JPH0691166A - Rod-like activated carbon and its production - Google Patents

Rod-like activated carbon and its production

Info

Publication number
JPH0691166A
JPH0691166A JP4244463A JP24446392A JPH0691166A JP H0691166 A JPH0691166 A JP H0691166A JP 4244463 A JP4244463 A JP 4244463A JP 24446392 A JP24446392 A JP 24446392A JP H0691166 A JPH0691166 A JP H0691166A
Authority
JP
Japan
Prior art keywords
activated carbon
rod
shaped
fibrous
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4244463A
Other languages
Japanese (ja)
Inventor
Masayuki Sumi
誠之 角
Fumihiro Miyoshi
史洋 三好
Seiji Hanatani
誠二 花谷
Yukihiro Osugi
幸広 大杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4244463A priority Critical patent/JPH0691166A/en
Publication of JPH0691166A publication Critical patent/JPH0691166A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain a new activated carbon having a large adsorption volume for gasoline vapor by partly fixing lots of fibrous activated carbon and spacers with a binder to produce a rod body so that vacant spaces are included among the fibrous activated carbon. CONSTITUTION:This rod-like activated carbon is obtd. by partly fixing lots of fibrous activated carbon 1 with a binder 3 through spacers 2 to form a rod as a whole but to make to have vacant spaces among the fibers. Since the rod-like activated carbon has highly oriented activated carbon fiber 1 in the axial direction and has high fiber density, the rod can have the adsorption of a high amt. By uniformly dispersing the spacers 2 among the fibrous activated carbon 1, the vacancies 5 among the carbon fibers can uniformly be dispersed in the center of the rod so that the material to be absorbed and a gas to be detached can easily be diffused.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、大気中に放散されるガ
ソリン等の揮発性炭化水素の除去、あるいは臭気、ガス
状の有害物質の除去、あるいは上水、排水等中の有害物
質の除去に用いて好適な棒状活性炭およびその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the removal of volatile hydrocarbons such as gasoline released into the atmosphere, the removal of odorous and gaseous toxic substances, and the removal of toxic substances in tap water, waste water and the like. The present invention relates to a rod-shaped activated carbon suitable for use in and a method for producing the same.

【0002】[0002]

【従来の技術】我が国の、自動車保有台数は、とどまる
ことを知らないモータリゼーションの波に乗り急速に増
加している。その大部分はガソリン車であり、莫大な量
のガソリンが流通、消費されている。ガソリンの流通、
消費の課程で大気に放散するガソリン蒸気は、光化学ス
モッグの発生原因、地球の温暖化(温室効果ガス)等の
原因となり、その放出量の削減は、地球環境を保護して
いく上で重要である。
2. Description of the Related Art The number of automobiles owned by our country is rapidly increasing due to the unstoppable wave of motorization. Most of them are gasoline vehicles, and a huge amount of gasoline is distributed and consumed. Distribution of gasoline,
Gasoline vapors emitted into the atmosphere during the consumption process cause photochemical smog and global warming (greenhouse gas), and reducing the amount of emission is important for protecting the global environment. is there.

【0003】従来、ガソリンタンクやキャブレターから
のガソリン蒸気の大気への放散を防ぐ方法として、粒状
活性炭充填層、所謂、キャニスターで放出口をマスクす
る方法が取られてきた。駐車時、即ち自動車が走行を停
止するとキャブレター、フロートタンク、ガソリンタン
クにエンジン部の熱が伝わり、気化したガソリンは大気
に放散しようとする。放出口がなければ、圧力がかかる
ことになるため、粒状活性炭充填層を介して外気に通じ
ガソリン蒸気を粒状活性炭に吸着する。自動車が高速走
行に入った時、この粒状活性炭層を通じてエンジンに空
気を送り込むことにより、吸着していたガソリン蒸気が
脱離されエンジン室でキャブレターからのガソリン蒸気
とともに燃焼する。この吸着脱着では、圧力作動弁を用
いて、キャブレターおよびマニホールドの圧力によっ
て、粒状活性炭充填層での吸着と脱離の切り替えをおこ
なっている。また給油時には、放出口がなければ圧力が
かかることになるため、エンジン停止時と同様、粒状活
性炭充填層を介して外気に通じガソリン蒸気を粒状活性
炭に吸着する。また、このようなガソリン蒸気の放散
は、夜間と昼間の温度変化によっても引き起こされ、こ
のときもガソリン蒸気は粒状活性炭層に吸着保持され
る。
[0003] Conventionally, as a method of preventing the emission of gasoline vapor from a gasoline tank or a carburetor to the atmosphere, a method of masking the outlet with a granular activated carbon packed bed, a so-called canister, has been taken. When the vehicle is parked, that is, when the vehicle stops running, heat from the engine is transferred to the carburetor, float tank, and gasoline tank, and vaporized gasoline tends to be released to the atmosphere. If there is no discharge port, pressure will be applied, so that the gasoline vapor is adsorbed to the granular activated carbon through the packed bed of the granular activated carbon to the outside air. When the vehicle enters high-speed running, air is sent to the engine through the granular activated carbon layer, and the adsorbed gasoline vapor is desorbed and burned in the engine compartment together with the gasoline vapor from the carburetor. In this adsorption / desorption, a pressure-operated valve is used to switch between adsorption and desorption in the granular activated carbon packed bed by the pressure of the carburetor and the manifold. Further, at the time of refueling, pressure will be applied if there is no discharge port, so that gasoline vapor is adsorbed to the granular activated carbon through the packed bed of the activated carbon particles to the outside air, as in the case of stopping the engine. In addition, such emission of gasoline vapor is also caused by temperature changes between nighttime and daytime, and at this time also, gasoline vapor is adsorbed and retained in the granular activated carbon layer.

【0004】[0004]

【発明が解決しようとする課題】地球環境を保護してい
く上で、光化学スモッグの発生原因、地球の温暖化(温
室効果ガス)等の原因となる自動車用ガソリン蒸気の駐
車時および給油時の放散を完全になくすことが求められ
ている。現行、排気量1500ccから2000ccクラスの自動車
では、 300から500 グラムの粒状活性炭を1000cc程度の
キャニスターに充填し用いている。
[Problems to be Solved by the Invention] In protecting the global environment, the cause of photochemical smog, global warming (greenhouse gas), etc. It is required to eliminate radiation completely. Currently, automobiles with a displacement of 1500cc to 2000cc use 300 to 500 grams of granular activated carbon in a canister of about 1000cc.

【0005】一般に、キャニスター用に用いる活性炭の
性能は、ブタン有効吸着量で評価され、我が国の乗用車
には、ブタン有効吸着量が7g/100cc 程度のものが開
発され使用されている。しかしながら、この現行の粒状
活性炭層からなるキャニスターでは、ガソリン蒸気の放
散を効果的に吸着するには十分でない。そこで、放散量
の削減を成し遂げるために、現行の粒状活性炭層の増量
が考えられる。
Generally, the performance of activated carbon used for canisters is evaluated by the butane effective adsorption amount, and for passenger cars in Japan, those having an effective butane adsorption amount of about 7 g / 100 cc have been developed and used. However, this current canister consisting of granular activated carbon bed is not sufficient to effectively absorb the emission of gasoline vapor. Therefore, it is conceivable to increase the amount of the existing granular activated carbon layer in order to achieve the reduction of the emission amount.

【0006】すなわち、キャニスターの大型化である。
駐車時および給油時の放散量に見合う粒状活性炭量は、
現状の4から5倍、キャニスターの容積で4000ccから50
00cc程度となる。このように大型のキャニスターは、空
気による脱離時の圧力損失が増大し、圧力作動弁を用い
てのキャブレターおよびマニホールドの圧力による粒状
活性炭充填層での吸着と脱離の切り替えに不利である。
さらに、エンジン室を大型のキャニスターが占めること
で、自動車の有効容積を低減させ、車体重量を増加さ
せ、地球環境問題で強く求められている燃料比率の向上
を困難にする。このように、キャニスターの大型化で
は、圧力損失の増大、車体重量の増加を引き起こす問題
があった。
That is, the canister is upsized.
The amount of granular activated carbon commensurate with the amount of emissions during parking and refueling is
4 to 5 times the current level, with a canister volume of 4000cc to 50
It will be around 00cc. As described above, the large-sized canister has an increased pressure loss at the time of desorption by air, and is disadvantageous in switching between adsorption and desorption in the granular activated carbon packed bed due to the pressure of the carburetor and the manifold using the pressure actuated valve.
Further, the large canister occupies the engine compartment, which reduces the effective volume of the vehicle, increases the weight of the vehicle body, and makes it difficult to improve the fuel ratio, which is strongly required for global environmental problems. As described above, increasing the size of the canister causes problems such as an increase in pressure loss and an increase in vehicle body weight.

【0007】また、近年、繊維状活性炭が単位重量あた
りのガソリン蒸気の吸着容量が大きいことから、粒状活
性炭に代わって注目されている。しかしながら、繊維状
活性炭は繊維集合体としては強度が弱く、作業性が悪
く、取り扱い難く、飛散し易く、形状維持性が悪く、充
填して使用する場合、空隙率が高く、充填密度が低く、
このため単位容積当たりのガソリン蒸気の吸着容量が小
さいという問題点がある。充填密度を高めて使用する場
合は、粒状活性炭に比較して、吸着質を含む流体及び脱
着用流体を流通した場合の圧力損失が高くなるという問
題点がある。
In recent years, fibrous activated carbon has attracted attention in place of granular activated carbon because of its large adsorption capacity of gasoline vapor per unit weight. However, the fibrous activated carbon has low strength as a fiber aggregate, poor workability, difficult to handle, easy to scatter, and poor in shape retention, and when used by filling, has a high porosity and a low packing density,
Therefore, there is a problem that the adsorption capacity of gasoline vapor per unit volume is small. When the packing density is increased and used, there is a problem that the pressure loss when the fluid containing the adsorbate and the desorption fluid is circulated becomes higher than that of the granular activated carbon.

【0008】本発明は、従来の粒状活性炭および繊維状
活性炭に代わるガソリン蒸気の吸着容量の大きい新たな
活性炭およびその製造法、さらには該活性炭を用いた炭
化水素類の吸着装置を提供するのを目的とするものであ
る。
[0008] The present invention provides a new activated carbon having a large adsorption capacity for gasoline vapor, which replaces the conventional granular activated carbon and fibrous activated carbon, a method for producing the same, and a hydrocarbon adsorption device using the activated carbon. It is intended.

【0009】[0009]

【課題を解決するための手段】本発明は前記問題点を解
決するために鋭意研究した結果、下記の発明に至った。
すなわち本発明は、多数の繊維状活性炭がスペーサーを
介し、バインダーで部分的に相互に固定され棒状体をな
し、該繊維状活性炭間に空隙を有する棒状活性炭であ
り、また本発明は、この棒状活性炭をガスの流れる方向
に並行させて充填した炭化水素類の吸着装置であり、ま
た本発明は、棒状活性炭の製造方法とし、ストランド状
炭素質繊維に微粉体状のスペーサーを導入した後、不融
化処理を施し次いでバインダーを含有する溶剤を含浸さ
せ、脱溶剤の後、炭化処理に引き続き賦活化処理を施す
ものである。
The present invention has led to the following inventions as a result of intensive studies for solving the above problems.
That is, the present invention is a rod-shaped activated carbon in which a large number of fibrous activated carbons are partially fixed to each other with a binder via binders to form a rod-shaped body, and voids are present between the fibrous activated carbons. It is an adsorption device for hydrocarbons in which activated carbon is packed in parallel in the gas flow direction, and the present invention is a method for producing rod-shaped activated carbon, in which a fine powdery spacer is introduced into a strand-like carbonaceous fiber, This is a treatment in which a fusion treatment is performed, a solvent containing a binder is impregnated, the solvent is removed, and then a carbonization treatment is followed by an activation treatment.

【0010】[0010]

【作用】図1は本発明の棒状活性炭の説明図であり、図
2(a)はその部分拡大図、(b)はその断面図であ
る。本発明の棒状活性炭は、図1、図2に示すように多
数の繊維状活性炭1がスペーサー2を介してバインダー
3で部分的に固定され全体として棒状体をなし、かつ繊
維状活性炭間に空隙5を有している。
1 is an explanatory view of the rod-shaped activated carbon of the present invention, FIG. 2 (a) is a partially enlarged view thereof, and FIG. 2 (b) is a sectional view thereof. As shown in FIGS. 1 and 2, the rod-shaped activated carbon of the present invention has a large number of fibrous activated carbons 1 partially fixed by a binder 3 via a spacer 2 to form a rod-shaped body as a whole, and has voids between the fibrous activated carbons. Have five.

【0011】従って、本発明の棒状活性炭は、繊維状活
性炭を棒(ストランド)の軸方向に高度に配向してお
り、繊維密度の高い構造とすることができる。その結
果、二元構造の粒状活性炭に比較して高吸着量が達成さ
れた。また、繊維状活性炭間にスペーサー2を均一分散
させることができるので、合い接近する繊維状活性炭間
に形成される空隙5が繊維中心部まで均一に分散した構
造となり、吸着質および脱着用ガスの拡散が容易とな
り、粒状活性炭と比較して高い吸着速度および空気によ
る脱着速度を得ることができる。
Therefore, the rod-shaped activated carbon of the present invention has a structure in which the fibrous activated carbon is highly oriented in the axial direction of the rod (strand) and the fiber density is high. As a result, a higher adsorption amount was achieved compared with the granular activated carbon having a binary structure. Further, since the spacers 2 can be uniformly dispersed between the fibrous activated carbons, the voids 5 formed between the fibrous activated carbons that come close to each other have a structure in which they are evenly dispersed up to the center of the fiber. Diffusion becomes easy, and a higher adsorption rate and desorption rate by air can be obtained as compared with granular activated carbon.

【0012】また、本発明の棒状活性炭はスペーサー2
を介して繊維状活性炭1をバインダー3により部分的に
固定した構造としたので、単に活性炭繊維を束ねたもの
と比較して、強度の高い棒状構造とすることができ、実
用に供することができる活性炭強度が達成された。ま
た、スペーサー2を熱伝導性のよい物質で構成すること
により、合い接近する繊維状活性炭1間の熱伝導度が向
上するので、単なる活性体繊維の束あるいは粒状活性炭
と比較して棒状活性炭の吸着および脱着時の熱伝導性を
向上させることができる。
Further, the rod-shaped activated carbon of the present invention has a spacer 2
Since the fibrous activated carbon 1 is partially fixed by the binder 3 through the, it is possible to obtain a rod-shaped structure having higher strength as compared with a bundle of activated carbon fibers, which can be put to practical use. Activated carbon strength was achieved. In addition, since the spacer 2 is made of a material having a high thermal conductivity, the thermal conductivity between the fibrous activated carbons 1 that are close to each other is improved, so that the rod-shaped activated carbon can be used in comparison with a simple activated fiber bundle or granular activated carbon. The thermal conductivity at the time of adsorption and desorption can be improved.

【0013】また、本発明の棒状吸着材を吸着質の流れ
方向に並行する方向に密充填するように設けることによ
り、粒状活性炭充填層と比較して充填容積あたりの炭化
水素類の吸着容量を大とすることができるとともに、吸
着質および脱着用流体の流路が屈曲しない構造となり、
流体流入流出時の圧力損失を低減することができる。ま
た、棒状吸着材を吸着質の流れ方向に密充填するように
設けることにより、合い接近する棒状脱着材充填体間の
対流および熱伝導が向上し、粒状活性炭充填層を用いる
炭化水素類の吸着装置と比較して、炭化水素を吸着し、
空気で脱着する炭化水素類の吸着装置(キャニスター)
の有効吸着量を大とすることができる。
Further, by providing the rod-shaped adsorbent of the present invention so as to be densely packed in the direction parallel to the flow direction of the adsorbate, the adsorption capacity of hydrocarbons per packed volume is higher than that of the granular activated carbon packed bed. In addition to being able to be large, it has a structure in which the flow paths of the adsorbate and desorption fluid do not bend,
The pressure loss at the time of fluid inflow and outflow can be reduced. Further, by providing the rod-shaped adsorbent so as to be densely packed in the flow direction of the adsorbate, the convection and heat conduction between the closely adjacent rod-shaped desorbent fillers are improved, and the adsorption of hydrocarbons using the granular activated carbon packed bed is improved. Compared to the device, it absorbs hydrocarbons,
Adsorber for hydrocarbons desorbed by air (canister)
The effective adsorption amount of can be increased.

【0014】このように、本発明は、繊維状活性炭、バ
インダーおよびスペーサーで構成され、バインダーでス
ペーサー、繊維状活性炭を部分的に固定し、繊維状活性
炭間に空隙を有し、繊維状活性炭が軸方向に高度に配向
して棒状に成型されているので、粒状活性炭および活性
炭素繊維等既存の活性炭と比較して、高吸着容量、高い
吸着速度および空気による脱着速度、実用に供する活性
炭強度および熱伝導性の点で優れている。
As described above, the present invention comprises the fibrous activated carbon, the binder and the spacer, the spacer and the fibrous activated carbon are partially fixed by the binder, and the fibrous activated carbon has voids. Compared with existing activated carbon such as granular activated carbon and activated carbon fiber, it has a high adsorption capacity, high adsorption rate and desorption rate by air, activated carbon strength for practical use, and is highly oriented in the axial direction. Excellent in thermal conductivity.

【0015】さらに、本発明によれば、該棒状吸着材を
吸着質の流れ方向に並行する方向に密充填するよう設け
てなる炭化水素類の吸着装置(キャニスター)は、充填
容積あたりの炭化水素類の吸着容量が大で、かつ流体流
入流出時の圧力損失が低く、かつ炭化水素を吸着し、空
気で脱着する際の炭化水素類の有効吸着量を大とするこ
と等の点で、粒状活性炭及び活性炭素繊維等既存の活性
炭充填層よりなる炭化水素類の吸着装置(キャニスタ
ー)より優れている。
Further, according to the present invention, a hydrocarbon adsorbing device (canister) provided so as to densely fill the rod-shaped adsorbent in a direction parallel to the flow direction of the adsorbate is a hydrocarbon per filled volume. In terms of large adsorption capacity for hydrocarbons, low pressure loss during fluid inflow and outflow, and large effective adsorption amount of hydrocarbons when adsorbing hydrocarbons and desorbing with air, It is superior to the existing hydrocarbon adsorbing device (canister) consisting of a packed bed of activated carbon such as activated carbon and activated carbon fiber.

【0016】次に、棒状活性炭の製造法について詳細に
記述する。棒状活性炭は、ストランド状炭素質繊維に微
粉スペーサーを導入し、不融化後、バインダーを含有す
る溶剤を含浸させ脱溶剤し、その後炭化、賦活化するこ
とにより得られる。ストランド状炭素質繊維に微粉体状
のスペーサーを導入する方法は、特公平1−33573 号公
報や特公平4−1091号公報等に記載されているように、
例えば、コールタールを原料とし、キノリン不溶分40%
を含む光学的異方性ピッチを溶融紡糸し、フィラメント
径13μm、フィラメント数2000のピッチ繊維ストランド
を得、次に、このストランドを平均粒子径 0.6μmの天
然リン片状黒鉛粉末10%を含むエタノール分散液に浸漬
することにより得られる。
Next, the method for producing the rod-shaped activated carbon will be described in detail. The rod-shaped activated carbon is obtained by introducing a fine powder spacer into a strand-like carbonaceous fiber, infusibilizing it, impregnating it with a solvent containing a binder to remove the solvent, and then carbonizing and activating it. As described in Japanese Patent Publication No. 1-333573 and Japanese Patent Publication No. 4-1091, a method of introducing a fine powder spacer into a strand-like carbonaceous fiber is described.
For example, coal tar is used as the raw material and the quinoline insoluble content is 40%.
An optically anisotropic pitch containing is melt-spun to obtain a pitch fiber strand with a filament diameter of 13 μm and a number of filaments of 2000, and then this strand is ethanol containing 10% of natural flaky graphite powder with an average particle diameter of 0.6 μm. It is obtained by immersing in the dispersion liquid.

【0017】ストランド状炭素質繊維は、ピッチ繊維、
PAN繊維、フェノール樹脂繊維を用いることができ
る。スペーサーは、サブミクロンの粒子であればよく、
特に限定されないが、望ましくは窒化ボロン、酸化チタ
ン、酸化チタンウイスカー、酸化硅素、酸化アルミニウ
ム等の熱伝導性のよいセラミックがよい。
Stranded carbonaceous fibers are pitch fibers,
PAN fiber and phenol resin fiber can be used. The spacer need only be submicron particles,
Although not particularly limited, ceramics having good thermal conductivity such as boron nitride, titanium oxide, titanium oxide whiskers, silicon oxide, aluminum oxide are preferable.

【0018】スペーサーの分散媒としてはメタノール、
エタノール、アセトン等の有機溶媒、水等が用いられ
る。繊維間の間隔(隙間)は、繊維径Dの10分の1以下
が好ましい。バインダーとしては、フェノール樹脂、フ
ラン樹脂、エポキシ樹脂、ポリビニルアルコール、コー
ルタールピッチ、コールタール、石油ピッチ等が挙げら
れる。
The spacer dispersion medium is methanol,
Organic solvents such as ethanol and acetone, water and the like are used. The distance (gap) between the fibers is preferably 1/10 or less of the fiber diameter D. Examples of the binder include phenol resin, furan resin, epoxy resin, polyvinyl alcohol, coal tar pitch, coal tar and petroleum pitch.

【0019】バインダーの溶剤としては、メタノール、
アセトン等の有機溶剤、ナフタレン等の芳香族炭化水素
が例示される。次に、実施例に基づいて本発明をより詳
細に説明する。
The binder solvent is methanol,
Examples thereof include organic solvents such as acetone and aromatic hydrocarbons such as naphthalene. Next, the present invention will be described in more detail based on examples.

【0020】[0020]

【実施例】【Example】

実施例1 コールタールを原料として熱処理し、ベンゼン不溶分を
56重量%含む光学的等方性ピッチを溶融紡糸しフィラメ
ント径13μm、フィラメント数4000のピッチ繊維ストラ
ンドを得た。得られたピッチ繊維ストランドを平均粒径
0.8μmの窒化ボロンを5重量%を含むエタノール分散
液に含浸した。この処理ストランドを酸素雰囲気中で、
5℃/分の昇温速度で、 300℃まで不融化した。得られ
た不融化繊維は窒化ボロンが繊維間に取り込まれてい
た。得られた不融化繊維ストランドをコールタールピッ
チ20重量%を含むナフタレン溶液(溶液温度は、 200
℃)に浸し含浸処理をした。この含浸繊維ストランドを
窒素ガス雰囲気中で、 600℃まで炭化処理した。得られ
た炭化ストランドを繊維長50mmに切断、加熱炉中で、水
蒸気を流通させながら、 950℃で賦活化した。得られた
棒状活性炭の収率はピッチ繊維重量に対して30重量%
で、繊維長は38mmで、BET法による比表面積は1750m
2 /gであり、水銀ポロシメーターで測定される棒状活
性炭内空隙率は0.15であった。
Example 1 Heat treatment was performed using coal tar as a raw material to remove benzene insoluble matter.
An optically isotropic pitch containing 56% by weight was melt-spun to obtain a pitch fiber strand having a filament diameter of 13 μm and a filament number of 4000. Average pitch of the obtained pitch fiber strands
0.8 μm boron nitride was impregnated into an ethanol dispersion containing 5% by weight. This treated strand in an oxygen atmosphere,
It was infusibilized up to 300 ° C. at a heating rate of 5 ° C./min. The obtained infusible fiber contained boron nitride between the fibers. The obtained infusible fiber strand was added to a naphthalene solution containing 20% by weight of coal tar pitch (solution temperature: 200%
It was dipped in (.degree. C.) for impregnation. This impregnated fiber strand was carbonized to 600 ° C in a nitrogen gas atmosphere. The obtained carbonized strand was cut into a fiber length of 50 mm, and activated at 950 ° C. in a heating furnace while flowing steam. The yield of the obtained rod-shaped activated carbon is 30% by weight based on the weight of the pitch fiber.
The fiber length is 38mm and the specific surface area by BET method is 1750m.
2 / g, and the porosity inside the rod-shaped activated carbon measured by a mercury porosimeter was 0.15.

【0021】かかる棒状活性炭を図3に示すように吸着
カラムに吸着質の流れ方向に並行する方向に密充填し、
25℃の温度でブタンを飽和するまで吸着させ、吸着剤層
の 650倍の窒素ガスでブタン脱着し、ブタン有効吸着量
を測定した。測定されたブタン有効吸着量は14.2g/10
0cc であった。 比較例1 実施例1に記載の方法で製造した光学的等方性ピッチを
粉砕し、ふるい分け、平均粒径 1.2mmのピッチを得た。
流動層にピッチを挿入し、空気を18cm/秒の空塔速度で
流通させて、 300℃まで昇温して不融化処理した。得ら
れた不融化粒子を粉砕、分級して、平均粒度15μmの不
融化ピッチを得た。得られた不融化ピッチを転動造粒機
で、軟化点 110℃の痕跡量のキノリン不溶分を含む石炭
系ピッチ10重量%と混合して造粒し、平均粒径4mmの球
状不融化粒子を得た。得られた球状不融化粒子をキルン
炉を用いて、水蒸気を流通させながら、 950℃で賦活化
した。得られた球状活性炭の収率は、ピッチ重量に対し
て18重量%であり、平均の粒子径は2.0mm 、BET法に
よる比表面積は1310m2 /gであった。
As shown in FIG. 3, the rod-shaped activated carbon is densely packed in an adsorption column in a direction parallel to the flow direction of the adsorbate,
Butane was adsorbed at a temperature of 25 ° C. until it was saturated, butane was desorbed with 650 times the nitrogen gas of the adsorbent layer, and the butane effective adsorption amount was measured. Measured butane effective adsorption amount is 14.2g / 10
It was 0cc. Comparative Example 1 The optically isotropic pitch produced by the method described in Example 1 was ground and sieved to obtain a pitch having an average particle size of 1.2 mm.
A pitch was inserted into the fluidized bed, air was circulated at a superficial velocity of 18 cm / sec, and the temperature was raised to 300 ° C. for infusibilization. The obtained infusible particles were pulverized and classified to obtain an infusibilized pitch having an average particle size of 15 μm. The obtained infusible pitch was mixed with 10% by weight of coal-based pitch containing a trace amount of quinoline insoluble matter having a softening point of 110 ° C in a rolling granulator and granulated to obtain spherical infusible particles having an average particle diameter of 4 mm. Got The obtained spherical infusible particles were activated at 950 ° C. in a kiln furnace while circulating steam. The yield of the obtained spherical activated carbon was 18% by weight based on the weight of the pitch, the average particle diameter was 2.0 mm, and the specific surface area by the BET method was 1310 m 2 / g.

【0022】かかる球状活性炭を吸着カラムに充填し、
25℃の温度で、ブタンを飽和するまで吸着させ、吸着剤
層の 650倍の窒素ガスでブタン脱着し、ブタン有効吸着
量を測定した。測定されたブタン有効吸着量は 4.2g/
100cc であった。これら、実施例、比較例から本発明の
有効性が理解される。なお、前記実施例では、熱溶融性
ピッチとして全面光学的等方性ピッチの場合について説
明したが、本発明はこれに限るものでなく光学的異方性
のピッチでもよく、基本的には紡糸条件で固体および気
体などを含まない、均質な流動特性を有する紡糸用ピッ
チであればよい。
The spherical activated carbon was packed in an adsorption column,
Butane was adsorbed at a temperature of 25 ° C. until saturation, butane was desorbed with 650 times the nitrogen gas of the adsorbent layer, and the butane effective adsorption amount was measured. The measured butane effective adsorption amount is 4.2 g /
It was 100cc. The effectiveness of the present invention can be understood from these Examples and Comparative Examples. It should be noted that, in the above-mentioned Examples, the case where the entire surface is optically isotropic pitch was described as the heat-melting pitch, but the present invention is not limited to this, and an optically anisotropic pitch may be used, and basically spinning is performed. It suffices as long as it is a spinning pitch that does not contain solids or gas under the conditions and has a homogeneous flow characteristic.

【0023】[0023]

【発明の効果】本発明の棒状活性炭は、繊維状活性炭、
バインダー及びスペーサーで構成され、バインダーでス
ペーサー、繊維状活性炭を部分的に固定し、繊維状活性
炭間に空隙を有し、繊維状活性炭が軸方向に高度に配向
して棒状に成型されていることから、粒状活性炭に代わ
るガソリン蒸気の吸着容量の大きい新たな活性炭を提供
できる。
The rod-shaped activated carbon of the present invention is a fibrous activated carbon,
It is composed of a binder and a spacer, the spacer and the fibrous activated carbon are partially fixed by the binder, there is a gap between the fibrous activated carbon, and the fibrous activated carbon is highly oriented in the axial direction and formed into a rod shape. Therefore, it is possible to provide a new activated carbon that has a large adsorption capacity for gasoline vapor instead of the granular activated carbon.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる棒状活性炭の説明図である。FIG. 1 is an explanatory view of a rod-shaped activated carbon according to the present invention.

【図2】本発明に係わる棒状活性炭の部分詳細図であ
る。
FIG. 2 is a partial detailed view of a rod-shaped activated carbon according to the present invention.

【図3】本発明に係わる棒状活性炭を充填したキャニス
ターの説明図である。
FIG. 3 is an explanatory view of a canister filled with rod-shaped activated carbon according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 花谷 誠二 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 大杉 幸広 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Seiji Hanatani, 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Technical Research Division, Kawasaki Steel Co., Ltd. (72) Inventor Yukihiro Osugi 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Prefecture Kawasaki Steel Corporation Technical Research Division

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 多数の繊維状活性炭がスペーサーを介
し、バインダーで部分的に相互に固定され棒状体をな
し、該繊維状活性炭間に空隙を有することを特徴とする
棒状活性炭。
1. A rod-shaped activated carbon, characterized in that a large number of fibrous activated carbons are partially fixed to each other with a binder via spacers to form rod-shaped bodies, and have voids between the fibrous activated carbons.
【請求項2】 請求項1記載の棒状活性炭をガスの流れ
る方向に並行させて充填したことを特徴とする炭化水素
類の吸着装置。
2. An adsorbing device for hydrocarbons, wherein the rod-shaped activated carbon according to claim 1 is packed in parallel with a gas flowing direction.
【請求項3】 ストランド状炭素質繊維に微粉体状のス
ペーサーを導入した後、不融化処理を施し、次いでバイ
ンダーを含有する溶剤を含浸させ、脱溶剤の後、炭化処
理に引き続き賦活化処理を施すことを特徴とする棒状活
性炭の製造方法。
3. A strand-like carbonaceous fiber is introduced with a spacer in the form of fine powder, then subjected to infusibilization treatment, then impregnated with a solvent containing a binder, and after desolvation, carbonization treatment is followed by activation treatment. A method for producing rod-shaped activated carbon, which comprises applying the activated carbon.
JP4244463A 1992-09-14 1992-09-14 Rod-like activated carbon and its production Pending JPH0691166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4244463A JPH0691166A (en) 1992-09-14 1992-09-14 Rod-like activated carbon and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4244463A JPH0691166A (en) 1992-09-14 1992-09-14 Rod-like activated carbon and its production

Publications (1)

Publication Number Publication Date
JPH0691166A true JPH0691166A (en) 1994-04-05

Family

ID=17119024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4244463A Pending JPH0691166A (en) 1992-09-14 1992-09-14 Rod-like activated carbon and its production

Country Status (1)

Country Link
JP (1) JPH0691166A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1076250A (en) * 1996-09-06 1998-03-24 Unitika Ltd Adsorbent and water treatment method using the same
JP2006280675A (en) * 2005-03-31 2006-10-19 Keio Gijuku Usage of activated carbon fiber sheet for removing volatile organic compound in air
JP2016155084A (en) * 2015-02-25 2016-09-01 愛三工業株式会社 Adsorbent and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1076250A (en) * 1996-09-06 1998-03-24 Unitika Ltd Adsorbent and water treatment method using the same
JP2006280675A (en) * 2005-03-31 2006-10-19 Keio Gijuku Usage of activated carbon fiber sheet for removing volatile organic compound in air
JP2016155084A (en) * 2015-02-25 2016-09-01 愛三工業株式会社 Adsorbent and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US5395428A (en) Filter material for motor vehicles
US5827355A (en) Carbon fiber composite molecular sieve electrically regenerable air filter media
CA2466007C (en) Method for reducing emissions from evaporative emissions control systems
US6030698A (en) Activated carbon fiber composite material and method of making
JP4336308B2 (en) Adsorption desulfurization agent for desulfurizing petroleum fraction, desulfurization method using the same, and method for producing light oil including the desulfurization method
US8015965B2 (en) Fuel vapor storage canister, fuel vapor adsorbent for canister, and method of producing fuel vapor adsorbent
US5270280A (en) Packing material for liquid chromatography and method of manufacturing thereof
EP2192969A1 (en) Article for extracting a component from a fluid stream, methods and systems including same
US20090178566A1 (en) Honeycomb adsorbents for vapor recovery systems
JP4393747B2 (en) Fuel vapor adsorbent
JPH0691166A (en) Rod-like activated carbon and its production
EP0463143B1 (en) Filter material for motor vehicles
DE10011223A1 (en) Adsorber consists of polymer resin adsorber particles, with micro-structure composed of different sized pores
US20070277788A1 (en) Transpiration Fuel Gas Adsorbent and Process for Producing the Same
JPS6155611B2 (en)
CN109876772B (en) Nano carbon fiber and active carbon composite material and preparation method thereof
CA2347009C (en) Carbon fiber composite molecular sieve electrically regenerable air filter media
JP2515919B2 (en) Method for producing spherical fiber lump activated carbon
CN114425215A (en) Low-temperature efficient volatile organic compound recovery method by coalescence adsorption grading
Wilson et al. Carbon fiber composite molecular sieve electrically regenerable air filter media
JPH10202096A (en) Trace metal adsorbent and method for removing trace metal in hydrocarbon oil with same
JPH10128003A (en) Removing method of arsenic and lead in liquid hydrocarbon
NZ511642A (en) Carbon fiber composite molecular sieve electrically regenerable air filter media
JPH038440A (en) Adsorbent for oil mist