、低級アルデヒドなどの揮発性の高い親水性ガスの吸着能力はよくない。このような
欠点を補うものとして、これらの気体と反応性のある薬剤を添着した活性炭繊維も市販さ
れている。
Activated carbon fiber is hydrophobic, so it has excellent adsorption properties for hydrophobic substances such as benzene, toluene, ethylbenzene, xylene, and organic chlorine compounds, but highly volatile hydrophilic properties such as ammonia, hydrogen sulfide, lower alcohol, and lower aldehyde. Gas adsorption capacity is not good. In order to compensate for these drawbacks, activated carbon fibers impregnated with chemicals reactive with these gases are also commercially available.

本発明の装置に使用する活性炭繊維シートとしては、その種類は特に限定されないが、本
発明者らが、これまで開発してきたVOCの除去性能が優れた活性炭繊維(上記特許文献
4〜7、非特許文献1)からなるシートは吸着性能が特に高く有用である。
The type of the activated carbon fiber sheet used in the apparatus of the present invention is not particularly limited, but the present inventors have developed an activated carbon fiber having excellent VOC removal performance (Patent Documents 4 to 7, Non-Patent Documents above). The sheet made of Patent Document 1) has a particularly high adsorption performance and is useful.

このVOC除去用に適する活性炭繊維は下記の表1に示すとおりの基本性能を有している

Figure 0004892696
This activated carbon fiber suitable for VOC removal has basic performance as shown in Table 1 below.
Figure 0004892696

A−7,A−10,A−15,A−20の順に細孔径、比表面積、細孔容積が大きくなる
。逆に、繊維径は小さくなる。いずれも、ミクロ孔(2nm以下)の発達した構造を有し
ており、メソ孔(2〜50nm)の発達した粉状炭や粒状炭に比べて低分子、低濃度のガ
スの吸着性がよいという特徴がある。また、繊維状であるため、フェルト状、シート状、
ペーパー状、ハニカム状、コルゲート状など種々の形に加工できる。低級アルデヒド類除
去用に適する活性炭繊維シートをフィルターとして用いた場合、アセトアルデヒド吸着特
性は1ppmでの平衡吸着量が40mg/g程度である。
The pore diameter, specific surface area, and pore volume increase in the order of A-7, A-10, A-15, and A-20. Conversely, the fiber diameter is reduced. All have a structure with developed micropores (2 nm or less), and have better adsorption of low-molecular and low-concentration gases than pulverized coal and granular coal with mesopores (2 to 50 nm). There is a feature. Also, because it is fibrous, felt, sheet,
It can be processed into various shapes such as paper, honeycomb and corrugated. When an activated carbon fiber sheet suitable for removing lower aldehydes is used as a filter, the acetaldehyde adsorption characteristic is that the equilibrium adsorption amount at 1 ppm is about 40 mg / g.

この活性炭繊維を用いた空気浄化用シートは、施工後のマンション、住宅などの床に敷設
したり、壁に掛けたりすることによって建材、塗料、接着剤などから発生するホルムアル
デヒド、ベンゼン、トルエン、エチルベンゼン、キシレンなどのVOC成分を除去するこ
とができる。また、プリーツ、コルゲート形状への加工が容易であり、各種空気清浄機用
のフィルターとして使用される。
This activated carbon fiber-based air purification sheet is formed from building materials, paints, adhesives, etc. that are laid on the floors of condominiums and houses after construction, or hung on walls. Formaldehyde, benzene, toluene, ethylbenzene VOC components such as xylene can be removed. Moreover, it can be easily processed into a pleated or corrugated shape and used as a filter for various air purifiers.

本発明は、活性炭繊維シートを拡散スクラバー方式の通気路構成材料として用いることを
特徴とする。本発明で採用する拡散スクラバー方式の原理は、拡散を利用したガスの捕集
・除去法であり、気体中に含まれるガスと粒子の拡散係数が大きく異なることを利用し、
拡散現象を利用してガスを選択的に気体中から除去する方法である。したがって、本明細
書で言う拡散スクラバーの原理は、水などの溶液にガスを拡散させる、いわゆる湿式拡散
スクラバー法とは異なる。
The present invention is characterized in that an activated carbon fiber sheet is used as a diffusion scrubber type air passage constituting material. The principle of the diffusion scrubber method adopted in the present invention is a gas collection / removal method using diffusion, and the fact that the diffusion coefficient of gas and particles contained in the gas is greatly different,
In this method, gas is selectively removed from the gas by utilizing a diffusion phenomenon. Therefore, the principle of the diffusion scrubber referred to in this specification is different from the so-called wet diffusion scrubber method in which a gas is diffused into a solution such as water.

このような拡散スクラバーの原理は、従来、大気中の微量ガス成分の分析手段に用いられ
る程度であったが、本発明者らは、先に、従来の化学フィルター、活性炭等のガス除去方
法とは発想を異にする革新的な空気汚染物質の除去処理技術として拡散スクラバー法を用
いた空気浄化装置を開発した(特許第3483208号公報、特願2003−37105
7)。
The principle of such a diffusion scrubber has been conventionally used as a means for analyzing trace gas components in the atmosphere, but the present inventors have previously described conventional gas removal methods such as chemical filters and activated carbon. Has developed an air purifying apparatus using a diffusion scrubber method as an innovative air pollutant removal technology having a different idea (Japanese Patent No. 3484208, Japanese Patent Application No. 2003-37105).
7).

管内に汚染空気を流すと、拡散係数の大きいガス成分は管内壁面へ拡散し壁面で捕集され
る。一方、汚染空気中の粒子は拡散係数が小さいために直進し、管壁面に捕集されない。
このような現象を利用する気体中の微量ガス成分の分離吸着法が拡散スクラバー法である
。拡散スクラバーは、1本の円筒管のみならず、2重管、3重管などの多重管で実現する
ことができる。また、多層に並べた平行板は、直径が無限大である多重管に相当する。
また、断面が三角形など多角形の形状も円筒管の変形として対応できる。図1に、拡散ス
クラバー法の原理を平行板(図1及び数1において「プレート」と表示)を使用した場合
について示す。
When contaminated air is allowed to flow through the tube, gas components having a large diffusion coefficient diffuse to the inner wall surface of the tube and are collected by the wall surface. On the other hand, the particles in the contaminated air go straight because the diffusion coefficient is small, and are not collected on the tube wall surface.
A diffusion scrubber method is a method for separating and adsorbing trace gas components in a gas utilizing such a phenomenon. The diffusion scrubber can be realized not only by one cylindrical tube but also by multiple tubes such as a double tube and a triple tube. Moreover, the parallel plates arranged in multiple layers correspond to a multiple tube having an infinite diameter.
In addition, a polygonal shape such as a triangular cross section can be used as a deformation of the cylindrical tube. FIG. 1 shows the principle of the diffusion scrubber method when a parallel plate (shown as “plate” in FIGS. 1 and 1) is used.

図1に示す様に、プレートの幅をb、プレートの長さをL、隣接するプレートの間隔をa
とする2枚の平行板の隙間に図1に示す空気の流れ方向に汚染空気を流すと、拡散係数の
大きいガスは平行板の壁面へ拡散する。壁面へ到達したガスは、壁面に吸着される。一
方、拡散係数の小さい粒子は壁面へ拡散しない内に平行板を通過してしまう。この平行板
型拡散スクラバー法の理論除去効率は、Gormley及びKennedy(Gormley P., Kennedy M.:
Proc. R. Ir. Acad., 45, 59-63 (1938))の理論式に基づく下記の除去効率(f)の式(
1)、除去パラメーター(μ)の式(2)によって算出される。各VOCの拡散定数(D
)は、ベンゼン:0.0828cm2/s、トルエン:0.0792cm2/s、p−キシ
レン:0.075 cm2/sである。
As shown in FIG. 1, the width of the plate is b, the length of the plate is L, and the distance between adjacent plates is a.
When contaminated air is allowed to flow in the air flow direction shown in FIG. 1 through the gap between the two parallel plates, gas having a large diffusion coefficient diffuses to the wall surface of the parallel plate. The gas that has reached the inner wall surface is adsorbed on the wall surface. On the other hand, particles having a small diffusion coefficient pass through the parallel plate without diffusing to the wall surface. The theoretical removal efficiency of this parallel plate diffusion scrubber method is Gormley and Kennedy (Gormley P., Kennedy M .:
Proc. R. Ir. Acad., 45, equation 59-63 (1938) following removal efficiency based on the theoretical formula) (f) (
1) Calculated by equation (2) for removal parameter (μ) . Diffusion constant of each VOC (D
) Is benzene: 0.0828cm 2 / s, toluene: 0.0792cm 2 / s, p- xylene is 0.075 cm 2 / s.

Figure 0004892696
Figure 0004892696

VOCを吸着除去できる活性炭繊維シートを平行板として並べ、その活性炭繊維シートの
隙間に汚染空気を流すと、拡散係数の大きいVOCは活性炭繊維シート内表面へ拡散する
。表面へ到達したVOCは、表面に吸着し空気中から除去される。
When activated carbon fiber sheets capable of adsorbing and removing VOCs are arranged as parallel plates and contaminated air is passed through the gaps between the activated carbon fiber sheets, VOCs having a large diffusion coefficient diffuse to the inner surface of the activated carbon fiber sheet. The VOC that reaches the surface is adsorbed on the surface and removed from the air.

また、Gormley及びKennedy理論式に基づくコルゲート型拡散スクラバーの除去効率の算出
式は下記の式(3)、(4)、(5)で表せる。コルゲート型の通気断面は、円形ではな
く三角形なので、管状型拡散スクラバーの除去効率を求めるGormley及びKennedy理論式(
Gormley P., Kennedy M.:Proc. R. Ir. Acad., 52A, 163-169 (1949))に基づく除去効
率(f)の式(3)に、Possanzinらが導き出した相当直径(δ)の概念を用いるパラメ
ーター(μ)の式(4)及び(5)(Atmos.Environ.Vol.17,2605-2610(1983)で求めた
除去のパラメータ(μ)を代入し、算出する。
Moreover, the calculation formula of the removal efficiency of the corrugated diffusion scrubber based on the Gormley and Kennedy theoretical formulas can be expressed by the following formulas (3), (4), and (5). Since the corrugated cross section is triangular rather than circular, the Gormley and Kennedy theoretical formulas for determining the removal efficiency of a tubular diffusion scrubber (
Gormley P., Kennedy M.:Proc. R. Ir . Acad., 52A, removal effect based on 163-169 (1949))
A parameter using the concept of equivalent diameter (δ) derived by Possanzin et al.
Substituting Ta (mu) of the formula (4) and (5) (Atmos.Environ.Vol.17,2605-2610 (1983) ) by seeking removal of parameter (mu), calculated.

Figure 0004892696
Figure 0004892696

本発明の活性炭繊維シートを使用した室内空気浄化装置は、Gormley及びKennedyの拡散ス
クラバーの原理を表す理論式において、1パスで50%以上の有害ガス除去効率を得られ
る構造とする。空気中のVOCの除去効率は1回空気を流して50%以上となれば、実用
上は十分であるから、平行板構造体の隙間の間隔又はコルゲート状構造体の三角形の寸法
は、前記のGormley及びKennedyによって導かれた式に基づいて 除去効率50%を満たす
ように設計すればよい。
The indoor air purification apparatus using the activated carbon fiber sheet of the present invention has a structure that can obtain a harmful gas removal efficiency of 50% or more in one pass in the theoretical formula representing the principle of the diffusion scrubber of Gormley and Kennedy. Since the removal efficiency of VOC in the air is 50% or more by flowing air once, it is sufficient for practical use. Therefore, the gap interval of the parallel plate structure or the triangle size of the corrugated structure is Based on the equation derived from Gormley and Kennedy, it should be designed to satisfy 50% removal efficiency.

この様に、汚染空気をフィルターの微細孔を通過させてVOCを吸着除去する従来の濾過
方法とは全く異なり、拡散スクラバー法では、単にガス吸着面をもつ通気路の隙間に汚染
空気を流すだけの非濾過方式なので通気抵抗が非常に小さく、大容量の汚染空気中のVO
Cを小さなエネルギーで除去・処理できる。
In this way, unlike the conventional filtration method in which contaminated air is passed through the fine pores of the filter and adsorbs and removes VOC, the diffusion scrubber method simply contaminates the gap in the air passage having the gas adsorption surface. Ventilation resistance is very small because it is a non-filtering system that only allows air to flow.
C can be removed and processed with small energy.

図2に、本発明の活性炭繊維シートを使用した室内空気浄化装置の一例を示す。図2の(
A)は、活性炭繊維シート1とスペーサ2の関係を示す側面図であり、(B)は上面図で
ある。活性炭繊維シート1をスペーサ2で所定の間隔に保持して隙間を形成し、図2の(
c)の斜視図に示すように、活性炭繊維シート1を平行に多数並べて通気路を構成し、こ
れを直方体のハウジング(図示せず)内に収容してスクラバーユニット3とする。平行板
構造体の基本ユニットは通気断面積S=a×b,隙間a、幅b、通気の有効長Lとなる。
このスクラバーユニット3に、図に示すように、汚染空気を下側から流すと、上側から清
浄空気が排出される。
In FIG. 2, an example of the indoor air purification apparatus which uses the activated carbon fiber sheet of this invention is shown. (
(A) is a side view which shows the relationship between the activated carbon fiber sheet 1 and the spacer 2, and (B) is a top view. The activated carbon fiber sheet 1 is held at a predetermined interval by a spacer 2 to form a gap.
As shown in the perspective view of c), a large number of activated carbon fiber sheets 1 are arranged in parallel to form an air passage, which is housed in a rectangular parallelepiped housing (not shown) to form a scrubber unit 3. The basic unit of the parallel plate structure has a ventilation sectional area S = a × b, a gap a, a width b, and an effective length L of ventilation.
As shown in the figure, when contaminated air is flowed from the lower side to the scrubber unit 3, clean air is discharged from the upper side.

図3に、本発明の活性炭繊維シートを使用した室内空気浄化装置の別の例を示す。直方体
のハウジング(図示せず)内に活性炭繊維シート1からなるコルゲート状構造体を保持し
てスクラバーユニット3として使用する方法である。コルゲート状構造体の基本ユニット
は右拡大図に示すように、平行板構造の隙間に相当する三角形の通気断面積S=a×b×
1/2,高さa、底辺b、三角形の周囲長l、通気の有効長Lとなる。スクラバーユニッ
ト3に、図に示すように、汚染空気を下側から流すと、上側から清浄空気が排出される
FIG. 3 shows another example of the indoor air purification apparatus using the activated carbon fiber sheet of the present invention. In this method, a corrugated structure made of activated carbon fiber sheet 1 is held in a rectangular parallelepiped housing (not shown) and used as a scrubber unit 3. As shown in the enlarged right view, the basic unit of the corrugated structure has a triangular ventilation cross-sectional area S = a × b × corresponding to the gap of the parallel plate structure.
1/2, height a, base b, triangle perimeter l, and ventilation effective length L. As shown in the figure, when contaminated air is flowed from the lower side to the scrubber unit 3, clean air is discharged from the upper side.

これらの通気路のユニットは通気方向に複数段直列に接続して配置すると多段に重ねた部
分で乱流効果が加わり、VOCの吸着効果が高まる。ユニットを複数段重ねる際に直方体
のハウジングの通気方向中心軸に対して90度ずつずらして該ハウジング内に配置するよ
うにすると、乱流効果が更に高まり、吸着効果を非常に高めることができる。
If these airflow path units are arranged in series in a plurality of stages in the airflow direction, a turbulent flow effect is added to the multi-layered portion, and the VOC adsorption effect is enhanced. A rectangular parallelepiped when stacking multiple units
With be arranged within the housing staggered with respect to the ventilation direction center axis of the housing by 90 degrees, further increases the turbulence effect, can greatly enhance the adsorption effect.

上記のスクラバーユニットは、例えば、図4の側面図(A),上面図(B)に示すように
、空気清浄装置10内にスクラバーユニット3として装着してファンなどの送風手段11
によって吸気口から外部の空気を取り入れ、スクラバーユニット3を通過させることによ
ってVOCを活性炭繊維シートに吸着させる。スクラバーユニット3を通過する粒子は、
スクラバーユニット3の後段に配置した除塵フィルター12で除去する。粒子等が多い場
合には、除塵フィルター12をスクラバーユニット3の前後に配置してもよい。
For example, as shown in the side view (A) and the top view (B) of FIG. 4, the scrubber unit is mounted as the scrubber unit 3 in the air cleaning device 10 and blower means 11 such as a fan.
The outside air is taken in from the air intake port and is passed through the scrubber unit 3 to adsorb the VOC to the activated carbon fiber sheet. The particles passing through the scrubber unit 3 are
It is removed with a dust filter 12 arranged at the rear stage of the scrubber unit 3. When there are many particles or the like, the dust filter 12 may be disposed before and after the scrubber unit 3.

活性炭繊維シートとして、幅(b)=19cm、長さ(L)=11.5cmのシート(ユ
ニチカ製HPS−C060;表1の活性炭繊維A−15に相当、目付量80g/m2、活
性炭の含有量は75%)を用意した。図2に示すように、プラスチック製のスペーサと活
性炭繊維シートとを交互に層状に多数並べて配置し、平行板構造体を形成した。活性炭繊
維シート234枚に233枚のスペーサを挿入し、間隔(a)=0.12cmとた。これ
を、内寸:39cm(長さ)×19cm(幅)×12cm(高さ)の長方形のハウジング
に収容してスクラバーユニットとし、このスクラバーユニットを2つ用いて実験に使用し
た。活性炭繊維シートの隙間を確保するためにプラスチック製のスペーサをシート間に挿
入するのでVOCを吸着できる活性炭繊維シートの有効面は、幅(b)=17cm、長さ
(L)=10.5cmとなる。従って、1対の活性炭繊維シートの通気断面積(S)は、
2.04cm2となり、1つのスクラバーユニットに233個の隙間があるので、2つの
スクラバーユニットにおける全通気断面積は951cm2となる。活性炭繊維シートをス
ペーサで挟持することにより、活性炭繊維シートの固定がゆるくなり、遊びの部分が乱流
を引き起こし、吸着効果をより高めることができる。
As an activated carbon fiber sheet, a sheet having a width (b) = 19 cm and a length (L) = 11.5 cm (HPC-C060 manufactured by Unitika; equivalent to activated carbon fiber A-15 in Table 1, weight per unit area 80 g / m 2 , The content was 75%). As shown in FIG. 2, a large number of plastic spacers and activated carbon fiber sheets were alternately arranged in layers to form a parallel plate structure. 233 spacers were inserted into 234 activated carbon fiber sheets, and the interval (a) was set to 0.12 cm. This was accommodated in a rectangular housing having an internal dimension of 39 cm (length) × 19 cm (width) × 12 cm (height) to form a scrubber unit, and two scrubber units were used for the experiment. Since a plastic spacer is inserted between the sheets in order to secure a gap between the activated carbon fiber sheets, the effective surface of the activated carbon fiber sheet capable of adsorbing VOC is as follows: width (b) = 17 cm, length (L) = 10.5 cm. Become. Therefore, the ventilation cross-sectional area (S) of a pair of activated carbon fiber sheets is
2.04Cm 2 becomes, since the single scrubber unit has 233 pieces of the gap, the total vent area at two scrubber unit becomes 951cm 2. By sandwiching the activated carbon fiber sheet with the spacer, the activated carbon fiber sheet is loosely fixed, the play portion causes turbulence, and the adsorption effect can be further enhanced.

このスクラバーユニットを実験装置に設置して、通気流量を50m3/h、100m3/h
、200m3/hとして、ベンゼン、トルエン、p−キシレンを混合したVOCを発生・
導入し、スクラバーユニットのVOC除去の性能評価実験を行なった。除去効率(%)は
、スクラバーユニットの入口と出口で各VOC濃度をGC−MSで測定し、式(6)より
算出した。結果を表2に示す。除去効率の下の括弧内の値は、各VOCの入口濃度の平均
値(ppmv)である。表2から、ベンゼン、トルエン、p−キシレンについて高い除去効率が
得られたことが分かる。
f(%)=(C1−C2)×100/C1・・・(6)
f;除去効率(%)、C1;各VOCの入口濃度(ppmv)、C2;各VOCの出口濃度(ppm
v)
This scrubber unit is installed in the experimental device, and the ventilation flow rate is 50 m 3 / h, 100 m 3 / h.
, 200 m 3 / h, generating VOC mixed with benzene, toluene and p-xylene.
The scrubber unit was evaluated for VOC removal performance evaluation. The removal efficiency (%) was calculated from equation (6) by measuring each VOC concentration by GC-MS at the inlet and outlet of the scrubber unit. The results are shown in Table 2. The value in parentheses under the removal efficiency is the average value (ppmv) of the inlet concentration of each VOC. Table 2 shows that high removal efficiency was obtained for benzene, toluene, and p-xylene.
f (%) = (C1-C2) × 100 / C1 (6)
f; removal efficiency (%), C1; inlet concentration of each VOC (ppmv), C2; outlet concentration of each VOC (ppm)
v)

Figure 0004892696
Figure 0004892696

図3に示すように、活性炭繊維シートとして、三角形(底辺:0.31cm、高さ;0.
23cm、通気断面積(S):0.0357cm2)の孔を15,652個有し、全体の
通気断面積が558cm2、高さ(通気の有効長(L))さが10cmのコルゲート構造
体(ユニチカ製FMC−B550−CC;表1の活性炭繊維A−15に相当、目付量80
g/m2、活性炭の含有量は75%)を用意した。これを内寸:48cm(長さ)×19
cm(幅)×10cm(高さ)の長方形のハウジングに収容してスクラバーユニットとし
た。このスクラバーユニットを実験装置に設置して、通気流量を100m3/h、200
3/hとして、実施例1と同じ条件で性能評価実験を行なった。各VOCの除去効率も
実施例1と同様にして算出した。結果を表3に示す。除去効率の下の括弧内の値は、各V
OCの入口濃度の平均値(ppmV)である。表3から、ベンゼン、トルエン、p−キシレンに
ついて高い除去効率が得られたことが分かる。
As shown in FIG. 3, as the activated carbon fiber sheet, a triangle (base: 0.31 cm, height;
Corrugated structure having 15,652 holes of 23 cm, cross-sectional area (S): 0.0357 cm 2 ), total cross-sectional area of 558 cm 2 , and height (effective ventilation length (L)) of 10 cm Body (Unitika FMC-B550-CC; equivalent to activated carbon fiber A-15 in Table 1, weight per unit area 80
g / m 2 , and the activated carbon content is 75%). Inside dimensions: 48cm (length) x 19
The scrubber unit was housed in a rectangular housing of cm (width) × 10 cm (height). This scrubber unit is installed in an experimental device, and the ventilation flow rate is 100 m 3 / h, 200
A performance evaluation experiment was performed under the same conditions as in Example 1 as m 3 / h. The removal efficiency of each VOC was also calculated in the same manner as in Example 1. The results are shown in Table 3. The value in parentheses below the removal efficiency is the V
It is the average value (ppmV) of the inlet concentration of OC. Table 3 shows that high removal efficiency was obtained for benzene, toluene, and p-xylene.

Figure 0004892696
Figure 0004892696

実施例1と同じ1対の活性炭繊維シート(幅10cm、長さ5cm、VOCの吸着表面積
100cm2)を0.38cmの隙間に設定した平行板型拡散スクラバーを用いて、通気
流速は14.4cm/sとし、連続してベンゼン、トルエン、p−キシレンを混合したV
OCを含有する空気を流した。ベンゼン、トルエン、p−キシレンのスクラバーユニット
への入口濃度はそれぞれ142.6±9.6ppm(n=7)、190.0±8.9pp
m(n=7)、172.0±19.3ppm(n=8)であった。入口濃度と出口濃度を
濃度差が0になるまで時間経過毎に測定した。実験結果を図5に示した。
(比較例1)
Using a parallel plate type diffusion scrubber in which a pair of activated carbon fiber sheets (width 10 cm, length 5 cm, VOC adsorption surface area 100 cm 2 ) as in Example 1 was set to a gap of 0.38 cm, the air flow rate was 14.4 cm. / S, V in which benzene, toluene, and p-xylene are mixed continuously
Air containing OC was flowed. The inlet concentrations of benzene, toluene, and p-xylene to the scrubber unit are 142.6 ± 9.6 ppm (n = 7) and 190.0 ± 8.9 pp, respectively.
m (n = 7), 172.0 ± 19.3 ppm (n = 8). The inlet concentration and the outlet concentration were measured over time until the concentration difference became zero. The experimental results are shown in FIG.
(Comparative Example 1)

実施例1と同じ活性炭繊維シートを用いて、従来、一般的に使用されている濾過捕集方式
により実験を行った。通気流速は14.4cm/sとし、活性炭繊維シートの濾過表面積
は3cmφ(7.07cm2)とした。 ベンゼン、トルエン、p−キシレンを混合したV
OCを比較的低濃度で含有する空気を流した。ベンゼン、トルエン、p−キシレンのスク
ラバーユニットへの入口濃度は、それぞれ6.47±0.26ppm(n=6)、6.2
3±0.32ppm(n=6)、14.08±2.58ppm(n=4)であった。入口
濃度と出口濃度を濃度差が0になるまで時間経過毎に測定した。
(比較例2)
Using the same activated carbon fiber sheet as in Example 1, an experiment was conducted by a conventionally used filtration collection method. The ventilation flow rate was 14.4 cm / s, and the filtration surface area of the activated carbon fiber sheet was 3 cmφ (7.07 cm 2 ). V in which benzene, toluene and p-xylene are mixed
Air containing a relatively low concentration of OC was flowed. The inlet concentrations of benzene, toluene, and p-xylene to the scrubber unit were 6.47 ± 0.26 ppm (n = 6), 6.2, respectively.
They were 3 ± 0.32 ppm (n = 6) and 14.08 ± 2.58 ppm (n = 4). The inlet concentration and the outlet concentration were measured over time until the concentration difference became zero.
(Comparative Example 2)

ベンゼン、トルエン、p−キシレンの入口濃度をそれぞれ96.0±3.94ppm(n
=10)、130.0±7.07ppm(n=9)、161.8±4.94ppm(n=
9)とし、高濃度とした以外は、比較例1と同じ条件で濾過捕集方式で実験を行った。入
口濃度と出口濃度を濃度差が0になるまで時間経過毎に測定した。実験結果を図6に示し
た。
The inlet concentrations of benzene, toluene, and p-xylene were 96.0 ± 3.94 ppm (n
= 10), 130.0 ± 7.07 ppm (n = 9), 161.8 ± 4.94 ppm (n =
9) The experiment was conducted by the filtration and collection method under the same conditions as in Comparative Example 1 except that the concentration was high. The inlet concentration and the outlet concentration were measured over time until the concentration difference became zero. The experimental results are shown in FIG.

上記の実施例3と比較例1、比較例2の実験結果に基づいて算出した活性炭繊維シート1
2当りの単独VOC吸着容量の比較結果を表4に示す。この結果から分かるように、平
行板型拡散スクラバー方式で使用した場合、濾過捕集の数倍以上の吸着容量となることが
分かった。

Figure 0004892696
Activated carbon fiber sheet 1 calculated based on the experimental results of Example 3 and Comparative Examples 1 and 2 above.
Table 4 shows a comparison result of the single VOC adsorption capacity per m 2 . As can be seen from this result, it was found that when used in a parallel plate type diffusion scrubber system, the adsorption capacity was several times or more that of filtration collection.
Figure 0004892696

本発明は、 極めてシンプルな装置による省エネルギー・経済的合理性を有した高性能な
VOC除去処理技術を提供するものであり、半導体製造等のクリーンルーム関連、生ゴミ
・悪臭・トイレ関連、病院・高齢者関連、動物飼育関連、駅・劇場・レストラン等公共施
設関連、博物館・美術館関連、 実験ラボ関連、列車・バス関連、 更に、ドライクリーニ
ング、一般家庭と多岐に亘る分野での室内空気清浄装置において、吸着効率の高い、長期
間にわたり交換や再生が必要でないフィルターの使用が可能である。
This onset Ming, extremely is intended to provide a simple high-performance VOC removal processing technology having the energy conservation and economic rationality by the device, clean room-related semiconductor manufacturing, etc., garbage, odor, toilet-related, hospitals and Related to elderly, animal husbandry, public facilities such as stations, theaters, restaurants, museums, museums, experimental laboratories, trains and buses, dry cleaning, indoor air cleaning devices in various fields your stomach in, have a high adsorption efficiency, it is possible to filter the use of do not require replacement or regeneration for a long period of time.

拡散スクラバー法の原理を示す概略説明図である。It is a schematic explanatory drawing which shows the principle of a diffusion scrubber method. 本発明の活性炭繊維シートを使用した室内空気浄化装置の一例を示す平行板構造体の平行板とスペーサとの関係を示す側面図(a)、上面図(b)、多層構造を示す概略斜視図(c)である。The side view (a) which shows the relationship between the parallel plate of the parallel plate structure which shows an example of the indoor air purification apparatus using the activated carbon fiber sheet of this invention, and a spacer, a top view (b), The schematic perspective view which shows a multilayer structure (C). 本発明の活性炭繊維シートを使用した室内空気浄化装置の別の例を示すコルゲート型構造体の概略斜視図と部分拡大図である。It is the schematic perspective view and partial enlarged view of the corrugated type structure which show another example of the indoor air purification apparatus using the activated carbon fiber sheet of this invention. 上記のスクラバーユニットを室内空気浄化装置にセットした実施形態を示す模式図である。It is a schematic diagram which shows embodiment which set said scrubber unit to the indoor air purification apparatus. 実施例3における、ベンゼン、トルエン、p−キシレンのスクラバーユニットの入口濃度と出口濃度の時間経過毎の測定結果を示すグラフである。It is a graph which shows the measurement result for every time progress of the inlet_port | entrance density | concentration of the scrubber unit of benzene, toluene, and p-xylene in Example 3, and an outlet density | concentration. 比較例2における、ベンゼン、トルエン、p−キシレンのスクラバーユニットの入口濃度と出口濃度の時間経過毎の測定結果を示すグラフである。It is a graph which shows the measurement result for every time progress of the inlet_port | entrance density | concentration and outlet density | concentration of the scrubber unit of benzene, toluene, and p-xylene in the comparative example 2.

Claims (4)

吸気口から空気を取り入れるための送風手段、ガス吸着面をもつ通気路、とからなる室内
空気浄化装置において、
該通気路は、活性炭繊維シートを平行に積層状に多数枚並べた平行板構造体であって、
該平行板構造体の隙間の間隔を、下記のGormley及びKennedyの理論式に基づく除去効率(
f)の式(1)、除去パラメーター(μ)の式(2)(ただし、プレートは平行板を意味
する)において、fが50以上となるように設計して直方体のハウジング内に収納するこ
とによって、
Figure 0004892696
室内空気中に含まれる揮発性有機化合物と粒子の拡散係数の相違によって分離されて活性
炭繊維シートの表面に拡散してきた揮発性有機化合物のみを非濾過方式で通気路表面に吸
着させて空気中から除去するようにしたスクラバーユニットからなり、
該通気路の後段に、揮発性有機化合物から分離された粒子を除去する除塵フィルターを配
置してなることを特徴とする室内空気浄化装置。
In an indoor air purifying apparatus comprising a blowing means for taking air from an air inlet and a ventilation path having a gas adsorption surface,
The ventilation path is a parallel plate structure in which a large number of activated carbon fiber sheets are arranged in parallel,
The clearance between the parallel plate structures is determined by the removal efficiency based on the following Gormley and Kennedy theoretical formula (
Designed so that f is 50 or more in formula (1 ) of f) and formula (2) of removal parameter (μ) (however, the plate means a parallel plate) and stored in a rectangular parallelepiped housing. By
Figure 0004892696
Only the volatile organic compounds contained in the indoor air and the volatile organic compounds separated by the difference in the diffusion coefficient of the particles and diffusing on the surface of the activated carbon fiber sheet are adsorbed on the surface of the air passage by a non-filtering method. It consists of a scrubber unit that is designed to be removed,
An indoor air purification apparatus comprising a dust removal filter for removing particles separated from volatile organic compounds at a subsequent stage of the air passage.
前記活性炭繊維シートをスペーサで保持して隙間を形成していることを特徴とする請求項
1記載の室内空気浄化装置。
The indoor air purification apparatus according to claim 1, wherein the activated carbon fiber sheet is held by a spacer to form a gap.
吸気口から空気を取り入れるための送風手段、ガス吸着面をもつ通気路、とからなる室内
空気浄化装置において、
該通気路は、活性炭繊維シートからなるコルゲート状の構造体であって、
該コルゲート状の構造体の通気断面の三角形の寸法を、下記のGormley及びKennedyの理論
式に基づく除去効率(f)の式(3)、相当直径(δ)の概念を用いる除去パラメーター
(μ)の式(4)及び(5)において、fが50以上となるように設計して直方体のハウ
ジング内に収納することによって、
Figure 0004892696
室内空気中に含まれる揮発性有機化合物と粒子の拡散係数の相違によって分離されて活性
炭繊維シートの表面に拡散してきた揮発性有機化合物のみを非濾過方式で通気路表面に吸
着させて空気中から除去するようにしたスクラバーユニットからなり、
該通気路の後段に、揮発性有機化合物から分離された粒子を除去する除塵フィルターを配
置してなることを特徴とする室内空気浄化装置。
In an indoor air purifying apparatus comprising a blowing means for taking air from an air inlet and a ventilation path having a gas adsorption surface,
The air passage is a corrugated structure made of activated carbon fiber sheet,
The triangular dimension of the ventilation cross section of the corrugated structure is given by the following Gormley and Kennedy theory.
The removal parameter using the concept of removal efficiency (f) based on equation (3), equivalent diameter (δ)
In the formulas (4) and (5) of (μ) , f is designed to be 50 or more and stored in a rectangular parallelepiped housing,
Figure 0004892696
Only the volatile organic compounds contained in the indoor air and the volatile organic compounds separated by the difference in the diffusion coefficient of the particles and diffusing on the surface of the activated carbon fiber sheet are adsorbed on the surface of the air passage by a non-filtering method. It consists of a scrubber unit that is designed to be removed,
An indoor air purification apparatus comprising a dust removal filter for removing particles separated from volatile organic compounds at a subsequent stage of the air passage.
スクラバーユニットを複数段、通気方向に直列に接続したことを特徴とする請求項1又は
3記載の室内空気浄化装置。
The indoor air purifier according to claim 1 or 3, wherein a plurality of scrubber units are connected in series in a ventilation direction.
JP2005105480A 2005-03-31 2005-03-31 Indoor air purifier Expired - Fee Related JP4892696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005105480A JP4892696B2 (en) 2005-03-31 2005-03-31 Indoor air purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005105480A JP4892696B2 (en) 2005-03-31 2005-03-31 Indoor air purifier

Publications (2)

Publication Number Publication Date
JP2006280675A JP2006280675A (en) 2006-10-19
JP4892696B2 true JP4892696B2 (en) 2012-03-07

Family

ID=37403188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005105480A Expired - Fee Related JP4892696B2 (en) 2005-03-31 2005-03-31 Indoor air purifier

Country Status (1)

Country Link
JP (1) JP4892696B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8186793B2 (en) 2006-02-22 2012-05-29 Ricoh Company, Ltd. Image processing method, program, image processing apparatus, image forming apparatus, image forming system
JP5305276B2 (en) * 2006-07-11 2013-10-02 学校法人慶應義塾 Air purification method and system
IT1394436B1 (en) * 2009-05-07 2012-06-15 Aero Sekur S P A AGGRESSIVE NBC FILTRATION DEVICE FOR THE TREATMENT OF LARGE AIR MASSES.
JP2011083693A (en) * 2009-10-15 2011-04-28 Toyobo Co Ltd Material for adsorbing/decomposing volatile organic compound
KR101614931B1 (en) 2015-04-03 2016-04-22 주식회사 크럭스에어 Air purifier filter ball for the smoking booth
KR102025976B1 (en) * 2016-11-21 2019-09-27 한국기계연구원 Water spray type scrubber and precipitation method of using the same
KR101927590B1 (en) 2016-11-21 2018-12-11 한국기계연구원 Scrubber using textile sheet
JP6580187B1 (en) * 2018-03-28 2019-09-25 大阪瓦斯株式会社 Air purification unit
KR20240113251A (en) * 2023-01-13 2024-07-22 한국화학연구원 Oxidation Filter Module for Removing Volatile Organic Compounds and Oxidation Filter System Based on Electrification for Removing Volatile Organic Compounds Including the Same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59154119A (en) * 1983-02-23 1984-09-03 Motozu Enterp:Kk Dust collecting screen
JPH0578996A (en) * 1991-09-13 1993-03-30 Mitsubishi Paper Mills Ltd Active carbon fiber sheet and its production
JPH0691166A (en) * 1992-09-14 1994-04-05 Kawasaki Steel Corp Rod-like activated carbon and its production
JPH07313825A (en) * 1994-05-26 1995-12-05 Seibu Giken:Kk Honeycomb adsorbing body provided with filter
JPH09290116A (en) * 1996-04-25 1997-11-11 Takasago Thermal Eng Co Ltd Air filter of low pressure loss
JPH11226337A (en) * 1998-02-13 1999-08-24 Unitika Ltd Activated carbon fiber sheet for filter
JP2002126451A (en) * 2000-10-18 2002-05-08 Keio Gijuku Device for removing nitrogen oxides in air
JP2003024725A (en) * 2001-07-11 2003-01-28 Toray Ind Inc Opened cell structure for air filter
JP2003265916A (en) * 2002-03-15 2003-09-24 Ichiro Yanaka Dust collecting vessel
JP2005131553A (en) * 2003-10-30 2005-05-26 Keio Gijuku Air cleaning apparatus and air cleaning system

Also Published As

Publication number Publication date
JP2006280675A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4892696B2 (en) Indoor air purifier
US20080011662A1 (en) Compositions and methods for fluid purification
JP2007532310A (en) Chemical filter unit incorporating pneumatic transport means
KR20100091734A (en) Air cleaner
KR100807152B1 (en) Device for purifying polluted air
CN205579781U (en) Air purifier
CN102824822A (en) Membrane separation air purification device
CN201463138U (en) Nano-sized photocatalytic central air purifying device
WO2011035632A1 (en) Air purifier
CN205919430U (en) Air cleaning device
KR20150002497A (en) Filter cartridge for an air purifier
KR102111867B1 (en) The air clean machine
KR20180110738A (en) Dust collector for treat interior air pollutant of multi use facility
CN205939442U (en) Compound high -efficient air purification filter screen
KR20210094845A (en) Air purifier
JP6259954B2 (en) A pleated filter structure and an air filtering method for air purification
JPH06198123A (en) Method for purifying gas and filter for gas filtration
KR20180054244A (en) Desktop air purifier
RU87098U1 (en) FILTER FOR CLEANING AIR FROM TOXIC IMPURITIES AND MICROBIOLOGICAL POLLUTIONS
CN108507037A (en) A kind of negative ion air-cleaner being convenient to clean
RU68353U1 (en) PHOTOCATALYTIC DEVICE FOR AIR CLEANING
CN211854286U (en) HEPA membrane low temperature plasma air purifier
JP2002306587A (en) Air cleaner and air cleaning filter
CN209771778U (en) Indoor low-temperature plasma purification device
JPH11319580A (en) Photocatalyst filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4892696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees