JP4890606B2 - Semiconductor wafer cleaning method and cleaning apparatus - Google Patents
Semiconductor wafer cleaning method and cleaning apparatus Download PDFInfo
- Publication number
- JP4890606B2 JP4890606B2 JP2009285574A JP2009285574A JP4890606B2 JP 4890606 B2 JP4890606 B2 JP 4890606B2 JP 2009285574 A JP2009285574 A JP 2009285574A JP 2009285574 A JP2009285574 A JP 2009285574A JP 4890606 B2 JP4890606 B2 JP 4890606B2
- Authority
- JP
- Japan
- Prior art keywords
- cleaning
- light
- semiconductor wafer
- wafer
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Cleaning Or Drying Semiconductors (AREA)
Description
本発明は、半導体ウエハなどの被洗浄物の洗浄方法及び洗浄装置に係り、詳しくは、洗浄中に発生する半導体ウエハなどの鏡面加工された表面欠陥の成長を抑制することができる半導体ウエハの洗浄方法及び洗浄装置に関わる。 The present invention relates to a cleaning method and a cleaning apparatus for an object to be cleaned such as a semiconductor wafer, and more particularly, cleaning of a semiconductor wafer capable of suppressing the growth of mirror-finished surface defects such as a semiconductor wafer generated during cleaning. The present invention relates to a method and a cleaning apparatus.
従来、鏡面仕上げされた半導体ウエハ(シリコンウエハ)などのウエハ洗浄には、RCA洗浄が一般的に用いられている。このRCA洗浄とは、基本的には、
(1)ウエハ表面に付着した粒子をアンモニア水、過酸化水素水、純水からなる洗浄液で洗浄する洗浄作業(「SC1洗浄」という。)と、
(2)ウエハ表面に付着した重金属(Fe,Ni,Cr,Cuなど)を希塩酸、過酸化水素水、純水からなる洗浄液で洗浄する洗浄作業(「SC2洗浄」という。)と、の組み合わせより構成されており、更に必要に応じて、
(3)ウエハ表面に付着した有機物を硫酸、過酸化水素水からなる洗浄液で洗浄する洗浄作業(「SPM洗浄」という。)と、
(4)ウエハ表面であるシリコン表面の不要な自然酸化膜を希フッ酸洗浄液で洗浄除去する洗浄作業(「DHF洗浄」という。)と、
を加える場合がある。
Conventionally, RCA cleaning is generally used for cleaning a wafer such as a mirror-finished semiconductor wafer (silicon wafer). This RCA cleaning is basically
(1) A cleaning operation (referred to as “SC1 cleaning”) for cleaning particles adhering to the wafer surface with a cleaning liquid composed of ammonia water, hydrogen peroxide water, and pure water;
(2) From a combination of a cleaning operation (referred to as “SC2 cleaning”) for cleaning heavy metals (Fe, Ni, Cr, Cu, etc.) adhering to the wafer surface with a cleaning liquid composed of dilute hydrochloric acid, hydrogen peroxide water, and pure water. And if necessary,
(3) A cleaning operation (referred to as “SPM cleaning”) for cleaning organic substances adhering to the wafer surface with a cleaning liquid composed of sulfuric acid and hydrogen peroxide.
(4) A cleaning operation (referred to as “DHF cleaning”) for cleaning and removing an unnecessary natural oxide film on the silicon surface, which is the wafer surface, with a diluted hydrofluoric acid cleaning solution;
May be added.
また、このRCA洗浄に用いる洗浄装置としては、上記洗浄液の入った複数の洗浄槽へのウエハの搬入、浸漬、搬出を、人手を介して行う手動式と、洗浄装置内に設けられたロボット(アーム)によって行う自動搬送洗浄装置と、がある。近年は半導体製造関連の装置の自動化が進み、洗浄装置についてもそのほとんどが自動搬送洗浄装置となっているが、このような洗浄装置においても作業者による洗浄状態の目視確認のため、洗浄装置内に照明器具を取付けたり、覗き窓を設けたりする等の措置を施していた。 Moreover, as a cleaning apparatus used for this RCA cleaning, a manual type in which wafers are carried into, immersed in, and taken out from a plurality of cleaning tanks containing the above-described cleaning liquid, and a robot ( And an automatic conveyance and cleaning device that is operated by an arm). In recent years, automation of semiconductor manufacturing related equipment has progressed, and most of the cleaning devices are also automatic transport cleaning devices. In such cleaning devices as well, the inside of the cleaning device is used for visual confirmation of the cleaning state by the operator. Measures were taken, such as attaching lighting fixtures and providing a viewing window.
このような自動搬送洗浄装置では、通常、洗浄槽の上方に設けたロボットアームにより、被洗浄物であるウエハの洗浄槽への搬入、浸漬、搬出を行っている。さらに、この自動搬送洗浄装置では、このウエハ搬出入の際のチャックミス(被洗浄物の不搬出)を検知するために、例えば図6に示すように、洗浄槽100に対して光センサ(例えば赤色発光ダイオード)101の光を照射し、被洗浄物(例えばシリコンウエハ)103による光の遮断の有無を受光素子102で検知し、チャックミスを確認するのが一般的に行われていた。また、同様な構成の液面センサを付設して、液面の高さの確認などを行う場合も多い。 In such an automatic transfer cleaning apparatus, usually, a robot arm provided above the cleaning tank is used to carry in, immerse, and carry out a wafer as a cleaning object into the cleaning tank. Further, in this automatic transfer cleaning apparatus, in order to detect a chuck error (unloading of an object to be cleaned) at the time of carrying in / out of the wafer, for example, as shown in FIG. It has been generally performed to detect a chucking error by irradiating light of a red light emitting diode (101) 101, detecting whether or not light is blocked by an object to be cleaned (for example, a silicon wafer) 103 by the light receiving element 102. In many cases, a liquid level sensor having the same configuration is attached to check the level of the liquid level.
ところが、上記した従来の洗浄装置を用いて、鏡面処理されたシリコンウエハの洗浄をSC1洗浄のようにエッチングを伴う洗浄液で行った場合、洗浄中のウエハに照明等の光が照射され、これが原因の一つとなりシリコンウエハ鏡面には以下に述べる欠陥が発生するとともに成長し、シリコンウエハ品質に重大な悪影響を及ぼすことが見出された。 However, when the above-described conventional cleaning apparatus is used to clean a mirror-finished silicon wafer with a cleaning liquid that involves etching like SC1 cleaning, the wafer being cleaned is irradiated with light such as illumination. It has been found that the following defects are generated and grow on the mirror surface of the silicon wafer and have a serious adverse effect on the quality of the silicon wafer.
即ち、前工程である研磨工程などで付着した銅などの不純物金属が、シリコン(Si)との間で局所電池を形成し、銅原子が付着したシリコンウエハ200表面がSC1洗浄で溶解され肉眼では見えない微細な溝などの欠陥201が形成され成長するという現象である(例えば図7(A)〜(C)を参照)。 That is, an impurity metal such as copper deposited in the polishing process or the like, which is the previous process, forms a local battery with silicon (Si), and the surface of the silicon wafer 200 to which the copper atoms are deposited is dissolved by SC1 cleaning, and is not visible to the naked eye. This is a phenomenon in which defects 201 such as invisible fine grooves are formed and grow (see, for example, FIGS. 7A to 7C).
このような溝が形成されたシリコンウエハを特にSC1洗浄する場合、洗浄室を照明する蛍光灯や洗浄槽内に設置した加熱用ヒータなどから放出される光の何らかの作用により前述の溝のエッチングが促進される。このため、溝などの欠陥が成長して、例えば図8に示すように、数十nm(数十〜数百原子程度の直径)程度の大きさを有する、無視できないピットの集合体(以下、これを「大型ピット」とよぶ)が形成されることがある。 When a silicon wafer having such a groove is cleaned particularly in SC1, the above-mentioned groove is etched by some action of light emitted from a fluorescent lamp illuminating the cleaning chamber or a heater for heating installed in the cleaning tank. Promoted. For this reason, a defect such as a groove grows, and for example, as shown in FIG. 8, an aggregate of non-negligible pits having a size of about several tens of nm (diameter of about several tens to several hundred atoms) (hereinafter, This is referred to as a “large pit”).
上で説明した光によるシリコンウエハ表面の欠陥の成長について、従来の洗浄方法或いは洗浄装置ではその発生を十分防止することができなかった。そこでかかるシリコンウエハ表面の欠陥の発生・成長を抑制することができる洗浄方法或いは洗浄装置の開発が待たれていた。 Regarding the growth of defects on the surface of the silicon wafer due to the light described above, the conventional cleaning method or apparatus could not sufficiently prevent the generation. Therefore, development of a cleaning method or a cleaning apparatus that can suppress the occurrence and growth of defects on the surface of the silicon wafer has been awaited.
一例として、エッチングを伴う洗浄液中であっても、浸漬、洗浄中または当該洗浄後の搬出、搬送中にはシリコンウエハに光が照射されず、光の照射が原因で引き起こされるウエハ表面の欠陥を防止できる洗浄方法及び洗浄装置が提案されている(例えば、特許文献1参照)。 As an example, even in a cleaning solution that involves etching, the silicon wafer is not irradiated with light during immersion, cleaning, or unloading and transporting after the cleaning. A cleaning method and a cleaning apparatus that can be prevented have been proposed (see, for example, Patent Document 1).
この洗浄方法では、少なくとも片面が鏡面仕上げまたはその面にエピタキシャル層が積層され、鏡面の表面粗さ(マイクロラフネス)がP−V値で10nm以下のシリコンウエハを、洗浄液が満たされた複数の洗浄槽に順に浸漬し洗浄を行うウエハ洗浄方法において、少なくともシリコンウエハの浸漬洗浄中及び洗浄槽間の移動中、シリコンウエハに対し光の照射を遮断するというものである。 In this cleaning method, at least one surface is mirror-finished or an epitaxial layer is laminated on the surface, and a mirror surface roughness (micro roughness) of a silicon wafer having a PV value of 10 nm or less is cleaned with a plurality of cleaning solutions filled with a cleaning solution. In the wafer cleaning method of sequentially immersing and cleaning in a bath, the irradiation of light is cut off to the silicon wafer at least during the immersion cleaning of the silicon wafer and during the movement between the cleaning baths.
一方このような光の照射を遮断した下での洗浄方法或いは洗浄装置にあっては、真っ暗な環境下で洗浄作業を行うので、以下のような重大な問題の発生を発見できなかった。
(i)洗浄作業中のシリコンウエハを把持するチャックにチャックミスが生じ、洗浄槽に浸漬させてあるシリコンウエハを完全に引き上げることができないとか、チャックずれを生じ、洗浄作業中のシリコンウエハを把持できないこと。
(ii)洗浄槽内のヒータの破損によりピンホール等が発生し、そこから薬液がしみこんでヒータ線を腐食しヒータ用金属が液中に溶出すること。
On the other hand, in such a cleaning method or apparatus with light irradiation blocked, since the cleaning operation is performed in a completely dark environment, the following serious problems could not be found.
(I) A chuck error occurs in the chuck that holds the silicon wafer that is being cleaned, and the silicon wafer that has been immersed in the cleaning tank cannot be completely pulled up, or the chuck is displaced and the silicon wafer that is being cleaned is gripped. Things impossible.
(Ii) A pinhole or the like is generated due to breakage of the heater in the cleaning tank, and the chemical solution penetrates from it to corrode the heater wire and the heater metal is eluted in the solution.
本発明は上記の問題点に鑑みてなされたもので、ウエハに欠陥が発生してもその成長を抑えることができるとともに、洗浄作業を行う際に洗浄装置の各種異常を目視で検知することができる半導体ウエハの洗浄方法及び洗浄装置を提供することを目的とする。 The present invention has been made in view of the above problems, and can suppress the growth even if a defect occurs in the wafer, and can visually detect various abnormalities of the cleaning apparatus when performing a cleaning operation. An object of the present invention is to provide a cleaning method and a cleaning apparatus for a semiconductor wafer.
本発明者は、上記問題点を解決すべく鋭意研究開発した結果、以下のような知見を得るに至った。即ち、洗浄作業を行う際に用いる照明等の光の波長と、洗浄ウエハに形成される欠陥の成長との関係を、SC1洗浄、SC2洗浄、SPM洗浄、DHF洗浄の各作業工程において調べた。その結果次の知見を得た。
i)照射光の波長依存性は、SC1洗浄においてのみ見られた、またii)特定波長の光において特に顕著に見られた。すなわち、
λG<β≦λR ・・・(1)
(但し、λR;可視光と赤外光の境界波長)
λG;緑色波長)
の可視光(以下、「禁止波長帯域光」とよぶ)が欠陥の成長に特に大きく関わっていた。
As a result of earnest research and development to solve the above problems, the present inventors have obtained the following knowledge. That is, the relationship between the wavelength of light such as illumination used when performing the cleaning operation and the growth of defects formed on the cleaning wafer was investigated in each of the SC1 cleaning, SC2 cleaning, SPM cleaning, and DHF cleaning operation steps. As a result, the following knowledge was obtained.
i) The wavelength dependence of the irradiation light was found only in the SC1 cleaning, and ii) was particularly noticeable in the light of a specific wavelength. That is,
λ G <β ≦ λ R (1)
(Where λ R is the boundary wavelength between visible light and infrared light)
λ G ; green wavelength)
Visible light (hereinafter referred to as “forbidden wavelength band light”) was particularly involved in defect growth.
この知見に基づき、洗浄作業、少なくともSC1洗浄液中に浸漬した作業、或いはそのSC1洗浄液がウエハ表面に付着した状態での作業においては、照明光として、下記の短波長可視光、つまり、
λV≦γ≦λG ・・・(2)
(但し、λV;紫外光と可視光の境界波長)
の可視光(以下、「許容波長帯域光」とよぶ)のみを用いるように波長を制限することが好ましいとの結論を得、本発明を完成したものである。
また、前述の(2)式の範囲の許容波長帯域光であれば、その光強度には特に依存しないことも確認された。
Based on this knowledge, the following short-wavelength visible light is used as the illumination light in the cleaning work, the work immersed in at least the SC1 cleaning liquid, or the work with the SC1 cleaning liquid attached to the wafer surface, that is,
λ V ≦ γ ≦ λ G (2)
(Where λ V is the boundary wavelength between ultraviolet light and visible light)
The present invention has been completed with the conclusion that it is preferable to limit the wavelength to use only visible light (hereinafter referred to as “allowable wavelength band light”).
Further, it was also confirmed that the allowable wavelength band light within the range of the above-described formula (2) does not particularly depend on the light intensity.
すなわち本発明に係る洗浄方法は、
洗浄槽内の洗浄液に浸漬することにより表面の洗浄を行うシリコン半導体ウエハの洗浄方法において、
前記洗浄液が、アンモニア、水酸化テトラメチルアンモニウム、及びコリンのうちの少なくとも1つと、過酸化水素水と、純水とからなり、さらに
洗浄液浸漬中、及び洗浄槽から引き上げた後ウエハの表面に洗浄液が付着している間、波長380〜580nmの短波長可視光のみをウエハに照射することを特徴とする。
さらに本発明に係る半導体ウエハの表面の洗浄装置は、
筐体と、
前記筐体内に設置したシリコン半導体ウエハを浸漬する洗浄槽とからなり、
前記筺体内に照明装置が配置されており、該照明装置により、ウエハが洗浄液に浸漬中、及び洗浄槽から引き上げた後ウエハ表面に洗浄液が付着している間、波長380〜580nmの短波長可視光のみをウエハに照射し、かつ
前記洗浄液が、アンモニア、水酸化テトラメチルアンモニウム、及びコリンのうちの少なくとも何れか1つと、過酸化水素水と、純水とからなる、
ことを特徴とする。
また本発明に係る洗浄装置は、
さらに加熱用ヒータ、及び循環用ポンプと、ポンプと洗浄槽とを連通させる連通管とを備え、かつ加熱用ヒータ及び洗浄槽に前記短波長可視光のみを透過させる手段を設けたことを特徴とする。
また本発明に係る方法及び装置は、前記短波長可視光の波長域が、好ましくは380〜580nmの範囲、より好ましくは480〜580nmの範囲、最も好ましくは480〜520nmの範囲である。係る波長範囲よりも短波長の光は可視領域外であり目視点検のための照明としての役割を果たせないため好ましくない。また係る波長範囲よりも長波長ではウエハ表面の欠陥の発生・成長が促進されるため好ましくない。
That is, the cleaning method according to the present invention includes:
In the silicon semiconductor wafer cleaning method of cleaning the surface by immersing in the cleaning liquid in the cleaning tank,
The cleaning liquid is composed of at least one of ammonia, tetramethylammonium hydroxide, and choline, a hydrogen peroxide solution, and pure water. Further, the cleaning liquid is immersed on the cleaning liquid and pulled up from the cleaning tank, and then is cleaned on the surface of the wafer. During the deposition, the wafer is irradiated with only short- wavelength visible light having a wavelength of 380 to 580 nm .
Cleaning device on the surface of the semiconductor wafer according to the present invention is to is found,
A housing,
A cleaning tank that immerses a silicon semiconductor wafer installed in the housing,
An illuminating device is arranged in the housing, and the illuminating device allows the short wavelength visible light having a wavelength of 380 to 580 nm while the wafer is immersed in the cleaning liquid and while the cleaning liquid is attached to the wafer surface after being pulled up from the cleaning tank. The wafer is irradiated with only light, and the cleaning liquid is composed of at least one of ammonia, tetramethylammonium hydroxide, and choline, a hydrogen peroxide solution, and pure water.
It is characterized by that.
Moreover, the cleaning apparatus according to the present invention comprises:
Furthermore, a heating heater, a circulation pump, a communication pipe for communicating the pump and the cleaning tank, and a means for transmitting only the short wavelength visible light to the heating heater and the cleaning tank are provided. To do.
Also the method and apparatus according to the present invention, the wavelength range of the short-wavelength visible light, preferably in the range of 380~580Nm, more preferably in the range of 480~580Nm, most preferably in the range of 480~520Nm. Light having a shorter wavelength than the wavelength range is not preferable because it is outside the visible region and cannot serve as illumination for visual inspection. A wavelength longer than the above wavelength range is not preferable because the generation and growth of defects on the wafer surface are promoted.
本発明の洗浄方法は、被洗浄物であるシリコン半導体ウエハの洗浄液浸漬中及び洗浄槽から引き上げた後の表面に洗浄液が付着している間、被洗浄物に対して、可視光のうち波長380〜580nmの光のみが照射されるように照明することにより、被洗浄物に発生した欠陥の成長を抑えることができる。また本発明の洗浄方法は、所定の短波長域側の可視光を使用するものであり、洗浄工程又は洗浄装置の異常を目視で検知できるようになる。 In the cleaning method of the present invention, while the cleaning liquid adheres to the surface of the silicon semiconductor wafer, which is the object to be cleaned, during immersion in the cleaning liquid and after being pulled up from the cleaning tank, the wavelength 380 of visible light is applied to the object to be cleaned. By performing illumination so that only light of ˜580 nm is irradiated, growth of defects generated in the object to be cleaned can be suppressed. In addition, the cleaning method of the present invention uses visible light in a predetermined short wavelength region, so that an abnormality in the cleaning process or the cleaning apparatus can be detected visually.
以下、本発明の実施形態について、添付図面を参照しながら詳細に説明する。
図1及び図2は、本発明に係る半導体ウエハの洗浄装置1を示すものであり、この半導体ウエハの洗浄装置1は、透明窓60を備えた半密閉の箱型筐体2の内部に、照明灯として所定の短波長域の可視光(前述した許容波長帯域(γ))のみを出射する照明装置10と、半導体ウエハWの浸漬及び搬出を行う自動搬送装置20と、半導体ウエハWの洗浄を行う洗浄ユニット30と、を備えており、その筐体2がクリーンルーム50の室内に設置されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
1 and 2 show a semiconductor wafer cleaning apparatus 1 according to the present invention. The semiconductor wafer cleaning apparatus 1 is provided inside a semi-enclosed box-shaped housing 2 having a transparent window 60. Illumination device 10 that emits only visible light in the predetermined short wavelength region (the above-described allowable wavelength band (γ)) as an illumination lamp, automatic transfer device 20 that immerses and unloads semiconductor wafer W, and cleaning of semiconductor wafer W And a cleaning unit 30 that performs the cleaning. The housing 2 is installed in a clean room 50.
クリーンルーム50には、天井50Aに室内を照明させるための照明器具70が設置されている。この照明器具70には、一般の白色蛍光灯を光源として用いている。例えば本実施形態では、後述する半導体ウエハの洗浄装置1の筐体2の内部に設置した照明装置10と同様の波長分布特性(図3参照;但し、可視光のみを出射するものとする)を有する蛍光灯を用いている。このため、照明装置10と同様、詳細は後述するが、可視光域の波長の光のうち不要な帯域の波長の光(禁止波長帯域光)を除去させる図示外のフィルタ膜を光源の外面に固着させている。 The clean room 50 is provided with a lighting fixture 70 for illuminating the interior of the ceiling 50A. The lighting fixture 70 uses a general white fluorescent lamp as a light source. For example, in the present embodiment, the same wavelength distribution characteristic as that of the illumination device 10 installed in the housing 2 of the semiconductor wafer cleaning device 1 described later (see FIG. 3; however, only visible light is emitted). The fluorescent lamp which has is used. For this reason, as will be described in detail later, similar to the illumination device 10, a filter film (not shown) that removes light with a wavelength in an unnecessary band (forbidden wavelength band light) out of light with a wavelength in the visible light range is provided on the outer surface of the light source. It is fixed.
半導体ウエハWは、本実施形態の場合、インゴット状のシリコン結晶からスライサによって所定の厚さ、例えば数百ミクロン程度の厚さにスライスさせるとともに、例えばCMP(Chemical Mechanical Polishing)法などにより鏡面加工させた直後の枚葉状の数十枚程度のものを、所要のフッソ樹脂などの容器(例えば、カセットCなど)に収容させて洗浄作業を行う。 In the case of this embodiment, the semiconductor wafer W is sliced from an ingot-like silicon crystal to a predetermined thickness, for example, about several hundred microns, by a slicer and mirror-processed by, for example, a CMP (Chemical Mechanical Polishing) method. About several tens of sheet-like pieces immediately after being stored are accommodated in a necessary container (for example, cassette C) such as a fluorine resin, and the cleaning operation is performed.
筐体2には、床面に載置した作業台の上に複数種類の前述した洗浄槽40が配置されているとともに、天井面(特にここには限らない)に単一の又は複数の前述した照明装置10が設置されている。また、この筐体2には、壁などの一部に窓60を設けており、クリーンルーム50の天井50Aに設けた照明器具70から照射される照明光が窓60から筐体2の内部に差し込む虞があるので、後述するフィルタ膜Fが窓60にも固着(蒸着)されている。 In the housing 2, a plurality of types of the above-described cleaning tanks 40 are arranged on a work table placed on the floor surface, and a single or a plurality of the above-described cleaning tanks 40 are provided on the ceiling surface (not limited to this). The illuminating device 10 is installed. In addition, the casing 2 is provided with a window 60 in a part of a wall or the like, and illumination light emitted from the lighting fixture 70 provided on the ceiling 50A of the clean room 50 is inserted into the casing 2 from the window 60. Since there exists a possibility, the filter film F mentioned later is adhere | attached also on the window 60 (vapor deposition).
このフィルタ膜Fは、長波長帯域の可視光(禁止波長帯域光)を吸収させるものであり、例えばダイクロイックフィルタ(2色フィルタ)などの帯域干渉フィルタ、バンドパスフィルタ、或いは誘電体エッジフィルタなど所定の波長帯域のみを透過させる機能を有するもので構成できる。本実施形態のフィルタ膜Fでは、例えば図4に示すような波長透過特性を有するものを照明装置10の出射面に蒸着させることで構成できる。なお、このフィルタ膜Fには、上記した許容波長帯域(γ)の波長を有する可視光のうち比較的広帯域の波長を透過させる特性のもので構成したが、この許容波長帯域(γ)内であれば、例えば透過波長が狭くて急峻な誘電体多層膜フィルタや適宜のカラーフィルタなどで構成してもよい。 The filter film F absorbs visible light in a long wavelength band (forbidden wavelength band light). For example, a band interference filter such as a dichroic filter (two-color filter), a bandpass filter, or a dielectric edge filter is used. Can be configured to have a function of transmitting only the wavelength band. In the filter membrane F of the present embodiment can be configured by depositing a material having a wavelength transmission characteristic as shown in FIG. 4, for example the exit plane of the illumination system 10. The filter film F has a characteristic of transmitting a relatively broad band of visible light having a wavelength in the above-described allowable wavelength band (γ), but within the allowable wavelength band (γ). If there is, for example, it may be composed of a dielectric multilayer filter having a narrow transmission wavelength and a steep dielectric layer or an appropriate color filter.
このように、照明装置10を構成する光源11として、図3に示す波長特性の蛍光灯(例えば、現パナソニック株式会社(旧社名:松下電器産業株式会社)製の蛍光灯など)を使用しているので、上述のフィルタ膜Fを透過後の光には、上述した可視光のうち、短波長、例えば青色から緑色までの許容波長帯域(γ)の光のみが筐体2内に出射され、照明される。 In this way, the fluorescent lamp having the wavelength characteristics shown in FIG. 3 (for example, a fluorescent lamp manufactured by the current Panasonic Corporation (former name: Matsushita Electric Industrial Co., Ltd.)) is used as the light source 11 constituting the illumination device 10. Therefore, in the light after passing through the filter film F, only light having a short wavelength, for example, an allowable wavelength band (γ) from blue to green is emitted into the housing 2 from the visible light described above. Illuminated.
なお、クリーンルーム50に設置する照明器具70からの照明光に、前述した禁止波長帯域(β)の可視光を含まない場合には、勿論、この窓60へのフィルタ膜Fの蒸着などは不要である。また、この照明器具70からの照明光に、前述した禁止波長帯域(β)の可視光の他に、近赤外光などの赤外光を含む場合には、その波長帯域の光もカットできるフィルタを設けることが必要である。 If the illumination light from the luminaire 70 installed in the clean room 50 does not include visible light in the forbidden wavelength band (β) described above, it is of course unnecessary to deposit the filter film F on the window 60. is there. Further, when the illumination light from the lighting fixture 70 includes infrared light such as near infrared light in addition to the visible light in the forbidden wavelength band (β) described above, light in that wavelength band can also be cut. It is necessary to provide a filter.
照明装置10は、SC1洗浄液を用いたSC1洗浄において特に可視光の波長帯のうち長波長の光、即ち、青色から緑色までの短波長帯域を除く長波長帯側の光、が欠陥の成長に大きく関わっている、といった本発明者の知見に基づき、前述の短波長帯域側の波長のみからなる可視光(許容波長帯域光(γ))により、筐体2内の照明を行うものである。 In the SC1 cleaning using the SC1 cleaning liquid, the illuminating device 10 has a long wavelength light in the visible light wavelength band, that is, a light on a long wavelength band side excluding a short wavelength band from blue to green. Based on the inventor's knowledge that it is greatly involved, the inside of the housing 2 is illuminated with visible light (allowable wavelength band light (γ)) consisting only of the wavelength on the short wavelength band side.
このような波長の可視光(許容波長帯域光(γ))で照明することで目視点検が可能になるので、半導体ウエハWの洗浄作業において、洗浄作業に伴う各種のトラブルを未然に防止でき、確実で信頼度の高い洗浄作業が行える。従って、このような照明光のもとでは、以下のような点検作業が実行可能である。即ち、
(i)洗浄作業中の半導体ウエハWを把持するロボットアーム24のチャックにチャックミスを起こすなどの故障が発生した場合には、これを作業者が肉眼で直接確認できる。従って、洗浄作業を直ちに停止して、故障の修理ができる。
(ii)さらに、洗浄槽40内に設置したヒータ32が破損してピンホールなどが形成される場合には、その泡を目視で確認することにより、この破損の有無を肉眼で確認できるので、ヒータ32を速やかに交換できる。
Since visual inspection is possible by illuminating with visible light having such a wavelength (allowable wavelength band light (γ)), in the cleaning operation of the semiconductor wafer W, various troubles associated with the cleaning operation can be prevented in advance. A reliable and highly reliable cleaning operation can be performed. Therefore, the following inspection work can be performed under such illumination light. That is,
(I) When a failure such as a chuck error occurs in the chuck of the robot arm 24 that holds the semiconductor wafer W during the cleaning operation, the operator can directly confirm this with the naked eye. Therefore, the cleaning operation can be stopped immediately to repair the failure.
(Ii) Furthermore, when the heater 32 installed in the cleaning tank 40 is damaged and a pinhole or the like is formed, the presence or absence of this damage can be confirmed with the naked eye by visually checking the bubbles. The heater 32 can be replaced quickly.
本実施形態の照明装置10では、図3に示すような波長分布特性(但し、可視光のみを出射するものとする)を有する通常の白色蛍光灯(前述した蛍光灯)を光源11として用いている。このため、可視光域の波長の光のうち不要な帯域の波長の光(禁止波長帯域光)を除去させる後述のフィルタ膜Fを光源11の出射面に固着させているが、前述の不要な波長帯域を除くいずれかの波長の可視光、つまり許容波長帯域光のみを出射する光源を用いるようにすれば、例えば青色発光ダイオードなどであれば、このフィルタ膜Fは必要ない。 In the illumination device 10 of the present embodiment, a normal white fluorescent lamp (the fluorescent lamp described above) having a wavelength distribution characteristic (provided that only visible light is emitted) as shown in FIG. Yes. For this reason, a filter film F, which will be described later, is removed from the light having a wavelength in the visible light range and is removed from the light emission surface of the light source 11. If a light source that emits only visible light of any wavelength other than the wavelength band, that is, only the allowable wavelength band light, is used, for example, a blue light emitting diode, the filter film F is not necessary.
また、本実施形態では、光源11に可視光域の光のみを出射するものを用いたが、近赤外光などの可視光域をこえた、長波長の赤外光を含んでいる場合には、長波長側の可視光(禁止波長帯域光)と同じように、その近赤外光や赤外光も欠陥に対してこれを成長させる負の効果があると予想されるので、カットが必要である。そこで、この場合には、後述する禁止波長帯域の可視光とともに近赤外光などの光もカットさせるような、フィルタを用いるようにすればよい。なお、近紫外光や紫外光は存在していても特に問題ない。 In the present embodiment, the light source 11 that emits only light in the visible light region is used. However, when the light source 11 includes long-wavelength infrared light that exceeds the visible light region such as near infrared light. Is expected to have a negative effect of growing near-infrared light and infrared light against defects as well as visible light on the long wavelength side (forbidden wavelength band light). is necessary. Therefore, in this case, a filter that cuts light such as near infrared light as well as visible light in the forbidden wavelength band described later may be used. Note that there is no particular problem even if near ultraviolet light or ultraviolet light is present.
なお、本実施形態の照明装置10では、上述した通常の白色蛍光灯を用いた光源11からの照明光が、この光源11の外周面に設けたフィルタFを透過して、後述する洗浄ユニット30の洗浄槽40に差し込むように照明するが、光源11からの照明光(窓60を介して差し込む照明器具70からの光も一部に含んだ状態でもよい)については、目視点検に必要な最小限の明るさを確保するため、光源11の光度(Cd;カンデラ)調整がなされている。これにより、上述したように洗浄作業に伴う各種のトラブルを目視で確認することで、それらのトラブルを未然に防止できる。 In the illumination device 10 of the present embodiment, the illumination light from the light source 11 using the above-described normal white fluorescent lamp passes through the filter F provided on the outer peripheral surface of the light source 11 to be described later. However, the illumination light from the light source 11 (which may include a part of the light from the luminaire 70 inserted through the window 60) is the minimum necessary for visual inspection. In order to ensure the limited brightness, the light intensity (Cd: candela) of the light source 11 is adjusted. Thereby, as described above, by confirming various troubles associated with the cleaning work with the eyes, those troubles can be prevented in advance.
即ち、本実施形態では、自動搬送装置20や洗浄ユニット30の異常事態、例えば洗浄ユニット30の洗浄槽40での液面の異常低下や異常上昇、或いはヒータ32の破損、さらには自動搬送装置20でのチャックミスなどを作業者が直接目視で点検確認できる最低限の光度(又は光量)を確保するため、光源11の光度(Cd;カンデラ)調整によって、自動搬送装置20や洗浄ユニット30付近での照度(Lx;ルクス)を、最低限、例えば1ルクス以上の明るさに確保させている。 That is, in the present embodiment, the abnormal state of the automatic transfer device 20 and the cleaning unit 30, for example, the abnormal decrease or increase in the liquid level in the cleaning tank 40 of the cleaning unit 30, the breakage of the heater 32, and further the automatic transfer device 20. In order to ensure a minimum light intensity (or light quantity) that enables an operator to directly check and check for chuck mistakes or the like in the machine, by adjusting the light intensity (Cd; candela) of the light source 11, the automatic transport device 20 and the cleaning unit 30 are near. The illuminance (Lx; lux) is kept at a minimum brightness of, for example, 1 lux.
一般に蛍光灯は、その全光束が例えば40W直管型で2800〜3500ルーメン程度であって、通常(従来)の操業時には、400ルクス程度の照度が確保されている。一方、本発明では、照明装置10の光源11の光度を調整しており、自動搬送装置20や洗浄ユニット30の付近で上記のような最低限の照度(1ルクス)を確保することで、これらの部分での各種異常が目視で検出できることが確認されている。 In general, a fluorescent lamp has a total luminous flux of, for example, a 40 W straight tube type and about 2800 to 3500 lumens, and an illuminance of about 400 lux is secured during normal (conventional) operation. On the other hand, in the present invention, the light intensity of the light source 11 of the lighting device 10 is adjusted, and by ensuring the minimum illuminance (1 lux) as described above in the vicinity of the automatic conveyance device 20 and the cleaning unit 30, these It has been confirmed that various abnormalities can be detected visually.
自動搬送装置20は、被洗浄物を構成する半導体ウエハWを各洗浄液3の入った複数の洗浄槽40へ逐次搬送させて行き、各洗浄槽40では搬送させてきた半導体ウエハWを洗浄液3へ浸漬させ所要の洗浄を行うとともに、洗浄作業の完了後にその洗浄槽40から搬出させるように構成される。 The automatic transfer device 20 sequentially transfers the semiconductor wafers W constituting the object to be cleaned to the plurality of cleaning tanks 40 containing the cleaning liquids 3, and the semiconductor wafers W transferred in the cleaning tanks 40 to the cleaning liquid 3. It is configured to be immersed and perform necessary cleaning, and to be removed from the cleaning tank 40 after the cleaning operation is completed.
本実施形態の自動搬送装置20は、たとえば筐体2内の天井面に沿って平行に配置されたスライドシャフト21と、このスライドシャフト21に螺合されたスライダ22と、このスライダ22から垂下するガイドシャフト23と、このガイドシャフト23に沿って自在に昇降可能なロボットアーム24と、を備えている。 The automatic conveyance device 20 of the present embodiment includes, for example, a slide shaft 21 that is arranged in parallel along the ceiling surface in the housing 2, a slider 22 that is screwed to the slide shaft 21, and the slider 22 that hangs down from the slider 22. A guide shaft 23 and a robot arm 24 that can freely move up and down along the guide shaft 23 are provided.
ロボットアーム24は、半導体ウエハWを把持しながら水平方向に移動することで、次位の洗浄槽40に半導体ウエハWを移送させることができる。さらに、このロボットアーム24が半導体ウエハWを把持しながら上下方向に移動して把持動作を開始するとともに把持動作を解除することで、半導体ウエハWの搬入、浸漬、及び搬出の各動作を行う。 The robot arm 24 can move the semiconductor wafer W to the next cleaning tank 40 by moving in the horizontal direction while holding the semiconductor wafer W. Further, the robot arm 24 moves up and down while gripping the semiconductor wafer W to start the gripping operation and cancels the gripping operation, thereby performing operations of loading, dipping, and unloading of the semiconductor wafer W.
洗浄ユニット30には、RCA洗浄に用いる洗浄ユニットを設けており、具体的には、図2に示すように、循環用ポンプ31と、加熱用ヒータ32と、洗浄液3中に微細粒子などが混入した場合その通過中にこれを取除くフィルタ34と、これらを取付けているとともに(後述する)洗浄槽40に連通させた連通管33と、を備える。さらに、本実施形態では、加熱用ヒータ32、連通管33、フィルタ34及び洗浄槽40の外周面を、所定の短波長域の可視光(許容波長帯域光)の透過を許容するとともに、長波長帯域の可視光(禁止波長帯域光)を吸収させるフィルタ膜Fで覆う。なお、本実施形態では、加熱用ヒータ32を、連通管33を介して洗浄槽40の外部に設置する構成であるが、洗浄槽40内に設置する構成でもよい。 The cleaning unit 30 is provided with a cleaning unit used for RCA cleaning. Specifically, as shown in FIG. 2, fine particles or the like are mixed in the circulation pump 31, the heater 32, and the cleaning liquid 3. In this case, the filter 34 is removed during the passage, and the communication pipe 33 is attached to the filter 34 and connected to the cleaning tank 40 (described later). Furthermore, in the present embodiment, the outer peripheral surfaces of the heater 32, the communication pipe 33, the filter 34, and the cleaning tank 40 are allowed to transmit visible light (allowable wavelength band light) in a predetermined short wavelength region and have a long wavelength. Cover with a filter film F that absorbs visible light in the band (forbidden wavelength band light). In the present embodiment, the heater 32 is installed outside the cleaning tank 40 via the communication pipe 33, but may be installed inside the cleaning tank 40.
ポンプ31は、連通管33の上部から洗浄槽40内の洗浄液3を取り込むとともに、連通管33の下部から洗浄槽40内へ洗浄液3を放出させて洗浄槽40内の洗浄液3を循環させるものであって、この連通管33内部を通過する洗浄液3を加熱用ヒータ32で加温する。 The pump 31 takes in the cleaning liquid 3 in the cleaning tank 40 from the upper part of the communication pipe 33 and discharges the cleaning liquid 3 from the lower part of the communication pipe 33 into the cleaning tank 40 to circulate the cleaning liquid 3 in the cleaning tank 40. Therefore, the cleaning liquid 3 passing through the communication pipe 33 is heated by the heater 32.
加熱用ヒータ32は、外管である石英管と、この石英管内に設けた熱源であるニクロム線(或いは白金線、カンタル線などでもよい)とを含む構成であって、外部からニクロム線へ通電させることで発熱し、この発熱に伴って石英管全体が熱せられることで、ここを通過する連通管33内部の洗浄液3を加温する。 The heater 32 includes a quartz tube as an outer tube and a nichrome wire (or a platinum wire, a Kanthal wire, or the like) as a heat source provided in the quartz tube, and energizes the nichrome wire from the outside. As a result, the entire quartz tube is heated, and the cleaning liquid 3 inside the communication tube 33 passing therethrough is heated.
この加熱用ヒータ32は、熱源であるニクロム線の発熱に伴って各種波長の光、特に本発明では半導体ウエハWのSC1洗浄作業の際に、赤色等の長波長側の可視光が同時に出射される(また、使用する照明器具によっては近赤外光などが出射される場合もある)。そこで、本実施形態では、このような波長帯の光(禁止波長帯域光)が洗浄液に到達するのを防止するため、ヒータ外周面全体あるいはヒータユニットの収められているボックスに先述のフィルタ膜Fなどを蒸着させて設けている。なお、この加熱用ヒータ32の表面発熱温度が高い場合には、蒸着させずに適宜手段で取囲むようにしてもよい。 The heater 32 emits light of various wavelengths along with heat generation of the nichrome wire as a heat source, and in particular, visible light on the long wavelength side such as red is simultaneously emitted during the SC1 cleaning operation of the semiconductor wafer W in the present invention. (Near-infrared light may be emitted depending on the luminaire used). Therefore, in the present embodiment, in order to prevent light in such a wavelength band (forbidden wavelength band light) from reaching the cleaning liquid, the filter film F described above is disposed on the entire outer peripheral surface of the heater or the box in which the heater unit is accommodated. Etc. are provided by vapor deposition. In addition, when the surface heating temperature of the heater 32 is high, it may be appropriately surrounded by means without vapor deposition.
洗浄槽40は、本実施形態の場合、多層バッチ式洗浄タイプであって、少なくとも2種類の洗浄液(薬液)、特に本実施形態では4種類の洗浄液(SC1、SC2、SMP、DHF)とともにリンス用の純水がそれぞれ湛えられた複数槽の洗浄槽40で構成されている。また、この洗浄液としては、これに限定されるものではなく、例えば、アンモニア、水酸化テトラメチルアンモニウム、及びコリンのうちの少なくとも何れか1種類の薬液と、過酸化水素水と、純水と混合させた洗浄液であってもよい。
尚、本発明の洗浄ユニット30は、本実施形態のような多層バッチ式洗浄タイプに限定されるものではなく、例えば1槽バッチ式洗浄タイプや枚葉洗浄タイプへの適用も可能である。
In the case of this embodiment, the cleaning tank 40 is a multilayer batch cleaning type, and is used for rinsing together with at least two types of cleaning liquids (chemical solutions), particularly in this embodiment, four types of cleaning liquids (SC1, SC2, SMP, DHF). Are comprised of a plurality of cleaning tanks 40 each containing pure water. In addition, the cleaning liquid is not limited to this. For example, at least one kind of chemical liquid of ammonia, tetramethylammonium hydroxide, and choline, a hydrogen peroxide solution, and pure water are mixed. It may be a washed liquid.
The cleaning unit 30 of the present invention is not limited to the multi-layer batch cleaning type as in the present embodiment, and can be applied to, for example, a single tank batch cleaning type or a single wafer cleaning type.
また、本実施形態の場合、少なくとも、SC1洗浄用及びSC2洗浄用に用いる2種類の洗浄液(SC1、SC2)3とSPM洗浄及びDHF洗浄に用いる2種類の洗浄液(SMP、DHF)3との都合4種類の洗浄液3を用いるだけでなく、これらの洗浄液3での洗浄直後には、次位の洗浄作業での洗浄液3に浸漬させるのに先立って、半導体ウエハWの表面に付着する残留洗浄液を純水によってリンスさせて除去させる構成となっている。このため、本実施形態では、洗浄液3を収める洗浄槽のほかに、純水が収められている図示外の専用のリンス槽も設置されている。 In the case of the present embodiment, at least the convenience of two types of cleaning liquids (SC1, SC2) 3 used for SC1 cleaning and SC2 cleaning and two types of cleaning liquids (SMP, DHF) 3 used for SPM cleaning and DHF cleaning In addition to using the four types of cleaning liquids 3, immediately after cleaning with these cleaning liquids 3, the residual cleaning liquid that adheres to the surface of the semiconductor wafer W is immersed in the cleaning liquid 3 in the subsequent cleaning operation. It is configured to be removed by rinsing with pure water. For this reason, in this embodiment, in addition to the cleaning tank in which the cleaning liquid 3 is stored, a dedicated rinsing tank (not shown) in which pure water is stored is also installed.
本実施形態の洗浄槽40は、図2に示すように、各洗浄液(薬液)で侵食されることがない石英ガラスなどの耐液性材料で形成された本体41と、この本体41の開口された上部を必要に応じて閉鎖可能な蓋体42と、を備えている。このうち、本体41の外表面、即ち4つの側面及び底面には、凡そ380〜760(nm)前後(但し、可視光の波長帯域は個人差により若干幅にずれがある場合もある。)の全可視光域のうち、前述の禁止波長帯域(β)である、(1)式を満たす波長の光、即ち、本実施形態では580(nm)を上回る波長(λ0)のものをカットする後述のフィルタ膜Fを直接蒸着あるいは周囲に貼付している。従って、これによって、万一加熱用ヒータ31からの光が漏れることがあっても、その光が洗浄槽4の本体41から洗浄槽40内へ入射するのを阻止できる。 As shown in FIG. 2, the cleaning tank 40 of the present embodiment includes a main body 41 formed of a liquid-resistant material such as quartz glass that is not eroded by each cleaning liquid (chemical liquid), and an opening of the main body 41. and a lid 42 which can be closed in accordance upper to need, and a. Among these, the outer surface of the main body 41, that is, the four side surfaces and the bottom surface is approximately 380 to 760 (nm) (however, the wavelength band of visible light may be slightly shifted depending on individual differences). Of the total visible light region, light having a wavelength satisfying the expression (1), which is the above-described forbidden wavelength band (β), that is, a wavelength (λ 0 ) exceeding 580 (nm) in this embodiment is cut. A filter film F, which will be described later, is directly deposited or attached to the periphery. Therefore, even if the light from the heater 31 is leaked, the light can be prevented from entering the cleaning tank 40 from the main body 41 of the cleaning tank 4.
また、洗浄槽40内の洗浄液の蒸散を防止するため、半導体ウエハWの搬出入以外のときは本体41の開口された上部を必要に応じて蓋体42で閉じるようになっているが、この蓋体42は必要に応じて透明材料で形成されているので、半導体ウエハWの浸漬中の洗浄槽40内での各種トラブルの発生を目視によって確認できる。なお、本実施形態では、筐体2外部からの外光などの洩入を極力防止させているが、万一のために、この蓋体42にもフィルタ膜Fを直接蒸着あるいは周囲に貼付しておくのが好ましい。 In addition, in order to prevent the cleaning liquid in the cleaning tank 40 from evaporating, the opened upper portion of the main body 41 is closed with a lid 42 as necessary when the semiconductor wafer W is not carried in or out. Since the lid body 42 is formed of a transparent material as necessary, occurrence of various troubles in the cleaning tank 40 during immersion of the semiconductor wafer W can be visually confirmed. In this embodiment, leakage of external light from the outside of the housing 2 is prevented as much as possible. However, for the sake of convenience, the filter film F is also directly deposited on the lid 42 or pasted around it. It is preferable to keep it.
このようなフィルタ膜Fを蒸着させた蓋体32によれば、可視光域の光のうち前述の許容波長帯域λV≦γ≦λG、即ち短波長側での限界波長(λV;凡そ380nm)から長波長側での限界波長(λG;凡そ580nm)までの可視光が透過できるので、洗浄槽内で浸漬中の半導体ウエハWの様子や洗浄液の液面レベルなどをその照明光により直接目視で確認可能である。
なお、筐体2の内壁面、天井面、床面などには上記のような波長帯域の可視光を吸収させる適宜の光吸収材を貼着させるようにすれば、さらに好ましい。
According to the lid 32 on which such a filter film F is deposited, the above-mentioned allowable wavelength band λ V ≦ γ ≦ λ G among the light in the visible light range, that is, the limit wavelength (λ V ; approximately on the short wavelength side) 380 nm) to the limit wavelength (λ G ; approximately 580 nm) on the long wavelength side can be transmitted, so that the illumination light can show the state of the semiconductor wafer W immersed in the cleaning tank and the level of the cleaning liquid. Direct visual confirmation is possible.
It is more preferable that an appropriate light absorbing material that absorbs visible light in the wavelength band as described above is attached to the inner wall surface, ceiling surface, floor surface, and the like of the housing 2.
洗浄液3は、本実施形態の場合、上述したように、SC1洗浄用及びSC2洗浄用に用いる2種類の洗浄液とSPM洗浄及びDHF洗浄に用いる2種類の洗浄液との都合4種類の洗浄液を用いるように構成されており、これらの洗浄液が4つの洗浄槽40にそれぞれ収められている。また、さらに本実施形態の場合、前述したように、これらの洗浄液3での洗浄直後には、次位の洗浄作業での洗浄液3に浸漬させるのに先立ち、半導体ウエハWの表面に付着する残留洗浄液を完全に除去させるために、純水でのリンスも行われている。 In the case of the present embodiment, as described above, the cleaning liquid 3 uses four types of cleaning liquids, that is, two types of cleaning liquids used for SC1 cleaning and SC2 cleaning and two types of cleaning liquids used for SPM cleaning and DHF cleaning. These cleaning liquids are stored in the four cleaning tanks 40, respectively. Further, in the case of the present embodiment, as described above, immediately after cleaning with these cleaning liquids 3, the residue adhering to the surface of the semiconductor wafer W prior to being immersed in the cleaning liquid 3 in the next cleaning operation. In order to completely remove the cleaning liquid, rinsing with pure water is also performed.
次に、本実施形態に係る半導体ウエハの洗浄装置1を用いた、半導体ウエハの洗浄方法について説明する。
照明装置10の光源11を作動させて許容波長帯域(γ;但しλV≦γ≦λG)の照明光で筐体2内部を照明させておくことで使用し、許容波長帯域としてバンドパスフィルターを用いて、λVは380〜480nmを、またλGは520〜580nmを使用した。
次に、半導体ウエハWをカセットCに所要枚数を収め、所定位置のウエハローダにセットする。
Next, a semiconductor wafer cleaning method using the semiconductor wafer cleaning apparatus 1 according to the present embodiment will be described.
It is used by operating the light source 11 of the illumination device 10 to illuminate the inside of the housing 2 with illumination light in an allowable wavelength band (γ; where λ V ≦ γ ≦ λ G ). Λ V was 380 to 480 nm, and λ G was 520 to 580 nm.
Next, the required number of semiconductor wafers W are stored in the cassette C and set in a wafer loader at a predetermined position.
すると、半導体ウエハWを収めたカセットCを自動搬送装置20のロボットアーム24が包持して第1の洗浄槽40Aの直上まで移送させるとともに、その直上位置でカセットCを降下させて第1の洗浄槽40A内へ搬入させる。
次に、ロボットアーム24は、半導体ウエハWを収めたカセットCの把持動作を解除した後、洗浄槽40内の洗浄液3から後退する位置まで上昇する。そして、この直後に、図外の開閉機構により蓋体42が洗浄槽40Aを閉じると、洗浄ユニット30の循環用ポンプ31及び加熱用ヒータ32が作動を開始する。
Then, the cassette C containing the semiconductor wafer W is held by the robot arm 24 of the automatic transfer device 20 and transferred to the position immediately above the first cleaning tank 40A, and the cassette C is lowered at a position immediately above the first cleaning tank 40A. It is carried into the cleaning tank 40A.
Next, the robot arm 24 is lifted to a position where it is retracted from the cleaning liquid 3 in the cleaning tank 40 after releasing the gripping operation of the cassette C containing the semiconductor wafer W. Then, shortly thereafter, the lid 42 by an unillustrated opening and closing mechanism has closed the cleaning tank 40A, the circulation pump 31 and the heater 32 of the cleaning unit 30 starts to operate.
これによって、洗浄槽内での半導体ウエハWの洗浄動作が所定時間行われるとともに、その所定時間の経過とともに蓋体42の取外し及びその後のカセットCの搬出動作を行う。そして、そのカセットCを把持したロボットアーム24が純水の納められたリンス槽の直上に移動し、そのリンス槽内へ半導体ウエハWを浸漬させて半導体ウエハWに付着残留する洗浄液3をすすぎ落とす。 Thus, with the cleaning operation of the semiconductor wafer W in the cleaning bath is performed for a predetermined time, to remove and carry-out operation of the subsequent cassette C of the lid 42 to the course together with the predetermined time. Then, the robot arm 24 that holds the cassette C moves immediately above the rinse tank in which pure water is stored, and the semiconductor wafer W is immersed in the rinse tank to rinse off the cleaning liquid 3 remaining on the semiconductor wafer W. .
次に、前回の洗浄動作と同様の動作を繰り返し、第2の洗浄槽40Bでの洗浄動作及びリンス動作を行う。このようにして、以下同様に、最後の洗浄槽での洗浄及びリンス動作を完了したならば、図示外の乾燥手段へ移動して乾燥動作を行う。 Next, the same operation as the previous cleaning operation is repeated to perform the cleaning operation and the rinsing operation in the second cleaning tank 40B. In this manner, similarly, when the cleaning and rinsing operations in the final cleaning tank are completed, the drying operation is performed by moving to a drying means (not shown).
このように、本実施形態によれば、照明装置10を構成する光源から出射する光は、許容波長帯域の光のみを用いて筐体2内を照明している。従って、洗浄槽40内の洗浄液3に浸漬する半導体ウエハWには、その表面にかりに微細な溝などの欠陥が形成されていても、その欠陥の成長を促す禁止波長帯域光が照射されないので、例えば20〜30nm程度のピットの集合体、つまり前述した大型ピットの形成が抑えられる。 Thus, according to the present embodiment, the light emitted from the light source constituting the illumination device 10 illuminates the inside of the housing 2 using only light in the allowable wavelength band. Therefore, even if a defect such as a fine groove is formed on the surface of the semiconductor wafer W immersed in the cleaning liquid 3 in the cleaning tank 40, the forbidden wavelength band light that promotes the growth of the defect is not irradiated. For example, an aggregate of pits of about 20 to 30 nm, that is, formation of large pits as described above can be suppressed.
しかも、本実施形態によれば、大型ピットの形成を避けるために真っ暗な筐体2内での洗浄作業を行う必要がないので、従来のような不都合、例えば、
(i)洗浄作業中の半導体ウエハWを把持するロボットアーム24のチャックにチャックミスを起こして、洗浄槽に浸漬させてある半導体ウエハWを引き上げきれなかったり、チャックずれを起こして把持できなかったりする、といったトラブルの見逃し・見落としが回避できる。
(ii)さらに、洗浄槽40内に設置したヒータ32が破損してピンホール等を発生しているような場合であっても、本実施形態では許容波長帯域光で筐体2内を照明しているので、その照明光のもとでピンホール発生に伴う気泡などを作業者が直接目で確認でき、ヒータ32の交換が迅速に対応できる。これにより、洗浄槽内の破損したヒータから発生するピンホールから薬液がしみこんでヒータ線を腐食し金属が洗浄液中に溶出する、などといったトラブルの見逃し・見落としを回避できる。
Moreover, according to this embodiment, there is no need to perform a cleaning operation in the dark housing 2 in order to avoid the formation of large pits.
(I) A chuck error occurs in the chuck of the robot arm 24 that grips the semiconductor wafer W during the cleaning operation, and the semiconductor wafer W immersed in the cleaning tank cannot be pulled up, or the chuck is displaced and cannot be gripped. It is possible to avoid overlooking and overlooking troubles.
(Ii) Further, even in the case where the heater 32 installed in the cleaning tank 40 is broken and a pinhole or the like is generated, the inside of the housing 2 is illuminated with the allowable wavelength band light in this embodiment. As a result, the operator can directly check the bubbles associated with the occurrence of the pinhole under the illumination light, and the heater 32 can be replaced quickly. As a result, it is possible to avoid oversight and oversight of troubles such as a chemical solution infiltrated from a pinhole generated from a damaged heater in the cleaning tank, corroding the heater wire, and metal eluting into the cleaning solution.
[実施例1]
次に、図5を参照しながら、本発明の照明装置の許容波長帯域(γ)の光を用いた照明により洗浄作業を行った場合と、禁止波長帯域(β)の光を用いた照明により洗浄作業を行った場合とについて、欠陥の成長に伴って発生する大型ピットの形成数などを調べる比較実験を説明する。
[Example 1]
Next, referring to FIG. 5, when the cleaning operation is performed by using the light of the allowable wavelength band (γ) of the lighting device of the present invention, and by using the light of the prohibited wavelength band (β). A comparative experiment will be described in which the number of large pits generated with the growth of defects is examined for the case where the cleaning operation is performed.
本実施形態の自動搬送装置20及び洗浄ユニット30を備えた半導体ウエハの洗浄装置1において、特に許容波長帯域光を出射する照明装置A又はBを用いた場合と、禁止波長帯域光を出射する一般的な照明装置Cを用いた場合について、所定の洗浄作業を行わせた時に発生する欠陥(ピット)の成長具合、つまり大型ピット、例えば20〜30nm程度まで成長したものの集合体が形成される割合を調べる実験を行ってみた。ここで使用した薬液は、29%アンモニア水と31%過酸化水素水と超純水とを1:5:50で混合したもので、温度は80℃、洗浄時間はピット生成を加速するため80分とした。 In the semiconductor wafer cleaning apparatus 1 including the automatic transfer apparatus 20 and the cleaning unit 30 according to the present embodiment, particularly when the illuminating device A or B that emits the allowable wavelength band light is used, and the general practice of emitting the forbidden wavelength band light. In the case of using a typical illumination device C, the growth rate of defects (pits) generated when a predetermined cleaning operation is performed, that is, the ratio of formation of large pits, for example, aggregates of those grown to about 20 to 30 nm I conducted an experiment to investigate. The chemical used here is a mixture of 29% ammonia water, 31% hydrogen peroxide water and ultrapure water at a ratio of 1: 5: 50. The temperature is 80 ° C., and the cleaning time is 80 to accelerate pit formation. Minutes.
その結果、図5に示すようなデータが得られた。なお、同図では、試料となる半導体ウエハWの全表面において、上記大型ピットが発生する頻度(発生割合)を縦軸に、筐体2内部での照明光(洗浄槽40に入射する可視光)の波長(nm)を横軸に、それぞれ設定した。 As a result, data as shown in FIG. 5 was obtained. In the same figure, the frequency (occurrence rate) at which the large pits are generated on the entire surface of the semiconductor wafer W as a sample is plotted on the vertical axis, and the illumination light inside the housing 2 (visible light incident on the cleaning tank 40). ) Was set on the horizontal axis.
この図5によれば、本発明に係る許容波長帯域光を用いれば、従来の一般的な照明光、つまり禁止波長帯域光を含む可視光を出射する場合に比べて、大型ピットの発生頻度が大幅に抑えられることが確認できた。即ち、可視光線の波長帯域のうち、580nmより長波長側である禁止波長帯域(β)の光を遮断する照明装置Bの方が、580nmより長波長側である禁止波長帯域光を出射する照明装置Cを用いた場合の大型ピットの発生頻度に比べて、その4割程度に発生頻度を抑えることができることが確認できた。 According to FIG. 5, when the allowable wavelength band light according to the present invention is used, the occurrence frequency of large pits is larger than that in the case of emitting conventional general illumination light, that is, visible light including prohibited wavelength band light. It was confirmed that it could be greatly suppressed. That is, in the visible light wavelength band, the illumination device B that blocks light in the forbidden wavelength band (β) longer than 580 nm emits light in the forbidden wavelength band longer than 580 nm. It was confirmed that the occurrence frequency can be suppressed to about 40% of the occurrence frequency of large pits when the apparatus C is used.
一方、近紫外光に近い短波長域側の可視光を出射する照明装置Aでは、照明装置Bよりは効果が少ないが、580nmより長波長側である禁止波長帯域光を出射する照明装置Cを用いた場合の大型ピットの発生頻度に対して、その6割程度の発生頻度に抑えることができることが確認できた。 On the other hand, the illuminating device A that emits visible light in the short wavelength region close to near-ultraviolet light is less effective than the illuminating device B, but the illuminating device C that emits forbidden wavelength band light having a longer wavelength than 580 nm. It was confirmed that the frequency of occurrence of large pits when used could be reduced to about 60% of the frequency.
なお、本発明は上記の実施形態に限定されるものではなく、各種の態様が適用可能である。 In addition, this invention is not limited to said embodiment, Various aspects are applicable.
1 半導体ウエハの洗浄装置
2 筐体
3 洗浄液
10 照明装置
11 光源
20 自動搬送装置
24 ロボットアーム
30 洗浄ユニット
31 循環用ポンプ
32 加熱用ヒータ
33 連通管
34 フィルタ
40 洗浄槽
41 本体
42 蓋体
50 クリーンルーム
60 透明窓
70 照明器具
F フィルタ膜
W 半導体ウエハ(被洗浄物)
γ 許容波長帯域(但し、λV≦γ≦λG)
DESCRIPTION OF SYMBOLS 1 Semiconductor wafer cleaning apparatus 2 Housing | casing 3 Cleaning liquid 10 Illumination apparatus 11 Light source 20 Automatic conveyance apparatus 24 Robot arm 30 Cleaning unit 31 Circulation pump 32 Heating heater 33 Communication pipe 34 Filter 40 Cleaning tank 41 Main body 42 Lid 50 Clean room 60 Transparent window 70 Lighting equipment F Filter membrane W Semiconductor wafer (object to be cleaned)
γ Allowable wavelength band (However, λ V ≦ γ ≦ λ G )
Claims (3)
前記洗浄液が、アンモニア、水酸化テトラメチルアンモニウム、及びコリンのうちの少なくとも1つと、過酸化水素水と、純水とからなり、さらに
洗浄液浸漬中、及び洗浄槽から引き上げた後ウエハの表面に洗浄液が付着している間、波長380〜580nmの短波長可視光のみをウエハに照射することを特徴とする半導体ウエハの洗浄方法。 In the silicon semiconductor wafer cleaning method of cleaning the surface by immersing in the cleaning liquid in the cleaning tank,
The cleaning liquid is composed of at least one of ammonia, tetramethylammonium hydroxide, and choline, a hydrogen peroxide solution, and pure water. Further, the cleaning liquid is immersed on the cleaning liquid and pulled up from the cleaning tank, and then is cleaned on the surface of the wafer. A method for cleaning a semiconductor wafer , comprising: irradiating the wafer only with short- wavelength visible light having a wavelength of 380 to 580 nm while the wafer is attached.
筐体と、
前記筐体内に設置したシリコン半導体ウエハを浸漬する洗浄槽とからなり、
前記筺体内に照明装置が配置されており、該照明装置により、ウエハが洗浄液に浸漬中、及び洗浄槽から引き上げた後ウエハ表面に洗浄液が付着している間、波長380〜580nmの短波長可視光のみをウエハに照射し、かつ
前記洗浄液が、アンモニア、水酸化テトラメチルアンモニウム、及びコリンのうちの少なくとも何れか1つと、過酸化水素水と、純水とからなる、
ことを特徴とする半導体ウエハの洗浄装置。 A cleaning device for a surface of a semiconductor wafer,
A housing,
A cleaning tank that immerses a silicon semiconductor wafer installed in the housing,
An illuminating device is arranged in the housing, and the illuminating device allows the short wavelength visible light having a wavelength of 380 to 580 nm while the wafer is immersed in the cleaning liquid and while the cleaning liquid is attached to the wafer surface after being pulled up from the cleaning tank. The wafer is irradiated with only light, and the cleaning liquid is composed of at least one of ammonia, tetramethylammonium hydroxide, and choline, a hydrogen peroxide solution, and pure water.
A semiconductor wafer cleaning apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009285574A JP4890606B2 (en) | 2008-12-25 | 2009-12-16 | Semiconductor wafer cleaning method and cleaning apparatus |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008330571 | 2008-12-25 | ||
JP2008330571 | 2008-12-25 | ||
JP2009285574A JP4890606B2 (en) | 2008-12-25 | 2009-12-16 | Semiconductor wafer cleaning method and cleaning apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010171395A JP2010171395A (en) | 2010-08-05 |
JP4890606B2 true JP4890606B2 (en) | 2012-03-07 |
Family
ID=42703182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009285574A Expired - Fee Related JP4890606B2 (en) | 2008-12-25 | 2009-12-16 | Semiconductor wafer cleaning method and cleaning apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4890606B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2914502B1 (en) * | 1998-05-11 | 1999-07-05 | 直江津電子工業株式会社 | Method and apparatus for cleaning semiconductor wafer |
JP3510562B2 (en) * | 2000-04-28 | 2004-03-29 | Necエレクトロニクス株式会社 | Semiconductor device manufacturing method and processing apparatus |
-
2009
- 2009-12-16 JP JP2009285574A patent/JP4890606B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010171395A (en) | 2010-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8616821B2 (en) | Integrated apparatus to assure wafer quality and manufacturability | |
KR101184090B1 (en) | Immersion exposure coat film forming apparatus and immersion exposure coat film forming method and storage medium | |
TWI493645B (en) | Semi-conductor manufacturing monitoring device and method by contamination degree measurement | |
KR102239956B1 (en) | Substrate processing method and substrate processing apparatus | |
JP2012186304A (en) | Substrate processing apparatus and substrate processing method | |
CN108699722B (en) | Plating apparatus and plating method | |
CN110870045B (en) | Substrate processing apparatus and component inspection method for substrate processing apparatus | |
US10903065B2 (en) | Halogen removal module and associated systems and methods | |
JP2004296506A (en) | Substrate processing method and equipment | |
JP4890606B2 (en) | Semiconductor wafer cleaning method and cleaning apparatus | |
WO2022113641A1 (en) | Substrate treatment method and substrate treatment device | |
JPH10270530A (en) | Substrate carrying and processing device | |
CN110718448B (en) | Method for cleaning semiconductor wafer and method for manufacturing semiconductor wafer using the same | |
JP5575691B2 (en) | SUBSTRATE PROCESSING APPARATUS, SUBSTRATE PROCESSING METHOD, AND RECORDING MEDIUM RECORDING PROGRAM FOR EXECUTING THE SUBSTRATE PROCESSING METHOD | |
JP3730810B2 (en) | Container moving apparatus and method | |
JP2007297659A (en) | Method for cleaning cylindrical substrate | |
JP2001316879A (en) | Method and equipment of plating and cleaning | |
JP3543987B2 (en) | Processing equipment | |
JP5837150B2 (en) | Substrate processing method and recording medium storing program for executing the substrate processing method | |
JP2007297659A5 (en) | ||
KR100263404B1 (en) | Treatment device, treatment method and cleaning method of treatment device | |
TW201825199A (en) | Substrate processing method, liquid feeding method and substrate processing apparatus | |
Casper et al. | Semiconductor Yield Enhancement through Particle Control | |
KR20040063920A (en) | Integrated dry-wet processing apparatus and method for removing material on semiconductor wafers using dry-wet processes | |
JP2914502B1 (en) | Method and apparatus for cleaning semiconductor wafer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20101227 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20101228 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110419 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110421 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110621 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20111024 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20111116 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20111116 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111206 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111214 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141222 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |